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Abstract: Convolutional Neural Network (CNN) plays a vital role in the development of computer
vision applications. The depth neural network composed of U-shaped structures and jump connections
is widely used in various medical image tasks. Recently, based on the self-attention mechanism, the
Transformer structure has made great progress and tends to replace CNN, and it has great advantages
in understanding global information. In this paper, the ConvWin Transformer structure is proposed,
which refers to the W-MSA structure in Swin and combines with the convolution. It can not only
accelerate the convergence speed, but also enrich the information exchange between patches and
improve the understanding of local information. Then, it is integrated with UNet, a U-shaped
architecture commonly used in medical image segmentation, to form a structure called ConvWin-UNet.
Meanwhile, this paper improves the patch expanding layer to perform the upsampling operation. The
experimental results on the Hubmap datasets and synapse multi-organ segmentation dataset indicate
that the proposed ConvWin-UNet structure achieves excellent results. Partial code and models of this
work are available at https://github.com/xmFeng-hdu/ConvWin-UNet.
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1. Introduction

Along with the development of deep learning, image segmentation algorithms, such as UNet [1–4],
have achieved great success in medical applications, and the algorithms are significant for medical
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auxiliary diagnosis.
The classical UNet is a full convolution neural network (FCN) that mainly depends on the U-shaped

structure [1, 5, 6]. The early UNet and its variants, such as U-Net++ [2], UNet3+ [3], U2-Net [4], 3D
U-Net [7], Res UNet [8], etc. are constructed based on CNN. At present, there are still much excellent
research emerging in the UNet based on CNN, such as KUB-UNet [9]. Recently, the self-attention [10]
structure, represented by Transformer [11], has swept the field of computer vision. Meanwhile, a
series of UNet models based on Transformer have emerged, such as TransUNet [12], SwinUNet [13],
TransClaw U-Net [14], and MT-UNet [15]. The performance of UNet has been further improved by
the emergence of these networks.

In recent studies, the Transformer structure is feted. And driven by the success of the Transformer
structure, the pioneering vision Transformer (ViT) is introduced in [11], which achieves an impressive
speed-accuracy trade-off on image recognition tasks. To alleviate the difficulty that the training of ViT
requires large-scale training datasets, Deit [16] introduces several training strategies that allow ViT to
be effectively trained on ImageNet. Recently, the Swin Transformer [17] architecture achieves the best
performance, and it shows a good speed-accuracy trade-off on various vision tasks including image
classification. But the Transformer structure is rarely combined with CNN structure.

This paper focuses on the integration of the Transformer and CNN, and combines this structure with
UNet to apply it to medical image segmentation. It can not only use the Transformer to obtain global
features, but also use CNN to fuse local features, and realize information exchange between patches.
The rest of this paper is organized as follows. In Section 2, the related work of CNN and Transformer
is introduced briefly. The ConvWin Transformer structure and the integration of this structure into
the U-shaped network in UNet are elaborated. Also, the improvements based on the patch expanding
layer and various loss functions are described. In Section 3, the experiments and results are discussed.
Finally, Section 4 concludes this paper.

2. Materials and methods

2.1. Datasets

Hubmap - Hacking the kidney identify glomeruli in human kidney tissue images [18]: The Hubmap
dataset includes 11 fresh frozen and 9 Formalin-Fixed Paraffin-Embedded (FFPE) PAS kidney images.
Among 15 labeled samples publicly, there are Glomeruli FTU annotations for all 20 tissue samples.
In this paper, to verify the effectiveness of the algorithm, only the 15 labeled samples are used, where
10 samples are divided into the training set and 5 samples into the testing set. Each picture is cut into
small pieces, and the effective area size of each piece is 1024 × 1024. See Figure 1A for the specific
data pretreatment process. After this, there are 5867 pieces in the training set and 2599 pieces in the
test set. The average Dice-Similarity coefficient (DSC) is used to evaluate our method on this dataset.

