
MBE, 20(1): 145–178.

DOI: 10.3934/mbe.2023008

Received: 01 June 2022

Revised: 10 August 2022

Accepted: 25 August 2022

Published: 30 September 2022

http://www.aimspress.com/journal/MBE

Research article

Path planning and collision avoidance methods for distributed multi-

robot systems in complex dynamic environments

Zhen Yang, Junli Li*, Liwei Yang*, Qian Wang, Ping Li and Guofeng Xia

School of Information Engineering and Automation, Kunming University of Science and Technology,

Kunming 650093, China

* Correspondance: Email: li_junli@stu.kust.edu.cn, 18916336783ylw@gmail.com.

Abstract: Multi-robot systems are experiencing increasing popularity in joint rescue, intelligent

transportation, and other fields. However, path planning and navigation obstacle avoidance among

multiple robots, as well as dynamic environments, raise significant challenges. We propose a

distributed multi-mobile robot navigation and obstacle avoidance method in unknown environments.

First, we propose a bidirectional alternating jump point search A* algorithm (BAJPSA*) to obtain

the robot’s global path in the prior environment and further improve the heuristic function to enhance

efficiency. We construct a robot kinematic model based on the dynamic window approach (DWA),

present an adaptive navigation strategy, and introduce a new path tracking evaluation function that

improves path tracking accuracy and optimality. To strengthen the security of obstacle avoidance, we

modify the decision rules and obstacle avoidance rules of the single robot and further improve the

decision avoidance capability of multi-robot systems. Moreover, the mainstream prioritization

method is used to coordinate the local dynamic path planning of our multi-robot systems to resolve

collision conflicts, reducing the difficulty of obstacle avoidance and simplifying the algorithm.

Experimental results show that this distributed multi-mobile robot motion planning method can

provide better navigation and obstacle avoidance strategies in complex dynamic environments,

which provides a technical reference in practical situations.

Keywords: distributed multi-mobile robots; path planning; A* algorithm; dynamic window approach;

prioritization method

mailto:li_junli@stu.kust.edu.cn

146

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

1. Introduction

The technology of autonomous mobile robots is developing rapidly, and it is widely used in

entertainment, mining industry, education, medical services, military reconnaissance, agricultural

automation, planetary exploration, and other fields [1]. Path planning and obstacle avoidance

technology are critical to achieve autonomous robot navigation, which determines the application

prospects of mobile robots. Meanwhile, multi-robot obstacle avoidance technology remains a

relevant research problem in dynamic and complex environments.

Path planning is generally divided into global and local path planning. Global path planning

involves planning an optimal or suboptimal safe path with priori map information [2]. In contrast,

local path planning is designed with dynamic obstacle environments in real-time. The robot usually

must acquire details about the environment, including the coordinates of static and dynamic obstacles,

with the help of a local path planner [3].

Current global path planning in a known environment has attracted significant interest.

Numerous algorithms have been explored, including the A* algorithm [4–6], ant colony optimization

[7,8], particle swarm optimization [9,10], bacterial foraging optimization [11,12], bat algorithm

[13,14], and whale optimization algorithm [15,16], etc. With the advantages of a simple structure,

facilitated implementation, and fast planning, the A* algorithm has been popular among researchers

[17]. Wang et al. [5] used a bidirectional search strategy to improve the A* algorithm, which

significantly enhanced the search performance by simultaneously conducting the iterative search in

both positive and negative directions. Zhang et al. [6] enhanced the node expansion method of the A*

algorithm based on the jump point search (JPS) strategy, which significantly reduced the memory

overhead and the search scale. We further mention some research on intelligent optimization

algorithms. Miao et al. [8] introduced an angle guidance factor and an obstacle exclusion factor in

the transfer probability of ant colony optimization, and the global search ability and convergence

speed of the algorithm were balanced. Song et al. [9] combined an adaptive fractional-order,

velocity-improved PSO algorithm with the continuous high-degree Bezier curve to plan smooth

paths for mobile robots. Hossain et al. [11] searched for the shortest path in a dynamic environment

based on the bacterial foraging optimization algorithm. Tang et al. [13] presented the first application

of the bat algorithm to a collaborative multi-robot search task in an unknown environment. They

used adaptive inertial weights and the Doppler effect to improve the frequency formulation to avoid

premature convergence. Yan et al. [15] proposed a whale optimization algorithm based on the

forward-looking sonar to solve the 3D path planning problem for UUVs, with strong stability and

search capability.

The studies mentioned above [4–16] conducted some work to improve the efficiency of path

planning. However, they yielded a few practical solutions to the obstacle avoidance problem of

mobile robots in the actual dynamic environments. Ensuring the safety of robots with the help of

local path planning is an effective solution when the environment is dynamic and full of uncertainties

[18], and the main popular local path planning algorithms are the dynamic window approach (DWA)

[19] and artificial potential field method (APF) [20], etc. DWA is a highly efficient, real-time

obstacle avoidance algorithm that transforms the path planning problem into the constrained

optimization problem of the velocity space and controls the robot motion by outputting the optimal

real-time speed [19]. However, DWA faces problems, such as local optima and a low successful

obstacle avoidance rate for dynamic obstacles. Therefore, Chang et al. [21] modified and extended

147

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

the evaluation function of DWA and used the reinforcement learning method to adaptively adjust

parameters, which further enhanced the planning effect. Lin et al. [22] improved the avoidance rate

of DWA against dynamic obstacles by using a fuzzy control scheme to evaluate the danger level of

moving obstacles through collision risk index and relative distance. Furthermore, there has been

significant interest in APF. Cheng et al. [23] introduced optimal control theory to reformulate the

UAV path planning problem as a constrained optimization problem with APF. Orozco et al. [24]

solved path planning problems in dynamic environments by combining membrane computing with a

genetic algorithm and APF. In general, it is popular to combine local path planning algorithms with

global ones to cope with environments of increasing complexity and uncertainty. The hybrid

algorithms allow the robot to connect global path optimality and stochastic obstacle avoidance to a

relatively large extent [25]. Ji et al. [26] combined the A* algorithm with an adaptive DWA for

global path planning research that solves robot motion in a complex environment. Wang et al. [27]

combined the improved PSO algorithm with APF for USVs to solve the dynamic path planning

problem in complex offshore regions.

The studies mentioned above [19–27] explored the global or local path problems from different

perspectives, but with less attention to multi-robot obstacle avoidance. The aim of multi-robot path

planning is to find a conflict-free path from the start to the target for each robot. The motion of

mobile robots is disturbed not only by known factors in the global environment, but also by dynamic

obstacles and other autonomous robots, which making it necessary and practical to design an

obstacle avoidance system for multiple autonomous robots. In the context of research on multi-robot

strategies, the main approaches are either centralized or distributed. The centralized approach

considers the cost or objective function, where the constraints for all robots are considered together,

thus obtaining the paths of individual robots in a global search. It prioritizes completeness with less

attention to the personal robot [28]. One of the more popular ways to employ the centralized

approach is the formation control, where the mission planning information and formation

information is integrated into a leader robot, while the other robots act as followers. The leader

coordinates the actions of each follower to maintain the formation from the start to the end. Dai et al.

[29] proposed a multi-robot formation switching strategy incorporating a priority model, where the

leader robot with the highest priority is responsible for planning a safe path and guiding the follower

robots, and the following robots switch into an obstacle avoidance formation by calculating the

desired distance and angle. Sang et al. [30] combined A* and APF for the USVs formation problem,

using the A* algorithm to plan the globally optimal path, dividing it into multiple sub-target points,

and used the improved APF for path tracking and performing formation obstacle avoidance. In

distributed multi-robot path motion planning, each robot independently determined its collision-free

trajectory path towards the goal without colliding with static obstacles or colleagues. The navigation

problem for a distributed-based multi-robot is divided into path planning and movement phases,

planning a globally optimal path for each robot and maintaining the safety of multi-robot movement.

Das et al. [31] added the consideration of path deviation and energy consumption optimization by

embedding the social and cognitive behavior of an improved particle swarm algorithm (IPSO) into

the Newtonian gravity of an enhanced gravity search algorithm (IGSA). They proposed IPSO-IGSA

to implement path planning for multiple robots in dynamic environments and improve search

capability by simultaneously updating particle positions using IPSO velocity and IGSA acceleration.

In subsequent research, the authors [31] further investigated the multi-robot collision-free planning

problem by mixing improved particle swarm optimization (IPSO) and evolutionary operators (EOPs)

148

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

[32]. Further, some scholars [33] set different priorities for each robot by the prioritization method,

thus reducing the possibility of robot collisions.

This study proposes a distributed multi-robot navigation and obstacle avoidance method in

unknown environments, applying it to path planning and navigation. The main contributions are as

follows:

1) In global path planning:

A jump point search strategy and a bidirectional alternating search strategy are introduced to the

conventional A* algorithm, and heuristic functions are designed based on its characteristics, called

BAJPSA*, which we efficiently obtain the robots’ globally optimal path.

2) In local path planning:

➢ First, considering dynamics and environmental constraints, the robots are constructed based on

DWA. Then, the adaptive navigation strategy and path deviation evaluation function are

proposed for improving the path tracking accuracy and optimality of our robots.

➢ Second, according to the potential collision situations between the robot and dynamic obstacles,

we improved the obstacle recognition method and designed three obstacle avoidance rules,

which increase the robot’s success rate in avoiding dynamic obstacles with a higher move

velocity or bigger size.

➢ Finally, the distributed multi-robot systems are extended from our above single-robot obstacle

avoidance algorithm. Focusing on the motion conflicts among multiple robots, we propose a

collision recognition strategy and fuse it with a task prioritization strategy to coordinate the

robots’ motion and obstacle avoidance.

This paper is organized as follows: Section 2 describes our BAJPSA* algorithm. Section 3

describes our multi-robot motion planning algorithm. Section 4 discusses the experiments. Section 5

concludes the whole paper and discusses future work.

2. Global path planning based on BAJPSA* algorithm

2.1. Conventional A* algorithm

The A* algorithm is a classical heuristic search algorithm, where the algorithm selects the node

with the smallest evaluation value as the next expanded node in the search process [34], and the

evaluation function is expressed as:

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) (1)

where 𝑛 is the current node and the evaluation function 𝑓(𝑛) is used to calculate the total cost of the

current node; 𝑔(𝑛) is the actual cost from the starting point to the current node 𝑛 ; ℎ(𝑛) is the

heuristic function used to estimate the cost from the current node 𝑛 to the target point.

The A* algorithm is a search method based on grid traversal [35], such that it must establish a

suitable motion environment for mobile robots. A 2D grid map is shown in Figure 1, where Figure

1(a) is the most widely investigated environment for robots with a priori knowledge, containing

black obstacle regions and passable white regions. Figure 1(b) represents our multi-robot motion

environment considering practical factors, expanding the unknown local elements of the robot,

further including unknown static obstacles (red grid) and unknown volume size and motion velocity

of the obstacles (yellow grid).

149

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

X

Y

(a) Traditional global static

environment

(b) Global static + local dynamic environment in

this paper

Figure 1. Grid environment.

