
MBE, 19(9): 9258–9290.

DOI: 10.3934/mbe.2022430

Received: 26 February 2022

Revised: 24 May 2022

Accepted: 12 June 2022

Published: 23 June 2022

http://www.aimspress.com/journal/MBE

Research article

An approach to solving optimal control problems of nonlinear

systems by introducing detail-reward mechanism in deep

reinforcement learning

Shixuan Yao1, Xiaochen Liu2,*, Yinghui Zhang2, Ze Cui3

1 School of Software Engineering, Dalian University of Foreign Languages, Dalian 116044, China
2 School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, China
3 School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China

* Correspondence: Email:lxc_jason@163.com.

Abstract: In recent years, dynamic programming and reinforcement learning theory have been
widely used to solve the nonlinear control system (NCS). Among them, many achievements have
been made in the construction of network model and system stability analysis, but there is little
research on establishing control strategy based on the detailed requirements of control process.
Spurred by this trend, this paper proposes a detail-reward mechanism (DRM) by constructing the
reward function composed of the individual detail evaluation functions in order to replace the utility
function in the Hamilton-Jacobi-Bellman (HJB) equation. And this method is introduced into a wider
range of deep reinforcement learning algorithms to solve optimization problems in NCS. After the
mathematical description of the relevant characteristics of NCS, the stability of iterative control law
is proved by Lyapunov function. With the inverted pendulum system as the experiment object, the
dynamic environment is designed and the reward function is established by using the DRM. Finally,
three deep reinforcement learning algorithm models are designed in the dynamic environment, which
are based on Deep Q-Networks, policy gradient and actor-critic. The effects of different reward
functions on the experimental accuracy are compared. The experimental results show that in NCS,
using the DRM to replace the utility function in the HJB equation is more in line with the detailed
requirements of the designer for the whole control process. By observing the characteristics of the
system, designing the reward function and selecting the appropriate deep reinforcement learning
algorithm model, the optimization problem of NCS can be solved.

9259

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

Keywords: Hamilton-Jacobi-Bellman (HJB); nonlinear control system (NCS); detail-reward
mechanism (DRM); reinforcement learning; Lyapunov function

1. Introduction

In the last two decades, the research and application of nonlinear systems have made
considerable progress. Combined with the Lyapunov stability theory, there have been many research
results in the control theory of nonlinear systems. Wu et al. [1] designed an adaptive quantitative
control method for analyzing uncertain nonlinear strictly feedback systems by combining the
backstepping technique and Lyapunov stability theory. Shatyrko et al. [2] studied the stabilization of
Lur’e-type nonlinear indirect control systems with time-delay argument, and obtained the sufficient
conditions for the absolute stability of the system by the Lyapunov method. Kai et al. [3] discussed a
control method that can generate the desired limit-cycle-like behavior for a two-dimensional
discrete-time nonlinear control system. Wei [4] discussed the boundedness of nonlinear nabla
fractional-order systems, and by using the nabla Laplace transform, derived two stability criteria in
the form of Lyapunov’s theorem. Pole et al. [5] described progressively globally asymptotically
stable nonlinear control systems through symbolic models, which enables one to utilize techniques
from supervisory control and algorithms from game theory for controller synthesis purposes.

At the same time, the development of optimization theory of dynamic systems and the research
and application of nonlinear control systems have opened up huge application space. Zhang et al. [6]
introduced the control research of adaptive dynamic programming (ADP) in synchronous generator
and generator excitation of multi-machine power system. Volckaert et al. [7] use iterative learning
control (ILC) to solve the control problem of the cart-cable system with nonlinear characteristics.
Gao et al. [8] used a global adaptive dynamic programming(GADP) method for cooperative adaptive
cruise control (CACC) of connected vehicles with unknown nonlinear dynamics. Trélat. [9]
conducted research on some common methods used to solve nonlinear optimal control problems in
aerospace, such as Pontryagin’s maximum principle and conjugate point theory.