Synapse multi-organ segmentation dataset [19]: This dataset consists of 8 abdominal organs (aorta,
gallbladder, spleen, left kidney, right kidney, liver, pancreas, spleen, stomach). In this paper, the use
of the training or testing images is the same as that in TransUNet [12]. They have used 30 abdominal
CT scans in the MICCAI 2015 Multi-Atlas Abdomen Labeling Challenge, with 3779 axial contrast-
enhanced abdominal clinical CT images in total. Each CT volume consists of 85 ∼ 198 slices of
512 × 512 pixels, with a voxel spatial resolution of ([0.54 ∼ 0.54] × [0.98 ∼ 0.98] × [2.5 ∼ 5.0]) mm3.
See Figure 1B for the specific data pretreatment process. Similarly, the average DSC and average
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Hausdorff Distance (HD) are used to evaluate our method on this dataset.

Figure 1. The specific data pretreatment process: A is for Hubmap dataset; B is for Synapse
dataset.

2.2. Related work

CNN-based UNet: CNN is the first automatic learning algorithm that can successfully train the
multi-layer network model in a real sense. The network structure of CNN is mainly designed for
image pretreatment. With the development of deep CNN, AlexNet [20] is proposed for image
classification. Since then, deeper and more effective convolutional neural architectures have been
proposed, such as VGG [21], GoogleNet [22], ResNet [23], DenseNet [24], and EfficientNet [25]. At
the same time, UNet, which has been widely used in medical images, comes into being. The original
UNet creatively combines the U-shaped structure and convolution network based on FCN to realize
the semantic segmentation of medical images at the pixel level. Subsequently, UNet++, UNet3+ add
the information interaction between encoder and decoder based on its structure. UNet++ introduces
the dense connection into the U-shaped structure, while UNet3+ constructs full scale skip connections
to realize the multi-scale information interaction between encoder and decoder. In addition, Res-UNet
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introduces the resblock structure in ResNet into UNet to make it have stronger feature understanding
ability. U2Net creatively replaces each block in UNet with a U-shaped structure. At present, UNet
based on CNN still has important applications and research in different fields. For example, the latest
KUB-UNet [9] applies UNet to the segmentation of the organs of urinary system and achieves the
best results.

Transformer-based UNet: Recently, Transformer has been introduced into the field of medical
image segmentation in many studies, and the Transformer structure was combined with
UNet [12–15]. Among them, Trans Unet [12] uses CNN to extract shallow features and uses
Transformer to extract depth features. MT UNet [14] further constructs the mixed Transformer
module based on Transformer structure and takes it as the encoder and decoder with deep features.
TransClaw U-Net [15] also uses the Transformer structure to extract deep-seated features. The
difference is that the algorithm additionally performs the same level of upsampling on the features
extracted by the Transformer structure and combines the results with the features of the original
encoder and decoder to use concatenation. Finally, SwinUNet [13] is based on Swin
Transformer [17], and it uses pure Transformer structure for feature extraction. At the same time, it
constructs a patch expanding layer that do not depend on convolution to realize upsampling based on
Transformer.

2.3. Methods

Our research focuses on the integration of Transformer and CNN. First, the ConvWin Transformer
structure is constructed in this paper, which refers to the W-MSA structure in Swin and combines with
the convolution. The convolution is added after the window attention structure. Then, the ConvWin
Transformer structure is integrated as the basic module into the U-shaped structure that is commonly
used for medical image segmentation, and the new network is called ConvWin-UNet. Extensive
experiments demonstrate that the Transformer structure can be integrated well with CNN, and the use
of group convolution is more effective than the use of traditional CNN. Meanwhile, the order of
LayerNorm and the convolution has an important impact on the experimental results. Besides, the
convergence can be faster if the linear layer in the upsampling of the decoder is replaced with the
convolution layer, but the convergence is sometimes not ideal.

