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Abstract: Multi-robot systems are experiencing increasing popularity in joint rescue, intelligent 

transportation, and other fields. However, path planning and navigation obstacle avoidance among 

multiple robots, as well as dynamic environments, raise significant challenges. We propose a 

distributed multi-mobile robot navigation and obstacle avoidance method in unknown environments. 

First, we propose a bidirectional alternating jump point search A* algorithm (BAJPSA*) to obtain 

the robot’s global path in the prior environment and further improve the heuristic function to enhance 

efficiency. We construct a robot kinematic model based on the dynamic window approach (DWA), 

present an adaptive navigation strategy, and introduce a new path tracking evaluation function that 

improves path tracking accuracy and optimality. To strengthen the security of obstacle avoidance, we 

modify the decision rules and obstacle avoidance rules of the single robot and further improve the 

decision avoidance capability of multi-robot systems. Moreover, the mainstream prioritization 

method is used to coordinate the local dynamic path planning of our multi-robot systems to resolve 

collision conflicts, reducing the difficulty of obstacle avoidance and simplifying the algorithm. 

Experimental results show that this distributed multi-mobile robot motion planning method can 

provide better navigation and obstacle avoidance strategies in complex dynamic environments, 

which provides a technical reference in practical situations. 
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1. Introduction 

The technology of autonomous mobile robots is developing rapidly, and it is widely used in 

entertainment, mining industry, education, medical services, military reconnaissance, agricultural 

automation, planetary exploration, and other fields [1]. Path planning and obstacle avoidance 

technology are critical to achieve autonomous robot navigation, which determines the application 

prospects of mobile robots. Meanwhile, multi-robot obstacle avoidance technology remains a 

relevant research problem in dynamic and complex environments. 

Path planning is generally divided into global and local path planning. Global path planning 

involves planning an optimal or suboptimal safe path with priori map information [2]. In contrast, 

local path planning is designed with dynamic obstacle environments in real-time. The robot usually 

must acquire details about the environment, including the coordinates of static and dynamic obstacles, 

with the help of a local path planner [3]. 

Current global path planning in a known environment has attracted significant interest. 

Numerous algorithms have been explored, including the A* algorithm [4–6], ant colony optimization 

[7,8], particle swarm optimization [9,10], bacterial foraging optimization [11,12], bat algorithm 

[13,14], and whale optimization algorithm [15,16], etc. With the advantages of a simple structure, 

facilitated implementation, and fast planning, the A* algorithm has been popular among researchers 

[17]. Wang et al. [5] used a bidirectional search strategy to improve the A* algorithm, which 

significantly enhanced the search performance by simultaneously conducting the iterative search in 

both positive and negative directions. Zhang et al. [6] enhanced the node expansion method of the A* 

algorithm based on the jump point search (JPS) strategy, which significantly reduced the memory 

overhead and the search scale. We further mention some research on intelligent optimization 

algorithms. Miao et al. [8] introduced an angle guidance factor and an obstacle exclusion factor in 

the transfer probability of ant colony optimization, and the global search ability and convergence 

speed of the algorithm were balanced. Song et al. [9] combined an adaptive fractional-order, 

velocity-improved PSO algorithm with the continuous high-degree Bezier curve to plan smooth 

paths for mobile robots. Hossain et al. [11] searched for the shortest path in a dynamic environment 

based on the bacterial foraging optimization algorithm. Tang et al. [13] presented the first application 

of the bat algorithm to a collaborative multi-robot search task in an unknown environment. They 

used adaptive inertial weights and the Doppler effect to improve the frequency formulation to avoid 

premature convergence. Yan et al. [15] proposed a whale optimization algorithm based on the 

forward-looking sonar to solve the 3D path planning problem for UUVs, with strong stability and 

search capability. 

The studies mentioned above [4–16] conducted some work to improve the efficiency of path 

planning. However, they yielded a few practical solutions to the obstacle avoidance problem of 

mobile robots in the actual dynamic environments. Ensuring the safety of robots with the help of 

local path planning is an effective solution when the environment is dynamic and full of uncertainties 

[18], and the main popular local path planning algorithms are the dynamic window approach (DWA) 

[19] and artificial potential field method (APF) [20], etc. DWA is a highly efficient, real-time 

obstacle avoidance algorithm that transforms the path planning problem into the constrained 

optimization problem of the velocity space and controls the robot motion by outputting the optimal 

real-time speed [19]. However, DWA faces problems, such as local optima and a low successful 

obstacle avoidance rate for dynamic obstacles. Therefore, Chang et al. [21] modified and extended 
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the evaluation function of DWA and used the reinforcement learning method to adaptively adjust 

parameters, which further enhanced the planning effect. Lin et al. [22] improved the avoidance rate 

of DWA against dynamic obstacles by using a fuzzy control scheme to evaluate the danger level of 

moving obstacles through collision risk index and relative distance. Furthermore, there has been 

significant interest in APF. Cheng et al. [23] introduced optimal control theory to reformulate the 

UAV path planning problem as a constrained optimization problem with APF. Orozco et al. [24] 

solved path planning problems in dynamic environments by combining membrane computing with a 

genetic algorithm and APF. In general, it is popular to combine local path planning algorithms with 

global ones to cope with environments of increasing complexity and uncertainty. The hybrid 

algorithms allow the robot to connect global path optimality and stochastic obstacle avoidance to a 

relatively large extent [25]. Ji et al. [26] combined the A* algorithm with an adaptive DWA for 

global path planning research that solves robot motion in a complex environment. Wang et al. [27] 

combined the improved PSO algorithm with APF for USVs to solve the dynamic path planning 

problem in complex offshore regions. 

The studies mentioned above [19–27] explored the global or local path problems from different 

perspectives, but with less attention to multi-robot obstacle avoidance. The aim of multi-robot path 

planning is to find a conflict-free path from the start to the target for each robot. The motion of 

mobile robots is disturbed not only by known factors in the global environment, but also by dynamic 

obstacles and other autonomous robots, which making it necessary and practical to design an 

obstacle avoidance system for multiple autonomous robots. In the context of research on multi-robot 

strategies, the main approaches are either centralized or distributed. The centralized approach 

considers the cost or objective function, where the constraints for all robots are considered together, 

thus obtaining the paths of individual robots in a global search. It prioritizes completeness with less 

attention to the personal robot [28]. One of the more popular ways to employ the centralized 

approach is the formation control, where the mission planning information and formation 

information is integrated into a leader robot, while the other robots act as followers. The leader 

coordinates the actions of each follower to maintain the formation from the start to the end. Dai et al. 

[29] proposed a multi-robot formation switching strategy incorporating a priority model, where the 

leader robot with the highest priority is responsible for planning a safe path and guiding the follower 

robots, and the following robots switch into an obstacle avoidance formation by calculating the 

desired distance and angle. Sang et al. [30] combined A* and APF for the USVs formation problem, 

using the A* algorithm to plan the globally optimal path, dividing it into multiple sub-target points, 

and used the improved APF for path tracking and performing formation obstacle avoidance. In 

distributed multi-robot path motion planning, each robot independently determined its collision-free 

trajectory path towards the goal without colliding with static obstacles or colleagues. The navigation 

problem for a distributed-based multi-robot is divided into path planning and movement phases, 

planning a globally optimal path for each robot and maintaining the safety of multi-robot movement. 

Das et al. [31] added the consideration of path deviation and energy consumption optimization by 

embedding the social and cognitive behavior of an improved particle swarm algorithm (IPSO) into 

the Newtonian gravity of an enhanced gravity search algorithm (IGSA). They proposed IPSO-IGSA 

to implement path planning for multiple robots in dynamic environments and improve search 

capability by simultaneously updating particle positions using IPSO velocity and IGSA acceleration. 

In subsequent research, the authors [31] further investigated the multi-robot collision-free planning 

problem by mixing improved particle swarm optimization (IPSO) and evolutionary operators (EOPs) 
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[32]. Further, some scholars [33] set different priorities for each robot by the prioritization method, 

thus reducing the possibility of robot collisions. 

This study proposes a distributed multi-robot navigation and obstacle avoidance method in 

unknown environments, applying it to path planning and navigation. The main contributions are as 

follows: 

1) In global path planning: 

A jump point search strategy and a bidirectional alternating search strategy are introduced to the 

conventional A* algorithm, and heuristic functions are designed based on its characteristics, called 

BAJPSA*, which we efficiently obtain the robots’ globally optimal path. 

2) In local path planning: 

➢ First, considering dynamics and environmental constraints, the robots are constructed based on 

DWA. Then, the adaptive navigation strategy and path deviation evaluation function are 

proposed for improving the path tracking accuracy and optimality of our robots. 

➢ Second, according to the potential collision situations between the robot and dynamic obstacles, 

we improved the obstacle recognition method and designed three obstacle avoidance rules, 

which increase the robot’s success rate in avoiding dynamic obstacles with a higher move 

velocity or bigger size. 

➢ Finally, the distributed multi-robot systems are extended from our above single-robot obstacle 

avoidance algorithm. Focusing on the motion conflicts among multiple robots, we propose a 

collision recognition strategy and fuse it with a task prioritization strategy to coordinate the 

robots’ motion and obstacle avoidance. 

This paper is organized as follows: Section 2 describes our BAJPSA* algorithm. Section 3 

describes our multi-robot motion planning algorithm. Section 4 discusses the experiments. Section 5 

concludes the whole paper and discusses future work. 