At present, many scholars combine nonlinear system and optimal control theory to carry out
research on optimal control of nonlinear system. The main methods to solve the optimal control problem
are classical variational method, maximum value principle and dynamic programming [10–12]. One of
the main difficulties of these classical optimal control theories is to determine the optimal control of
a nonlinear system, so it is necessary to solve the Hamilton-Jacobi-Bellman (HJB) partial differential
equations (PDEs) [13]. Due to the complexity of the nonlinear system and the various constraints
of the real systems, nonlinear HJB equations and nonlinear two-point boundary value problems
cannot be solved analytically. Therefore, it is of great significance to study some numerical
solution methods or explicit optimal solutions approximate to the optimal solution to solve the
optimal control problem.

With the development of various technologies in the field of artificial intelligence, many methods
of combining artificial intelligence algorithms to solve nonlinear system problems emerge [14,15].
Another powerful methodology for solving optimal control problems is the Adaptive Dynamic
Programming (ADP) algorithm, which was proposed by Werbos in 1991 [16]. Combining the
reinforcement learning and the dynamic programming, ADP simulates the human learning through
environmental feedback and is considered to be a method very close to the intelligence of the human

9260

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

brain. This method effectively solves the problem of “curse of dimensionality” in dynamic
programming [17]. In 1997, Prokhorov and Wunsch discussed the design of Heuristic Dynamic
Programming (HDP), Dual Heuristic Programming (DHP) and Global Dual Heuristic Dynamic
Programming (GDHP), and proposed the implementation method and training steps of ADP [18].
The essence of ADP is to use the function approximation structure to approximate the performance
index function, control strategy in the dynamic programming equation, and obtain the optimal
control and optimal performance index function under the condition of meeting the Behrman
optimality principle [19–21]. In the ADP structure, there are generally three parts, namely the
dynamic system, the critic performance index function and the control action. Each part can be
replaced by a neural network [22]. The mathematical derivation process of ADP method is based on
minimizing the performance index function or cost function in the infinite horizon, and the
performance index function is the integration or summation of the utility function. In [23], combined
with Bellman's optimization principle, the method of introducing discount factor into cost function
was used to solve the optimal control problem. This method is closer to the role of discount rate in
reinforcement learning, therefore, the model can better refer to the value return in the future during
the process of training [24].

The research of the above literature is mainly aimed at the design and optimization of the
network structure in ADP, and proposing ADP algorithms with different structures. In recent years,
many scholars have done a lot of research on the stability analysis and algorithm convergence of the
closed-loop system composed of the ADP iterative algorithm. Mu et al. [25] proposed an
approximate optimal control strategy, obtained the approximate optimal tracking control law of
uncertain nonlinear systems with predefined cost function by using ADP, and solved the tracking
control problem of continuous-time nonlinear systems with unmatched uncertainty. Dong et al. [26]
proposed a critic-only ADP algorithm to approximate the solution of the HJB equation and the
corresponding optimal control strategy. This strategy solves the tracking control problem described
by Euler-Lagrange equations with uncertain system parameters, furthermore, uniformly ultimately
bounded stability is guaranteed via a Lyapunov-based stability analysis. Song et al. [27] proposed a
value iteration (VI) algorithm based on ADP to solve the fixed-point tracking control problem, gave
the convergence proof of VI algorithm, and proved that the iterative cost function can converge to the
optimal value accurately. Liang et al. [28] constructed a partial-policy iterative adaptive dynamic
programming (ADP) algorithm to solve the optimal control problem of nonlinear systems with
discounted total rewards. Compared with the traditional strategy iterative ADP algorithm, the
calculation amount in the iterative process is reduced, and the stability is improved. Fan et al. [29]
proposed a novel control strategy based on robust adaptive dynamic programming (RADP) for
optimal control of a class of output-constrained continuous-time unknown nonlinear systems. Yang et
al. [30] proposed a self-learning robust optimal control scheme based on adaptive dynamic
programming (ADP), using indicator functions and concurrent learning techniques to solve
mismatched perturbed input affine continuous-time nonlinear systems.