2.3.1. Architecture overview & ConvWin Transformer block

The overall architecture of the proposed ConvWin-UNet is presented in Figure 2A, which mainly
includes the encoding part and the decoding part. As shown in Figure 2A, the encoding part and the
decoding part are divided into four stages. The first stage of the encoding part is composed of a patch
embedding layer [11] and two ConvWin Transformer blocks. In the other stages of the encoding part,
the patch embedding layer is replaced with the patch merging layer. Every stage of the decoding part
consists of two ConvWin Transformer blocks and a patch expanding layer. Between every stage of the
encoding part and the decoding part, the low-level features are connected through skip connections.
As shown in Figure 2B, the skip connections are composed of 1-layer LayerNorm (LN) and 1-layer
Linear, which is different from CNN.
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Figure 2. The architecture of ConvWin-UNet: A is the complete network structure of
ConvWin-UNet; B is the specific structure of the skip connection; C shows the structure
of ConvWin Transformer Block; D shows the structure of window based multi-head self-
attention module.

The basic unit of ConvWin-UNet is the ConvWin Transformer block (as shown in Figure 2C),
which is mainly constructed by convolution and window based multi-head self-attention module
(W-MSA). Here, the W-MSA divides the input feature map into M × M windows, then uses MSA for
each window, and finally reassembles the results obtained from each window into a complete output
feature map. Figure 2D shows the specific implementation form of this structure (taking 8 × 8 feature
map and 2 × 2 windows as examples). Further, the ConvWin Transformer block is composed of an LN
layer, a window based multi-head self-attention module (W-MSA), a group convolution, a residual
connection, and a MLP block which contains two linear layers and uses GELU as the activation
function. Different from Swin Transformer, this paper uses a convolution layer (without activation
function and BN) after each multi-head self-attention layer and realizes the interaction between
adjacent patches without the shift window in Swin Transformer. And through the experiments, it is
found that the group convolution (GC) has a better effect than the ordinary convolution, and adding a
LayerNorm module before the convolution further improves the effectiveness of the model. Similarly,
ConvWin Transformer blocks can be formulated as:

ẑl = GC(LN(W−MS A(LN(zl−1)))) + zl−1, (2.1)

zl = MLP(LN(ẑl)) + ẑl, (2.2)

where ẑl and zl represent the outputs of the W-MSA module and the MLP module of the lth block,
respectively. The self-attention is calculated as follows, which is the same as the previous works
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[10, 11]:

Attention(Q,K,V) = S o f tMax(
QKT

√
d
+ B)V, (2.3)

where Q,K,V ∈ RM2×d are the query, key, and value matrices; M2 is the number of patches in a window,
and d is the query or key dimension. The matrix B is taken from the bias matrix B̂ ∈ R(2M−1)×(2M−1).

2.3.2. Encoder

In this paper, the encoder part is divided into four stages. The first stage is composed of a patch
embedding layer and 2 ConvWin Transformer blocks, and the other stages consist of a patch merging
layer and 2 ConvWin Transformer blocks. Among them, the patch embedding layer is composed of
a patch partition layer and linear embedding layer, which is the same as that in Swin Transformer. It
concatenates the features of each group of 4×4 neighboring patches and then passes the 48 dimensional
concatenated features through a linear layer to project them to an arbitrary dimension (denoted by C).
The patch merging layer is similar to the patch embedding layer, and it concatenates the features of
each group of 2 × 2 neighboring patches. In this way, the number of patchs reduces to 1/4 of the
original, and the output dimension is set to 2C.

For an input image with a dimension of H×W×3, the dimension is reduced to H
4 ×

W
4 ×C after the first

stage. In this paper, C = 96. Each of the remaining stage performs 2× downsampling. Thus, the feature
dimensions of the output are respectively H

8 ×
W
8 ×2C, H

16×
W
16×4C, and H

32×
W
32×8C after the other stages.

Finally, the feature vector with a dimension of H
32 ×

W
32 × 8C is obtained through the encoder.