2.2. Conventional jump point search (JPS) algorithm

The JPS algorithm was proposed by Daniel Harabor and Alban Grastien [36,37] in 2011, which

is based on the A* algorithm to find paths by defining and computing heuristic values for those

nodes on the uniform cost grid graph where the jumping rules are satisfied. It is several orders of

magnitude faster than the A* algorithm in terms of computational speed, and the memory overhead

as well as the computational effort are significantly reduced, which has been proved by Harabor et al.

[36]. The main steps of JPS include two parts [36]: (1) pruning rules,which filter out the nodes in the

grid map that do not need to be expanded and eliminate them. (2) Jumping rules,which identify the

jump nodes in the grid map and evaluate them.

2.2.1. Pruning rules

The set of neighboring nodes around node 𝑥 is defined as the 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥), and the cost of

moving one grid in straight is 1, and diagonal is √2. The function of pruning rules are to recursively

prune the set of neighbours around each node, which means pruning all nodes that can be reached

optimally by a path that does not visit the current node. Besides, the process of pruning rules is

performed entirely online, involves no preprocessing and has no memory overhead.

p(x)

1

x

2 3

7

6

8 9

p(x)

1

x

2 3

7

6

8 9

p(x)

x

1 2 3

4 6

8 9

p(x)

x

1 2 3

6

8 9

(a) straight direction (b) forced neighbor node (c) diagonal direction (d) forced neighbor node

Figure 2. Pruning rules.

X

Random static

obstacles

Unknown dynamic

obstacles

Known static

obstacles

1v

2v

Y

Known static

obstacles

150

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

Situation 1: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥) contains no obstacle

1) Straight moves

When node 𝑥 is not adjacent to an obstacle, and the algorithm is extended along the straight

direction, the node 𝑛 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥) that satisfies Eq (2) will be pruned.

𝑙𝑒𝑛(〈𝑝(𝑥), . . . , 𝑛〉\𝑥) ≤ 𝑙𝑒𝑛(〈𝑝(𝑥), 𝑥, 𝑛〉) (2)

where 𝑙𝑒𝑛 represents the cost of the path; 〈𝑝(𝑥), 𝑥, 𝑛〉 represents the path from parent node 𝑝(𝑥) to

node 𝑛 through node 𝑥; 〈𝑝(𝑥), . . . , 𝑛〉\𝑥 represents the path from parent node 𝑝(𝑥) to node n directly

without passing through node 𝑥.

As shown in Figure 2(a), there exists a path 𝜋′ = 〈𝑝(𝑥), 2〉 from node 𝑝(𝑥) to node 2 that is

shorter than the path 𝜋 = 〈𝑝(𝑥), 𝑥, 2〉 from node 𝑝(𝑥) to node 2 via node 𝑥 . Therefore, the gray

nodes{1, 2, 3, 7, 8, 9} need to be pruned according to Eq (2). Only the remaining node 6, marked

white, needs to be considered, which is called the natural neighbor of node 𝑥.

2) Diagonal moves

When node 𝑥 is not adjacent to an obstacle, and the algorithm is extended along the diagonal

direction, the node 𝑛 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥) that satisfies Eq (4) will be pruned.

𝑙𝑒𝑛(〈𝑝(𝑥), . . . , 𝑛〉\𝑥) < 𝑙𝑒𝑛(〈𝑝(𝑥), 𝑥, 𝑛〉) (3)

As shown in Figure 2(c), there exists a path 𝜋′ = 〈𝑝(𝑥), 4,1〉 that is shorter than the path 𝜋 =
〈𝑝(𝑥), 𝑥, 1〉 that goes through node 𝑥. All gray nodes 𝑛 that satisfy this condition, such as 1, 4, 8 and

9 will be pruned, and the leaved white node 2, 3 and 6 are the natural neighbors of the current node 𝑥.

Situation 2: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥) contains an obstacle

Furthermore, when 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥) contains an obstacle, Eq (2) will not be able to prune all non-

natural neighbors due to the presence of obstacles. Therefore, the concept of the forced neighbor is

introduced. A node 𝑛 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥) is forced if:

1) 𝑛 is not a natural neighbor of node 𝑥;

2) 𝑛 satisfies the rule of Eq (3).

𝑙𝑒𝑛(〈𝑝(𝑥), 𝑥, 𝑛〉) < 𝑙𝑒𝑛(〈𝑝(𝑥), . . . , 𝑛〉\𝑥) (4)

As shown in Figure 2(b), node 3 is a non-natural neighbor of node 𝑥 , and the path 𝜋′ =
〈𝑝(𝑥), 8,6,3〉 is longer than the path 𝜋 = 〈𝑝(𝑥), 𝑥, 3〉 from node 𝑝(𝑥) to node 3 via node 𝑥 .

Therefore, node 3 marked with blue need to be forcedly considered. Similar to Figure 2(b), node 1

in Figure 2(d) is also a forced neighbor of node x

2.2.2. Jumping rules

Node 𝑦 is the jump point from node 𝑥 , heading in direction 𝑑 ⃗⃗ ⃗, if 𝑦 minimizes the value 𝑘 such

that the 𝑦 = 𝑥 + 𝑘𝑑 ⃗⃗ ⃗ and one of the following conditions holds:

(1) Node 𝑦 is the target node.

(2) Node 𝑦 has at least one neighbour that is a forced neighbor.

(3) There exists a node 𝑧 = 𝑦 + 𝑘𝑖𝑑𝑖
⃗⃗ ⃗ that lies 𝑘𝑖 ∈ 𝑁 steps in direction 𝑑𝑖

⃗⃗ ⃗ and node 𝑧 is a jump

point successor of node 𝑦 according to condition (1) or condition (2).

where 𝑑 ⃗⃗ ⃗ represents a diagonal move, and 𝑑𝑖
⃗⃗ ⃗ represents two straight moves at 45° to 𝑑 ⃗⃗ ⃗ as 𝑑1

⃗⃗⃗⃗ and 𝑑2
⃗⃗⃗⃗ .

𝑦 = 𝑥 + 𝑘𝑑 ⃗⃗ ⃗ represents that node 𝑦 can be reached by taking 𝑘 unit moves from node 𝑥 in diagonal

151

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

direction 𝑑 ⃗⃗ ⃗. 𝑧 = 𝑦 + 𝑘𝑖𝑑𝑖
⃗⃗ ⃗ represents that node 𝑧 can be reached by taking 𝑘𝑖 unit moves from node

𝑦 in straight direction 𝑑𝑖
⃗⃗ ⃗.

Figure 3 shows an example of a jump point identified by Condition 3. The dashed line indicates

the process of the JPS algorithm searching along the diagonal direction after failing in a straight

direction, and the solid lines indicate the path formed by node 𝑥 and jump points. According to

Condition 2 of the jumping rules, nodes 𝑥 and 𝑧 have a forced neighbor 𝑤 and 𝑣, respectively, so

nodes 𝑥 and 𝑧 are jump points. According to Condition 3, node 𝑦 can be reached along the

horizontal direction from jump point 𝑧, such that node 𝑦 is also a jump point.

v

p(x)

x

w

y z

Figure 3. Example of jumping rules.

2.3. Bidirectional alternating search strategy

Bidirectional search defines the forward search from the starting point to the target point and the

reverse search from the target point to the starting point, however, it has the following two problems:

1) As shown in Figure 4, the bidirectional search is conducted from the starting point and the target

point at the same time, which may result in two different paths being searched.

2) Theoretically, forward and backward searching simultaneously search toward the target and

starting points and meet at their geometric center [38]. In this case, the algorithm has the highest

search efficiency. However, the obstacle density and distance between jump points are different,

and the paths may not meet at the midpoint.

S T

Forward

path

Reverse

path

Figure 4. Pathfinding failure.

For the above reasons, we use a bidirectional alternating search strategy, where the forward

and backward searches are alternated, and only the forward search finds the jump point before

152

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

starting the backward search. In this way, the forward and reverse searches meet at the midpoint as

much as possible and will benefit the search efficiency of our algorithm. The specific steps of the

BAJPS strategy are as follows:

Step 1: Create two OPEN lists and two CLOSE lists: OPEN_1 and CLOSE_1 are used to store

the jump points to be checked, and the expanded jump points in the forward expansion process,

respectively, and OPEN_2 and CLOSE_2 are used to store the jump points to be checked and the

expanded jump points in the reverse expansion process. Add the starting node S to OPEN_1, add the

target node T to OPEN_2, and set both CLOSE lists to empty.

Step 2: Alternate forward and reverse iterative jump point searches, starting with the forward

search.

(1) If there was at least one node in the list of OPEN_1, select the lowest cost node 𝑛 based on

the valuation function 𝑓(𝑛); if node 𝑛 was the target point, the search process is terminated, and the

path returned; otherwise, the node 𝑛 is removed from the list of OPEN_1 and added to the list of

CLOSE_1.

(2) Starting from node 𝑛 , continue to search jump point 𝑝𝑛1 in the direction of its natural

successors. Horizontal and vertical search directions are executed preferentially and only consider

diagonal directions when obstacles are encountered, or map boundaries are reached.

A. If there was no searched jump point or the returned node 𝑝𝑛1 was in CLOSE_1, it is ignored.

B. If the returned node 𝑝𝑛1 was not in the OPEN_1, add it to OPEN_1 and calculate its 𝑔(𝑛),

ℎ(𝑛), and 𝑓(𝑛). Regard the node 𝑛 as the parent node of the node 𝑝𝑛1.

C. If the node 𝑝𝑛1 was in the OPEN_1, update 𝑔(𝑛) and calculate whether 𝑔(𝑛) is below its

previous value. If yes, change the node 𝑛 as the parent node of the node 𝑝𝑛1. and calculate 𝑓(𝑛).

Step 3: The reverse search for jump point 𝑝𝑛2, with its corresponding parent node 𝑛2, begins as

soon as the forward search is completed and obtains jump point 𝑝𝑛2.

Step 4: The forward and backward jump points are searched alternately, and when there are the

same jump points in the CLOSE list, the search would be finished.

Step 5: From the same jump point that appeared in Step 4, connect the jump points deposited in

forward and reverse directions in sequence to obtain the eventual route.

2.4. Improving the heuristic function

The traditional A* algorithm uses the Euclidean distance, Manhattan distance, or Chebyshev

distance to calculate the heuristic function [39] and the distance functions are as follows:

ℎ(𝑛) = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (5)

ℎ(𝑛) = |𝑥2 − 𝑥1| + |𝑦2 − 𝑦1| (6)

ℎ(𝑛) = 𝑚𝑎𝑥(|𝑥2 − 𝑥1|, |𝑦2 − 𝑦1|) (7)

where (𝑥1, 𝑦1) and (𝑥2, 𝑦2) denote the coordinates of the current and the target nodes, respectively.

The A* algorithm with Manhattan distance performs a four-directional search. In contrast,

considering that the Euclidean distance is expanded to a broader eight-neighborhood, the obstructive

effect of obstacles within the environment will lead to the heuristic value of the evaluation function

being smaller than the actual value. Therefore, we combine Euclidean distance and Chebyshev

distance to design a heuristic function that is more consistent with our BAJPSA* algorithm as Eq (8).

153

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

The improved heuristic function can appropriately reduce the weight of the Chebyshev distance

according to the JPS to improve the solution of the optimal path. The obtained heuristic value is

closer to the actual path cost and further reduces the number of nodes to be evaluated, which

improves the search efficiency of the algorithm.