2. Global path planning based on BAJPSA* algorithm  

2.1. Conventional A* algorithm 

The A* algorithm is a classical heuristic search algorithm, where the algorithm selects the node 

with the smallest evaluation value as the next expanded node in the search process [34], and the 

evaluation function is expressed as: 

𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛) (1) 

where 𝑛 is the current node and the evaluation function 𝑓(𝑛) is used to calculate the total cost of the 

current node; 𝑔(𝑛) is the actual cost from the starting point to the current node 𝑛 ;  ℎ(𝑛) is the 

heuristic function used to estimate the cost from the current node 𝑛 to the target point. 

The A* algorithm is a search method based on grid traversal [35], such that it must establish a 

suitable motion environment for mobile robots. A 2D grid map is shown in Figure 1, where Figure 

1(a) is the most widely investigated environment for robots with a priori knowledge, containing 

black obstacle regions and passable white regions. Figure 1(b) represents our multi-robot motion 

environment considering practical factors, expanding the unknown local elements of the robot, 

further including unknown static obstacles (red grid) and unknown volume size and motion velocity 

of the obstacles (yellow grid). 
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(a) Traditional global static 

environment 

(b) Global static + local dynamic environment in 

this paper 

Figure 1. Grid environment. 

2.2. Conventional jump point search (JPS) algorithm 

The JPS algorithm was proposed by Daniel Harabor and Alban Grastien [36,37] in 2011, which 

is based on the A* algorithm to find paths by defining and computing heuristic values for those 

nodes on the uniform cost grid graph where the jumping rules are satisfied. It is several orders of 

magnitude faster than the A* algorithm in terms of computational speed, and the memory overhead 

as well as the computational effort are significantly reduced, which has been proved by Harabor et al. 

[36]. The main steps of JPS include two parts [36]: (1) pruning rules,which filter out the nodes in the 

grid map that do not need to be expanded and eliminate them. (2) Jumping rules,which identify the 

jump nodes in the grid map and evaluate them. 

2.2.1. Pruning rules 

The set of neighboring nodes around node 𝑥 is defined as the 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥), and the cost of 

moving one grid in straight is 1, and diagonal is √2. The function of pruning rules are to recursively 

prune the set of neighbours around each node, which means pruning all nodes that can be reached 

optimally by a path that does not visit the current node. Besides, the process of pruning rules is 

performed entirely online, involves no preprocessing and has no memory overhead.  
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Figure 2. Pruning rules. 
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Situation 1: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥) contains no obstacle 

1) Straight moves 

When node 𝑥 is not adjacent to an obstacle, and the algorithm is extended along the straight 

direction, the node 𝑛 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥) that satisfies Eq (2) will be pruned. 

𝑙𝑒𝑛(〈𝑝(𝑥), . . . , 𝑛〉\𝑥) ≤ 𝑙𝑒𝑛(〈𝑝(𝑥), 𝑥, 𝑛〉) (2) 

where 𝑙𝑒𝑛 represents the cost of the path; 〈𝑝(𝑥), 𝑥, 𝑛〉 represents the path from parent node 𝑝(𝑥) to 

node 𝑛 through node 𝑥; 〈𝑝(𝑥), . . . , 𝑛〉\𝑥 represents the path from parent node 𝑝(𝑥) to node n directly 

without passing through node 𝑥.  

As shown in Figure 2(a), there exists a path 𝜋′ = 〈𝑝(𝑥), 2〉 from node 𝑝(𝑥) to node 2 that is 

shorter than the path 𝜋 = 〈𝑝(𝑥), 𝑥, 2〉 from node 𝑝(𝑥) to node 2 via node 𝑥 . Therefore, the gray 

nodes{1, 2, 3, 7, 8, 9} need to be pruned according to Eq (2). Only the remaining node 6, marked 

white, needs to be considered, which is called the natural neighbor of node 𝑥. 

2) Diagonal moves 

When node 𝑥 is not adjacent to an obstacle, and the algorithm is extended along the diagonal 

direction, the node 𝑛 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥) that satisfies Eq (4) will be pruned. 

𝑙𝑒𝑛(〈𝑝(𝑥), . . . , 𝑛〉\𝑥) < 𝑙𝑒𝑛(〈𝑝(𝑥), 𝑥, 𝑛〉) (3) 

As shown in Figure 2(c), there exists a path 𝜋′ = 〈𝑝(𝑥), 4,1〉 that is shorter than the path 𝜋 =
〈𝑝(𝑥), 𝑥, 1〉 that goes through node 𝑥. All gray nodes 𝑛 that satisfy this condition, such as 1, 4, 8 and 

9 will be pruned, and the leaved white node 2, 3 and 6 are the natural neighbors of the current node 𝑥. 

Situation 2: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥) contains an obstacle 

Furthermore, when 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥) contains an obstacle, Eq (2) will not be able to prune all non-

natural neighbors due to the presence of obstacles. Therefore, the concept of the forced neighbor is 

introduced. A node 𝑛 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑥) is forced if: 

1) 𝑛 is not a natural neighbor of node 𝑥; 

2) 𝑛 satisfies the rule of Eq (3). 

𝑙𝑒𝑛(〈𝑝(𝑥), 𝑥, 𝑛〉) < 𝑙𝑒𝑛(〈𝑝(𝑥), . . . , 𝑛〉\𝑥) (4) 

As shown in Figure 2(b), node 3 is a non-natural neighbor of node 𝑥 , and the path 𝜋′ =
〈𝑝(𝑥), 8,6,3〉  is longer than the path 𝜋 = 〈𝑝(𝑥), 𝑥, 3〉  from node 𝑝(𝑥)  to node 3 via node 𝑥 . 

Therefore, node 3 marked with blue need to be forcedly considered. Similar to Figure 2(b), node 1 

in Figure 2(d) is also a forced neighbor of node x 

2.2.2. Jumping rules 

Node 𝑦 is the jump point from node 𝑥 , heading in direction 𝑑 ⃗⃗  ⃗, if 𝑦 minimizes the value 𝑘 such 

that the 𝑦 = 𝑥 + 𝑘𝑑 ⃗⃗  ⃗ and one of the following conditions holds: 

(1) Node 𝑦 is the target node. 

(2) Node 𝑦 has at least one neighbour that is a forced neighbor. 

(3) There exists a node 𝑧 = 𝑦 + 𝑘𝑖𝑑𝑖
⃗⃗  ⃗ that lies 𝑘𝑖 ∈ 𝑁 steps in direction 𝑑𝑖

⃗⃗  ⃗ and node 𝑧 is a jump 

point successor of node 𝑦 according to condition (1) or condition (2). 

where 𝑑 ⃗⃗  ⃗ represents a diagonal move, and 𝑑𝑖
⃗⃗  ⃗ represents two straight moves at 45° to 𝑑 ⃗⃗  ⃗ as 𝑑1

⃗⃗⃗⃗  and 𝑑2
⃗⃗⃗⃗ . 

𝑦 = 𝑥 + 𝑘𝑑 ⃗⃗  ⃗ represents that node 𝑦 can be reached by taking 𝑘 unit moves from node 𝑥 in diagonal 
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direction 𝑑 ⃗⃗  ⃗. 𝑧 = 𝑦 + 𝑘𝑖𝑑𝑖
⃗⃗  ⃗ represents that node 𝑧 can be reached by taking 𝑘𝑖 unit moves from node 

𝑦 in straight direction 𝑑𝑖
⃗⃗  ⃗. 

Figure 3 shows an example of a jump point identified by Condition 3. The dashed line indicates 

the process of the JPS algorithm searching along the diagonal direction after failing in a straight 

direction, and the solid lines indicate the path formed by node 𝑥 and jump points. According to 

Condition 2 of the jumping rules, nodes 𝑥 and 𝑧 have a forced neighbor 𝑤 and 𝑣, respectively, so 

nodes 𝑥  and 𝑧  are jump points. According to Condition 3, node 𝑦  can be reached along the 

horizontal direction from jump point 𝑧, such that node 𝑦 is also a jump point. 

v

p(x)

x

w

y z

 

Figure 3. Example of jumping rules. 

2.3. Bidirectional alternating search strategy 

Bidirectional search defines the forward search from the starting point to the target point and the 

reverse search from the target point to the starting point, however, it has the following two problems:   

1) As shown in Figure 4, the bidirectional search is conducted from the starting point and the target 

point at the same time, which may result in two different paths being searched.  

2) Theoretically, forward and backward searching simultaneously search toward the target and 

starting points and meet at their geometric center [38]. In this case, the algorithm has the highest 

search efficiency. However, the obstacle density and distance between jump points are different, 

and the paths may not meet at the midpoint. 

S T

Forward 

path

Reverse 

path
  

Figure 4. Pathfinding failure. 

For the above reasons, we use a bidirectional alternating search strategy, where the forward 

and backward searches are alternated, and only the forward search finds the jump point before 
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starting the backward search. In this way, the forward and reverse searches meet at the midpoint as 

much as possible and will benefit the search efficiency of our algorithm. The specific steps of the 

BAJPS strategy are as follows: 

Step 1: Create two OPEN lists and two CLOSE lists: OPEN_1 and CLOSE_1 are used to store 

the jump points to be checked, and the expanded jump points in the forward expansion process, 

respectively, and OPEN_2 and CLOSE_2 are used to store the jump points to be checked and the 

expanded jump points in the reverse expansion process. Add the starting node S to OPEN_1, add the 

target node T to OPEN_2, and set both CLOSE lists to empty. 