2.3.3. Decoder

Correspondingly, the decoder part is also divided into four stages in this paper. Each stage is
composed of a patch expanding layer and 2 ConvWin Transformer blocks. Similar to that described
in the previous paragraph, the features of each stage are fused with its corresponding encoder features
through skip connections. For the patch expanding layer, several comparison structures have been
constructed in this paper, as shown in Table 1. The main differences between these structures are 1) the
order of LayerNorm operations; 2) whether using linear or convolution to expand feature dimensions;
3) whether using realrange or pixelshuffle for downsampling. The specific effects of these structures
will be compared in Section 3.3. It should be noted that the patch expanding layer of the last stage uses
4× upsampling, the others use 2× upsampling.

Therefore, the dimension of the feature vector obtained by the encoder changes from H
32 ×

W
32 × 8C to

H
16 ×

W
16 ×4C, H

8 ×
W
8 ×2C, and H

4 ×
W
4 ×C respectively after the first three stages of the decoder. After the

last stage, a feature vector with a dimension of H×W ×N is obtained, where N is the number of classes.

2.3.4. Loss functions & multi-stage outputs

In this paper, some experiments are conducted on multi-stage outputs. Based on the structure shown
in Figure 2, by using the same patch expanding layer, the output of multiple stages in the decoder is
directly upsampled as the output of the network structure. The ground truth is denoted as P, and the
output of each layer is denoted as Qi, where i indicates the i-th stage.
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Table 1. Five structures of the patch expanding layer.

A B C D E

input H/2×W/2×2C H/2×W/2×2C H/2×W/2×2C H/2×W/2×2C H/2×W/2×2C

step1
Linear LayerNorm LayerNorm LayerNorm LayerNorm
H/2×W/2×4C H/2×W/2×2C H/2×W/2×2C H/2×W/2×2C H/2×W/2×2C

step2
Rearrange Linear Linear Conv3×3 GroupConv3×3
H×W×C H/2×W/2×4C H/2×W/2×4C H/2×W/2×4C H/2×W/2×4C

step3
LayerNorm Rearrange Pixelshuffle Rearrange Rearrange
H×W×C H×W×C H×W×C H×W×C H×W×C

output H×W×C H×W×C H×W×C H×W×C H×W×C

For the loss function, a combination of various loss functions is used for experiments, including
CrossEntropy Loss [26], Dice Loss [27], MSSIM (Mean Structure Similarity Index Measure) [28,29].

For image x and image y, denote l(x, y) as the mean value to estimate brightness, c(x, y) as the
variance to estimate the contrast, and s(x, y) as the covariance to estimate the structural similarity.

Specifically,

l(x, y) =
2µxµy +C1

µ2
x + µ

2
y +C1

, (2.4)

c(x, y) =
2σxσy +C2

σ2
x + σ

2
y +C2

, (2.5)

s(x, y) =
σxy +C3

σxσy +C3
, (2.6)

where C1,C2,C3 are positive constants. C1 = (K1L)2, C2 = (K2L)2, and C3 = C2/2, where the default
values of K1, K2, and L are used, i.e., K1 = 0.01, K2 = 0.03, L = 2B − 1 (B is the bit depth, and
B = 256). Denoting CrossEntropy Loss as Lce, Dice Loss as Ldice and MSSIM as Lmssim, we have:

Lce(Qi, P) =
1

H ×W
·

H−1∑
m=0

W−1∑
n=0

− D−1∑
k=0

Pmnk · ln
(

exp(Qi
mnk)∑D−1

t=0 exp(Qi
mnt)

) , (2.7)

Ldice(Qi, P) = 1 −
2|Qi ∩ P| + ε
|Qi| + |P| + ε

, f ix ε = 1, (2.8)

Lmssim(Qi, P) = [lM(Qi, P)]αM ·

M∏
j=1

[c j(Qi, P)]β j · [s j(Qi, P)]γ j , (2.9)
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where H,W,D is the height, width and depth (the output channel size) of the image, α1 = β1 = 0.0448,
α2 = β2 = 0.2856, α3 = β3 = 0.3001, α4 = β4 = 0.2363, α5 = β5 = γ5 = 0.1333. Thus, the loss
function of each stage is:

loss(Qi, P) = wce × Lce(Qi, P) + wdice × Ldice(Qi, P) + wmssim × Lmssim(Qi, P), (2.10)

where wce, wdice, wmssim are weights for the loss functions, and they are set to 1 by default. If a loss is
not used, the corresponding weight is set to 0. Then, the total loss function is