ℎ(𝑛) = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 +
𝑚𝑎𝑥(|𝑥2 − 𝑥1|, |𝑦2 − 𝑦1|)

2
 (8)

The pseudo-code of path planning process based on the BAJPSA* algorithm is as follows:

Algorithm 1. Bidirectional Alternating Jump Point Search A* (BAJPSA*)

1: Initialize the grid map;

2: Open_1, Close_1; Open_2, Close_2 ← The jump points to be checked and the expanded jump points in

the positive and reverse process, respectively;

 Put the starting point into Open_1; Put and the endpoint into Open_2;

3: If Open_1 or Open_2 is an empty node;

4: Pathfinding failed;

5: Return;

6: else

7: While Positive node ∼=Reverse node do

8: Calculate the f (n) value of all nodes in the Open_1 and Open_2 according to Equations (1) and

(8) ;
9: Close_1 and Close_2 ← The node with the smallest f (n) value in the Open_1 and Open_2,

respectively;
10: Positive node and Reverse node = the node with the smallest f (n) value, respectively;
11: If Positive node ==Reverse node;
12: The optimal path is obtained and the algorithm ends;
13: Break;
14: Else
15: While (Positive node & Reverse node)∼= [] do
16: Search for jump points horizontally and vertically alone the direction from the parent node to

the current node;
17: if Encounter obstacles or map edges;
18: Search for jump points diagonally alone the direction from the parent node to the current

node;

19: Elseif Search for jump points;
20: Close_1 or Close_2 ← The searched jump points;

21: Else

22: Ignore the node, continue searching;

23: end

24: end

25: end

26: end

27: end

154

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

3) Multi-robot motion planning

Research on mobile robots relying on multiple sensor fusion technologies to sense the

surrounding environment information, combined with appropriate local path planning algorithms to

avoid moving obstacles or seeking dynamic goals, has been among the most popular topics in the

field of robotics in recent years [40]. The APF method is favored by scholars owing to its high

flexibility and smooth planning trajectory [41]. However, there are problems such as path oscillation

and difficulty in ensuring path optimality when facing the actual, more complex natural dynamic

environment. This study proposes an improved dynamic window approach (DWA) in Section 3.4

with great real-time and flexibility to make our multi-robot adapt to more complex and changing

environments.

3.1. Robot kinematic model

Considering the two-wheel differential robot kinematic model shown in Figure 5, 𝑥(𝑡), 𝑣(𝑡) and

𝜃(𝑡) are the linear velocity, angular velocity and direction of motion of the robot at the current

moment 𝑡, respectively. Then, the motion state of the robot at the moment 𝑡 + 1 can be expressed as:

{

𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑣(𝑡)∆𝑡𝑐𝑜𝑠(𝜃(𝑡))
𝑦(𝑡 + 1) = 𝑦(𝑡) + 𝑣(𝑡)∆𝑡𝑠𝑖𝑛(𝜃(𝑡))

𝜃(𝑡 + 1) = 𝜃(𝑡) + 𝜔(𝑡)∆𝑡
 (9)

X

y x

θ

Figure 5. Kinematics model of wheeled robot.

3.2. Speed sampling

DWA describes the obstacle avoidance as an optimization problem with constraints in the

velocity space. The conditions mainly include the incomplete constraints of the differential robot, the

limitations of environmental obstacles, and the dynamics constraints of the robot structure. As shown

in Figure 6, the search space of the robot is constrained by its maximum and minimum speed, motor

performance, and braking distance to constrain the motion speed (𝑣, 𝑤) within a certain range.

155

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

θ

Target
Heading

Obstacle

dist(i)

),(minmax tatav cvc −+ 

),(maxmax tatav cvc ++ 

),-(minmin

v tatav cc − 

),-(maxmin

v tatav vcc + 

),(ccv 

Figure 6. Schematic diagram of robot constrained in velocity space.

According to the velocity limit of the robot, 𝑣𝑠 is defined as the set of linear and angular

velocities of the robot to reflect the maximum range of the search solution, and the velocity

constraint of the robot is:

𝑣𝑠 = {(𝑣, 𝜔)|𝑣 ∈ [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥], 𝜔 ∈ [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥]} (10)

In practice, the robot is limited by the motor torque constraints. It is theoretically impossible to

reach the maximum and minimum reachable linear velocity 𝑣 and angular velocity 𝜔, such that the

search range of the dynamic window is further reduced. Given the linear velocity 𝑣𝑐 and angular

velocity 𝜔𝑐, the velocity 𝑣𝑑 in the ∆𝑡 sampling period under the considered motor constraint is:

𝑣𝑑 = {(𝑣, 𝜔)|𝑣 ∈ [𝑣𝑐 − 𝑎𝑣
𝑚𝑖𝑛∆𝑡, 𝑣𝑐 + 𝑎𝑣

𝑚𝑎𝑥∆𝑡], 𝜔 ∈ [𝜔𝑐 − 𝑎𝜔
𝑚𝑖𝑛∆𝑡, 𝜔𝑐 + 𝑎𝜔

𝑚𝑎𝑥∆𝑡]} (11)

where 𝑣𝑐 and 𝜔𝑐 are the linear and angular velocities at the current moment, respectively; 𝑎𝑣
𝑚𝑖𝑛 and

𝑎𝜔
𝑚𝑖𝑛 are the minimum linear and the minimum angular deceleration, respectively; 𝑎𝑣

𝑚𝑎𝑥 and 𝑎𝜔
𝑚𝑎𝑥

are the maximum linear and the maximum angular accelerations, respectively, and ∆𝑡 is the sampling

time.

The trajectory of the whole robot can be subdivided into several straight lines or circular arcs.

To ensure the robot’s safety area, the current speed must be able to decelerate to zero before hitting

the obstacle under the maximum deceleration condition. Then, the braking distance of the robot is

constrained as follows:

𝑣𝑎 = {(𝑣, 𝜔)|𝑣 ≤ √2 ∙ 𝑑𝑖𝑠𝑡(𝑣, 𝜔)𝑎𝑣
𝑚𝑖𝑛, 𝜔 ≤ √2 ∙ 𝑑𝑖𝑠𝑡(𝑣, 𝜔)𝑎𝜔

𝑚𝑖𝑛} (12)

where 𝑑𝑖𝑠𝑡(𝑣, 𝑤) is the distance between the simulated trajectory (based on velocity group (𝑣, 𝑤))

and the nearest obstacle, that the simulated speed must satisfy 0 − 𝑣𝑎
2 = −2𝑑𝑖𝑠𝑡(𝑣, 𝑤)𝑎𝑣

𝑚𝑖𝑛and 0 −
𝑤𝑎

2 = −2𝑑𝑖𝑠𝑡(𝑣, 𝑤)𝑎𝑤
𝑚𝑖𝑛 to guarantee the robot’s safety to a greater extent.

In summary, according to the three constraints of the robot search space, the input range for

velocity control can be expressed as follows:

𝑣𝑟 = 𝑣𝑠 ∩ 𝑣𝑑 ∩ 𝑣𝑎 (13)

156

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

3.3. Evaluation function

The robot’s linear velocity 𝑣(𝑡) and angular velocity 𝜔(𝑡) are sampled and combined with its

kinematic model to simulate several trajectories within 𝑛𝑠 . The evaluation function selects the

trajectory with the highest evaluation value, and the corresponding velocity group (𝑣, 𝑤) is passed to

the robot motion. The traditional evaluation function is as follows:

𝐺(𝑣, 𝜔) = 𝜎(𝛼 ∙ 𝐻𝑒𝑎𝑑(𝑣, 𝜔) + 𝛽 ∙ 𝑑𝑖𝑠𝑡(𝑣, 𝜔) + 𝛾 ∙ 𝑣𝑒𝑙(𝑣, 𝜔)) (14)

where 𝐻𝑒𝑎𝑑(𝑣, 𝜔) is the navigation function, which indicates the azimuthal deviation between the

end direction of the trajectory and the current target point; 𝑑𝑖𝑠𝑡(𝑣, 𝜔) is the obstacle avoidance

function, which shows the distance between the trajectory and the nearest obstacle; 𝑣𝑒𝑙(𝑣, 𝜔) is the

evaluation function of the robot motion speed at the current moment; σ is the normalization process;

𝛼, 𝛽 and 𝛾 are the weighting coefficients of the corresponding evaluation functions, respectively.

3.4. Improved DWA

The widest method [26] takes the turning points of global path planning as the crucial waypoint

to guide the robot’s motion. However, this is not suitable for the case of power inspection robots,

where the global path tracking accuracy must be strictly guaranteed. Besides, traditional DWA is

ineffective for avoiding dynamic obstacles in an unknown environment and is highly susceptible to

collision with such obstacles. To increase the obstacle avoidance and global path tracking capability

of our multi-robot systems in a dynamic environment, we enhance the performance of the evaluation

function of conventional DWA and propose a solution to the multiple conflicts that exist between

dynamic obstacles and multiple robots.

3.4.1. Improving robot trajectory tracking capability

1) Improvement of 𝑯𝒆𝒂𝒅(𝒗,𝝎) evaluation function target point tracking method

In related studies [42], the most critical nodes that provide navigation information for robots are

turning points of the global path, and the path tracking accuracy is poor. We investigated the method

of Yang et al. [40] that extracted the nodes of three times B-spline paths as key navigation points, and

designed the function 𝑅𝑒𝑚𝑎𝑘𝑒[.] to reorganize the path Route generated by BAJPSA*, as shown in

Figure 7 and Eq (15):

𝑁𝑒𝑤𝑅𝑜𝑢𝑡𝑒 = ∑𝑅𝑒𝑚𝑎𝑘𝑒[𝑅𝑜𝑢𝑡𝑒(𝑖),

𝑚

𝑖=2

𝑅𝑜𝑢𝑡𝑒(𝑖 − 1), 𝑛𝑑𝑠] (15)

where 𝑅𝑒𝑚𝑎𝑘𝑒[.] is the crucial navigation point extraction function, designed in the following way:

First, connect the adjacent path points 𝑅𝑜𝑢𝑡𝑒(𝑖) and 𝑅𝑜𝑢𝑡𝑒(𝑖 − 1), following form a line equation,

then solve for the sequence of node coordinates (𝑥, 𝑦) that satisfies the desired node distance 𝑛𝑑𝑠 on

that line from the starting point 𝑅𝑜𝑢𝑡𝑒(𝑖 − 1) and deposit them into 𝑁𝑒𝑤𝑅𝑜𝑢𝑡𝑒 in turn until all

equations composed of the path 𝑅𝑜𝑢𝑡𝑒 are cycled through; 𝑚 is the number of critical nodes of

𝑅𝑜𝑢𝑡𝑒 (includes: start point, endpoint and turning points).

To avoid continuous acceleration as well as deceleration and improve the accuracy of the

robot’s trajectory tracking, we set the desired distance 𝑑1. When the distance 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(.)from the

endpoint 𝑡𝑟𝑎(𝑥, 𝑦)of the optimal trajectory evaluated by Eq (14) to the target point 𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) at

157

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

moment 𝑡 is less than the expected distance 𝑑2, the critical navigation point at the moment 𝑡 + 1 is

obtained from 𝑁𝑒𝑤𝑅𝑜𝑢𝑡𝑒(.) in advance.