However, most ADP algorithms are either implemented offline by iterative methods or require
prior knowledge of system dynamics. These ADP algorithms are intractable for real-time control
applications since exact knowledge of nonlinear dynamic systems is often not available. Many
scholars use reinforcement learning methods to solve the above problems. Liu et al. [31] proposed a
robust adaptive control algorithm based on Reinforcement Learning (RL) to solve the control
problem of continuous-time uncertain nonlinear systems with input constraints. The algorithm uses a

9261

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

single evaluation network to obtain approximate optimal control, which ensures a certain stability of
the uncertain nonlinear continuous-time system. Liu et al. [32] constructed two kinds of neural
networks to achieve approximate optimal control for continuous-time nonlinear systems with
unknown structure and control constraints. Among them, the cyclic neural network (RNN) is used to
identify the system model of the system, and two feedforward neural networks (Feedforward NN) are
used as the execution network and the evaluation network, respectively, for the approximation of the
optimal control strategy and the optimal performance index function. Zhao et al. [33] proposed a
RL-based cyclic fixed finite-time algorithm to solve the HJB equation concerning the optimal control
of continuous nonlinear finite-time systems with uncertain system structure. Zhao et al. [34]
proposed a new reinforcement learning strategy consisting of two parts: an online learning optimal
control of a nominal system and a feedforward neural network (NN) compensation that handles
uncertain input constraints. This strategy solves the optimal stability problem of unknown nonlinear
systems constrained by uncertain inputs. Wang et al. [35] studied the approximate optimal control of
continuous-time non-affine nonlinear systems using reinforcement learning, and used effective
precompensation techniques for proper system transitions. Combined with the overall strategy
iteration to alleviate the needs of system dynamics. J. W. Kim et al. [36] proposed a model-based RL
approach that uses deep neural networks (DNNs) to iteratively learn the solutions of HJB and its
associated equations, which can significantly improve the performance of learning policies in
uncertain initial states and in the presence of state noise.

The algorithm based on dynamic programming and iterative strategy starts with the
performance index function in the state space of the control system, explores the control effect of the
control sequence, and obtains the optimal control law [37–40]. The above literature has achieved
great results in the design of network structure and the convergence proof of policy algorithm. In the
study of optimal control of nonlinear systems, more attention is paid to the control details of dynamic
programming algorithms. Its purpose is to expect that the changes in the state space during the whole
control process can meet the detailed requirements of the control system, and finally achieve the
control goal. This requires that the utility function in the performance indicator function must be
able to express the specific needs of users. Most of the above literatures use quadratic forms when
defining utility functions, and they do not have a good description of the relationship between
utility functions and system states. In addition, there are great limitations on the setting of
parameters in utility functions. As for how to design a utility function that is closely related to the
actual control objective in nonlinear systems, there are few literature, and this is also the research
direction of this paper.

This paper proposes detailed regulation of DRM based on the control process. By designing the
evaluation function of the control target, multiple evaluation functions are combined into a reward
function to replace the utility function in the performance index function, and then the reward
function is introduced into the deep reinforcement learning algorithms. We use three algorithms to
verify the effectiveness of DRM, which are based on Deep Q-Networks, policy gradient and
actor-critic frameworks respectively.

The remainder of this paper is organized as follows. Section 2 describes nonlinear system
properties and introduces the limitations of utility functions in iterative algorithms. In Section 3, an
alternative approach to the utility function is proposed combining Lyapunov stability and Q-learning.
Taking the inverted pendulum system as the experiment object, Section 4 establishes the dynamic
environment, constructs the reward function mechanism of the inverted pendulum system, analyzes

9262

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

the deep reinforcement learning algorithm model and designs experiments to verify the effectiveness
of the algorithm. Finally, Section 5 concludes this work.