Loss =
n∑

i=1

wi × loss(Qi, P), (2.11)

where wi is the weight of the i-th stage, and it is a super parameter; n is the number of the output stages.
If multi-stage outputs are not used, n = 1.

3. Experiments and results

3.1. Implementation details

In the experiment on the Hubmap dataset, more than 50% of the data is cut around the effective slice
to prevent the black edge caused by rotations in data expansion. During the test, only the 1024 × 1024
effective area in the middle of the data is taken. Also, a comparative experiment is conducted on the
use of data augmentation for each algorithm. The size of the input image is resized to 512 × 512 when
it is input to the network. All experimental model parameters do not use any pretraining model but
only use the same initialization method. During the training period, the batch size is set to 16, and the
Adam optimizer with a base learning rate of 0.001 and a weight decay of 1e-4 is used to optimize our
model for backpropagation. The default number of training epochs is 200. On this dataset, four pieces
of Nvidia RTX2080Ti GPU are used to train each model.

In the experiment on the Synapse dataset, to keep the working environment the same, the input
image size of 224 × 224 is used. Meanwhile, all models are trained with the SGD optimizer with a
learning rate of 0.05, the momentum of 0.9, and the weight decay of 1e-4. The default batch size is 24,
and the default number of training epochs is 150. Besides, only one piece of Nvidia RTX2080Ti GPU
is used to train the models.

In the experiments, this paper compares the effects of whether using group convolution on the
models in encoder and decoder respectively. At the same time, the performance differences between
linear layer, convolution layer and group convolution layer are compared in the selection of upper
sampling layer. Here, the structures of the comparison models in the experiments are as follows:

• 1. Encoder:

– unet: Original UNet encoder structure,
– swin: Original Swin Transformer structure,
– cnvwin: Convwin Transformer structure constructed in this paper,
– group convwin: Group convlution used in the Convwin Transformer structure.
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• 2. Decoder:

– unet: Original UNet encoder structure,
– cnvwin: Convwin Transformer structure constructed in this paper,
– group convwin: Group convlution used in the Convwin Transformer structure.

• 3. Upsampling in decoder

– linear up: Linear layer used in upsampling (Table 1B),
– conv up: convlution layer used in upsampling (Table 1D),
– group conv up: group convlution layer used in upsampling (Table 1E).

3.2. Experiment results on the hubmap dataset

In this section, experiments are conducted on the combinations of the encoder, decoder, and loss
function. It should be noted that there are 2 groups of comparison models construct, namely the base
model and the plus model. The network layer used in the encoder stages of the base model is [3, 4, 6, 3],
while that of the plus model is [4, 8, 8, 4]. Moreover, in the decoder, the output channel of each stage
is set to 64, and the network layer is set to 1.

In Figure 3, several combinations of the encoder and decoder are compared. The ConvWin structure
constructed in this paper has certain advantages. Meanwhile, in the comparison of encoders (Table
2), the performance differences brought by different encoders with the same decoder structure are
investigated. The results show that the ConvWin structure has advantages over UNet and Swin. From
Table 2, it can also be seen that when the decoder is further replaced with ConvWin structure, the
performance is more significantly improved. In addition, it can be seen from Figure 4 that ConvWin
structure is more sensitive to data augmentation. When using data augmentation, the performance
improvement of ConvWin structure is more obvious than that of the original UNet. It can also be seen
here that the structure constructed in this paper needs additional data augmentation to improve the
spatial understanding ability (such as rotation invariance).

Table 2. The experimental results of different encoders.

