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Abstract: Marine Predators Algorithm (MPA) is a newly nature-inspired meta-heuristic algorithm, 
which is proposed based on the Lévy flight and Brownian motion of ocean predators. Since the MPA 
was proposed, it has been successfully applied in many fields. However, it includes several 
shortcomings, such as falling into local optimum easily and precocious convergence. To balance the 
exploitation and exploration ability of MPA, a modified marine predators algorithm hybridized with 
teaching-learning mechanism is proposed in this paper, namely MTLMPA. Compared with MPA, the 
proposed MTLMPA has two highlights. Firstly, a kind of teaching mechanism is introduced in the first 
phase of MPA to improve the global searching ability. Secondly, a novel learning mechanism is 
introduced in the third phase of MPA to enhance the chance encounter rate between predator and prey 
and to avoid premature convergence. MTLMPA is verified by 23 benchmark numerical testing 
functions and 29 CEC-2017 testing functions. Experimental results reveal that the MTLMPA is more 
competitive compared with several state-of-the-art heuristic optimization algorithms. 

Keywords: meta-heuristics optimization; Marine Predators Algorithm; exploitation and exploration; 
modified Marine Predators Algorithm; teaching-learning-based optimization 
 

1. Introduction  

Lots of real-life engineering optimization problems have complex characteristics, such as multi-
modality, high-dimensional and non-differentiable, so that they are not easy to solve by traditional 
optimization methods. For instance, if we use traditional optimization methods (such as steepest decent, 
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dynamic programming and linear programming) to address an optimization problem, we need to 
calculate its gradient. So the traditional method cannot solve non-differentiable problems. Luckily, as 
the meta-heuristic optimization algorithms are proposed and developed, many complicated 
optimization problems can be solved easily and efficiently.  

During the last three decades, the research of meta-heuristics intelligent optimization algorithm 
has become a research hot-spot, so that many state-of-the-art swarm optimization algorithms were 
proposed and developed. For example, inspired by the foraging behavior of the birds, particle swarm 
optimization (PSO) was proposed [1]. Krill herds (KH) algorithm [2] was proposed based on the 
foraging behavior of krill herds, which shows fast convergence speed but poor convergence accuracy. 
Based on cuckoo parasitic brood behavior, Cuckoo Search (CS) [3] was proposed in 2009, which has 
good versatility and global searching ability. Grey wolf optimization algorithm (GWO) [4] was 
proposed based on the foraging behavior of wolves, which shows good performance and has been 
applied in many fields. Inspired by the teaching learning phenomenon, a kind of teaching learning 
based optimization algorithm (TLBO) [5,38–42,45] was proposed, which has good global searching 
ability but poor local searching ability. The whale optimization algorithm (WOA) [6] was proposed 
based on the foraging behavior of whales, which is good at solving large spatial gradient problem, but 
it cannot jump out of the local optima. Marine Predator algorithm (MPA) [7] was proposed based on 
the foraging behavior of ocean predators. Moreover, many researchers have proved that these swarm-
inspired optimization algorithms are suitable to solve complex function problems and difficult real-
life optimization problems [8–14]. In deep learning, the optimizer was used to find the optimal solution 
of the model. The improvement of the optimizer was also applied in all areas of life [15–17,36–37]. 

In this paper, we focus on studying the Marine Predator Algorithm (MPA). The MPA is a novel 
simple and efficient meta-heuristic optimization algorithm inspired by the survival of the fittest theory 
in the ocean. MPA has many advantages, including fewer parameters, simple configureuration, ease of 
implementation and high calculation accuracy. Therefore, since the MPA was proposed, it has caused 
researchers’ attentions and applied in many fields successfully. Chen et al. proposed a rolling bearing 
fault diagnosis method based on the MPA based-support vector machine [18]. The MPA was utilized 
to fuse base layers by optimal parameters, allowing the output image to have good quality [19]. The 
optimum design of the controller was established by using MPA [20]. However, the MPA still exists 
several drawbacks, such as falling into local optima easily, poor balance ability of exploitation and 
exploration, weak convergence speed and solution quality. In order to enhance the performance of 
MPA, researchers have proposed many variants of MPA. In [21], MPA was compared with high-
performance optimizer and other classical algorithms that recently developed. Elaziz et al. [22] 
proposed an improved MPA based on quantum theory to handle multi-level image segmentation 
problems. Ramezani et al. [23] noted that MPA is deficient in terms of local optimization of fast escape 
and exploration of space and enhanced the algorithm by incorporating the characteristics of opposition 
learning, chaos graphs and so on. The enhanced MPA [24] implemented a population enhancement 
strategy to improve solution quality, which was applied to the parameter estimation of the 
photovoltaic model. In [25], a multi-objective MPA was proposed. Optimal vehicle-to-grid and 
grid-to-vehicle scheduling strategy [26] using improved marine predator algorithm. An improved 
MPA was presented [27] for the optimal design of hybrid renewable energy systems. An enhanced 
multi-objective optimization algorithm of the MPA was proposed for minimizing the operating 
cost and emission [28]. 

The MPA has four phases: MPA formulation, MPA optimization scenarios, eddy formation and 
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FAD’s effect, marine memory. The most core phase of the MPA is ‘MPA optimization scenarios’. The 
MPA algorithm has been applied into many fields because of its superior performance. However, the 
MPA still includes some disadvantages, such as falling into local optima easily, slow convergence rate 
and poor solution quality. Therefore, this paper introduces teaching-learning group mechanisms in the 
‘MPA optimization scenarios’ phase to improve the convergence accuracy and solution quality. 
Moreover, there are three phases in ‘MPA optimization scenarios’. In the first phase, a kind of teaching 
group mechanism is introduced, which was proposed in MTLBO [29] by our team. Actually, the 
population individuals will be divided into two groups based on the fitness values of function. And the 
two group individuals have different position updating mechanism. In the third phase, another kind of 
learning group mechanism is introduced to update those population individuals. The proposed 
MTLMPA is verified by 23 benchmark numerical testing functions and several CEC-2017 functions. 
Experimental results reveal that the MTLMPA presents better performance on most testing functions 
compared with state-of-the-art heuristic optimization algorithms.  