2. Problem statement

Consider a continuous-time nonlinear system given by:

ሻݐሶሺݔ ൌ ݂ሾݔሺݐሻ, ,ሻݐሺݑ ሿ, (1)ݐ

where ݔሺݐሻ ∈ Թ௡ is the system state vector, ݑሺݐሻ ∈ Ω ⊂ Թ௠ is the control input vector, and ݂ሺ∙ሻ
is a continuously differentiable vector function. The boundary conditions are that the initial
condition ݔሺݐ଴ሻ ൌ ଴ݔ is fixed and the end condition ݔሺݐ௙ሻ is free. The performance index
function is defined as:

,ሻݐሺݔሺܬ ሻݐ ൌ ߮ሺݔሺݐ௙ሻ, ௙ሻݐ ൅ ׬ ,ሺ߬ሻݔሺܮ ,ሺ߬ሻݑ ߬ሻ݀߬,
௧೑
௧ (2)

where the control vector ݑሺݐሻ is unconstrained and continuous. In the interval ሾݐ, ௙ሿ, the scalarݐ
functions ߮ሺ∙ሻ and ܮሺ∙ሻ are continuous and twice differentiable. Function ܬሺݔሺݐሻ, ሻ is continuousݐ
and has continuous first and second order partial derivatives with respect to ݔሺݐሻ and ݐ. In the
admissible control domain Ω, ݑሾt, tfሿ ∈ Ω, so the optimal performance index function is defined as:

,ሻݐሺݔሺ∗ܬ ሻݐ ൌ ݉݅݊
௨ൣ௧,௧೑൧∈Ω

ቄ߮ሺݔሺݐ௙ሻ, ௙ሻݐ ൅ ׬ ,ሺ߬ሻݔሺܮ ,ሺ߬ሻݑ ߬ሻ݀߬
௧೑
௧ ቅ. (3)

Then the continuous time HJB equation can be:

	
డ௃∗ሺ௫ሺ௧ሻ,௧ሻ

డ௧
ൌ െ ݉݅݊

௨ሺ௧ሻ∈Ω
൜ܮሺݔሺݐሻ, ,ሻݐሺݑ ሻݐ ൅ ቀడ௃

∗ሺ௫ሺ௧ሻ,௧ሻ

డ௫
ቁ
்
݂ሾݔሺݐሻ, ,ሻݐሺݑ 	.ሿൠݐ (4)

For optimal control law ݑ∗ሺtሻ, Eq (4) can be written as:

డ௃∗ሺ௫ሺ௧ሻ,௧ሻ

డ௧
ൌ െܮሺݔሺݐሻ, ,ሻݐሺ∗ݑ ሻݐ െ ቀడ௃

∗ሺ௫ሺ௧ሻ,௧ሻ

డ௫
ቁ
்
݂ሾݔሺݐሻ, ,ሻݐሺ∗ݑ ሿ. (5)ݐ

According to Euler’s discretization [41], the discrete NCS function of the control system can be
as follows:

௞ାଵݔ ൌ ,௞ݔሺܨ ௞ሻ. (6)ݑ

The nonlinear system is expressed by the function ܨሺݔ௞, ௞ݔ ௞ሻ, whereݑ ∈ Ω௫ ⊂ Թ௡ is the
system state vector, and ݑ௞ ∈ Ω௨ ⊂ Թ௠ is the control input vector. Ω௫ and Ω are defined as:

 ൜
Ω௫ ൌ ሼݔ௞	 	 ௞ݔ| ∈ Թ௡	 	 and	 ‖௞ݔ‖ ൏ ∞ሽ
	 Ω௨ ൌ ሼݑ௞	 ௞ݑ| ∈ Թ௠	 and	 ‖௞ݑ‖ ൏ ∞ሽ

, (7)

where ‖∙‖ denotes the Euclidean norm. Let ̱ݑ௞ ൌ ሺݑ௞, ,௞ାଵݑ . . . ሻ denote the control sequence from
݇ to ∞. Let ܷሺݔ௞, :௞ሻ be the utility function. The performance index function is defined asݑ

,௞ݔሺܬ ௞ሻݑ̱ ൌ ∑ ܷሺݔ௜, .௜ሻݑ
ஶ
௜ୀ௞ (8)

For a control sequence ̱ݑ௞, the optimal performance index function can be defined as:

9263

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

௞ሻݔሺ∗ܬ ≐ ݉݅݊
௨̱ೖ

൛ܬሺݔ௞，̱ݑ௞ሻൟ. (9)

So we have:

௞ሻݔሺ∗ܬ ൌ ݉݅݊
௨ೖ

ሼܷሺݔ௞, ௞ሻݑ ൅ ௞ାଵሻሽ. (10)ݔሺ∗ܬ

Then according to Bellman’s principle of optimality [42], the discrete time HJB equation can be:

௞ሻݔሺ∗ܬ ൌ ܷሺݔ௞, ௞ሻሻݔሺ∗ݑ ൅ ,௞ݔሺܨሺ∗ܬ 	.௞ሻሻሻݔሺ∗ݑ (11)

The optimal single control law ݑ∗ሺݔ௞ሻ can be expressed as:

௞ሻݔሺ∗ݑ ൌ 	݃ݎܽ min
௨ೖ

ሼܷሺݔ௞, ௞ሻሻݔሺݑ ൅ ,௞ݔሺܨሺ∗ܬ ௞ሻሻሻሽ. (12)ݔሺݑ

The above is the basic principle of using dynamic programming to solve the optimal control
of the two systems. The optimal control vector function and the optimal state trajectory can be
solved through the HJB equation, but the process is often very complicated or difficult to achieve.
In addition, when the discrete system is high-order, it is easy to cause the “curse of dimensionality”
problem. A common alternative method is ADP. The definition of the performance index function
in ADP is usually in the form of a quadratic performance index, similar to the following expression
as follows:

,ሻݐሺݔሺܬ ,ሻݐሺݑ ሻݐ ൌ
ଵ

ଶ
׬ ሾ்ݔሺݐሻܳሺݐሻݔሺݐሻ ൅ ሻሿݐሺݑሻݐሻܴሺݐሺ்ݑ
ஶ
௧ (13) ,ݐ݀

where ܳ is a ݈ ൈ ݈ -dimensional nonnegative definite matrix, and ܴ is a ݉ ൈ݉ -dimensional
positive definite matrix. The values of ݈ and ݉ depend on the dimensions of ݔሺݐሻ and ݑሺݐሻ
respectively. The utility function is generally expressed in the following form:

 ܷሺݔ௞, ௞ሻݑ ൌ ൫ݔ௞
௞ݔ்ܳ ൅ ௞ݑ

 ௞൯. (14)ݑ்ܴ

In most cases, ܳ and ܴ are set as identity matrix with suitable dimensions, but this is often
not very consistent with the real control system and control objectives. For example, in a specific
control system, the high-frequency control law may damage electronic components, and
high-frequency control should be avoided. The mechanical characteristics of some systems require
that the control law conforms to a functional flexible control as much as possible. Moreover, due to
the specific operation environment, the state space under the output of the control law is required to
satisfy the specific requirements. This requires that the utility function has a more flexible
nonlinear form. As far as we know, there is very little literature about how to assign appropriate
values to ܳ and ܴ in order that the utility function satisfies the real control system requirements.
In fact, it is difficult or even impossible to accurately determine the two matrices to match the real
control system.

3. Construction of detail-reward mechanism

In order to solve the above problems, we try to modify the utility function so that it can not only
satisfy the mathematical requirements of the best performance indicator, but also satisfy our

9264

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

requirements for the control process. Firstly, define a new function ܴሺݔ௞, ௞ሻ and use it as theݑ
mapping object of the utility function ܷሺݔ௞, ,ሻݐሺݔ௞ሻ. Then, for a known NCS ݂ሾݑ ,ሻݐሺݑ ሿ, theݐ
discrete method is used to establish the function ܨሺݔ௞, ௞ሻݑ , so as to establish the dynamic
environment. Using the dynamic environment, the output vector ݔ௞ାଵ under the input vectors ݔ௞
and ݑ௞ can be solved, and the ܴሺݔ௞, ,௞ݔ௞ሻ matching with ܷሺݑ .௞ሻ can be outputݑ