Step 2: Alternate forward and reverse iterative jump point searches, starting with the forward 

search. 

(1) If there was at least one node in the list of OPEN_1, select the lowest cost node 𝑛 based on 

the valuation function 𝑓(𝑛); if node 𝑛 was the target point, the search process is terminated, and the 

path returned; otherwise, the node 𝑛 is removed from the list of OPEN_1 and added to the list of 

CLOSE_1. 

(2) Starting from node 𝑛 , continue to search jump point 𝑝𝑛1  in the direction of its natural 

successors. Horizontal and vertical search directions are executed preferentially and only consider 

diagonal directions when obstacles are encountered, or map boundaries are reached. 

A. If there was no searched jump point or the returned node 𝑝𝑛1 was in CLOSE_1, it is ignored. 

B. If the returned node 𝑝𝑛1 was not in the OPEN_1, add it to OPEN_1 and calculate its 𝑔(𝑛), 

ℎ(𝑛), and 𝑓(𝑛). Regard the node 𝑛 as the parent node of the node 𝑝𝑛1. 

C. If the node 𝑝𝑛1 was in the OPEN_1, update 𝑔(𝑛) and calculate whether 𝑔(𝑛) is below its 

previous value. If yes, change the node 𝑛 as the parent node of the node 𝑝𝑛1. and calculate 𝑓(𝑛). 

Step 3: The reverse search for jump point 𝑝𝑛2, with its corresponding parent node 𝑛2, begins as 

soon as the forward search is completed and obtains jump point 𝑝𝑛2. 

Step 4: The forward and backward jump points are searched alternately, and when there are the 

same jump points in the CLOSE list, the search would be finished. 

Step 5: From the same jump point that appeared in Step 4, connect the jump points deposited in 

forward and reverse directions in sequence to obtain the eventual route. 

2.4. Improving the heuristic function 

The traditional A* algorithm uses the Euclidean distance, Manhattan distance, or Chebyshev 

distance to calculate the heuristic function [39] and the distance functions are as follows: 

ℎ(𝑛) = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (5) 

ℎ(𝑛) = |𝑥2 − 𝑥1| + |𝑦2 − 𝑦1| (6) 

ℎ(𝑛) = 𝑚𝑎𝑥(|𝑥2 − 𝑥1|, |𝑦2 − 𝑦1|) (7) 

where (𝑥1, 𝑦1) and (𝑥2, 𝑦2) denote the coordinates of the current and the target nodes, respectively. 

The A* algorithm with Manhattan distance performs a four-directional search. In contrast, 

considering that the Euclidean distance is expanded to a broader eight-neighborhood, the obstructive 

effect of obstacles within the environment will lead to the heuristic value of the evaluation function 

being smaller than the actual value. Therefore, we combine Euclidean distance and Chebyshev 

distance to design a heuristic function that is more consistent with our BAJPSA* algorithm as Eq (8). 
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The improved heuristic function can appropriately reduce the weight of the Chebyshev distance 

according to the JPS to improve the solution of the optimal path. The obtained heuristic value is 

closer to the actual path cost and further reduces the number of nodes to be evaluated, which 

improves the search efficiency of the algorithm. 

ℎ(𝑛) = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 +
𝑚𝑎𝑥(|𝑥2 − 𝑥1|, |𝑦2 − 𝑦1|)

2
 (8) 

The pseudo-code of path planning process based on the BAJPSA* algorithm is as follows: 

Algorithm 1. Bidirectional Alternating Jump Point Search A* (BAJPSA*) 

1: Initialize the grid map; 

2: Open_1, Close_1; Open_2, Close_2 ← The jump points to be checked and the expanded jump points in 

the positive and reverse process, respectively; 

 Put the starting point into Open_1; Put and the endpoint into Open_2; 

3: If Open_1 or Open_2 is an empty node; 

4: Pathfinding failed; 

5: Return; 

6: else 

7: While Positive node ∼=Reverse node  do 

8: Calculate the f (n) value of all nodes in the Open_1 and Open_2 according to Equations (1) and 

(8) ; 
9: Close_1 and Close_2 ← The node with the smallest f (n) value in the Open_1 and Open_2, 

respectively; 
10: Positive node and Reverse node = the node with the smallest  f (n) value, respectively; 
11: If  Positive node ==Reverse node; 
12: The optimal path is obtained and the algorithm ends; 
13: Break; 
14: Else 
15: While (Positive node & Reverse node)∼= [ ]  do 
16: Search for jump points horizontally and vertically alone the direction from the parent node to 

the current node; 
17: if Encounter obstacles or map edges; 
18: Search for jump points diagonally alone the direction from the parent node to the current 

node; 

19: Elseif  Search for jump points; 
20: Close_1 or Close_2 ← The searched jump points; 

21: Else 

22: Ignore the node, continue searching; 

23: end 

24: end 

25: end 

26: end 

27: end 
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3) Multi-robot motion planning 

Research on mobile robots relying on multiple sensor fusion technologies to sense the 

surrounding environment information, combined with appropriate local path planning algorithms to 

avoid moving obstacles or seeking dynamic goals, has been among the most popular topics in the 

field of robotics in recent years [40]. The APF method is favored by scholars owing to its high 

flexibility and smooth planning trajectory [41]. However, there are problems such as path oscillation 

and difficulty in ensuring path optimality when facing the actual, more complex natural dynamic 

environment. This study proposes an improved dynamic window approach (DWA) in Section 3.4 

with great real-time and flexibility to make our multi-robot adapt to more complex and changing 

environments. 

3.1. Robot kinematic model 

Considering the two-wheel differential robot kinematic model shown in Figure 5, 𝑥(𝑡), 𝑣(𝑡) and 

𝜃(𝑡) are the linear velocity, angular velocity and direction of motion of the robot at the current 

moment 𝑡, respectively. Then, the motion state of the robot at the moment 𝑡 + 1 can be expressed as: 

{

𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑣(𝑡)∆𝑡𝑐𝑜𝑠(𝜃(𝑡))
𝑦(𝑡 + 1) = 𝑦(𝑡) + 𝑣(𝑡)∆𝑡𝑠𝑖𝑛(𝜃(𝑡))

𝜃(𝑡 + 1) = 𝜃(𝑡) + 𝜔(𝑡)∆𝑡
 (9) 

X

y x

θ 

 

Figure 5. Kinematics model of wheeled robot. 

3.2. Speed sampling 

DWA describes the obstacle avoidance as an optimization problem with constraints in the 

velocity space. The conditions mainly include the incomplete constraints of the differential robot, the 

limitations of environmental obstacles, and the dynamics constraints of the robot structure. As shown 

in Figure 6, the search space of the robot is constrained by its maximum and minimum speed, motor 

performance, and braking distance to constrain the motion speed (𝑣, 𝑤) within a certain range. 
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Figure 6. Schematic diagram of robot constrained in velocity space. 

According to the velocity limit of the robot, 𝑣𝑠  is defined as the set of linear and angular 

velocities of the robot to reflect the maximum range of the search solution, and the velocity 

constraint of the robot is: 

𝑣𝑠 = {(𝑣, 𝜔)|𝑣 ∈ [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥], 𝜔 ∈ [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥]} (10) 

In practice, the robot is limited by the motor torque constraints. It is theoretically impossible to 

reach the maximum and minimum reachable linear velocity 𝑣 and angular velocity 𝜔, such that the 

search range of the dynamic window is further reduced. Given the linear velocity 𝑣𝑐  and angular 

velocity 𝜔𝑐, the velocity 𝑣𝑑 in the ∆𝑡 sampling period under the considered motor constraint is: 

𝑣𝑑 = {(𝑣, 𝜔)|𝑣 ∈ [𝑣𝑐 − 𝑎𝑣
𝑚𝑖𝑛∆𝑡, 𝑣𝑐 + 𝑎𝑣

𝑚𝑎𝑥∆𝑡], 𝜔 ∈ [𝜔𝑐 − 𝑎𝜔
𝑚𝑖𝑛∆𝑡, 𝜔𝑐 + 𝑎𝜔

𝑚𝑎𝑥∆𝑡]} (11) 

where 𝑣𝑐 and 𝜔𝑐 are the linear and angular velocities at the current moment, respectively; 𝑎𝑣
𝑚𝑖𝑛 and 

𝑎𝜔
𝑚𝑖𝑛 are the minimum linear and the minimum angular deceleration, respectively; 𝑎𝑣

𝑚𝑎𝑥 and 𝑎𝜔
𝑚𝑎𝑥 

are the maximum linear and the maximum angular accelerations, respectively, and ∆𝑡 is the sampling 

time. 

The trajectory of the whole robot can be subdivided into several straight lines or circular arcs. 