The main contributions of this paper can be summarized as follows:  
1) Based on conventional MPA, a modified marine predators algorithm hybridized with teaching-

learning group mechanism is proposed. 
2) 23 benchmark numerical functions and several CEC 2017 testing functions are used to evaluate 

the performance of MTLMPA. Compared with other state-of-the-art algorithms, MTLMPA can 
provide competitive solutions on most testing functions. 

The rest of the paper is organized as follows. Section 2 presents preliminaries of marine predator 
algorithm in detail. Section 3 proposes the MTLMPA algorithm. The performance of the proposed 
method is tested and analyzed in Section 4. Finally, Section 5 concludes the work and outlines several 
advises for future work. 

2. Marine Predators Algorithm 

Inspired by the widespread foraging strategy of ocean predators, a nature-inspired meta-heuristic 
optimization algorithm, called Marine Predators Algorithm (MPA), was proposed in 2019. During 
foraging, the predators obey the Brownian motion and Lévy flight [30–35,43–44]. In MPA, the prey 
and predators update their position based on Brownian motion or Lévy flight. The MPA has four basic 
phases, which are described in detail as follows. 

2.1. Initialization phase 

In this subsection, population individuals are generated randomly by uniform distributed method, 
denoted X X rand X X  . X   and X   are the lower limit and upper limit of 
variables, respectively. rand is a random vector in the range 0–1. Then, the fitness function value of 
every individual is calculated. Finally, Elite matrix and Prey matrix are constructed. Based on the Elite 
matrix and Prey matrix, population individuals update their positions. 

The Elite matrix is constructed from the optimal solution being specified as the top predator. 
The second matrix is defined as the Prey matrix. The predator updates its position according to the 
Prey matrix. 
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𝑋  is the vector representing the top predator. d is the number of dimensions. n is the number of 
search agents. 𝑋  is the jth dimension of the ith Prey.  

2.2. MPA optimization scenarios 

The optimization scenarios of MPA can be divided into three main phases based on different 
velocity ratio of predator and prey. In the first phase, the prey moves faster than predator. In the second 
phase, both predator and prey move at almost same pace. In the third phase, the predator moves faster 
than prey. Based on the movement rules of predator and prey, a specific period of iteration is specified 
and assigned for each phase.  

Phase 1: In the initial stage of MPA, in high-velocity ratio (v 10 ), the best strategy of the 
predator is not moving at all. The mathematical model of this phase can be presented as follows. 

While 𝐼𝑡𝑒𝑟 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 , 
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R⃑ is a vector of uniform random numbers in [0, 1]. Iter is the current iteration number. Max_Iter 

is the maximum iteration number. P = 0.5. R⃑   is a random vector based on Normal distribution 

representing the Brownian motion. The standard Brownian motion is a random process. The step size 
has the characteristics of zero mean (𝜇 0) and unit variance (𝜎 1). The symbol ⊗ represents 
entry-wise multiplications. 

Phase 2: In unit speed ratio, predators try to make the transition from exploration to 
exploitation. Therefore, half of the organisms are earmarked for exploration and the other half of 
them for exploitation. 

While 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 𝐼𝑡𝑒𝑟 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 , the first half of individuals update their positions 

based on the following Eq (2): 
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And the second half of individuals update their positions based on the following Eq (3): 
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R⃑  is a vector of random numbers based on Lévy distribution representing Lévy movement. CF 

is considered as an adaptive parameter to control the step size for predator movement. R⃑ ⊗ Elite is 

the Brownian motion of a predator chasing its prey. The preys also update their position according to 
predators in Brownian motion. 

Phase 3: Low-velocity ratio or when predator moves faster than prey.  

While 𝐼𝑡𝑒𝑟 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟, individuals update their positions based on the following Eq (4). 
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𝑅 ⊗ 𝐸𝑙𝑖𝑡𝑒
⎯⎯⎯

 simulates the movement of predators in the Lévy strategy.

 
2.3. Eddy formation and FADs’ effect 

The environmental problems can change the behavior of Marine predators, such as the eddy 
formation and FADs’ effect. According to research [32], predators always move around FADs. The 
FADs are considered as local optima and their effect as trapping in these points. Consideration of these 
longer jumps during simulation avoids stagnation in local optima. Therefore, the FADs effect can be 
presented as a mathematical Eq (5). 
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where FADs = 0.2 is the probability of FADs effect on the optimization process. �⃗� is the binary vector. 

r is a uniform random number between [0, 1]. �⃗�   and �⃗�min  are upper and lower bounds of 

containing dimensions. r1 and r2 subscripts denote random indexes of prey matrix. 

2.4. Marine memory 

Marine predators usually have good memories and remember places where they’ve been 
successful in foraging. After updating prey and performing FADs effect, this matrix is evaluated for 
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fitness to update the Elite. Each solution in the current iteration is compared to the previous iteration 
to determine its fitness. If the current solution is more fitted, it will be replaced. This process also 
improves the solution quality with the lapse successful foraging.  

3. A modified teaching learning Marine Predators Algorithm 

The MPA is a recently proposed population-based meta-heuristic algorithm that has been proven 
to be more competitive with other algorithms. However, the MPA still has several deficiencies to be 
addressed, such as falling into local optima easily, poor balance ability of exploitation and exploration, 
weak convergence speed and solution quality. 