Thus, how to design the dynamic environment and how to design the output function
ܴሺݔ௞, ,௞ݔ௞ሻ corresponding to ܷሺݑ ௞ሻ has become one of the key problems to solve in theݑ
nonlinear control systems. For mathematical convenience, we make the following conventions and
constraints on ܴሺݔ௞, :௞ሻݑ

1) The discrete nonlinear control sequence can be defined as a finite Markov decision process
(MDP)ܯ ൌ ሺܵ, ,ܣ ܴሻ , where: ܵ ൌ ሼݔ଴, ,ଵݔ … , ,ேሽݔ ௜ݔ ∈ Ω௫, ܰ ൐ 1 is a finite set of states; ܣ ൌ
ሼݑ଴, ,ଵݑ … , ,ேሽݑ ௜ݑ ∈ Ω௨ is a set of control actions; ܴ is the reward distributions, and it can be
written as ܴ: ܵ ൈ ܣ ൈ ܵ ↦ Թ, with ܴሺݔ௞, ,௞ݑ ௞ାଵሻݔ ∈ ሾ0, ୫ୟ୶ሿ being the reward received uponݎ
taking ݑ௞ in state ݔ௞ transitioning to state ݔ௞ାଵ. The boundedness of the reward function of
ܴሺݔ௞, ,௞ݑ ௞ାଵሻ is to ensure that the performance index function composed of it is bounded. Theݔ
intuitive explanation of the reward function is: the higher the compliance of the control effect, the
closer the value is to ݎ௠௔௫, and the lower the compliance of the control effect, the closer the value
is to 0.

2) For a specific state space ߢ ∈ Թ௠, it is the subspace of state space ݔ, i.e., ߢ ⊂ and it is ,ݔ
composed of specific components of state space ݔ. In this state, there may be specific control
requirements or the designer's objective evaluation of the state. We regard ߢ as an observation
perspective of state space. Therefore, we define the evaluation function ݁఑ሺݔ௞, ௞ሻݑ ∈ ሾ0,1ሿ under
the perspective of ߢ. In this perspective, specific control can be done and the control effect ሺݔ௞, ௞ሻݑ
can be evaluated. As a component of the reward function, the evaluation function under a specific
observation perspective is often helpful to guide the follow-up control to better approach the control
goal. As shown in Figure 1, in a gradually stable MDP control trajectory, the control vector in state
	௞ isݔ 	௞, the reward value isݑ ௞ାଵ. If there is a betterݔ ௞ transitions to the next stateݔ ௞, andݎ
control vector ݑᇱ௞ under the observation perspective ߢ௞ a at this time step, the state is directly
transitioned to ݔ௞ା௜ , bypassing the middle ݅ െ 1 control processes, and the MDP trajectory
becomes ሺݔ௞, ,ᇱ௞ݑ .ᇱ௞ሻ. Therefore, such a control law is suitable for increasing the reward valueݎ
According to the different observation perspectives, the evaluation function ݁ሺݔ௞, ௞ሻ related to theݑ
state-control pair ሺݔ௞, ݅ ௞ሻ is formulated to evaluate the control validity. Whenݑ ൐ 0, ݁௜ሺ∙ሻ has a
value range of ሾ0,1ሿ and is continuously differentiable.

Figure 1. MDP control trajectory.

9265

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

3) ܴሺ∙ሻ can be defined as:

 ܴሺݔ௞, ௞ሻݑ ≐ ∏ ݁௜ሺݔ௞, ௞ሻݑ
௡ିଵ
௜ୀ଴ , ݊ ൐ 1 (15)

and

 ൜
݁଴ሺݔ௞, ௞ሻݑ ൌ 	,௠௔௫ݎ 	 	 ௞ݔ ∈ Ω௫	 ܽ݊݀	 ௫ݑ ∈ Ω௨
݁଴ሺݔ௞, ௞ሻݑ ൌ 0,				otherwise . (16)

Here ݎ௠௔௫ ൒ 1 means that the maximum value of the reward function is 1. When ݅ ൐ 0, ݁௜ሺ∙ሻ
should be continuous and twice differentiable in order to ensure that ܴሺ∙ሻ is also continuous and
twice differentiable if ܴሺ∙ሻ ൐ 0. The evaluation function sequence is ሺ݁଴ሺݔ௞, ,௞ሻݑ . . . , ݁௡ିଵሺݔ௞, .௞ሻሻݑ
Where ݊ is the number of evaluation functions, i.e., the effectiveness of control is divided into ݊
different observation perspectives for evaluation.