Encoder Decoder Loss function Aug Max DSC Mean DSC

unet unet CE yes 90.83 90.25
swin unet CE yes 89.66 88.65
convwin unet CE yes 91.14 90.29
group convwin-base unet CE yes 91.11 90.43
group convwin-plus unet CE yes 91.11 90.40
convwin group convwin+conv up CE yes 91.24 90.40

group convwin-base group convwin+conv up CE yes 91.46 90.70
group convwin-plus group convwin+conv up CE yes 91.65 90.73
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Figure 3. The boxplot of the model results: the abscissa represents the encoder, and the
ordinate represents the score. Different colors represent different decoders. The encoder
structures including unet, swin, conwin, and group convwin are considered. The decoder
structures including unet, convwin + linear up, convwin + conv up, convwin + group conv
up, group convwin + conv up, and group convwin + group conv up are considered.

Figure 4. The line segments go up with the results from no data augmentation to data
augmentation, under different encoders and the same decoder (original UNet structure). The
slopes of the line segments reflect the sensitivity of different encoders to data augmentation.
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Besides, the use of different decoders leads to different effects. As shown in Table 3, the effects of
using different decoders and the same ConvWin structure as the encoder are investigated. The results
show that using the (Group) ConvWin structure as the decoder has advantages, especially compared
with the original UNet structure, the ConvWin structure constructed in this paper has been improved
to different degrees under different encoders. In addition, it is not good to use group ConvWin in all
places. Especially in the patch expanding layer, group ConvWin is not a better choice than ConvWin.
As can be further seen from Figure 5, there are differences in using and not using the group convolution
in the patch expanding structure of the decoder. The expanding layer with the group convolution
performs slightly better than that without the group convolution in the case of using the data expansion,
but the result is the opposite without the data expansion. However, it can be seen from the experimental
results that there is no significant difference between using and not using the group convolution in
expanding. In addition, the experimental results of expanding on the Synapse dataset will be further
analyzed.

Table 3. The experimental results of different decoders.

Encoder Decoder Loss function Augmentation Max DSC Mean DSC

convwin unet CE yes 91.14 90.29
convwin convwin+conv up CE yes 91.12 90.46
convwin group convwin+conv up CE yes 91.24 90.40
group convwin-base unet CE yes 91.11 90.43
group convwin-base group convwin+conv up CE yes 91.46 90.70
group convwin-plus unet CE yes 91.11 90.40
group convwin-plus group convwin+conv up CE yes 91.65 90.73
convwin convwin+linear up CE yes 90.23 89.59
convwin convwin+group conv up CE yes 90.62 89.93
convwin convwin+conv up CE yes 91.12 90.46

Furthermore, on the Hubmap dataset, an experiment is performed to compare the loss functions and
the pre-trainings of ImageNet. As shown in Figure 6A, the use of MSSIM improves the performance
slightly but the use of Dice significantly reduces the performance of the model. Meanwhile, the use of
multi-stage outputs (n = 4) improves the model performance slightly, and the model performance is
also more stable. In this paper, the models pre-trained for 20 epochs on the Imagenet-1K dataset are
used as pre-training models to train the corresponding segmentation model from scratch. The results
are shown in Figure 6B. Pre-training does not significantly improve the performance of the model.
However, the training curve in Figure 6C shows that the pre-training model is helpful for convergence.
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Figure 5. The boxplot of the results under different patch expanding blocks: A presents the
results without data augmentation; B presents the results with data augmentation. The green
color indicates that group convolution is used in the patch expanding block; the yellow color
indicates that the convolution is used without group.

Figure 6. A. The results of using different loss functions; B. The results of using and not
using the pre-trained model (GCwin means group ConvWin); C. The training loss curves of
using and not using the pre-trained model.
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3.3. Experiment results on the synapse dataset

To make a fair comparison of similar methods, the experiments are also conducted on the Synapse
dataset. The network structure described in Section 2 is used here, and the loss function is Dice + CE
(keep up with TransUNet). As shown in Table 4, our method achieves the best performance among
the algorithms taken for comparison. The segmentation results of different methods on the Synapse
dataset are shown in Figure 7. Our method handles the details more carefully. This is attributed to the
added convolution module, which increases the perception of local features.