To solve above-mentioned problems, this paper proposes a modified teaching learning Marine 
Predators algorithm. In literature [29], we have proposed a kind of teaching learning group mechanism 
that were introduced in the conventional teaching-learning-based optimization algorithm (namely 
MTLBO) to enhance solution quality and balance exploration and exploitation. Thus, this paper 
combines MPA with the teaching learning group mechanism to increase its performance, called 
MTLMPA. Firstly, the population updating mechanism of the MTLBO in teacher phase is integrated 
into the first phase of MPA, which can make predators target their preys successfully. Simultaneously, 
the convergence speed and accuracy of MPA can be improved. Secondly, the population updating 
mechanism of the MTLBO in learner phase is integrated into the third phase of MPA. Marine 
predators can simulate students’ learning method and optimize their position quickly. Thus, the 
exploitation and exploration ability of MPA can be enhanced. Now, the variant of MPA is described 
in the following subsection.  

3.1. The population updating mechanism of MTLMPA in first phase 

Phase 1: In this phase, a kind of group mechanism is introduced. Firstly, calculate the fitness 
function values of predators. Based on the fitness values, an elite predator is selected as the most 
knowledgeable individual in the population. Secondly, calculate the mean value of predators’ position, 
noted as Prey  . Based on the mean value, predators are divided into two groups. One group 
contains superior predators, another group are poor predators. During the food capture period, these 
superior predators update their position mainly rely on their experience and elite predator. And those 
poor predators mainly follow the elite predator to capture prey. Finally, all predators still move in 
Brownian motion. Therefore, the specific model is presented as follows. 
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where w is the inertia weight. 𝑤 𝑤 𝑤 𝑤
_

 The inertia weight is linear 

decreasing, which is helpful to improve the local development ability of the algorithm. 𝑠𝑖𝑛
_

, 
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𝑐𝑜𝑠
_

 are two weight coefficients.𝑠𝑖𝑛
_

  increases with increasing iteration and 

gradually tends towards 1. 𝑐𝑜𝑠
_

  decreases with increasing iteration and gradually 

decreases to 0. 

3.2. The population updating mechanism of MTLMPA in third phase 

Phase 3: This stage is the low speed ratio or when the predators is moving faster than the prey. 
This procedure is frequently associated with strong exploitation capability. In this phase, the Lévy 
flight mode is the best strategy for predators. When the new population updating mechanism is 
introduced, all predators are still divided into two groups based on their fitness function values. After 
sorting the fitness values, the first half of predators are regarded as the superior predator. 
Simultaneously, the rest of the predators are considered as inferior predator. Superior predators have 
strong predation capability, so they update their position rely on themself information and elite predator 
information during the predation. Moreover, superior predators can learn to hunt by themselves. 
Additionally, inferior predators have relatively weak predation ability, so that they only follow the elite 
predator to hunt. Based on the phenomenon, the specific mathematical model is summarized as follows. 
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Seen from Eq (7), the superior predators randomly chose a nearby predator 𝑃reyneighbor to follow. 

If the 𝑃rey  is better than 𝑃rey neighbor , the 𝑃rey  mainly updates its position by itself. Otherwise 

𝑃rey  learns from 𝑃reyneighbor . The weight coefficient 𝑐𝑜𝑠
_

 is introduced to improve 

convergence speed and local exploitation ability.  
The flow chart of MTLMPA is presented as follows.  
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Start

Initialize the algorithm parameters Elite matrix, prey matrix, maximum  iterations and 
population size. Generate initial population individuals according to uniform distribution and 
calculate the fitness value of the objective function. 

Iter=0

Iter<Max_iter/3 2*Max_iter/3>iter>Max_iter/3 Iter>2*Max_iter/3

Update prey based 
on Eq 6.

Update prey based 
on Eq 2 and 3.

Update prey based 
on Eq 7.

Eddy formation and FADs’ 
effect based on Eq 5.

Iter<Max_Iter
Y

Iter=Iter+1

Output the optimal 
value

N

 

Figure 1. Flow chart of MTLMPA. 

4. Performance testing  

In order to verify the effectiveness of MTLMPA, 23 benchmark testing functions are applied to 
evaluate MTLMPA’s performance in exploration, exploitation and minimization. The detailed 
description of these functions are presented in Table 1. Seen from Table 1, TF1–TF7 belong to the 
unimodal functions which are used to evaluate the exploitation capability of MTLMPA. TF8–TF13 
simulate multi-modal functions to test the exploration performance of MTLMPA. The functions TF14–
TF23 with fixed dimensions are used to test the algorithm’s performance in low dimensions. In 
addition, 29 CEC-2017 testing functions are used to verify the performance of MTLMPA as well.  

All testing were conducted on a single machine. CPU: Intel (R) Core (TM) i5-6300HQ CPU 
@ 2.30 GHz, Windows10 operating system and MATLAB R2016a. The population number is set 
as 40. The maximum iteration number is set as 500. In order to reduce statistical errors, each 
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algorithm is independently simulated 30 times. 

Table 1. 23 Benchmark testing functions.  
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4.1. Comparison with MPA 

In this subsection, the performance comparisons between MTLMPA and MPA are given on 23 
testing benchmark functions with 50 dimensions, including exploitation capability evaluation, 
exploration capability evaluation and algorithm convergence ability. For every testing function, the 
MTLMPA and MPA independently run 30 times to find the global optima solution, separately. And 
then, we find the best solution in the thirty times results, which is denoted as Best. Finally, we calculate 
the mean and standard deviation of the thirty results, separately. The mean value is recorded as Ave 
and the standard deviation is abbreviated as Std. The mean value represents convergence accuracy and 
the standard deviation represents stability of algorithm. Noted that: the smaller the mean and standard 
deviation, the better the algorithm performs. 