𝑡𝑎𝑟𝑔𝑒𝑡(𝑡 + 1) = 𝑁𝑒𝑤𝑅𝑜𝑢𝑡𝑒(𝑓𝑙𝑜𝑜𝑟(𝑗 ∙ 𝑑1/𝑛𝑑𝑠)), 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡𝑟𝑎, 𝑡𝑎𝑟𝑔𝑒𝑡(𝑡)) < 𝑑2 (16)

where 𝑡𝑎𝑟𝑔𝑒𝑡(𝑡 + 1) represents the navigation information point of the robot at moment 𝑡 + 1, that

is, when the distance between the optimal trajectory 𝑡𝑟𝑎(𝑥, 𝑦) and the target point is less than 𝑑2, the

next navigation point changes from 𝑁𝑒𝑤𝑅𝑜𝑢𝑡𝑒(𝑓𝑙𝑜𝑜𝑟(𝑗(1) ∙ 𝑑1/𝑛𝑑𝑠)) to 𝑁𝑒𝑤𝑅𝑜𝑢𝑡𝑒(𝑓𝑙𝑜𝑜𝑟(𝑗(2) ∙

𝑑1/𝑛𝑑𝑠)), 𝑗 is a sequence of consecutive positive integers; 𝑓𝑙𝑜𝑜𝑟(.) is a rounding operation and

the number of path node intervals can be estimated by the desired distance 𝑑1 and the desired inter-

node distance 𝑛𝑑𝑠.

Route(i-1)

Route(i) Route(i+1)

j+floor(d/nds)

j+floor(2d/nds)

The first

target node

The second

target node

Figure 7. Schematic diagram of key target point extraction method.

Take Figure 7 as an example, we can analyze the action of Eqs (15) and (16) in more detail: the

original path contains three path nodes 𝑅𝑜𝑢𝑡𝑒 (𝑖 − 1, 𝑖, 𝑖 + 1), then the new path NewRoute with a

large amount of node information is generated by Eq (15) and the distance between every two nodes

is nds ; Next, we set the desired distance 𝑑1 in Eq (16) as a way to extract the robot’s motion

navigation points from the new path 𝑁𝑒𝑤𝑅𝑜𝑢𝑡𝑒. Furthermore, when the condition

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡𝑟𝑎, 𝑡𝑎𝑟𝑔𝑒𝑡(𝑡)) < 𝑑2 is satisfied, the robot will receive the new navigation information in

advance.

2) New 𝒑𝒂𝒕𝒉(𝒗,𝝎) evaluation function

As shown in Figure 8, the experimental results in relevant literature indicate that most robots

tend to deviate from the global path to some extent near the turning point, primarily due to the

complexity of the environment. To make our robot consider the degree of global deviation during

local path selection, we propose a new 𝑝𝑎𝑡ℎ(𝑣, 𝜔) function based on the original evaluation function

to ensure that the robot moves along the global path as much as possible. The improved evaluation

function as Eq (17) and the pseudo-code of the improved dynamic window approach is shown in

Algorithm 2.

158

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

Route(i-1)

Route(i) Route(i+1)

Global path

Optimal

trajectory

Target node

 Route(i-1)

Route(i) Route(i+1)

Global path

Optimal

trajectory Target node

(a) Robotic pathfinding in some literature (b) Robotic pathfinding in this study

Figure 8. Description of 𝑝𝑎𝑡ℎ(𝑣, 𝜔) evaluation function.

𝐺(𝑣, 𝜔) = 𝜎(𝐴 ∙ 𝐻𝑒𝑎𝑑(𝑣, 𝜔) + 𝐵 ∙ 𝑑𝑖𝑠𝑡(𝑣, 𝜔) + 𝐶 ∙ 𝑣𝑒𝑙(𝑣, 𝜔) + 𝐷 ∙ 𝑝𝑎𝑡ℎ(𝑣, 𝜔)) (17)

Algorithm 2. Improved dynamic window approach (IDWA)

1: Initializing (grid map, Robot, Evaluation_Factor);

2: Robot= [𝑣𝑚𝑎𝑥 , 𝜔𝑚𝑎𝑥 , 𝑎𝑣
𝑚𝑎𝑥 , 𝑎𝜔

𝑚𝑎𝑥 , 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑅𝑃𝑀 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛];

3: Evaluation_Factor = [A; B; C; D];

4: global_path ←Algorithm1 (BAJPSA*);

5: sensor_messages ← Robot;

6: if the trajectory without obstacles ← the Traditional DWA combined with the strategy in Section

3.4.2 to filter trajectories

7: while the local target location is not reached do ← the local target point information is

obtained from equations (15-16)

8: Speed sampling of robot;

9: Simulate motion trajectories;

10: Use the improved evaluation function (17) to select the optimal trajectory;

11: Robot follows the optimal trajectory to move;

12: end

13: end

Considering the complex dynamic environment and environmental characteristics of multi-

robot work comprehensively, our robot must solve not only the path fitting problem at the turning

point, but also the path offset problem during dynamic obstacle avoidance. To this end, we design

three 𝑝𝑎𝑡ℎ(𝑣, 𝜔) functions to correct the global path tracking capability of the robot by considering

the distance relationship between the robot and the obstacles as well as the global path.

Situation 1: If the robot is far from the obstacle but deviates from the global path to a lesser extent,

global path tracking is guaranteed as a priority.

𝑃𝑎𝑡ℎ(𝑣, 𝜔) =
1

1 + 𝑚𝑖𝑛(𝑝𝑎𝑡ℎ)
,𝑚𝑖𝑛(𝑑𝑖𝑠𝑡(𝑣, 𝜔)) ≥ 𝑙1& 𝑚𝑖𝑛(𝑝𝑎𝑡ℎ) ≤ 𝑙2 (18)

159

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

where 𝑝𝑎𝑡ℎ = √(𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2 , (𝑥1, 𝑦1) and (𝑥2, 𝑦2)denote the local path coordinates

planned by the robot according to the kinematic model and the global path coordinates obtained by

our BAJPSA* algorithm, respectively; 𝑚𝑖𝑛(𝑑𝑖𝑠𝑡(𝑣, 𝜔)) denotes the closest distance from the end of

the predicted trajectory to the edge of the obstacle; 𝑚𝑖𝑛(𝑝𝑎𝑡ℎ) denotes the most relative distance

from the robot to the global path; 𝑙1 denotes the desired obstacle avoidance distance of the robot

from the obstacle in the case of small deviation from the global path; 𝑙2 denotes the maximum error

of the robot from the global path.

Situation 2: If the robot is close to the obstacle and deviates from the global path to a small extent,

the weight 𝐷 of the 𝑃𝑎𝑡ℎ(𝑣, 𝜔) function is 0. Then, our robot’s obstacle avoidance effectiveness is

guaranteed preferentially in Eq (17).

{
𝑃𝑎𝑡ℎ(𝑣, 𝜔) =

1

1 + 𝑚𝑖𝑛(𝑝𝑎𝑡ℎ)
𝐷 = 0

,𝑚𝑖𝑛(𝑑𝑖𝑠𝑡(𝑣, 𝜔)) < 𝑙1 & 𝑚𝑖𝑛(𝑝𝑎𝑡ℎ) ≤ 𝑙2 (19)

Situation 3: If the robot is far from the obstacle and deviates from the global path to a large extent,

the robot is prompted to move closer to the global path by increasing the evaluation metric of

𝑃𝑎𝑡ℎ(𝑣, 𝜔) in Eq (17).

{
𝑃𝑎𝑡ℎ(𝑣, 𝜔) = 𝑚𝑖𝑛(𝑝𝑎𝑡ℎ)

𝐷 = 1
,𝑚𝑖𝑛(𝑑𝑖𝑠𝑡(𝑣, 𝜔)) ≥ 𝑙3 & 𝑚𝑖𝑛(𝑝𝑎𝑡ℎ) > 𝑙2 (20)

where 𝑙3 denotes the desired distance of the robot from the obstacle in the case of a large deviation

from the global path.

3.4.2. Improving the dynamic obstacle avoidance capability of the robot

1) Dynamic obstacle recognition area

A

Potential

collision

Reasonable

 trajectory

Robot

Figure 9. Robot dynamic obstacle avoidance search path schematic.

The traditional DWA does not identify whether the obstacle is dynamic or static when

performing trajectory selection, such that the example shown in Figure 9 will mistakenly identify all

160

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

red trajectories as collision trajectories and discard them. Based on the evaluation function, the robot

most likely to select the path with the relatively best score from the green trajectories. However,

dynamic obstacles (pedestrians, vehicles, etc.) are in constant motion, and the robot will continue to

move in this way by selecting a green trajectory in the following path selection process. The final

result is an awkward situation, where either robot collides with the obstacle or gets stuck in a local

optimum of following the motion of the obstacle. A typical collision scenario is shown in Figure 10,

where a conventional robot lacks effective recognition of dynamic obstacles to make timely

decisions, and the collision occurs at the moment 𝑡1. In order to improve the safety and reliability of

robot motion, our robot adds an appropriate recognition area for such moving obstacles, which

reduces the risk of conflict to some extent.

In the natural environment, dynamic obstacles have different volume sizes, so we considered a

circular recognition area that can accommodate the whole object. Considering grid environment

effects and the movement speed of obstacles, the actual volume of dynamic obstacles in this paper

are square-shaped and not more than one grid(1 𝑚), and the robot’s circle recognition radius 𝑅 is as

follows:

𝑅 = 𝑁 ⋅ 𝑟 𝑎𝑛𝑑 𝑅 ≤ 1 𝑚 (21)

where 𝑟 is the value of the circle’s radius that just contains the dynamic obstacle; 𝑁 is a positive

number greater than 1, and the specific value is obtained from experimental. Since the side length of

the grid is 1 m, the recognition radius satisfies 𝑅 ≤ 1 𝑚 to avoid the situation that the robot cannot

search the path effectively to avoid dynamic obstacles in the case of dense global obstacles.

t0

Crash

Robot

t0

Safe
Robot

(a) Robot avoiding traditional obstacles (b) Robot avoiding the obstacles in this study

Figure 10. Schematic diagram of dynamic obstacle avoidance.

2) Research on dynamic obstacle avoidance strategy

Referring to the research of Liang et al. [43] on the obstacle avoidance scenarios for the

unmanned boat with sea surface, we similarly considered multiple types of motion conflicts between

the terrestrial robot and dynamic obstacles, and developed the conflict types as well as obstacle

avoidance rules, shown in Figure 11 and Table 1 accordingly. After expanding the robot’s recognition

area of dynamic obstacles, the frontal and rear-end collision problems can be better solved. However,

the lateral collision problem (including left collision and right collision) still presents the dilemma

shown in Figure 9, for which the following motion constraints are imposed on the robot:

Step 1: When the quantization criteria of robot and obstacle motion direction satisfy the lateral

161

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

collision scenario, the robot and dynamic obstacle are judged to be in potential motion conflict,

based on whether the shortest distance 𝑙𝑟 from the end of the robot’s predicted trajectory

group 𝑡𝑟𝑖𝑎 to the obstacle identification region is less than the desired obstacle avoidance distance 𝑙𝑒.

If the condition is satisfied, proceed to step 2. If not, the robot performs obstacle avoidance

according to our improved DWA.