To ensure the robot’s safety area, the current speed must be able to decelerate to zero before hitting 

the obstacle under the maximum deceleration condition. Then, the braking distance of the robot is 

constrained as follows: 

𝑣𝑎 = {(𝑣, 𝜔)|𝑣 ≤ √2 ∙ 𝑑𝑖𝑠𝑡(𝑣, 𝜔)𝑎𝑣
𝑚𝑖𝑛, 𝜔 ≤ √2 ∙ 𝑑𝑖𝑠𝑡(𝑣, 𝜔)𝑎𝜔

𝑚𝑖𝑛} (12) 

where 𝑑𝑖𝑠𝑡(𝑣, 𝑤) is the distance between the simulated trajectory (based on velocity group (𝑣, 𝑤)) 

and the nearest obstacle, that the simulated speed must satisfy 0 − 𝑣𝑎
2 = −2𝑑𝑖𝑠𝑡(𝑣, 𝑤)𝑎𝑣

𝑚𝑖𝑛and  0 −
𝑤𝑎

2 = −2𝑑𝑖𝑠𝑡(𝑣, 𝑤)𝑎𝑤
𝑚𝑖𝑛 to guarantee the robot’s safety to a greater extent. 

In summary, according to the three constraints of the robot search space, the input range for 

velocity control can be expressed as follows: 

𝑣𝑟 = 𝑣𝑠 ∩ 𝑣𝑑 ∩ 𝑣𝑎 (13) 



156 

Mathematical Biosciences and Engineering  Volume 20, Issue 1, 145–178. 

3.3. Evaluation function 

The robot’s linear velocity 𝑣(𝑡) and angular velocity 𝜔(𝑡) are sampled and combined with its 

kinematic model to simulate several trajectories within 𝑛𝑠 . The evaluation function selects the 

trajectory with the highest evaluation value, and the corresponding velocity group (𝑣, 𝑤) is passed to 

the robot motion. The traditional evaluation function is as follows: 

𝐺(𝑣, 𝜔) = 𝜎(𝛼 ∙ 𝐻𝑒𝑎𝑑(𝑣, 𝜔) + 𝛽 ∙ 𝑑𝑖𝑠𝑡(𝑣, 𝜔) + 𝛾 ∙ 𝑣𝑒𝑙(𝑣, 𝜔)) (14) 

where 𝐻𝑒𝑎𝑑(𝑣, 𝜔) is the navigation function, which indicates the azimuthal deviation between the 

end direction of the trajectory and the current target point; 𝑑𝑖𝑠𝑡(𝑣, 𝜔) is the obstacle avoidance 

function, which shows the distance between the trajectory and the nearest obstacle; 𝑣𝑒𝑙(𝑣, 𝜔) is the 

evaluation function of the robot motion speed at the current moment; σ is the normalization process; 

𝛼, 𝛽 and 𝛾 are the weighting coefficients of the corresponding evaluation functions, respectively. 

3.4. Improved DWA 

The widest method [26] takes the turning points of global path planning as the crucial waypoint 

to guide the robot’s motion. However, this is not suitable for the case of power inspection robots, 

where the global path tracking accuracy must be strictly guaranteed. Besides, traditional DWA is 

ineffective for avoiding dynamic obstacles in an unknown environment and is highly susceptible to 

collision with such obstacles. To increase the obstacle avoidance and global path tracking capability 

of our multi-robot systems in a dynamic environment, we enhance the performance of the evaluation 

function of conventional DWA and propose a solution to the multiple conflicts that exist between 

dynamic obstacles and multiple robots. 

3.4.1. Improving robot trajectory tracking capability 

1) Improvement of 𝑯𝒆𝒂𝒅(𝒗,𝝎) evaluation function target point tracking method 

In related studies [42], the most critical nodes that provide navigation information for robots are 

turning points of the global path, and the path tracking accuracy is poor. We investigated the method 

of Yang et al. [40] that extracted the nodes of three times B-spline paths as key navigation points, and 

designed the function 𝑅𝑒𝑚𝑎𝑘𝑒[. ] to reorganize the path Route generated by BAJPSA*, as shown in 

Figure 7 and Eq (15): 

𝑁𝑒𝑤𝑅𝑜𝑢𝑡𝑒 = ∑𝑅𝑒𝑚𝑎𝑘𝑒[𝑅𝑜𝑢𝑡𝑒(𝑖),

𝑚

𝑖=2

𝑅𝑜𝑢𝑡𝑒(𝑖 − 1), 𝑛𝑑𝑠] (15) 

where 𝑅𝑒𝑚𝑎𝑘𝑒[. ] is the crucial navigation point extraction function, designed in the following way: 

First, connect the adjacent path points 𝑅𝑜𝑢𝑡𝑒(𝑖) and 𝑅𝑜𝑢𝑡𝑒(𝑖 − 1), following form a line equation, 

then solve for the sequence of node coordinates (𝑥, 𝑦) that satisfies the desired node distance 𝑛𝑑𝑠 on 

that line from the starting point 𝑅𝑜𝑢𝑡𝑒(𝑖 − 1) and deposit them into 𝑁𝑒𝑤𝑅𝑜𝑢𝑡𝑒  in turn until all 

equations composed of the path 𝑅𝑜𝑢𝑡𝑒  are cycled through; 𝑚 is the number of critical nodes of 

𝑅𝑜𝑢𝑡𝑒 (includes: start point, endpoint and turning points). 

To avoid continuous acceleration as well as deceleration and improve the accuracy of the 

robot’s trajectory tracking, we set the desired distance 𝑑1. When the distance 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(. )from the 

endpoint 𝑡𝑟𝑎(𝑥, 𝑦)of the optimal trajectory evaluated by Eq (14) to the target point 𝑡𝑎𝑟𝑔𝑒𝑡(𝑡) at 
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moment 𝑡 is less than the expected distance 𝑑2, the critical navigation point at the moment 𝑡 + 1 is 

obtained from 𝑁𝑒𝑤𝑅𝑜𝑢𝑡𝑒(.) in advance. 

𝑡𝑎𝑟𝑔𝑒𝑡(𝑡 + 1) = 𝑁𝑒𝑤𝑅𝑜𝑢𝑡𝑒(𝑓𝑙𝑜𝑜𝑟(𝑗 ∙ 𝑑1/𝑛𝑑𝑠)), 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡𝑟𝑎, 𝑡𝑎𝑟𝑔𝑒𝑡(𝑡)) < 𝑑2 (16) 

where 𝑡𝑎𝑟𝑔𝑒𝑡(𝑡 + 1) represents the navigation information point of the robot at moment 𝑡 + 1, that 

is, when the distance between the optimal trajectory 𝑡𝑟𝑎(𝑥, 𝑦) and the target point is less than 𝑑2, the 

next navigation point changes from 𝑁𝑒𝑤𝑅𝑜𝑢𝑡𝑒(𝑓𝑙𝑜𝑜𝑟(𝑗(1) ∙ 𝑑1/𝑛𝑑𝑠)) to 𝑁𝑒𝑤𝑅𝑜𝑢𝑡𝑒(𝑓𝑙𝑜𝑜𝑟(𝑗(2) ∙

𝑑1/𝑛𝑑𝑠)), 𝑗 is a sequence of consecutive positive integers; 𝑓𝑙𝑜𝑜𝑟(. ) is a rounding operation and 

the number of path node intervals can be estimated by the desired distance 𝑑1 and the desired inter-

node distance 𝑛𝑑𝑠.  

Route(i-1)

Route(i) Route(i+1)

j+floor(d/nds)

j+floor(2d/nds)

The first 

target node 

The second 

target node 

 

Figure 7. Schematic diagram of key target point extraction method. 

Take Figure 7 as an example, we can analyze the action of Eqs (15) and (16) in more detail: the 

original path contains three path nodes 𝑅𝑜𝑢𝑡𝑒 (𝑖 − 1, 𝑖, 𝑖 + 1), then the new path NewRoute with a 

large amount of node information is generated by Eq (15) and the distance between every two nodes 

is  nds ; Next, we set the desired distance 𝑑1  in Eq (16) as a way to extract the robot’s motion 

navigation points from the new path 𝑁𝑒𝑤𝑅𝑜𝑢𝑡𝑒. Furthermore, when the condition 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡𝑟𝑎, 𝑡𝑎𝑟𝑔𝑒𝑡(𝑡)) < 𝑑2 is satisfied, the robot will receive the new navigation information in 

advance. 

2) New 𝒑𝒂𝒕𝒉(𝒗,𝝎) evaluation function 

As shown in Figure 8, the experimental results in relevant literature indicate that most robots 

tend to deviate from the global path to some extent near the turning point, primarily due to the 

complexity of the environment. To make our robot consider the degree of global deviation during 

local path selection, we propose a new 𝑝𝑎𝑡ℎ(𝑣, 𝜔) function based on the original evaluation function 

to ensure that the robot moves along the global path as much as possible. The improved evaluation 

function as Eq (17) and the pseudo-code of the improved dynamic window approach is shown in 

Algorithm 2. 
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(a) Robotic pathfinding in some literature (b) Robotic pathfinding in this study 

Figure 8. Description of 𝑝𝑎𝑡ℎ(𝑣, 𝜔) evaluation function. 