4.1.1. Exploitation capability evaluation 

Uni-modal functions are real-valued functions that have a single strictly local maximum in the 
interval. There is only one global optimal solution in each testing function. These functions are fitness 
to evaluate the exploitation ability of the optimization algorithm. Therefore, functions TF1–TF7 are 
used to investigate the exploitation capability of MPA and MTLPA. The experiment results are 
recorded in the Table 2. The best performance index is presented in bold font.  

Table 2. Testing results of MTLMPA and MPA on seven uni-modal functions.  

Functions Performance Index Method
MTLMPA MPA

TF1 
Best 8.98 × 10-86 6.22 × 10-21 
Ave 1.70 × 10-86 1.25 × 10-20 
Std 5.43 × 10-86 1.42 × 10-20 

TF2 
Best 4.68 × 10-47 7.53 × 10-12 
Ave 1.86 × 10-45 5.04 × 10-12 
Std 4.14 × 10-45 5.00 × 10-12 

TF3 
Best 1.24 × 10-41 0.079 
Ave 3.90 × 10-41 0.067 
Std 1.03 × 10-40 0.102 

TF4 
Best 1.11 × 10-36 2.23 × 10-8 
Ave 4.98 × 10-38 3.52 × 10-8 
Std 2.06 × 10-37 1.26 × 10-8 

TF5 
Best 47.746 46.384 
Ave 47.454 46.045 
Std 0.925 0.369 

TF6 
Best 1.238 0.188
Ave 1.463 0.296
Std 0. 181642 0.160

TF7 
Best 1.54 × 10-4 0.002 

Ave 2.51 × 10-4 0.001 

Std 5.00 × 10-5 7.70 × 10-4 

Seen from Table 2, we can find that the proposed MTLMPA shows better performance than 
conventional MPA on five functions, including TF1, TF2, TF3, TF4, TF7. On functions TF5 and TF6, 
the MPA presents relatively better performance than MTLMPA. Therefore, these experiment results 
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reveal that the MTLMPA has stronger exploitation capability than the MPA.  

4.1.2. Exploration ability evaluation 

In general, multi-modal testing functions have a large number of local optimal values, so that 
these functions are fitness to verify the exploration ability of optimization algorithm. Functions TF8–
TF13 are the multi-modal function with high dimensions. Functions TF14–TF23 are the multi-modal 
function with fixed (low) dimensions. Therefore, these multi-modal functions are used to evaluate the 
exploration ability of MTLMPA and MPA. Experiment results of MTLMPA and MPA are recorded in 
Tables 3 and 4, separately. 

Shown in Table 3, for high-dimensional multi-modal functions, the proposed MTLMPA presents 
better performance than MPA on TF8–TF11. Moreover, the two optimization algorithms obtain similar 
results on TF12 and TF13. Seen from Table 4, for fixed dimensional multi-modal functions, MTLMPA 
and MPA can find the global optima solution on all testing functions. Although they have the similar 
convergence accuracy, the MTLMPA owns stronger algorithm stability than conventional MPA. In 
conclusion, the MTLMPA has better exploration capability than MPA on most testing functions. 

Table 3. Testing results of MTLMPA and MPA on six multi-modal functions. 

Functions MTLMPA MPA 

Best Ave Std Best Ave Std 

TF8 -1.08 × 104 -1.16 × 104 8.80 × 102 -1.29 × 104 -1.36 × 104 8.35 × 102 

TF9 0 0 0 0 0 0 

TF10 8.88 × 10-16 8.88 × 10-16 0 1.13 × 10-11 1.75 × 10-11 1.15 × 10-11 

TF11 0 0 0 0 0 0 

TF12 0.033 0.03 0.01 0.005 0.007 0.004 

TF13 0.075 1.704 1.86 0.617 0.309 0.148 

Table 4. Testing results of MTLMPA and MPA on ten fixed dimension functions. 

Functions MTLMPA MPA 

Best Ave Std Best Ave Std 

TF14 0.998 0.998 9.22 × 10-17 0.998 0.998 1.89 × 10-16 

TF15 3.07 × 10-4 3.07 × 10-4 9.78 × 10-18 0.998 0.998 1.89 × 10-16 

TF16 -1.032 -1.032 6.32 × 10-16 -1.032 -1.032 4.70 × 10-16 

TF17 0.398 0.398 0 0.398 0.398 4.51 × 10-16 

TF18 3 3 1.35 × 10-15 3 3 1.81 × 10-15 

TF19 -3.863 -3.863 2.67 × 10-15 -3.863 -3.863 2.29 × 10-15 

TF20 -3.322 -3.322 9.85 × 10-11 -3.322 -3.322 2.02 × 10-13 

TF21 -10.153 -9.813 1.29 -10.153 -10.153 3.08 

TF22 -10.403 -10.226 9.70 × 10-12 -10.403 -10.403 2.73 × 10-12 

TF23 -10.536 -10.536 1.37 -10.536 -10.536 -10.2 
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4.1.3. Analysis of convergence performance 

In this subsection, several simulation Figures of testing functions are given to analyse the 
convergence accuracy and convergence speed of two algorithms. Seen from these figures, it is easy to 
contrast the convergence performance of the two algorithms. The blue line is the convergence curve 
of MPA. The green line is the convergence curve of MTLMPA. Seen from Figures 2 to 7, we can find 
that the MTLMPA has better convergence accuracy and convergence speed than MPA. 

 

Figure 2. Convergence curves of two algorithms on TF1. 

 

Figure 3. Convergence curves of two algorithms on TF3. 
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Figure4. Convergence curves of two algorithms on TF5. 

 

Figure5. Convergence curves of two algorithms on TF7. 
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Figure6. Convergence curves of two algorithms on TF9. 