Step 2: The robot simulates the trajectory group in 𝑡𝑓 time period, discarding those speed

groups (𝑣, 𝑤) and trajectories 𝑡𝑟𝑖𝑎 that touch the static obstacle and dynamic obstacle recognition

areas.

Step 3: Safe driving distance judgments. Evaluate the optimal trajectory 𝑏𝑒𝑠𝑡(𝑡𝑟𝑖𝑎) according

to the evaluation function, and calculate the distance 𝑙 from the end position of the optimal

trajectory 𝑏𝑒𝑠𝑡(𝑡𝑟𝑖𝑎) to the dynamic obstacle recognition area. If 𝑙 < 𝑙𝑒 still exists at this time, the

conflict cannot be lifted, and the robot cannot avoid obstacles successfully. Let the optimal trajectory

group 𝑡𝑟𝑖𝑎 correspond to the velocity group (𝑣, 𝑤) = 0. Then the robot will stop the motion quickly

under the braking constraint.

Step 4: If the distance 𝑙 from the end position of the optimal trajectory 𝑏𝑒𝑠𝑡(𝑡𝑟𝑖𝑎) to the

dynamic obstacle recognition region is greater than the desired obstacle avoidance distance 𝑙𝑒, the

conflict is lifted, and the robot resumes motion according to our DWA.

Robot

315°

Moving

Obstacle

45°

240° 120°

Moving

Obstacle

Robot

315° 45°

240° 120°

Moving

Obstacle

Robot

315° 45°

240° 120°

(a) Frontal collision (b) Rear-end collision (c) Lateral collision

Figure 11. Conflict risk situations.

Table 1. Collision quantification criteria and avoidance rules.

Situation Quantitative standard Avoidance rule

frontal collision 𝜃 ∈ [315°, 45°] Avoid obstacles

rear-end collision 𝜑 ∈ [120°, 240°] Surpass or follow

right collision 𝜃 ∈ [45°, 120°] Avoid obstacles or decelerate to stop

left collision 𝜃 ∈ [240°, 315°] Avoid obstacles or decelerate to stop

Note: where 𝜃 represents the movement direction of the obstacle towards the robot; 𝜑 represents the

movement direction of the robot relative to the obstacle.

162

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

3.4.3. Multi-robot prioritized obstacle avoidance strategy

The path planning problem of multiple mobile robots is extended from the path planning

problem of a single mobile robot. We plan a globally optimal path for each mobile robot in the

environment by BAJPSA* algorithm. The DWA obstacle avoidance strategy mainly applies to the

static environment or local small-scale dynamic environment (low-speed motion with disturbing

obstacles, etc.) [44]. When applied to the multi-robot systems, this does not solve the phenomenon of

motion conflict between multiple robots more efficiently [45]. Therefore, we studied the robot’s

obstacle avoidance strategy for dynamic obstacles through extensive experiments and proposed the

dynamic obstacle avoidance rules of 3.4.2. In addition, the priority method [46], as one of the current

mainstream techniques for coordinated collision avoidance, can dissipate local conflicts between

robots to achieve collision avoidance coordination. To yield better results in global multi-robot

motion planning, we combine the BAJPSA* algorithm, improved DWA, and dynamic obstacle

avoidance strategy with the multi-mobile robot priority strategy. The algorithm's complexity is

simplified by reducing the path planning problem to a dynamic path planning problem with a
sequential order for a single mobile robot.

When there are multiple moving robots, the limited environment space is not sufficient for all of

them to avoid obstacles. There is an optimal local situation if the robots are treated as dynamic

obstacles with the dynamic obstacle avoidance strategy we presented in the previous study.

Therefore, we introduce a prioritized strategy and a deceleration mechanism. Different robots have

different priorities. When the robot with lower priority encounters one with higher priority and

creates a motion conflict, this robot decelerates and stops in advance. The robot with higher priority

treats this robot as static obstacle avoidance. As shown in Figure 12: It is assumed that the priority of

AGV1, AGV2 and AGV3 decreases in that order. When there is a collision conflict among all three

robots, the lower priority AGV2 and AGV3 decelerate to zero. After AGV1 leaves the conflict area,

there is still a collision conflict between AGV3 and AGV2. AGV3 stops and waits, resuming motion

when AGV2 departs and the collision conflict is lifted.

(a) Three AGVs in conflict (b) Two AGVs in conflict (c) Conflict resolution

Figure 12. Prioritization avoidance strategy.

The constraints introduced by the robot’s kinematic model and environmental obstacles are

considered in our study, making the challenge of the multi-machine priority obstacle avoidance

strategy focus on specifying the conflict and coordinating the move. Taking two robots with higher

priority, AGV1 and lower priority, AGV2, as an example, we investigated multiple conflict types in

Table 2 and obtained the following collision conflict judgments and solutions:

AGV1

AGV2 AGV3

AGV1

Collision

AGV2 AGV3

AGV1

Collision

resolution

AGV2

AGV3

163

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

Table 2. Multi-robot motion conflict detection and resolution scenarios.

case Movement Status
Angle

Relationship

Potential

conflict or

not

Conflict resolution

strategies

1 X

Y

AGV1

AGV2

d






 -

d 


|𝛼 − 𝛽| ≥ 90° NO ——

2
X

Y

AGV1 AGV2

d






 -

d 


|𝛼 − 𝛽| ≥ 90° NO ——

3
X

Y

AGV1 AGV2

d







 -

d 


|𝛼 − 𝛽| < 90° YES

AGV1 passes first,

AGV2 stops the

movement

4
X

Y

AGV1AGV2

- 


=0

d d

|𝛼 − 𝛽| ≥ 90° NO ——

5
X

Y

AGV1AGV2

- 



=0

d d

|𝛼 − 𝛽| < 90° YES

AGV1 passes first,

AGV2 stops the

movement

6

X

Y

AGV1

AGV2

-  

d

d



|𝛼 − 𝛽| < 90° YES

AGV1 passes first,

AGV2 stops the

movement

Step 1: If the actual distance 𝑑12 of two robots is less than the desired obstacle avoidance

distance 𝑑𝑒 , the potential collision risk.

Step 2: Establish a local coordinate axis with the lower priority robot AGV2 as the center,

calculate the angle 𝛼 between the line of the two robots and the positive direction of the x-axis, and

then calculate the relationship between the magnitude of α and the directional angle 𝛽 of AGV1.

Step 3: Determine whether |𝛼 − 𝛽| < 90°; if this condition is satisfied, the risk of collision is

extremely high. To ensure the safety of multi-robot movement, AGV2 with lower priority

164

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

decelerates within a short time, according to Eq (22). The AGV1 with higher priority treats AGV2 as

an unknown static obstacle and performs obstacle avoidance motion through DWA. When the

distance relationship between the two robots is 𝑑12 > 𝑑𝑒 and |𝛼 − 𝛽| ≥ 90°, AGV2 resumes motion.

In conjunction with the research presented in this study, most experiments show that the

proposed prioritized obstacle avoidance strategy applies to most situations. This is mainly attributed

to the fact that robots are defined as conflicting motions only when the above conditions are satisfied

in terms of distance and angle relationships, and robots that are not in the conflict range perform the

corresponding obstacle avoidance strategies based on our DWA.

{
𝑣(𝑡 + 1) = 𝑣(𝑡) − 2𝑎𝑣

𝑚𝑎𝑥𝛥𝑡

𝜔(𝑡 + 1) = 𝜔(𝑡) − 2𝑎𝜔
𝑚𝑎𝑥𝛥𝑡

 (22)

Put the two end nodes into Open_1

and Open_2， respectively

Start

Calculate the node with the minimum value of

f(n) in Open_1 and Open_2, remove the two

nodes from Open_1 and Open_2, and put them

into Close_1 and Close_2 respectively

Determine if the jump point in

the positive direction reaches the

target point?

Find the optimal path in Close_1 and Close_2

based on their respective parent nodes

End

Initializing the grid map

Generate the final sequence

as a global path

Calculate the evaluation function value of the

jump point and store the jump point in Open_1

Determine if the jump point in

the opposite direction reaches the

target point?

Determine whether the jump points in

Open_1 and Open_2 overlap？

Open_1 or Open_2 is empty?

N

N

Y

Initialize Node

Adaptive waypoint tracking

Velocity sampling

Optimal trajectory based

on robot kinematic model

Presence of collision

conflicts？

Follow the optimal

trajectory movement

Whether the robot moves

to the end point？

Determining whether a

dynamic obstacle is a robot？

Does the conflicting robot

have a higher priority？

Robot deceleration to stop

Y

N

Y

Y

N

Y

N

N

Y
N

Y

N

Y

Calculate the evaluation function value of the

jump point and store the jump point in Open_2

Global path Local path

Figure 13. Flow chart of multi-robot path planning.

165

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

3.5. Fusion algorithm obstacle avoidance process

We propose a multi-mobile robots obstacle avoidance strategy that guarantees global optimality

and safety, which fuses the BAJPSA* algorithm for planning global paths with the DWA local

obstacle avoidance algorithm that combines a prioritized obstacle avoidance strategy. The flow of the

fusion algorithm is shown in Figure 13.

4) Simulation experiments

Simulation experiment environment: Windows 10 (64-bit), AMD Ryzen5-4600H with 3GHz,

16 GB memory, the simulation platform is MATLAB R2019a.

The relevant parameters of this paper are as follows: the sampling period ∆𝒕 is 0.1 s; the

expected node distance 𝒏𝒅𝒔 is 0.018 𝒎 ; the robot’s expected tracking distance 𝒅𝟏 is 1.8 𝒎 ; the

predicted trajectory to the target point expected distance 𝒅𝟐 is 1 𝒎 ; the expected distance

parameters 𝒍𝟏 and 𝒍𝟑 between the robot and the obstacle are 0.4 𝒎 and 0.7 𝒎 respectively; the

maximum error 𝒍𝟐 of the robot from the global path is 1 𝒎 ;the expected obstacle avoidance

distance 𝒍𝒆 of the robot to dynamic obstacles is 1.5 𝒎 ; the expected obstacle avoidance

distance 𝒅𝒆 between the multiple robots is 2 𝒎.The robot model parameters are: maximum linear

velocity 𝟏 𝒎/𝒔 ; maximum angular velocity 𝟐𝟎 𝒓𝒂𝒅/𝒔 ; linear acceleration 𝟎. 𝟐 𝒎/𝒔𝟐 ; angular

acceleration 𝟓 𝒓𝒂𝒅/𝒔𝟐 ; linear velocity resolution 𝟎. 𝟎𝟐𝒎/𝒔 ; angular velocity resolution 𝟏 𝒓𝒂𝒅/
𝒔𝟐 and the evaluation function coefficients are: 𝑨 = 𝟎. 𝟎𝟓,𝑩 = 𝟎. 𝟐, 𝑪 = 𝟎. 𝟑,𝑫 = 𝟎; the forecast

time period 𝒕𝒇 is 3.0 𝒔.

4.1. Global path planning experiments with improved BAJPSA*

To verify the effectiveness of our BAJPSA*, two sets of maps with scales of 30×30 and

100100 were selected for simulation and compared with the A* and JPS algorithms. The

experimental results and simulation data are shown in Figures 14 and15 and Table 3. The green grid

depicts the nodes searched by the algorithm, the blue grid is the forced neighbor nodes of JPS and

BAJPSA*, while the red path and the orange path in Figures 14 and 15(c) are the paths of our

BAJPSA* forward and the reverse searches, respectively.