𝐺(𝑣, 𝜔) = 𝜎(𝐴 ∙ 𝐻𝑒𝑎𝑑(𝑣, 𝜔) + 𝐵 ∙ 𝑑𝑖𝑠𝑡(𝑣, 𝜔) + 𝐶 ∙ 𝑣𝑒𝑙(𝑣, 𝜔) + 𝐷 ∙ 𝑝𝑎𝑡ℎ(𝑣, 𝜔)) (17) 

 

Algorithm 2. Improved dynamic window approach (IDWA)  

1: Initializing (grid map, Robot, Evaluation_Factor); 

2: Robot= [𝑣𝑚𝑎𝑥 , 𝜔𝑚𝑎𝑥 , 𝑎𝑣
𝑚𝑎𝑥 , 𝑎𝜔

𝑚𝑎𝑥 , 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑅𝑃𝑀 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛]; 

3: Evaluation_Factor = [A; B; C; D]; 

4: global_path ←Algorithm1 (BAJPSA* ); 

5: sensor_messages ← Robot; 

6: if the trajectory without obstacles ← the Traditional DWA combined with the strategy in Section 

3.4.2 to filter trajectories 

7: while the local target location is not reached  do  ← the local target point information is 

obtained from equations (15-16) 

8: Speed sampling of robot; 

9: Simulate motion trajectories; 

10: Use the improved evaluation function (17) to select the optimal trajectory; 

11: Robot follows the optimal trajectory to move; 

12:    end 

13: end 

Considering the complex dynamic environment and environmental characteristics of multi-

robot work comprehensively, our robot must solve not only the path fitting problem at the turning 

point, but also the path offset problem during dynamic obstacle avoidance. To this end, we design 

three 𝑝𝑎𝑡ℎ(𝑣, 𝜔) functions to correct the global path tracking capability of the robot by considering 

the distance relationship between the robot and the obstacles as well as the global path. 

Situation 1: If the robot is far from the obstacle but deviates from the global path to a lesser extent, 

global path tracking is guaranteed as a priority. 

𝑃𝑎𝑡ℎ(𝑣, 𝜔) =
1

1 + 𝑚𝑖𝑛(𝑝𝑎𝑡ℎ)
,𝑚𝑖𝑛(𝑑𝑖𝑠𝑡(𝑣, 𝜔)) ≥ 𝑙1& 𝑚𝑖𝑛(𝑝𝑎𝑡ℎ) ≤ 𝑙2 (18) 
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where  𝑝𝑎𝑡ℎ = √(𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2 ,  (𝑥1, 𝑦1) and (𝑥2, 𝑦2)denote the local path coordinates 

planned by the robot according to the kinematic model and the global path coordinates obtained by 

our BAJPSA* algorithm, respectively; 𝑚𝑖𝑛(𝑑𝑖𝑠𝑡(𝑣, 𝜔)) denotes the closest distance from the end of 

the predicted trajectory to the edge of the obstacle; 𝑚𝑖𝑛(𝑝𝑎𝑡ℎ) denotes the most relative distance 

from the robot to the global path; 𝑙1 denotes the desired obstacle avoidance distance of the robot 

from the obstacle in the case of small deviation from the global path; 𝑙2 denotes the maximum error 

of the robot from the global path. 

Situation 2: If the robot is close to the obstacle and deviates from the global path to a small extent, 

the weight 𝐷 of the 𝑃𝑎𝑡ℎ(𝑣, 𝜔) function is 0. Then, our robot’s obstacle avoidance effectiveness is 

guaranteed preferentially in Eq (17). 

{
𝑃𝑎𝑡ℎ(𝑣, 𝜔) =

1

1 + 𝑚𝑖𝑛(𝑝𝑎𝑡ℎ)
𝐷 = 0

,𝑚𝑖𝑛(𝑑𝑖𝑠𝑡(𝑣, 𝜔)) < 𝑙1 & 𝑚𝑖𝑛(𝑝𝑎𝑡ℎ) ≤ 𝑙2 (19) 

Situation 3: If the robot is far from the obstacle and deviates from the global path to a large extent, 

the robot is prompted to move closer to the global path by increasing the evaluation metric of 

𝑃𝑎𝑡ℎ(𝑣, 𝜔) in Eq (17). 

{
𝑃𝑎𝑡ℎ(𝑣, 𝜔) = 𝑚𝑖𝑛(𝑝𝑎𝑡ℎ)

𝐷 = 1
,𝑚𝑖𝑛(𝑑𝑖𝑠𝑡(𝑣, 𝜔)) ≥ 𝑙3 & 𝑚𝑖𝑛(𝑝𝑎𝑡ℎ) > 𝑙2 (20) 

where 𝑙3 denotes the desired distance of the robot from the obstacle in the case of a large deviation 

from the global path. 

3.4.2. Improving the dynamic obstacle avoidance capability of the robot 

1) Dynamic obstacle recognition area 

A

Potential 

collision

Reasonable

 trajectory

Robot  

Figure 9. Robot dynamic obstacle avoidance search path schematic. 

The traditional DWA does not identify whether the obstacle is dynamic or static when 

performing trajectory selection, such that the example shown in Figure 9 will mistakenly identify all 
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red trajectories as collision trajectories and discard them. Based on the evaluation function, the robot 

most likely to select the path with the relatively best score from the green trajectories. However, 

dynamic obstacles (pedestrians, vehicles, etc.) are in constant motion, and the robot will continue to 

move in this way by selecting a green trajectory in the following path selection process. The final 

result is an awkward situation, where either robot collides with the obstacle or gets stuck in a local 

optimum of following the motion of the obstacle. A typical collision scenario is shown in Figure 10, 

where a conventional robot lacks effective recognition of dynamic obstacles to make timely 

decisions, and the collision occurs at the moment 𝑡1. In order to improve the safety and reliability of 

robot motion, our robot adds an appropriate recognition area for such moving obstacles, which 

reduces the risk of conflict to some extent. 

In the natural environment, dynamic obstacles have different volume sizes, so we considered a 

circular recognition area that can accommodate the whole object. Considering grid environment 

effects and the movement speed of obstacles, the actual volume of dynamic obstacles in this paper 

are square-shaped and not more than one grid(1 𝑚), and the robot’s circle recognition radius 𝑅 is as 

follows: 

𝑅 = 𝑁 ⋅ 𝑟 𝑎𝑛𝑑 𝑅 ≤ 1 𝑚   (21) 

where 𝑟 is the value of the circle’s radius that just contains the dynamic obstacle; 𝑁 is a positive 

number greater than 1, and the specific value is obtained from experimental. Since the side length of 

the grid is 1 m, the recognition radius satisfies 𝑅 ≤ 1 𝑚 to avoid the situation that the robot cannot 

search the path effectively to avoid dynamic obstacles in the case of dense global obstacles. 

t0

Crash

Robot

 

t0

Safe
Robot

 
(a) Robot avoiding traditional obstacles (b) Robot avoiding the obstacles in this study 

Figure 10. Schematic diagram of dynamic obstacle avoidance. 

2) Research on dynamic obstacle avoidance strategy 

Referring to the research of Liang et al. [43] on the obstacle avoidance scenarios for the 

unmanned boat with sea surface, we similarly considered multiple types of motion conflicts between 

the terrestrial robot and dynamic obstacles, and developed the conflict types as well as obstacle 

avoidance rules, shown in Figure 11 and Table 1 accordingly. After expanding the robot’s recognition 

area of dynamic obstacles, the frontal and rear-end collision problems can be better solved. However, 

the lateral collision problem (including left collision and right collision) still presents the dilemma 

shown in Figure 9, for which the following motion constraints are imposed on the robot: 

Step 1: When the quantization criteria of robot and obstacle motion direction satisfy the lateral 
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collision scenario, the robot and dynamic obstacle are judged to be in potential motion conflict, 

based on whether the shortest distance 𝑙𝑟  from the end of the robot’s predicted trajectory 

group 𝑡𝑟𝑖𝑎 to the obstacle identification region is less than the desired obstacle avoidance distance 𝑙𝑒. 

If the condition is satisfied, proceed to step 2. If not, the robot performs obstacle avoidance 

according to our improved DWA. 

Step 2: The robot simulates the trajectory group in  𝑡𝑓 time period, discarding those speed 

groups (𝑣, 𝑤) and trajectories 𝑡𝑟𝑖𝑎 that touch the static obstacle and dynamic obstacle recognition 

areas. 

Step 3: Safe driving distance judgments. Evaluate the optimal trajectory 𝑏𝑒𝑠𝑡(𝑡𝑟𝑖𝑎) according 

to the evaluation function, and calculate the distance 𝑙  from the end position of the optimal 

trajectory 𝑏𝑒𝑠𝑡(𝑡𝑟𝑖𝑎) to the dynamic obstacle recognition area. If 𝑙 < 𝑙𝑒 still exists at this time, the 

conflict cannot be lifted, and the robot cannot avoid obstacles successfully. Let the optimal trajectory 

group 𝑡𝑟𝑖𝑎 correspond to the velocity group (𝑣, 𝑤) = 0. Then the robot will stop the motion quickly 

under the braking constraint. 

Step 4: If the distance 𝑙  from the end position of the optimal trajectory 𝑏𝑒𝑠𝑡(𝑡𝑟𝑖𝑎)  to the 

dynamic obstacle recognition region is greater than the desired obstacle avoidance distance 𝑙𝑒, the 

conflict is lifted, and the robot resumes motion according to our DWA. 

Robot
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Moving 

Obstacle

45°

240° 120°

 

Moving 

Obstacle
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315° 45°
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Robot

315° 45°
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(a) Frontal collision (b) Rear-end collision (c) Lateral collision 

Figure 11. Conflict risk situations. 

Table 1. Collision quantification criteria and avoidance rules. 