 

Figure7. Convergence curves of two algorithms on TF11. 

4.1.4. Test on CEC-2017 functions 

The CEC-2017 contains 29 benchmark functions for evaluating optimization problems. These 
functions can be divided into four categories: uni-modal function, multi-modal function, mixed 
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function and combined function. The uni-modal function and the multi-modal function would be much 
more complex in this section. The combined function and mixed function are considered in test. In the 
mixed function, the variable is randomly divided into several sub-components, and different basic 
functions are used for different sub-components. The composition function better integrates the 
properties of the sub-functions and maintains the continuity of the optimal solution. This section 
compared MPA with MTLMPA on CEC-2017. The specific results are listed in Table 5.  

Table 5. Test results of CEC-2017. 

Functions MTLMPA MPA 

Best Ave Std Best Ave Std 

F1 100.069 100.172 0.117 100.001 443.759 432.866 

F2 100.085 100.906 1.361 100.079 818.407 1177.726 

F3 100.039 100.395 0.506 100.013 2223.573 3067.584 

F4 100.059 109.633 29.517 100.003 1378.010 1949.167 

F5 100.025 100.196 0.196 100.002 265.194 467.395 

F6 100.042 100.779 1.787 100.007 921.372 1544.781 

F7 100.063 102.485 6.005 100.018 1289.083 2380.034 

F8 100.134 100.656 6.005 100.009 2304.526 2380.034 

F9 100.062 100.194 0.123 100.004 643.250 759.905 

F10 759.905 100.400 0.61 100.014 462.052 292.612 

F11 100.040 100.147 0.073 100.001 231.227 261.141 

F12 100.051 100.572 1.344 100.003 1051.582 1482.336 

F13 100.079 100.348 0.257 100.001 245.897 400.007 

F14 100.057 100.242 0.154 100.040 2505.454 3670.958 

F15 100.031 100.225 0.178 100.008 1680.989 1947.772 

F16 100.092 100.296 0.189 100.001 802.063 1461.193 

F17 100.029 100.318 0.325 100.001 1093.011 2531.992 

F18 100.073 108.614 25.923 100.001 679.102 721.708 

F19 100.082 100.718 1.235 100.002 161.700 101.933 

F20 100.042 100.250 0.250 100.220 382.136 617.024 

F21 100.069 100.875 1.234 100.220 1392.539 1832.370 

F22 100.061 100.209 0.122 100.003 1425.010 2170.169 

F23 100.085 101.481 3.997 100.002 509.307 656.829 

F24 100.023 100.622 1.101 100.001 662.150 1282.155 

F25 100.001 462.784 1146.423 100.045 925.512 1746.087 

F26 100.082 100.451 0.478 100.001 1567.273 1757.914 

F27 100.043 100.363 0.384 100.021 1255.151 1238.848 

F28 100.033 100.207 0.183 101.179 865.255 0.183 

F29 100.107 101.253 1.971 111.470 1771.598 3096.588 

As can be seen from the Table 5, the results of MPA and MTLMPA are similar in terms of optimal 
values. However, there are huge differences in mean and standard deviations. The MTLMPA has a 
strong stability. The MTLMPA converged to the optimal value each time with 500 iterations. The MPA 
did not converge to the optimum in the partial tests and the standard deviations are also large.  
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Figure 8. Convergence curves of MTLMPA and MPA on CEC2017 F1. 

 

Figure 9. Convergence curves of MTLMPA and MPA on CEC2017 F3. 
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Figure 10. Convergence curves of MTLMPA and MPA on CEC2017 F5. 

 

Figure 11. Convergence curves of MTLMPA and MPA on CEC2017 F2. 

The figures show that the convergence value of MTLMPA is significantly better than MPA. And 
there exist no convergence in some results of MPA. In conclusion, MTLMPA has strong stability and 
can accurately converge to the optimal values. Its application value is high compared with MPA.
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4.2. Performance comparison with other algorithms 

In order to further evaluate the performance of MTLMPA, 23 benchmark testing functions with different dimensions (including 10, 50, 100 
dimensions) are used. Moreover, several state-of-the-art optimization algorithms are applied and considered as comparison algorithm, including 
PSO, GWO, SCA, WOA, CS, KH, MPA and TLBO etc. For the fairness of the comparison, the number of population individual is set as 40 for 
every algorithm, the maximum iteration number is set as 500, each algorithm is independently simulated 30 times. The unique parameters of every 
algorithm are set based on their requirements.  

Table 6. Mean of function fitness value on TF1–TF13 with 10 dimensions.  