A dynamic environment is constructed by the above formula, as shown in Figure 2. The input
parameters are state-control pair ሺݔ௞, ௞ାଵ andݔ ௞ሻ, and the output parameters are the next stateݑ
ܴሺݔ௞, ௞ሻ of the system. If ܴሺ∙ሻ is regarded as the reward value of the dynamic environment, theݑ
transformation from the utility function of the NCS to the reward is completed, i.e., the utility
function is substituted by the reward value. The description effect may be that the smaller the value
of the utility function, the greater the reward value, but the value range of the reward is the interval
from 0 to r୫ୟ୶.

Figure 2. Dynamic environment.

In order to satisfy the Eqs (8)–(11), we can express the relationship between ܷሺݔ௞, ௞ሻ andݑ
ܴሺݔ௞, :௞ሻ with the following equationݑ

	 ܷሺݔ௞, ௞ሻݑ ൌ ݁଴ሺݔ௞, ௞ሻݑ െ ܴሺݔ௞, 	.௞ሻݑ (17)

It is worth mentioning that the ݊ evaluation functions and their respective observation
perspectives should be designed consistent with the control objectives. The design of observation
perspectives can mainly focus on two points: the first is to monitor the effect of the control law in a
specific state during the control process, the second is that this design is conducive to the system to
achieve an optimal control effect. The observation perspective of the evaluation function should not

9266

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

be repeated, and there should be no conflict in control methods between the evaluation functions,
which means that the high score of the control law under one observation perspective is easier to
guide the control law to obtain high scores under other observation perspectives. However, the high
score of the control law under a certain observation perspective may not immediately lead to high
scores under other observation perspectives, but this will cause the control law in the current state to
get high scores with great probability under more observation perspectives in the next time steps.

According to the definition of expected discounted return in reinforcement learning theory, let
ܴ௞ ൌ ܴሺݔ௞, :௞ሻ and bring it into the following equationݑ

௧ܩ ≐ ∑ ,௞ି௧ିଵܴ௞ߛ
்
௞ୀ௧ାଵ (18)

where ߛ is the discount rate, 0 ൑ ߛ ൑ 1, ܴ௞ is the reward of step ݇, ܴ௞ ∈ Ը ⊂ Թ, Ը is reward
sets, and ܶ is a final time step.

The advantages of using reward function ܴሺݔ௞, ,௞ݔ௞ሻ instead of utility function ܷሺݑ ௞ሻ areݑ
as follows:

1) The reward function reflects the feasible control objectives from various observation
perspectives. It may be a nonlinear function instead of the linear expression of the utility function,
which can better satisfy the detailed control objectives.

2) The reward function ܴሺݔ௞, ௞ሻ is composed of several evaluation functions from theirݑ
respective observation perspectives. Each evaluation function ݁ሺݔ௞, ௞ሻ is specific, simple and easyݑ
to calculate, which avoids the problem that it is difficult to specify the weight matrix ܳ and ܴ in
the utility function of ܷሺݔ௞, .௞ሻݑ

3) For a specific real control platform, the reward function is easier to realize. According to the
requirements of control objectives and control details, it is easier to adjust each evaluation function,
and the adjustment of one evaluation function will not affect other evaluation functions.

4) After adding the reward function in the dynamic environment, we can try to use more skillful
reinforcement learning algorithms to solve the nonlinear control problem.

In Eq (15), the reward function takes the form of successive multiplications instead of
successive additions or others. The advantages of doing this are as following:

1) If the reward function takes the continuous addition form of the evaluation functions, when
changing one of the evaluation functions, the weight of each evaluation function must also be
considered, which will make the problem very complex, and its rationality needs to be carefully
verified in the experiment. In the form of continuous multiplication, if one of the evaluation
functions is changed, it only changes the calculation method and the possible gain of the function,
and there is no need to change the weights of other evaluation functions. In fact, the output value of
each function can be understood as its own weight.