Situation Quantitative standard Avoidance rule 

frontal collision 𝜃 ∈ [315°, 45°] Avoid obstacles 

rear-end collision 𝜑 ∈ [120°, 240°] Surpass or follow 

right collision 𝜃 ∈ [45°, 120°] Avoid obstacles or decelerate to stop 

left collision 𝜃 ∈ [240°, 315°] Avoid obstacles or decelerate to stop 

Note: where 𝜃 represents the movement direction of the obstacle towards the robot; 𝜑 represents the 

movement direction of the robot relative to the obstacle. 
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3.4.3. Multi-robot prioritized obstacle avoidance strategy 

The path planning problem of multiple mobile robots is extended from the path planning 

problem of a single mobile robot. We plan a globally optimal path for each mobile robot in the 

environment by BAJPSA* algorithm. The DWA obstacle avoidance strategy mainly applies to the 

static environment or local small-scale dynamic environment (low-speed motion with disturbing 

obstacles, etc.) [44]. When applied to the multi-robot systems, this does not solve the phenomenon of 

motion conflict between multiple robots more efficiently [45]. Therefore, we studied the robot’s 

obstacle avoidance strategy for dynamic obstacles through extensive experiments and proposed the 

dynamic obstacle avoidance rules of 3.4.2. In addition, the priority method [46], as one of the current 

mainstream techniques for coordinated collision avoidance, can dissipate local conflicts between 

robots to achieve collision avoidance coordination. To yield better results in global multi-robot 

motion planning, we combine the BAJPSA* algorithm, improved DWA, and dynamic obstacle 

avoidance strategy with the multi-mobile robot priority strategy. The algorithm's complexity is 

simplified by reducing the path planning problem to a dynamic path planning problem with a 
sequential order for a single mobile robot. 

When there are multiple moving robots, the limited environment space is not sufficient for all of 

them to avoid obstacles. There is an optimal local situation if the robots are treated as dynamic 

obstacles with the dynamic obstacle avoidance strategy we presented in the previous study. 

Therefore, we introduce a prioritized strategy and a deceleration mechanism. Different robots have 

different priorities. When the robot with lower priority encounters one with higher priority and 

creates a motion conflict, this robot decelerates and stops in advance. The robot with higher priority 

treats this robot as static obstacle avoidance. As shown in Figure 12: It is assumed that the priority of 

AGV1, AGV2 and AGV3 decreases in that order. When there is a collision conflict among all three 

robots, the lower priority AGV2 and AGV3 decelerate to zero. After AGV1 leaves the conflict area, 

there is still a collision conflict between AGV3 and AGV2. AGV3 stops and waits, resuming motion 

when AGV2 departs and the collision conflict is lifted. 

   
(a) Three AGVs in conflict (b) Two AGVs in conflict (c) Conflict resolution 

Figure 12. Prioritization avoidance strategy. 

The constraints introduced by the robot’s kinematic model and environmental obstacles are 

considered in our study, making the challenge of the multi-machine priority obstacle avoidance 

strategy focus on specifying the conflict and coordinating the move. Taking two robots with higher 

priority, AGV1 and lower priority, AGV2, as an example, we investigated multiple conflict types in 

Table 2 and obtained the following collision conflict judgments and solutions: 

AGV1

AGV2 AGV3

AGV1

Collision

AGV2 AGV3

AGV1

Collision

resolution

AGV2

AGV3
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Table 2. Multi-robot motion conflict detection and resolution scenarios. 

case Movement Status 
Angle 

Relationship 

Potential 

conflict or 

not 

Conflict resolution 

strategies 

1 X

Y

AGV1

AGV2

d






 -

d 


 

|𝛼 − 𝛽| ≥ 90° NO —— 

2 
X

Y

AGV1 AGV2

d






 -

d 


 

|𝛼 − 𝛽| ≥ 90° NO —— 

3 
X

Y

AGV1 AGV2

d







 -

d 


 

|𝛼 − 𝛽| < 90° YES 

AGV1 passes first,  

AGV2 stops the 

movement 

4 
X

Y

AGV1AGV2

- 


=0

d d

 

|𝛼 − 𝛽| ≥ 90° NO —— 

5 
X

Y

AGV1AGV2

- 



=0

d d

 

|𝛼 − 𝛽| < 90° YES 

AGV1 passes first,  

AGV2 stops the 

movement 

6 

X

Y

AGV1

AGV2

-  

d

d



 

|𝛼 − 𝛽| < 90° YES 

AGV1 passes first,  

AGV2 stops the 

movement 

Step 1: If the actual distance  𝑑12 of two robots is less than the desired obstacle avoidance 

distance  𝑑𝑒 , the potential collision risk. 

Step 2: Establish a local coordinate axis with the lower priority robot AGV2 as the center, 

calculate the angle 𝛼 between the line of the two robots and the positive direction of the x-axis, and 

then calculate the relationship between the magnitude of α and the directional angle 𝛽 of AGV1. 

Step 3: Determine whether |𝛼 − 𝛽| < 90°; if this condition is satisfied, the risk of collision is 

extremely high. To ensure the safety of multi-robot movement, AGV2 with lower priority 
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decelerates within a short time, according to Eq (22). The AGV1 with higher priority treats AGV2 as 

an unknown static obstacle and performs obstacle avoidance motion through DWA. When the 

distance relationship between the two robots is 𝑑12 > 𝑑𝑒  and |𝛼 − 𝛽| ≥ 90°, AGV2 resumes motion. 

In conjunction with the research presented in this study, most experiments show that the 

proposed prioritized obstacle avoidance strategy applies to most situations. This is mainly attributed 

to the fact that robots are defined as conflicting motions only when the above conditions are satisfied 

in terms of distance and angle relationships, and robots that are not in the conflict range perform the 

corresponding obstacle avoidance strategies based on our DWA. 

{
𝑣(𝑡 + 1) = 𝑣(𝑡) − 2𝑎𝑣

𝑚𝑎𝑥𝛥𝑡

𝜔(𝑡 + 1) = 𝜔(𝑡) − 2𝑎𝜔
𝑚𝑎𝑥𝛥𝑡

 (22) 
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Figure 13. Flow chart of multi-robot path planning. 
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3.5. Fusion algorithm obstacle avoidance process 

We propose a multi-mobile robots obstacle avoidance strategy that guarantees global optimality 

and safety, which fuses the BAJPSA* algorithm for planning global paths with the DWA local 

obstacle avoidance algorithm that combines a prioritized obstacle avoidance strategy. The flow of the 

fusion algorithm is shown in Figure 13. 

4) Simulation experiments 

Simulation experiment environment: Windows 10 (64-bit), AMD Ryzen5-4600H with 3GHz, 

16 GB memory, the simulation platform is MATLAB R2019a. 

The relevant parameters of this paper are as follows: the sampling period ∆𝒕  is 0.1 s; the 

expected node distance  𝒏𝒅𝒔 is 0.018  𝒎 ; the robot’s expected tracking distance  𝒅𝟏 is 1.8  𝒎 ; the 

predicted trajectory to the target point expected distance  𝒅𝟐 is 1  𝒎 ; the expected distance 

parameters  𝒍𝟏 and  𝒍𝟑 between the robot and the obstacle are 0.4  𝒎  and 0.7  𝒎  respectively; the 

maximum error 𝒍𝟐  of the robot from the global path is 1  𝒎 ;the expected obstacle avoidance 

distance  𝒍𝒆 of the robot to dynamic obstacles is 1.5  𝒎 ; the expected obstacle avoidance 

distance 𝒅𝒆 between the multiple robots is 2 𝒎.The robot model parameters are: maximum linear 

velocity 𝟏 𝒎/𝒔 ; maximum angular velocity 𝟐𝟎 𝒓𝒂𝒅/𝒔 ; linear acceleration 𝟎. 𝟐 𝒎/𝒔𝟐 ; angular 

acceleration 𝟓 𝒓𝒂𝒅/𝒔𝟐 ; linear velocity resolution  𝟎. 𝟎𝟐𝒎/𝒔 ; angular velocity resolution 𝟏 𝒓𝒂𝒅/
𝒔𝟐 and the evaluation function coefficients are: 𝑨 = 𝟎. 𝟎𝟓,𝑩 = 𝟎. 𝟐, 𝑪 = 𝟎. 𝟑,𝑫 = 𝟎; the forecast 

time period 𝒕𝒇 is 3.0 𝒔. 

4.1. Global path planning experiments with improved BAJPSA* 

To verify the effectiveness of our BAJPSA*, two sets of maps with scales of 30×30 and 

100100 were selected for simulation and compared with the A* and JPS algorithms. The 

experimental results and simulation data are shown in Figures 14 and15 and Table 3. The green grid 

depicts the nodes searched by the algorithm, the blue grid is the forced neighbor nodes of JPS and 

BAJPSA*, while the red path and the orange path in Figures 14 and 15(c) are the paths of our 

BAJPSA* forward and the reverse searches, respectively. 

The green node area in Figures 14 and 15 and the number of OPEN and CLOSE list nodes in 

Table 3 show that our BAJPSA* dramatically reduces the number of extended nodes compared to 

the A* algorithm, and the improvement is particularly noticeable in a large-scale map of 100×100. 