Functions  PSO CS GWO KH SCA WOA TLBO MPA MTLMPA 

TF1 4.92 × 10-23 1.25 × 10-4 1.95 × 10-64 0 3.09 × 10-14 3.50 × 10-83 1.16 × 10-108 6.81 × 10-30 2.13 × 10-102 

TF2 1.17 × 10-12 0.0118 9.89 × 10-37 7.43 × 10-172 4.27 × 10-10 8.57 × 10-56 2.60 × 10-58 5.87 × 10-17 4.94 × 10-55 

TF3 2.73 × 10-7 0.177 0.115 0 0.005 1.39 × 102 2.90 × 10-55 1.72 × 10-14 1.89 × 10-65 

TF4 5.48 × 10-6 0.136 8.10 × 10-21 6.36 × 10-170 4.09 × 10-4 1.932 5.62 × 10-45 1.50 × 10-12 3.13 × 10-47 

TF5 5.895 5.886 6.531 8.587 7.292 6.721 8.516 1.4805 1.295 

TF6 3.14 × 10-23 1.49 × 10-4 0.008 0.999 0.419 3.08 × 10-4 0.594 1.16 × 10-12 7.76 × 10-8 

TF7 0.007 0.002 4.75 × 10-4 1.21 × 10-4 0.002 0.002 0.002 6.14 × 10-4 1.76 × 10-4 

TF8 -2.38 × 103 -2.85 × 1023 -2.76 × 103 -1.45 × 103 -2.23 × 103 -3.53 × 103 -2.79 × 103 -3.68 × 103 -3.69 × 103 

TF9 4.562 3.7427 0.650 0 0.640 1.252 0.961 9.19 × 10-14 0 

TF10 3.86 × 10-12 0.068 6.81 × 10-15 1.70 × 10-15 2.67 × 10-6 4.20 × 10-15 5.27 × 10-15 4.91 × 10-15 8.88 × 10-16 

TF11 0.191 0.245 0.037 0 0.107 0.064 0.018 3.30 × 10-4 0 

TF12 5.21 × 10-24 0.003 0.003 0.450 0.081 0.007 0.101 6.14 × 10-13 1.87 × 10-8 

TF13 3.12 × 10-23 3.98 × 10-4 0.016 0.833 0.271 0.021 0.324 2.73 × 10-12 3.24 × 10-6 
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Table 7. Std of function fitness value on TF1–TF13 with 10 dimensions.  

Functions  PSO CS GWO KH SCA WOA TLBO MPA MTLMPA 

TF1 2.09 × 10-22 1.08 × 10-4 5.35 × 10-64 0 1.06 × 10-13 1.91 × 10-82 6.25 × 10-108 1.68 × 10-29 1.07 × 10-10 

TF2 2.31 × 10-12 0.006 2.22 × 10-36 0 6.42 × 10-10 4.34 × 10-55 4.99 × 10-58 7.07 × 10-17 1.18 × 10-54 

TF3 2.64 × 10-7 0.115 3.35 × 10-28 0 0.017 2.36 × 102 1.47 × 10-54 3.40 × 10-14 7.00 × 10-65 

TF4 8.27 × 10-6 0.044 1.06 × 10-20 0 0.001 4.398 1.88 × 10-44 1.92 × 10-12 1.66 × 10-46 

TF5 5.372 3.302 0.541 0.026 0.401 0.318 0.375 0.417 0.526 

TF6 7.64 × 10-23 8.35 × 10-5 0.046 0.263 0.143 2.71 × 10-4 0.37025 7.78 × 10-13 1.28 × 10-7 

TF7 0.003 0.00174 3.53 × 10-4 9.73 × 10-5 0.002 0.002 0.002 3.32 × 10-4 1.30 × 10-14 

TF8 4.44 × 102 1.20 × 10-24 3.30 × 102 2.48 × 102 1.77 × 102 5.53 × 102 2.18 × 102 1.55 × 102 2.11 × 102 

TF9 2.391 3.342 1.785 0 3.501 6.859 3.389 5.03 × 10-13 0 

TF10 3.21 × 10-12 0.037 1.70 × 10-15 0 1.18 × 10-5 2.79 × 10-15 1.53 × 10-15 1.23 × 10-15 0 

TF11 0.132 0.060 0.057 0 0.199 0.096 0.029 0.002 0 

TF12 1.18 × 10-23 0.004 0.007 0.330 0.024 0.013 0.134 7.36 × 10-13 2.90 × 10-8 

TF13 3.12 × 10-23 3.98 × 10-4 0.016 0.833 0.271 0.021 0.324 2.73 × 10-12 3.24 × 10-6 

As illustrated in Table 6, MTLMPA can still converge to an accurate value in the situation of low dimension. MTLMPA has a significantly 
higher accuracy than MPA. MTLMPA and KH algorithms continue to have significant benefits over other algorithms in TF1, TF2, TF3, TF4, TF7, 
TF9, TF11, TF13. In particular, MTLMPA performs well than KH in TF5, TF6, TF10, TF12. At the same time, the MTLMPA is stable. And the 
standard deviation of 30 cycles is small. It can be seen that MTLMPA converges faster than other algorithms in TF2, TF3, TF4, TF6, TF7, TF9, 
TF10, TF11, TF12. And the algorithm is stable. It can find the optimal solution to the maximum extent within its own allowable range.



 

Figure 12. Convergence curves on TF1, dim = 10. 

 

Figure 13. Convergence curves on TF2, dim = 10. 

 

Figure 14. Convergence curves on TF3, dim = 10. 
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Figure 15. Convergence curves on TF5, dim = 10. 

 

Figure 16. Convergence curves on TF6, dim = 10. 

 

Figure 17. Convergence curves on TF9, dim = 10. 
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Figure 18. Convergence curves on TF11, dim = 10. 

 

Figure 19. Convergence curves on TF12, dim = 10. 

 

Figure 20. Convergence curves on TF13, dim = 10.



Table 8. Mean of function fitness value on TF1–TF13 with 50 dimensions. 