The green node area in Figures 14 and 15 and the number of OPEN and CLOSE list nodes in

Table 3 show that our BAJPSA* dramatically reduces the number of extended nodes compared to

the A* algorithm, and the improvement is particularly noticeable in a large-scale map of 100×100.

There is a 92.5% reduction in the number of extended nodes and a 91.3% reduction in the running

time of our BAJPSA* algorithm compared to A*, with a slight increase of 0.585 𝑚 in length. There

is an advantage of our BAJPSA* over the JPS algorithm, mainly in terms of the search time, which

benefits from the mechanism of bidirectional alternating search and the improvement of the heuristic

function. We improve the search time of BAJPSA* by 50 % and reduce the number of expansion

nodes by 60 % in the 30×30 scale map. Similarly, our BAJPSA* search time for paths is reduced by

79 %, and the number of expansion nodes is slightly improved by 30 % in the 100×100 large-scale

map.

166

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

(a) A* (b) JPSA* (c) BAJPSA*

Figure 14. 30×30 environment.

(a) A* (b) JPSA* (c) BAJPSA*

Figure 15. 100×100 environment.

Table 3. Comparison of global path planning results.

 30×30 environment 100×100 environment

Path parameters A* JPS BAJPSA* A* JPS BAJPSA*

Length/m 43.355 43.355 43.355 158.167 158.167 158.752

Run-times/s 0.651 0.863 0.485 6.894 2.855 0.598

Number of

path nodes
34 24 27 131 55 89

Number of

OPEN list
253 130 51 2509 271 187

Number of

CLOSE list
394 98 32 6240 236 121

167

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

4.2. Robot obstacle avoidance performance test experiments

4.2.1. Simulation effect test of trajectory tracking capability

To determine the effect of our improved algorithm, the path with the global path length of

17.3616 𝑚 marked in black is obtained based on our BAJPSA* algorithm, as shown in Figure 16.

The robot with the two-wheel differential motion model is built for trajectory tracking based on our

improved DWA, and the test results in Table 4 and the robot angle variation and path error plots in

Figure 17 show the experimental data of three robots with different parameters in detail. The specific

exploratory analysis is as follows:

In Path_1, we do not consider the robot’s new 𝑃𝑎𝑡ℎ(𝑣, 𝜔) evaluation function, such that the

weight 𝐷 = 0. The final path length of the robot travels is 17.7138 𝑚, the robot deviates from the

global path by 0.2255 𝑚 on average for each movement, and the robot spends 50.8668 𝑠 moving

from the starting point (1.5, 2.5) to the endpoint (16.5, 10.5).

In Path_2, we set 𝐷=0.2, and the final path length of the robot is 17.3676 𝑚, while the average

deviation of the robot from the global path is 0.0577 𝑚. Compared with the conventional DWA of

Path_1, we sacrifice some efficiency of the algorithm as we simultaneously consider the four

Equations indicators (17–20). Moreover, it is evident from the experimental results that the actual

robot motion of Path_2 is basically along the global path, except near the obstacles.

In Path_3, we further increase the optimization effect of the 𝑃𝑎𝑡ℎ(𝑣, 𝜔) indicator, and Path_3 is

obtained by setting 𝐷 = 0.4, which is improved slightly in terms of the path length and path offset

indicators compared with Path_2.

Table 4. Robot motion planning results.

Path Path length/m Tracking error/m Search time/s

Path_1 17.7138 0.2255 50.8668

Path_2 17.3676 0.0577 55.8523

Path_3 17.3536 0.0551 61.3893

Figure 16. Robot motion planning.

168

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

(a) Angle change (b) Path tracking error

Figure 17. Comparison of path metrics.

4.2.2. Simulation effect test of dynamic obstacle avoidance capability

To test the effectiveness of our proposed dynamic obstacle avoidance strategy, the following

three sets of experiments were conducted for three collision types: frontal, rear-end, and lateral, as

shown in Figures 18–21, respectively. The robot model parameters are the same as those in Section 4.2.1.

First, we conducted a frontal collision experiment, where the movement speed of dynamic

obstacles was set to 0.2 and 0.4 𝑚/𝑠 in Figures 18(a),(b), respectively (in Section 3.4.2, we analyzed

the actual speed of the robot as 𝑣𝑟 = 𝑣𝑠 ∩ 𝑣𝑑 ∩ 𝑣𝑎, considering the limited search space of the robot,

the speed of obstacles in this experiment was less than 0.5 times the maximum speed of the robot).

The results show that the robot has a large recognition area for moving obstacles, can avoid them

with conflicting frontal motion, and have a specific safety distance. Figure 18(b) shows the

environment with high-speed moving obstacles, and the path length of the robot after completing

obstacle avoidance is 9.8702 𝑚; it takes 15.62 𝑠 to move from the starting point (3.5, 1.5) to the

endpoint (3.5, 10.5). The faster the speed of the obstacle movement, the higher the requirement for

the robot’s obstacle avoidance performance. Thus, the path length of the robot’s passage compared to

the low-speed moving obstacle in Figure 18(a) increases by 1.9845 𝑚, and the movement duration

increases by 1.38 𝑠.

Next, we performed a rear-end collision experiment with an obstacle moving at 0.1 𝑚/𝑠. The

test results showed that our robot detected a slow-moving impediment in front and successfully

avoided it. The final travel length of the robot was 13.4653 𝑚, and it took 19.82 𝑠.

Finally, we set up obstacles with different motion directions and speeds for side collision

experiments for three tests, respectively, and added traditional DWA for comparison to reflect the

advantages of our obstacle avoidance strategy. In the first group, the speed of obstacle movement is

0.25 𝑚/𝑠, and in the second and third groups is 0.5 𝑚/s. The experimental effect is shown in

Figures 19–21. In the first collision experiment shown in Figure 19, the moving speed of the

obstacles we set is relatively slow, such that both the traditional DWA and our DWA can

successfully avoid obstacles. The travel path lengths of the conventional and our robot are 7.4440

and 7.6449 𝑚, respectively. Keeping the direction of movement of the obstacle, we increased the

movement speed of the obstacle to 0.5 𝑚/𝑠 and carried out the second collision experiment shown in

Figure 20. The travel path lengths of the conventional robot and our robot are 8.1640 𝑚 and

7.1840 𝑚, respectively. The experimental results in Figure 21, show that the robot collides with the

169

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

obstacle under the traditional DWA obstacle avoidance strategy. Our robot can determine conflicting

obstacles and slow down and avoid such obstacles that otherwise be avoided successfully. Compared

with the first experiment, although our robot has an additional waiting time of 1.68 𝑠, the length of

the traveled path is reduced by 0.4609 m, and the safety is guaranteed. For the third test, we changed

the direction of movement of this obstacle. From the experimental results of Figure 21, the

traditional DWA has the optimal local problem of following the obstacle movement described in

Figure 21(a), and the conflict is resolved only when the obstacle stops. The final path length of the

robot traveled was 14.8600 𝑚 and took 19.16 𝑠 . Compared with our robot, the driving distance

increases by 1.09 times, and the obstacle avoidance time also increases by 4.17 𝑠.

(a) Frontal collision scenario 1 (b) Frontal collision scenario 2 (c) Rear-end collision scenario

Figure 18. Frontal and rear-end obstacle avoidance tests.

(a) Traditional DWA (b) Our improved DWA (c) Line speed comparison

Figure 19. Lateral conflict avoidance test 1.

(a) Traditional DWA (b) Our improved DWA (c) Line speed comparison

Figure 20. Lateral conflict avoidance test 2.

170

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

(a) Traditional DWA (b) Our improved DWA (c) Line speed comparison

Figure 21. Lateral conflict avoidance test 3.

4.3. Multi-robot motion planning experiments

The four experiments with three robots, all shown in Figures 22–28, were performed in four

different environments: a globally known static environment, one with unknown static obstacles, one

with unknown static and dynamic obstacles, and a dynamic environment with a large-scale sea area,

respectively. The effectiveness and stability of our proposed fusion algorithm of the BAJPSA*

algorithm, DWA dynamic obstacle avoidance strategy, and multi-robot priority obstacle avoidance

strategy have been verified.

4.3.1. Globally known environment

The simulation results for the environment with known global obstacle information are shown

in Figures 22–23, where the blue, pink, and red lines are the path situations of the three robots,

AGV1, AGV2 and AGV3, respectively; the black grid depicts the static obstacle, for which the robot

has a priori information. Figure 22 shows the real-time change of the robot during the planning

process. The linear velocity and angular variation curves of the robot are shown in Figures 23(a) and

(b), respectively; Figure 23(c) shows the offset of the robot’s motion path compared with the global

path, where the starting and ending points of AGV1 are (14.5, 7.5) and (1.5, 10.5), respectively; the

starting and ending points of AGV2 are (5.5, 6.5) and (13.5, 7.5), respectively; the starting and

ending points of AGV3 are (5.5, 6.5) and (13.5, 10.5), respectively.

Figures 22 and 23(a) show that AGV3 decelerates at the 50th motion control node when it

detects a collision risk with AGV2, and completely stops at the 80th control node. Then, AGV2 starts

decelerating from the 85th control node, until the 95th control node completely stops, as there is a

collision conflict with AGV1. AGV1 has the highest priority, such that AGV2 and AGV3 in the

stopped state are considered static obstacles, and AGV1 performs reasonable obstacle avoidance

based on DWA. Furthermore, Figure 23(c) shows that the actual path of AGV1 movement deviates

most from the global path. The collision risk between AGV2 and AGV1 is released, and AGV2 starts

to move at the 130th control node. At this time, AGV3 still maintains collision conflict with AGV2.

Thus, AGV3 resumes motion at the 160th control node.

Figure 23 shows that AGV3 has the lowest priority, resulting in the most prolonged

maintenance state of its stopped motion and less significant changes in the motion direction and path

deviation. The additional obstacle avoidance performed by AGV1 and AGV2 for the lower priority

robots produced a more noticeable motion angle and global path deviation. However, the whole

motion was relatively smooth. The multi-robot motion experiments we conducted took 130.91 𝑠. The

171

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

travel distances of AGV1, AGV2 and AGV3 were 13.54 𝑚, 8.89 𝑚 and 9.63 𝑚, respectively, and the

average error of motion deviation from the global path for each motion moment (0.1 s) was 0.3919
𝑚, 0.2056 𝑚, and 0.0120 𝑚, respectively.

(a) Global path planning (b) Robot local motion

Figure 22. Multi-robot path planning.

(a) Line speed (b) Angle of motion (c) Path tracking error

Figure 23. Comparison of path metrics.

4.3.2. Environments containing unknown static obstacles

The multi-robot global path based on the BAJPSA* algorithm in the global static environment

is shown in Figure 24(a), where the starting and ending points of AGV1 are (3.5, 2.5) and (12.5,

14.5), respectively; the starting and ending points of AGV2 are (2.5, 15.5) and (12.5, 2.5),

respectively; the starting and ending points of AGV3 are (9.5, 15.5) and (7.5, 1.5), respectively. Then,

the randomly distributed unknown static obstacles (the red grid) were increased to conduct the

following simulation experiments.