There is a 92.5% reduction in the number of extended nodes and a 91.3% reduction in the running 

time of our BAJPSA* algorithm compared to A*, with a slight increase of 0.585 𝑚 in length. There 

is an advantage of our BAJPSA* over the JPS algorithm, mainly in terms of the search time, which 

benefits from the mechanism of bidirectional alternating search and the improvement of the heuristic 

function. We improve the search time of BAJPSA* by 50 % and reduce the number of expansion 

nodes by 60 % in the 30×30 scale map. Similarly, our BAJPSA* search time for paths is reduced by 

79 %, and the number of expansion nodes is slightly improved by 30 % in the 100×100 large-scale 

map. 
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(a) A* (b) JPSA* (c) BAJPSA* 

Figure 14. 30×30 environment. 

   

(a) A* (b) JPSA* (c) BAJPSA* 

Figure 15. 100×100 environment. 

Table 3. Comparison of global path planning results. 

 30×30 environment 100×100 environment 

Path parameters A* JPS BAJPSA* A* JPS BAJPSA* 

Length/m 43.355 43.355 43.355 158.167 158.167 158.752 

Run-times/s 0.651 0.863 0.485 6.894 2.855 0.598 

Number of 

path nodes 
34 24 27 131 55 89 

Number of 

OPEN list 
253 130 51 2509 271 187 

Number of 

CLOSE list 
394 98 32 6240 236 121 

  



167 

Mathematical Biosciences and Engineering  Volume 20, Issue 1, 145–178. 

4.2. Robot obstacle avoidance performance test experiments 

4.2.1. Simulation effect test of trajectory tracking capability 

To determine the effect of our improved algorithm, the path with the global path length of 

17.3616 𝑚 marked in black is obtained based on our BAJPSA* algorithm, as shown in Figure 16. 

The robot with the two-wheel differential motion model is built for trajectory tracking based on our 

improved DWA, and the test results in Table 4 and the robot angle variation and path error plots in 

Figure 17 show the experimental data of three robots with different parameters in detail. The specific 

exploratory analysis is as follows: 

In Path_1, we do not consider the robot’s new 𝑃𝑎𝑡ℎ(𝑣, 𝜔) evaluation function, such that the 

weight 𝐷 = 0. The final path length of the robot travels is 17.7138 𝑚, the robot deviates from the 

global path by 0.2255 𝑚 on average for each movement, and the robot spends 50.8668 𝑠 moving 

from the starting point (1.5, 2.5) to the endpoint (16.5, 10.5).  

In Path_2, we set 𝐷=0.2, and the final path length of the robot is 17.3676 𝑚, while the average 

deviation of the robot from the global path is 0.0577 𝑚. Compared with the conventional DWA of 

Path_1, we sacrifice some efficiency of the algorithm as we simultaneously consider the four 

Equations indicators (17–20). Moreover, it is evident from the experimental results that the actual 

robot motion of Path_2 is basically along the global path, except near the obstacles.  

In Path_3, we further increase the optimization effect of the 𝑃𝑎𝑡ℎ(𝑣, 𝜔) indicator, and Path_3 is 

obtained by setting 𝐷 = 0.4, which is improved slightly in terms of the path length and path offset 

indicators compared with Path_2. 

Table 4. Robot motion planning results. 

Path Path length/m Tracking error/m Search time/s 

Path_1 17.7138 0.2255 50.8668 

Path_2 17.3676 0.0577 55.8523 

Path_3 17.3536 0.0551 61.3893 

 

Figure 16. Robot motion planning. 
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(a) Angle change (b) Path tracking error 

Figure 17. Comparison of path metrics. 

4.2.2. Simulation effect test of dynamic obstacle avoidance capability 

To test the effectiveness of our proposed dynamic obstacle avoidance strategy, the following 

three sets of experiments were conducted for three collision types: frontal, rear-end, and lateral, as 

shown in Figures 18–21, respectively. The robot model parameters are the same as those in Section 4.2.1. 

First, we conducted a frontal collision experiment, where the movement speed of dynamic 

obstacles was set to 0.2 and 0.4 𝑚/𝑠 in Figures 18(a),(b), respectively (in Section 3.4.2, we analyzed 

the actual speed of the robot as 𝑣𝑟 = 𝑣𝑠 ∩ 𝑣𝑑 ∩ 𝑣𝑎, considering the limited search space of the robot, 

the speed of obstacles in this experiment was less than 0.5 times the maximum speed of the robot). 

The results show that the robot has a large recognition area for moving obstacles, can avoid them 

with conflicting frontal motion, and have a specific safety distance. Figure 18(b) shows the 

environment with high-speed moving obstacles, and the path length of the robot after completing 

obstacle avoidance is 9.8702 𝑚; it takes 15.62 𝑠 to move from the starting point (3.5, 1.5) to the 

endpoint (3.5, 10.5). The faster the speed of the obstacle movement, the higher the requirement for 

the robot’s obstacle avoidance performance. Thus, the path length of the robot’s passage compared to 

the low-speed moving obstacle in Figure 18(a) increases by 1.9845 𝑚, and the movement duration 

increases by 1.38 𝑠. 

Next, we performed a rear-end collision experiment with an obstacle moving at 0.1 𝑚/𝑠. The 

test results showed that our robot detected a slow-moving impediment in front and successfully 

avoided it. The final travel length of the robot was 13.4653 𝑚, and it took 19.82 𝑠. 

Finally, we set up obstacles with different motion directions and speeds for side collision 

experiments for three tests, respectively, and added traditional DWA for comparison to reflect the 

advantages of our obstacle avoidance strategy. In the first group, the speed of obstacle movement is 

0.25 𝑚/𝑠, and in the second and third groups is 0.5 𝑚/s. The experimental effect is shown in 

Figures 19–21. In the first collision experiment shown in Figure 19, the moving speed of the 

obstacles we set is relatively slow, such that both the traditional DWA and our DWA can 

successfully avoid obstacles. The travel path lengths of the conventional and our robot are 7.4440 

and 7.6449 𝑚, respectively. Keeping the direction of movement of the obstacle, we increased the 

movement speed of the obstacle to 0.5 𝑚/𝑠 and carried out the second collision experiment shown in 

Figure 20. The travel path lengths of the conventional robot and our robot are 8.1640 𝑚  and 

7.1840 𝑚, respectively. The experimental results in Figure 21, show that the robot collides with the 
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obstacle under the traditional DWA obstacle avoidance strategy. Our robot can determine conflicting 

obstacles and slow down and avoid such obstacles that otherwise be avoided successfully. Compared 

with the first experiment, although our robot has an additional waiting time of 1.68 𝑠, the length of 

the traveled path is reduced by 0.4609 m, and the safety is guaranteed. For the third test, we changed 

the direction of movement of this obstacle. From the experimental results of Figure 21, the 

traditional DWA has the optimal local problem of following the obstacle movement described in 

Figure 21(a), and the conflict is resolved only when the obstacle stops. The final path length of the 

robot traveled was 14.8600  𝑚 and took 19.16 𝑠 . Compared with our robot, the driving distance 

increases by 1.09 times, and the obstacle avoidance time also increases by 4.17 𝑠. 

   
(a) Frontal collision scenario 1 (b) Frontal collision scenario 2 (c) Rear-end collision scenario 

Figure 18. Frontal and rear-end obstacle avoidance tests. 

  
 

(a) Traditional DWA (b) Our improved DWA (c) Line speed comparison 

Figure 19. Lateral conflict avoidance test 1. 

 
 

 

(a) Traditional DWA (b) Our improved DWA (c) Line speed comparison 

Figure 20. Lateral conflict avoidance test 2. 
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(a) Traditional DWA (b) Our improved DWA (c) Line speed comparison 

Figure 21. Lateral conflict avoidance test 3. 

4.3. Multi-robot motion planning experiments 

The four experiments with three robots, all shown in Figures 22–28, were performed in four 

different environments: a globally known static environment, one with unknown static obstacles, one 

with unknown static and dynamic obstacles, and a dynamic environment with a large-scale sea area, 

respectively. The effectiveness and stability of our proposed fusion algorithm of the BAJPSA* 

algorithm, DWA dynamic obstacle avoidance strategy, and multi-robot priority obstacle avoidance 

strategy have been verified. 

4.3.1. Globally known environment 

The simulation results for the environment with known global obstacle information are shown 

in Figures 22–23, where the blue, pink, and red lines are the path situations of the three robots, 

AGV1, AGV2 and AGV3, respectively; the black grid depicts the static obstacle, for which the robot 

has a priori information. Figure 22 shows the real-time change of the robot during the planning 

process. The linear velocity and angular variation curves of the robot are shown in Figures 23(a) and 

(b), respectively; Figure 23(c) shows the offset of the robot’s motion path compared with the global 

path, where the starting and ending points of AGV1 are (14.5, 7.5) and (1.5, 10.5), respectively; the 

starting and ending points of AGV2 are (5.5, 6.5) and (13.5, 7.5), respectively; the starting and 

ending points of AGV3 are (5.5, 6.5) and (13.5, 10.5), respectively. 

Figures 22 and 23(a) show that AGV3 decelerates at the 50th motion control node when it 

detects a collision risk with AGV2, and completely stops at the 80th control node. Then, AGV2 starts 

decelerating from the 85th control node, until the 95th control node completely stops, as there is a 

collision conflict with AGV1. AGV1 has the highest priority, such that AGV2 and AGV3 in the 

stopped state are considered static obstacles, and AGV1 performs reasonable obstacle avoidance 

based on DWA. Furthermore, Figure 23(c) shows that the actual path of AGV1 movement deviates 

most from the global path. The collision risk between AGV2 and AGV1 is released, and AGV2 starts 

to move at the 130th control node. At this time, AGV3 still maintains collision conflict with AGV2. 