Functions  PSO CS GWO KH SCA WOA TLBO MPA MTLMPA 

TF1 0.079 1.39 × 10-56 3.41 × 10-22 0.000 6.51 × 102 3.85 × 10-78 3.37 × 10-101 1.44 × 10-20 1.02 × 10-88 

TF2 0.818 6.45 × 10-5 1.45 × 10-13 6.03 × 10-170 0.566 6.62 × 10-51 2.52 × 10-57 3.98 × 10-12 6.33 × 10-47 

TF3 1.18 × 103 2.59 × 103 0.051 0.000 4.21 × 102 1.68 × 105 4.78 × 10-19 0.034 2.88 × 10-39 

TF4 3.064 2.435 1.02 × 10-4 1.24 × 10-18 65.602 67.693 9.45 × 10-34 3.62 × 10-8 7.36 × 10-39 

TF5 2.98 × 102 4.35 × 102 47.073 48.460 3.85 × 106 47.885 48.910 46.256 45.728 

TF6 0.071 35.000 2.218 10.656 6.70 × 102 0.672 10.337 0.239 1.428 

TF7 1.655 0.007 0.002 1.06 × 10-4 3.262 0.002 0.003 0.002 2.67 × 10-4 

TF8 -8.48 × 103 -1.34 × 1021 -9.25 × 103 -3.40 × 103 -5.00 × 103 -1.86 × 104 -4.18 × 103 -1.34 × 104 -1.19 × 104 

TF9 1.48 × 102 35.353 4.529 0.000 1.07 × 102 0.000 0.000 0.000 0.000 

TF10 1.346 2.600 3.10 × 10-12 8.88 × 10-16 15.235 4.91 × 10-15 8.88 × 10-16 1.63 × 10-11 8.88 × 10-16 

TF11 0.008 1.290 0.004 0.000 6.542 0.000 0.000 0.000 0.000 

TF12 0.058 0.367 0.087 1.019 1.33 × 107 0.020 4.71 × 10-31 0.007 0.026 

TF13 0.081 2.825 1.794 4.944 2.19 × 107 0.758 1.35 × 10-32 0.324 1.075 

As can be observed from the Table 8, MTLMPA performs the best performance on functions TF3, TF5, TF9, TF10, TF11, TF14, TF15, TF16, 
TF17, TF18, TF19 and TF20. Although others functions are not optimal, it is not an order of magnitude away from optimal accuracy. In general, 
MTLMPA is an algorithm that can accurately converge to the optimal value. 

At the same time, all the standard deviations of each algorithm are compared in Table 9. MPA has strong stability. MTLMPA also has excellent 
performance in standard deviation. It surpassed most of the algorithms on TF2, TF3, TF4, TF7, TF9, TF10, TF11, TF13. To better illustrate each 
algorithm’s convergence performance, the simulating curves are produced as illustrated in the image below. Seen from these figures, the 
convergence speed and convergence accuracy are better than other algorithms on most functions.



Table 9. Std of function fitness value on TF1–TF13 with 50 dimensions. 

Function  PSO CS GWO KH SCA WOA TLBO MPA MTLMPA 
TF1 0.097 1.10 × 10-38 3.04 × 10-22 0.000 6.09 × 102 1.71 × 10-77 1.16 × 10-100 1.44 × 10-20 4.81 × 10-8 
TF2 0.460 1.99 × 10-2 7.64 × 10-14 0.000 0.630 3.51 × 10-50 1.07 × 10-56 4.25 × 10-12 1.10 × 10-46 
TF3 3.02 × 102 0.000 0.140 0.000 1.14 × 104 3.61 × 104 1.48 × 10-18 0.042 8.73 × 10-39 
TF4 0.380 2.282 9.20 × 10-5 0.000 7.882 23.616 2.26 × 10-33 2.01 × 10-8 1.91 × 10-38 
TF5 2.14 × 102 6.43 × 102 0.659 0.013 4.20 × 106 0.392 0.035 0.522 8.627 
TF6 0.074 32.410 0.642 0.530 7.66 × 102 0.344 0.674 0.133 0.426 
TF7 1.148 0.011 8.97 × 10-4 1.05 × 10-4 5.016 0.002 0.002 8.61 × 10-4 1.41 × 10-4 
TF8 2.33 × 103 4.09 × 1021 1.43 × 103 6.33 × 102 3.36 × 102 2.74 × 103 6.32 × 102 7.81 × 102 7.23 × 102 
TF9 22.100 25.959 4.107 0.000 68.200 0.000 0.000 0.000 0.000 
TF10 0.517 0.956 1.56 × 10-12 0.000 7.642 2.42 × 10-15 0.000 8.53 × 10-12 0.000 
TF11 0.012 0.507 0.010 0.000 7.894 0.000 0.000 0.000 0.000 
TF12 0.131 0.446 0.062 0.115 1.71 × 107 0.012 8.91 × 10-47 0.004 0.012 
TF13 0.049 2.839 0.296 2.01 × 10-4 3.41 × 107 0.313 5.57 × 10-48 0.126 1.781 

 

Figure 21. Convergence curves on TF1, dim = 50. 
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Figure 22. Convergence curves on TF2, dim = 50. 

 

Figure 23. Convergence curves on TF3, dim = 50. 

 

Figure 24. Convergence curves on TF4, dim = 50. 
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Figure 25. Convergence curves on TF6, dim = 50. 

 

Figure 26. Convergence curves on TF9, dim = 50. 

 

Figure 27. Convergence curves on TF10, dim = 50. 
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Figure 28. Convergence curves on TF11, dim = 50. 

 

Figure 29. Convergence curves on TF13, dim = 50. 

The following Tables 10 and 11 summarize the mean and standard deviation of all the algorithms 
for 100 dimensions functions. As can be seen from the two tables, MTLMPA algorithm still performs 
well on TF1, TF2, TF3, TF4, TF7, TF9, TF10, TF11, TF13. And the MTLMPA algorithm is stable and 
performs well on TF1, TF2, TF3, TF4, TF7, TF9, TF10, TF11, TF12.
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Table 10. Mean of function fitness value on TF1–TF13 with 100 dimensions. 