Table 4. The segmentation accuracy of different methods on the Synapse dataset.

Methods DSC↑ HD↓ Aor. Gal. Kid. (L) Kid. (R) Liv. Pan. Spl. Sto.

V-Net [27] 68.81 - 75.34 51.87 77.10 80.75 87.84 40.05 80.56 56.98
DARR [30] 69.77 - 74.74 53.77 72.31 73.24 94.08 54.18 89.90 45.96
R50 U-Net [12] 74.68 36.87 87.74 63.66 80.60 78.19 93.74 56.90 85.87 74.16
U-Net [1] 76.85 39.70 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58
R50 Att-UNet [12] 75.57 36.97 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95
Att-UNet [31] 77.77 36.02 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75
R50 ViT [12] 71.29 32.87 73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95
TransUNet [12] 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
SwinUNet [13] 79.13 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60
TransClaw [14] 78.09 26.38 85.87 61.38 84.83 79.36 94.28 57.65 87.74 73.55
MT-UNet [15] 78.59 26.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81
ConvWin UNet 79.39 21.39 84.37 69.89 84.85 82.08 93.69 58.84 87.32 74.04

Furthermore, further experiments are conducted on the expanding structure (see Table 1
specifically). As shown in Table 5, compared with method A, method B can significantly improve the
performance by placing Layernorm before Linear in the expanding structure. However, the use of
convolution in the expanding structure reduces the performance, which is quite different from the
results obtained on the Hubmap dataset. However, the training curve in Figure 8 indicates that the use
of convolution in the expanding structure makes the model converge faster, and the loss value is lower
(It may be easier to fit in the training set after adding the convolution).

4. Discussion

This paper focuses on the integration of Transformer and CNN and combines this structrue with
UNet to apply it to medical image segmentation. Based on this, this paper constructs a ConvWin block,
and a variety of patch expanding blocks to realize upsampling. It can not only use Transformer to obtain
global features, but also use CNN to fuse local features, and realize information exchange between
patches. Finally, a new loss function is constructed with MSSIM. At the same time, experiments are
carried out on several datasets, and good results are obtained.
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Figure 7. The segmentation results of different methods on the Synapse dataset.

Figure 8. The training loss curve of different patch expanding blocks on the Synapse dataset.
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Table 5. The segmentation accuracy of different methods on the Synapse dataset.

Methods DSC↑ HD↓ Aor. Gal. Kid. (L) Kid. (R) Liv. Pan. Spl. Sto.

A 77.24 27.91 83.06 67.47 84.46 80.13 93.15 50.82 88.02 70.81
B 79.38 21.39 84.37 69.89 84.85 82.08 93.69 58.84 87.32 74.04
C 77.40 23.27 82.99 66.43 83.14 80.34 93.27 55.57 87.81 69.66
D 75.96 27.42 82.37 70.79 81.45 73.33 93.07 46.19 88.10 72.36
E 62.81 58.85 71.01 59.53 67.53 60.35 89.28 33.25 72.41 49.12

A Linear + Rearrange + LayerNorm
B LayerNorm + Linear + Rearrange
C LayerNorm + Linear + Pixelshuffle
D LayerNorm + Conv3+ Rearrange
E LayerNorm + GroupConv3+ Rearrange

In addition, this paper also has some shortcomings and can be further studied. 1) For different
datasets, the effect of the patch expanding blocks constructed in this paper are different, and more
stable and universal patch expanding block can be further explored in future research. 2) It seems that
the understanding of the global information needs to be further improved. Although SSIM is added
as part of the loss, the local details need to be further refined and further optimization needs to be
made for SSIM. 3) The initialization weight can also be further studied. In the subsequent research,
the Self-Supervised Learning algorithm can be further tried to improve the robustness of initialization
parameters.
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