Thus, AGV3 resumes motion at the 160th control node. 

Figure 23 shows that AGV3 has the lowest priority, resulting in the most prolonged 

maintenance state of its stopped motion and less significant changes in the motion direction and path 

deviation. The additional obstacle avoidance performed by AGV1 and AGV2 for the lower priority 

robots produced a more noticeable motion angle and global path deviation. However, the whole 

motion was relatively smooth. The multi-robot motion experiments we conducted took 130.91 𝑠. The 
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travel distances of AGV1, AGV2 and AGV3 were 13.54 𝑚, 8.89 𝑚 and 9.63 𝑚, respectively, and the 

average error of motion deviation from the global path for each motion moment (0.1 s) was 0.3919 
𝑚, 0.2056 𝑚, and 0.0120 𝑚, respectively. 

  

(a) Global path planning (b) Robot local motion 

Figure 22. Multi-robot path planning. 

   
(a) Line speed (b) Angle of motion (c) Path tracking error 

Figure 23. Comparison of path metrics. 

4.3.2. Environments containing unknown static obstacles 

The multi-robot global path based on the BAJPSA* algorithm in the global static environment 

is shown in Figure 24(a), where the starting and ending points of AGV1 are (3.5, 2.5) and (12.5, 

14.5), respectively; the starting and ending points of AGV2 are (2.5, 15.5) and (12.5, 2.5), 

respectively; the starting and ending points of AGV3 are (9.5, 15.5) and (7.5, 1.5), respectively. Then, 

the randomly distributed unknown static obstacles (the red grid) were increased to conduct the 

following simulation experiments. 

The results shown in Figures 24 and 25 indicate that our multi-robot systems can avoid random 

static obstacles successfully when moving along the global path in an environment that includes 

unknown factors. The risk of collision between multi-robot systems is solved successfully with an 

improved prioritization strategy. What we know from Figures 24(b) and 25(a) is that when the higher 

priority AGV2 collides with lower priority AGV1, AGV2 decelerates from the 140th control node, 

and the velocity reaches zero at the 160th control node. The conflict is released once AGV1 moves 

away from AGV2 and AGV2 resumes motion at the 180th control node and successfully avoids 

random obstacles.  
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The variation of the motion speed, travel direction, and global path offset for each robot is 

relatively significant, as the obstacles of unknown disturbance were considered compared to those in 

Section 4.3.1. In conclusion, the travel distances for AGV1, AGV2 and AGV3 are 16.36, 19.46 and 

14.57 𝑚, respectively. The average values of global path offset for each robot movement are 0.5353, 

0.7853, and 0.4287 𝑚, respectively. The robot movement took 160.68 𝑠 program running time. 

  

(a) Global path planning (b) Robot local motion 

Figure 24. Multi-robot path planning. 

   

(a) Line speed (b) Angle of motion (c) Path tracking error 

Figure 25. Comparison of path metrics. 

4.3.3. Environments containing unknown dynamic obstacles 

There are several dynamic obstacles we added to the unknown static obstacles in Section 4.3.2 

to further test the applicability of single-robot dynamic obstacle avoidance strategy and multi-robot 

prioritized obstacle avoidance strategy in the given scenario, where the starting and ending points of 

AGV1 are (1.5, 7.5) and (15.5, 12.5), respectively; the starting and ending points of AGV2 are (15.5, 

8.5) and (1.5, 12.5), respectively; the starting and ending points of AGV3 are (13.5, 14.5) and (3.5, 

6.5), respectively. The yellow squares shown in Figure 26 are dynamic obstacles without a priori 

knowledge for the robots, and the red enclosures are the recognizable regions that the robots are 

assigned. The study of dynamic obstacle motion speed and robot recognition area in Section 3.4.2 

indicates that they are positively proportional. Therefore, we set the movement speed for the three 

dynamic obstacles of the small, medium, and large sizes as 0.5, 0.39, 𝑎𝑛𝑑 0.30 𝑚/𝑠, respectively; 

the radius of the recognition area given is 0.55, 0.40 and 0.35 𝑚, respectively; the preset motion path 

is shown in the last figure of Figure 26. 

As shown in Figure 26(b), three robots and three unknown dynamic obstacles are encountered 

at the center of the map. Figures 26(b) and 27(a) show that AGV1 and AGV2 detect dynamic 
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obstacles in front of them, and cannot avoid them because of the limited environment and rapid 

movement of the obstacles. According to the dynamic obstacle avoidance rules for motion conflicts 

in Section 3.4.2, the deceleration of both AGV1 and AGV2 starts from around the 125th control node 

and stops entirely at the 150th control node. After the dynamic obstacle leaves, both AGV1 and 

AGV2 resume motion around the 185th control node. Subsequently, the collision risk with AGV1 is 

detected by AGV3 and AGV2 at the 170th and 200th control nodes, respectively. According to 

Section 3.4.3, AGV3 and AGV2 decelerate and wait until the conflict is removed in the multi-robot 

priority obstacle avoidance strategy. 

This experimental simulation result demonstrates the effectiveness of our improved single-robot 

dynamic obstacle avoidance strategy combined with a multi-robot priority avoidance strategy in an 

environment with random static and unknown dynamic obstacles. As we find from Figures 27(b) and 

(c), there is obstacle avoidance in AGV1, resulting in a large angle and path offset. The motion 

distances of the robot are 14.66, 14.11 and 12.38 𝑚, respectively; the errors of the robot’s single-step 

motion offsetting the global path are 0.0288, 0.0361 and 0.0114 𝑚, respectively; the total running 

time of the algorithm is 292.0472 𝑠. 

                          

(a) Global path planning (b) Robot local motion 

Figure 26. Multi-robot path planning. 

   

(a) Line speed (b) Angle of motion (c) Path tracking error 

Figure 27. Comparison of path metrics. 
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4.3.4. Dynamic environment of large-scale sea area 

The multi-robot global path based on the BAJPSA* algorithm in a large-scale sea environment 

with an accuracy of 10 𝑚 is shown in Figure 28(a), where the starting and ending points of AGV1 

are (7.5, 55.5) and (59.5, 94.5), respectively; the starting and ending points of AGV2 are (55.5, 55.5) 

and (84.5, 29.5), respectively; the starting and ending points of AGV3 and endpoints are (33.5, 10.5) 

and (76.5, 58.5), respectively. The BAJPSA* algorithm takes 0.3328, 0.0972 and 0.0975 𝑠 to plan 

the global path for the three robots; the numbers of extended nodes are 41, 22 and 31, respectively. 

The global path lengths are 531.481, 323.201 and 636.734 𝑚, respectively. Then, unknown static and 

dynamic obstacles with random distribution are added, and the following simulation experiments are 

conducted. 

Figure 28 shows that our fusion algorithm is equally effective in the large-scale map 

environment. As indicated in Figure 28(b-4), AGV3 encounters a dynamic obstacle traveling in the 

same direction. It overtakes left side to avoid the obstacle traveling ahead, following the dynamic 

obstacle avoidance rules of the single robot. In Figure 28(b-6), AGV1 successfully avoids the 

random static obstacle and traverses the map’s narrow area. In Figure 28(b-7), AGV2 and AGV3 

successfully avoid the random static obstacles. Figure 28(b-9) shows the final travel paths of the 

three robots. The traces of the robots are smooth and fit the global path. 

The experimental simulation results demonstrate the effectiveness of our multi-robot obstacle 

avoidance strategy with BAJPSA* fusion improved DWA in a large-scale environment. The motion 

distances of AGV1, AGV2 and AGV3 are 693 𝑚, 388.5 𝑚 and 667 𝑚, respectively, and the average 

errors of motion deviation from the global path at each motion moment (0.1 𝑠) are 4.052 𝑚, 0.895 𝑚 

and 0.755 𝑚, respectively. 

 
 

(a) Global path planning (b) Robot local motion 

Figure 28. Multi-robot path planning. 

5. Conclusions 

To solve the path planning problem of distributed multiple robots in dynamic environments, we 

propose a BAJPSA* algorithm fused with adaptive DWA, performing in two stages. 
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In the first stage, we plan the globally optimal path for each robot by the BAJPSA* algorithm, 

with simulation results demonstrating the effectiveness of BAJPSA* in global path planning. In the 

second stage, we perform the local path planning. The adaptive navigation strategy and path 

deviation evaluation function are proposed to improve the path tracking capability of the traditional 

DWA. Next, we categorize and discuss multiple unknown static and dynamic obstacle environments 

with motion conflict scenarios, and propose dynamic obstacle avoidance rules for the single robot. 

Then, we extend the single-robot to distributed multi-robot with decision rights, discuss multiple 

classes of motion conflict situations, and achieve cooperative multi-robot avoidance by fusing the 

prioritizing avoidance rules. The simulation results demonstrate the effectiveness of this algorithm 

for multi-robot path planning in unknown dynamic environments. 

In this study, unknown static, as well as highly dynamic environments are the environments we 

focus on, and more complex factors (non-flat terrain, large-scale robots, etc.) will be gradually 

considered in future work. We can also test this algorithm in a robot platform and further on the 

multi-robot cooperative efficiency problem. 
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