Functions  PSO CS GWO KH SCA WOA TLBO MPA MTLMPA 
TF1 14.783 1.48 × 102 5.45 × 10-14 0.000 9.37 × 103 2.04 × 10-78 6.37 × 10-97 8.38 × 10-19 2.35 × 10-85 
TF2 28.100 8.153 5.84 × 10-9 7.55 × 10-164 10.500 6.80 × 10-51 2.48 × 10-58 3.26 × 10-11 1.22 × 10-44 
TF3 1.43 × 104 1.89 × 104 2.32 × 102 0.000 2.39 × 105 9.13 × 105 1.70 × 10-9 10.900 10.900 
TF4 10.413 2.137 0.406 1.84 × 10-166 88.896 78.251 5.32 × 10-32 3.00 × 10-7 5.39 × 10-37 
TF5 1.08 × 104 2.18 × 103 97.771 98.153 9.96 × 107 97.973 98.914 97.188 87.013 
TF6 14.729 87.806 8.906 23.426 9.42 × 103 2.698 22.635 4.680 4.009 
TF7 1.51 × 103 2.86 × 102 5.75 × 10-3 1.09 × 10-4 1.08 × 102 2.78 × 10-3 4.13 × 10-3 1.51 × 10-3 2.59 × 10--4 
TF8 -1.18 × 104 -4.72 × 1019 -1.55 × 104 -4.71 × 103 -6.98 × 103 -3.64 × 104 -9.33 × 103 -2.38 × 104 -1.85 × 104 
TF9 5.61 × 102 61.785 7.482 0.000 2.58 × 102 0.000 0.000 0.000 0.000 
TF10 3.441 2.569 2.65 × 10-8 8.88 × 10-16 19.633 4.80 × 10-15 6.22 × 10-15 8.67 × 10-11 8.88 × 10-16 
TF11 0.271 2.450 0.007 0.000 1.04 × 102 0.000 3.10 × 10-9 0.000 0.000 
TF12 0.030 0.491 0.223 1.128 2.679 × 108 0.029 0.930 0.056 0.057 
TF13 43.576 6.913 6.437 9.908 5.34 × 108 2.104 9.943 7.054 0.675 

Table 11. Std of function fitness value on TF1–TF13 with 100 dimensions. 

Functions  PSO CS GWO KH SCA WOA TLBO MPA MTLMPA 

TF1 5.083 1.61 × 102 4.10 × 10-14 0.000 5.96 × 103 8.37 × 10-78 2.83 × 10-96 6.71 × 10-19 1.02 × 10-84 
TF2 5.770 4.506 1.98 × 10-9 0.000 9.680 3.22 × 10-50 7.85 × 10-58 2.83 × 10-11 2.54 × 10-44 
TF3 3.10 × 103 1.76 × 104 2.78 × 102 0.000 5.55 × 104 2.52 × 105 3.12 × 10-10 15.400 1.83 × 10-33 
TF4 1.364 1.982 0.676 0.000 2.928 19.362 1.73 × 10-31 1.56 × 10-7 1.51 × 10-36 
TF5 4.21 × 103 2.80 × 103 0.660 0.014 5.26 × 107 0.305 0.040 0.633 28.601 
TF6 4.654 83.186 0.863 0.400 6.69 × 103 0.660 0.769 1.069 1.536 
TF7 2.70 × 102 5.33 × 102 2.61 × 102 8.59 × 10-5 66.000 3.01 × 10-3 1.95 × 10-3 6.82 × 10-4 1.47 × 10-4 
TF8 3.52 × 103 1.04 × 1020 2.72 × 103 8.43 × 102 4.87 × 102 5.62 × 103 7.91 × 102 1.13 × 102 1.52 × 103 
TF9 92.517 57.271 6.498 0.000 1.16 × 102 0.000 0.000 0.000 0.000 
TF10 0.337 1.290 1.28 × 10-8 0.000 3.343 2.53 × 10-15 1.81 × 10-15 3.79 × 10-11 0.000 
TF11 0.075 1.442 0.011 0.000 67.897 0.000 1.70 × 10-8 0.000 0.000 
TF12 1.606 0.690 0.050 0.073 1.11 × 108 0.016 0.094 0.013 0.030 
TF13 18.505 9.169 0.468 0.002 2.27 × 108 0.697 0.127 2.516 2.497 

In order to clearly observe the convergence performance of MTLMPA, Figures 30–38 are given. The horizontal axis is the iteration number. 
And the vertical axis represents the fitness values of testing functions for all optimization algorithms. The green line presents the performance of 
MTLMPA. Seen from these figures, the convergence speed and convergence accuracy are better than other algorithms on most functions.



 

Figure 30. Convergence curves on TF1, dim = 100. 

 

Figure 31. Convergence curves on TF2, dim = 100. 

 

Figure 32. Convergence curves on TF3, dim = 100. 
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Figure 33. Convergence curves on TF4, dim = 100. 

 

Figure 34. Convergence curves on TF5, dim = 100. 

 

Figure 35. Convergence curves on TF9, dim = 100. 
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Figure 36. Convergence curves on TF11, dim = 100. 

 

Figure 37. Convergence curves on TF12, dim = 100. 

 

Figure 38. Convergence curves on TF13, dim = 100. 
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5. Conclusions 

To improve the convergence performance and balance the exploitation and exploration ability of 
MPA, a kind of modified marine predators algorithm hybridized with teaching-learning mechanism 
(MTLMPA) is proposed. Compared with the conventional MPA, two different population group 
mechanisms are separately introduced in the first phase and third phase of MTLMPA to update the 
individuals’ position. The new population individual mechanisms can improve the solution quality and 
balance the exploration and exploitation. To verify the performance of MTLMPA, 23 benchmark 
testing functions and 29 CEC-2017 functions are used. Experimental results show that the proposed 
MTLMPA has better convergence performance and stronger stability than other state-of-the-art 
heuristic optimization algorithms on most functions. 

In the future, we will focus on the following tasks: 
Based on the MTLMPA, a novel multi-objective MTLMPA will be designed to solve multi-

objective optimization problems. The MTLMPA will be further improved to address dynamic 
constrained optimization problems.  
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