The results shown in Figures 24 and 25 indicate that our multi-robot systems can avoid random

static obstacles successfully when moving along the global path in an environment that includes

unknown factors. The risk of collision between multi-robot systems is solved successfully with an

improved prioritization strategy. What we know from Figures 24(b) and 25(a) is that when the higher

priority AGV2 collides with lower priority AGV1, AGV2 decelerates from the 140th control node,

and the velocity reaches zero at the 160th control node. The conflict is released once AGV1 moves

away from AGV2 and AGV2 resumes motion at the 180th control node and successfully avoids

random obstacles.

172

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

The variation of the motion speed, travel direction, and global path offset for each robot is

relatively significant, as the obstacles of unknown disturbance were considered compared to those in

Section 4.3.1. In conclusion, the travel distances for AGV1, AGV2 and AGV3 are 16.36, 19.46 and

14.57 𝑚, respectively. The average values of global path offset for each robot movement are 0.5353,

0.7853, and 0.4287 𝑚, respectively. The robot movement took 160.68 𝑠 program running time.

(a) Global path planning (b) Robot local motion

Figure 24. Multi-robot path planning.

(a) Line speed (b) Angle of motion (c) Path tracking error

Figure 25. Comparison of path metrics.

4.3.3. Environments containing unknown dynamic obstacles

There are several dynamic obstacles we added to the unknown static obstacles in Section 4.3.2

to further test the applicability of single-robot dynamic obstacle avoidance strategy and multi-robot

prioritized obstacle avoidance strategy in the given scenario, where the starting and ending points of

AGV1 are (1.5, 7.5) and (15.5, 12.5), respectively; the starting and ending points of AGV2 are (15.5,

8.5) and (1.5, 12.5), respectively; the starting and ending points of AGV3 are (13.5, 14.5) and (3.5,

6.5), respectively. The yellow squares shown in Figure 26 are dynamic obstacles without a priori

knowledge for the robots, and the red enclosures are the recognizable regions that the robots are

assigned. The study of dynamic obstacle motion speed and robot recognition area in Section 3.4.2

indicates that they are positively proportional. Therefore, we set the movement speed for the three

dynamic obstacles of the small, medium, and large sizes as 0.5, 0.39, 𝑎𝑛𝑑 0.30 𝑚/𝑠, respectively;

the radius of the recognition area given is 0.55, 0.40 and 0.35 𝑚, respectively; the preset motion path

is shown in the last figure of Figure 26.

As shown in Figure 26(b), three robots and three unknown dynamic obstacles are encountered

at the center of the map. Figures 26(b) and 27(a) show that AGV1 and AGV2 detect dynamic

173

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

obstacles in front of them, and cannot avoid them because of the limited environment and rapid

movement of the obstacles. According to the dynamic obstacle avoidance rules for motion conflicts

in Section 3.4.2, the deceleration of both AGV1 and AGV2 starts from around the 125th control node

and stops entirely at the 150th control node. After the dynamic obstacle leaves, both AGV1 and

AGV2 resume motion around the 185th control node. Subsequently, the collision risk with AGV1 is

detected by AGV3 and AGV2 at the 170th and 200th control nodes, respectively. According to

Section 3.4.3, AGV3 and AGV2 decelerate and wait until the conflict is removed in the multi-robot

priority obstacle avoidance strategy.

This experimental simulation result demonstrates the effectiveness of our improved single-robot

dynamic obstacle avoidance strategy combined with a multi-robot priority avoidance strategy in an

environment with random static and unknown dynamic obstacles. As we find from Figures 27(b) and

(c), there is obstacle avoidance in AGV1, resulting in a large angle and path offset. The motion

distances of the robot are 14.66, 14.11 and 12.38 𝑚, respectively; the errors of the robot’s single-step

motion offsetting the global path are 0.0288, 0.0361 and 0.0114 𝑚, respectively; the total running

time of the algorithm is 292.0472 𝑠.

(a) Global path planning (b) Robot local motion

Figure 26. Multi-robot path planning.

(a) Line speed (b) Angle of motion (c) Path tracking error

Figure 27. Comparison of path metrics.

174

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

4.3.4. Dynamic environment of large-scale sea area

The multi-robot global path based on the BAJPSA* algorithm in a large-scale sea environment

with an accuracy of 10 𝑚 is shown in Figure 28(a), where the starting and ending points of AGV1

are (7.5, 55.5) and (59.5, 94.5), respectively; the starting and ending points of AGV2 are (55.5, 55.5)

and (84.5, 29.5), respectively; the starting and ending points of AGV3 and endpoints are (33.5, 10.5)

and (76.5, 58.5), respectively. The BAJPSA* algorithm takes 0.3328, 0.0972 and 0.0975 𝑠 to plan

the global path for the three robots; the numbers of extended nodes are 41, 22 and 31, respectively.

The global path lengths are 531.481, 323.201 and 636.734 𝑚, respectively. Then, unknown static and

dynamic obstacles with random distribution are added, and the following simulation experiments are

conducted.

Figure 28 shows that our fusion algorithm is equally effective in the large-scale map

environment. As indicated in Figure 28(b-4), AGV3 encounters a dynamic obstacle traveling in the

same direction. It overtakes left side to avoid the obstacle traveling ahead, following the dynamic

obstacle avoidance rules of the single robot. In Figure 28(b-6), AGV1 successfully avoids the

random static obstacle and traverses the map’s narrow area. In Figure 28(b-7), AGV2 and AGV3

successfully avoid the random static obstacles. Figure 28(b-9) shows the final travel paths of the

three robots. The traces of the robots are smooth and fit the global path.

The experimental simulation results demonstrate the effectiveness of our multi-robot obstacle

avoidance strategy with BAJPSA* fusion improved DWA in a large-scale environment. The motion

distances of AGV1, AGV2 and AGV3 are 693 𝑚, 388.5 𝑚 and 667 𝑚, respectively, and the average

errors of motion deviation from the global path at each motion moment (0.1 𝑠) are 4.052 𝑚, 0.895 𝑚

and 0.755 𝑚, respectively.

(a) Global path planning (b) Robot local motion

Figure 28. Multi-robot path planning.

5. Conclusions

To solve the path planning problem of distributed multiple robots in dynamic environments, we

propose a BAJPSA* algorithm fused with adaptive DWA, performing in two stages.

175

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

In the first stage, we plan the globally optimal path for each robot by the BAJPSA* algorithm,

with simulation results demonstrating the effectiveness of BAJPSA* in global path planning. In the

second stage, we perform the local path planning. The adaptive navigation strategy and path

deviation evaluation function are proposed to improve the path tracking capability of the traditional

DWA. Next, we categorize and discuss multiple unknown static and dynamic obstacle environments

with motion conflict scenarios, and propose dynamic obstacle avoidance rules for the single robot.

Then, we extend the single-robot to distributed multi-robot with decision rights, discuss multiple

classes of motion conflict situations, and achieve cooperative multi-robot avoidance by fusing the

prioritizing avoidance rules. The simulation results demonstrate the effectiveness of this algorithm

for multi-robot path planning in unknown dynamic environments.

In this study, unknown static, as well as highly dynamic environments are the environments we

focus on, and more complex factors (non-flat terrain, large-scale robots, etc.) will be gradually

considered in future work. We can also test this algorithm in a robot platform and further on the

multi-robot cooperative efficiency problem.

Acknowledgments

This research was funded by the National Key R&D Program of China, grant number 61163051.

Conflict of interest

The authors declare there is no conflict of interest.

References

1. F. Rubio, F. Valero, C. Llopis-Albert, A review of mobile robots: Concepts, methods, theoretical

framework, and applications, Int. J. Adv. Rob.Syst., 16 (2019), 1729881419839596.

https://doi.org/10.1177/1729881419839596

2. S. J. Fusic, G. Kanagaraj, K. Hariharan, S. Karthikeyan, Optimal path planning of autonomous

navigation in outdoor environment via heuristic technique, Transp. Res. Interdiscip. Perspect.,

12 (2021), 100473. https://doi.org/10.1016/j.trip.2021.100473

3. J. Li, J. Sun, L. Liu, J. Xu, Model predictive control for the tracking of autonomous mobile robot

combined with a local path planning, Meas. Control, 54 (2021), 1319–1325.

https://doi.org/10.1177/00202940211043070

4. A. V. Le, V. Prabakaran, V. Sivanantham, R. E. Mohan, Modified a-star algorithm for efficient

coverage path planning in tetris inspired self-reconfigurable robot with integrated laser sensor,

Sensors, 18 (2018), 2585. https://doi.org/10.3390/s18082585

5. H. Wang, X. Qi, S. Lou, J. Jing, H. He, W. Liu, An efficient and robust improved A* algorithm

for path planning, Symmetry, 13 (2021), 2213. https://doi.org/10.3390/sym13112213

6. B. Zhang, D. Zhu, A new method on motion planning for mobile robots using jump point search

and Bezier curves, Int. J. Adv. Robot. Syst., 18 (2021), 17298814211019220.

https://doi.org/10.1177/17298814211019220

7. F. H. Ajeil, I. Ibraheem, A. T. Azar, A. J. Humaidi, Grid-based mobile robot path planning using

aging-based ant colony optimization algorithm in static and dynamic environments, Sensors, 20

(2020), 1880. https://doi.org/10.3390/s20071880

https://doi.org/10.1177/1729881419839596
https://doi.org/10.1016/j.trip.2021.100473
https://doi.org/10.1177/00202940211043070
https://doi.org/10.3390/s18082585
https://doi.org/10.3390/sym13112213
https://doi.org/10.1177/17298814211019220
https://doi.org/10.3390/s20071880

176

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

8. C. Miao, G. Chen, C. Yan, Y. Wu, Path planning optimization of indoor mobile robot based on

adaptive ant colony algorithm, Comput. Indust. Eng., 156 (2021), 107230.

https://doi.org/10.1016/j.cie.2021.107230

9. B. Song, Z. Wang, L. Zou, An improved PSO algorithm for smooth path planning of mobile

robots using continuous high-degree Bezier curve, Appl. Soft Comput., 100 (2021), 106960.

https://doi.org/10.1016/j.asoc.2020.106960

10. X. Guo, M. Ji, Z. Zhao, W. Zhang, Global path planning and multi-objective path control for

unmanned surface vehicle based on modified particle swarm optimization (PSO) algorithm,

Ocean Eng., 216 (2020), 107693. https://doi.org/10.1016/j.oceaneng.2020.107693

11. M. A. Hossain, I. Ferdous, Autonomous robot path planning in dynamic environment using a

new optimization technique inspired by bacterial foraging technique, Robot. Auton. Syst., 64

(2015),137–141. https://doi.org/10.1016/j.robot.2014.07.002

12. Y. P. Chen, Y. Li, G. Wang, Y. F. Zheng, Q. Xu, J. H. Fan, et al., A novel bacterial foraging

optimization algorithm for feature selection, Expert Syst. Appl., 83 (2017), 1–17.

https://doi.org/10.1016/j.eswa.2017.04.019

13. H. Tang, W. Sun, H. Yu, A. Lin, M. Xue, A multirobot target searching method based on bat

algorithm in unknown environments, Expert Syst. Appl., 141 (2020), 112945.

https://doi.org/10.1016/j.eswa.2019.112945

14. G. G. Wang, H. E. Chu, S. Mirjalili, Three-dimensional path planning for UCAV using an

improved bat algorithm, Aerosp. Sci. Technol., 49 (2016), 231–238.

https://doi.org/10.1016/j.ast.2015.11.040

15. Z. Yan, J. Zhang, J. Zeng, J. Tang, Three-dimensional path planning for autonomous underwater

vehicles based on a whale optimization algorithm, Ocean Eng., 250 (2022), 111070.

https://doi.org/10.1016/j.oceaneng.2022.111070

16. F. Gul, I. Mir, L. Abualigah, S. Mir, M. Altalhi, Cooperative multi-function approach: A new

strategy for autonomous ground robotics, Future Gener. Comput. Syst., 134 (2022), 361–373.

https://doi.org/10.1016/j.future.2022.04.007

17. D. Foead, A. Ghifari, M. B. Kusuma, N. Hanafiah, E. Gunawan, A systematic literature review

of A* pathfinding, Proc. Comput. Sci., 179 (2021), 507–514.

https://doi.org/10.1016/j.procs.2021.01.034

18. Q. Wu, Z. Chen, L. Wang, H. Lin, Z. Jiang, S. Li, et al., Real-time dynamic path planning of

mobile robots: A novel hybrid heuristic optimization algorithm, Sensors, 20 (2020), 188.

https://doi.org/10.3390/s20010188

19. L. Chang, L. Shan, Y. Dai, Multi-robot formation control in unknown environment based on

improved DWA, Control Decis., (2021), 1–10. https://doi.org/10.13195/j.kzyjc.2020.1817.

20. J. Sun, G. Liu, G. Tian, J. Zhang, Smart obstacle avoidance using a danger index for a dynamic

environment, Appl. Sci., 9 (2019),1589. https://doi.org/10.3390/app9081589

21. L. Chang, L. Shan, C. Jiang, Y. Dai, Reinforcement based mobile robot path planning with

improved dynamic window approach in unknown environment, Auton. Robot., 45 (2021), 51–76.

https://doi.org/10.1007/s10514-020-09947-4

22. Z. Lin, M. Yue, G. Chen, J. Sun, Path planning of mobile robot with PSO-based APF and fuzzy-

based DWA subject to moving obstacles, Trans. Inst. Meas. Control, 44 (2022), 121–132.

https://doi.org/10.1177/01423312211024798

23. Y. Chen, G. Luo, Y. Mei, J. Yu, X. Su, UAV path planning using artificial potential field

method updated by optimal control theory, Int. J. Syst. Sci., 47 (2016), 1407–1420.

https://doi.org/10.1080/00207721.2014.929191

https://doi.org/10.1016/j.cie.2021.107230
https://doi.org/10.1016/j.asoc.2020.106960
https://doi.org/10.1016/j.oceaneng.2020.107693
https://doi.org/10.1016/j.robot.2014.07.002
https://doi.org/10.1016/j.eswa.2017.04.019
https://www.sciencedirect.com/science/article/abs/pii/S0957417419306633?via%3Dihub#!
https://www.sciencedirect.com/science/article/abs/pii/S0957417419306633?via%3Dihub#!
https://www.sciencedirect.com/science/article/abs/pii/S0957417419306633?via%3Dihub#!
https://doi.org/10.1016/j.eswa.2019.112945
https://doi.org/10.1016/j.ast.2015.11.040
https://doi.org/10.1016/j.oceaneng.2022.111070
https://doi.org/10.1016/j.future.2022.04.007
https://doi.org/10.1016/j.procs.2021.01.034
https://doi.org/10.3390/app9081589
https://doi.org/10.1007/s10514-020-09947-4
https://doi.org/10.1177/01423312211024798
https://doi.org/10.1080/00207721.2014.929191

177

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

24. U. Orozco-Rosas, O. Montiel, R. Sepúlveda, Mobile robot path planning using membrane

evolutionary artificial potential field, Appl. Soft Comput., 77 (2019), 236–251.

https://doi.org/10.1016/j.asoc.2019.01.036

25. X. Zhong, J. Tian, H. Hu, X. Peng, Hybrid path planning based on safe A* algorithm and

adaptive window approach for mobile robot in large-scale dynamic environment, J. Intell. Robot.

Syst., 99 (2020), 65–77. https://doi.org/10.1007/s10846-019-01112-z

26. X. Ji, S. Feng, Q. Han, H. Yin, S. Yu, Improvement and fusion of A* algorithm and dynamic

window approach considering complex environmental information, Arab. J. Sci. Eng., 46 (2021),

7445–7459. https://doi.org/10.1007/s13369-021-05445-6

27. Z. Wang, G. Li, J. Ren, Dynamic path planning for unmanned surface vehicle in complex

offshore areas based on hybrid algorithm, Comput. Commun., 166 (2021), 49–56.

https://doi.org/10.1016/j.comcom.2020.11.012

28. B. Sahu, P. K. Das, M. Kabat, Multi-robot cooperation and path planning for stick transporting

using improved Q-learning and democratic robotics PSO, J. Comput. Sci., 60 (2022), 101637.

https://doi.org/10.1016/j.jocs.2022.101637

29. Y. Dai, Y. Kim, S. Wee, D. Lee, S. Lee, A switching formation strategy for obstacle avoidance

of a multi-robot system based on robot priority model, ISA Trans., 56 (2015), 123–134.

https://doi.org/10.1016/j.isatra.2014.10.008

30. H. Sang, Y. You, X. Sun, Y. Zhou, F. Liu, The hybrid path planning algorithm based on

improved A* and artificial potential field for unmanned surface vehicle formations, Ocean Eng.,

23 (2021), 108709. https://doi.org/10.1016/j.oceaneng.2021.108709

31. P. K. Das, H. S. Behera, B. K. Panigrahi, A hybridization of an improved particle swarm

optimization and gravitational search algorithm for multi-robot path planning, Swarm Evol.

Comput., 28 (2016), 14–28. https://doi.org/10.1016/j.swevo.2015.10.011

32. P. K. Das, P. K. Jena, Multi-robot path planning using improved particle swarm optimization

algorithm through novel evolutionary operators, Appl. Soft Comput., 92 (2020), 106312.

https://doi.org/10.1016/j.asoc.2020.106312

33. R. K. Dewangan, A. Shukla, W. W. Godfrey, A solution for priority-based multi-robot path

planning problem with obstacles using ant lion optimization, Mod. Phys. Lett. B, 34 (2020),

2050137. https://doi.org/10.1142/S0217984920501377

34. J. M. Yang, C. M. Tseng, P. S. Tseng, Path planning on satellite images for unmanned surface

vehicles, Int. J. Naval Archit. Ocean Eng., 7 (2015), 87–99. https://doi.org/10.1515/ijnaoe-2015-

0007

35. L. Yang, L. Fu, P. Li, J. Mao, N. Guo, L. Du, LF-ACO: An effective formation path planning for

multi-mobile robot, Math. Biosci. Eng., 19 (2022), 225–252.

https://doi.org/10.3934/mbe.2022012

36. D. Harabor, A. Grastien, Online graph pruning for pathfinding on grid maps, in Proceedings of

the AAAI Conference on Artificial Intelligence, 25 (2011), 1114–1119.

https://doi.org/10.1609/aaai.v25i1.7994

37. D. Harabor, A. Grastien, Improving jump point search, in Proceedings of the International

Conference on Automated Planning and Scheduling, 24 (2014), 128–135.

38. C. Li, X. Huang, J. Ding, K. Song, S. Lu, Global path planning based on a bidirectional

alternating search A* algorithm for mobile robots, Comput. Indust. Eng., 168 (2022), 108123.

https://doi.org/10.1016/j.cie.2022.108123

https://doi.org/10.1016/j.asoc.2019.01.036
https://doi.org/10.1007/s10846-019-01112-z
https://doi.org/10.1007/s13369-021-05445-6
https://doi.org/10.1016/j.comcom.2020.11.012
https://doi.org/10.1016/j.jocs.2022.101637
https://doi.org/10.1016/j.isatra.2014.10.008
https://doi.org/10.1016/j.oceaneng.2021.108709
https://doi.org/10.1016/j.swevo.2015.10.011
https://doi.org/10.1016/j.asoc.2020.106312
https://doi.org/10.1142/S0217984920501377
https://doi.org/10.1515/ijnaoe-2015-0007
https://doi.org/10.1515/ijnaoe-2015-0007
https://doi.org/10.3934/mbe.2022012
https://doi.org/10.1609/aaai.v25i1.7994
https://doi.org/10.1016/j.cie.2022.108123

178

Mathematical Biosciences and Engineering Volume 20, Issue 1, 145–178.

39. Y. Singh, S. Sharma, R. Sutton, D. Hatton, A. Khan, A constrained A* approach towards

optimal path planning for an unmanned surface vehicle in a maritime environment containing

dynamic obstacles and ocean currents, Ocean Eng., 169 (2018), 187–201.

https://doi.org/10.1016/j.oceaneng.2018.09.016

40. L. Yang, L. Fu, P. Li, J. Mao, N. Guo, An effective dynamic path planning approach for mobile

robots based on ant colony fusion dynamic windows, Machines, 10 (2022), 50.

https://doi.org/10.3390/machines10010050

41. S. M. H. Rostami, A. K. Sangaiah, J. Wang, X. Liu, Obstacle avoidance of mobile robots using

modified artificial potential field algorithm, EURASIP J. Wirel. Commun. Netw., 2019 (2019),

1–19. https://doi.org/10.1186/s13638-019-1396-2

42. E. A. Torkamani, Z. Xi, Systematical collision avoidance reliability analysis and

characterization of reliable system operation for autonomous navigation using the dynamic

window approach, ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B, 8 (2022), 031106.

https://doi.org/10.1115/1.4053941

43. C. Liang, X. Zhang, Y. Watanabe, Y. Deng, Autonomous collision avoidance of unmanned

surface vehicles based on improved A star and minimum course alteration algorithms, Appl.

Ocean Res., 113 (2021),102755. https://doi.org/10.1016/j.apor.2021.102755

44. M. Kobayashi, N. Motoi, Local path planning: Dynamic window approach with virtual

manipulators considering dynamic obstacles, IEEE Access, 10 (2022), 17018–17029.

https://doi.org/10.1109/ACCESS.2022.3150036

45. E. Olcay, F. Schuhmann, B. Lohmann, Collective navigation of a multi-robot system in an

unknown environment, Robot. Auton. Syst., 132 (2020), 103604.

https://doi.org/10.1016/j.robot.2020.103604

46. L. Gracia, A. Sala, F. Garelli, Robot coordination using task-priority and sliding-mode

techniques, Robot. Comput. Integr. Manuf., 30 (2024), 74–89.

https://doi.org/10.1016/j.rcim.2013.08.003

©2023 the Author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

https://doi.org/10.1016/j.oceaneng.2018.09.016
https://doi.org/10.3390/machines10010050
https://doi.org/10.1186/s13638-019-1396-2
https://doi.org/10.1115/1.4053941
https://doi.org/10.1016/j.apor.2021.102755
https://doi.org/10.1109/ACCESS.2022.3150036
https://doi.org/10.1016/j.robot.2020.103604
https://doi.org/10.1016/j.rcim.2013.08.003