2) Any evaluation function can play the role of “one vote veto” by using continuous
multiplication. For example, in the experiment of controlling the robot to walk, no matter how high
the score given by the evaluation function that responsible for evaluating the robot's posture, as long
as it touches the boundary, it should be given a zero score. According to Eq (15), when the evaluation
function responsible for boundary detection gives a zero score, the score of the reward function is
zero. But the continuous addition form of the evaluation functions will not bring such an effect.

In order to comply with Eqs (3)–(5) and (11), we try to modify Eq (8) as:

9267

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

 ,௞ݔሺܬ ௞ሻݑ̱ ൌ ∑ ܷሺݔ௜, ௜ሻݑ
∞
௜ୀ௞

 	 ൌ ∑ ൫݁଴ሺݔ௜, ௜ሻݑ െ ܴሺݔ௜, ௜ሻ൯ݑ
∞
௜ୀ௞

 ൌ ∑ ሺݎ௠௔௫ െ ܴሺݔ௜, .௜ሻሻݑ
ஶ
௜ୀ௞ (19)

Let

 	 ,௞ݔሺߖ ௞ሻݑ̱ ൌ ∑ ܴሺݔ௜, ௜ሻݑ
ஶ
௜ୀ௞ , (20)

and we have:

,௞ݔሺܬ ௞ሻݑ̱ ൌ ∑ ௠௔௫ݎ െ ,௞ݔሺߖ .௞ሻݑ̱
ஶ
௜ୀ௞ (21)

Therefore, as long as ̱ݑ௞ conforms to the system under (6), it satisfies the optimality equation:

௞ሻݔሺ∗ߖ ൌ max
௨̱ೖ

൛ߖሺݔ௞，̱ݑ௞ሻൟ. (22)

Hence ߖ∗ሺݔ௞ሻ can be obtained as:

௞ሻݔሺ∗ߖ ൌ max
௨ೖ

ሼܴሺݔ௞, ௞ሻݑ ൅ ௞ାଵሻሽ. (23)ݔሺ∗ߖ

So the optimal performance index function has another form:

௞ሻݔሺ∗ܬ ൌ min
௨̱ೖ

൛ܬሺݔ௞，̱ݑ௞ሻൟ

 ൌ ∑ ௠௔௫ݎ െ ௞ሻݔሺ∗ߖ
ஶ
௜ୀ௞ . (24)

Recalling Eq (10), we get:

௞ሻݔሺ∗ܬ ൌ min
௨ೖ

ሼܷሺݔ௞, ௞ሻݑ ൅ ௞ାଵሻሽݔሺ∗ܬ

 ൌ ݔܽ݉ݎ െ ܴሺݔ௞, ௞ሻሻݔሺ∗ݑ ൅ ,௞ݔሺܨሺ∗ܬ ௞ሻሻሻ, (25)ݔሺ∗ݑ

and the optimal single control law is:

௞ሻݔሺ∗ݑ ൌ arg	 max
௨ೖ

 ሻ. (26)݇ݔሺ∗ߖ

Comparing Eqs (26) and (14), the problem of solving the optimal performance index function is
transformed into the problem of maximizing the return function. Further, combined with Eq (18), we
can try to use a wider range of reinforcement learning algorithms to solve the optimization problem
of nonlinear systems.

For the convenience of analysis, the stability proof is made on the basis of the following
assumptions 1 and 2.

Assumption 1: The discrete NCS represented by Eq (6) is controllable, and the system state
௞ݔ ൌ 0 is an equilibrium state of the discrete NCS under the condition of ݑ௞ ൌ 0, i.e., ܨሺ0,0ሻ ൌ 0.

Assumption 2: The feedback control ݑ௞ ൌ ௞ሻݔሺݑ satisfies ݑ௞ ൌ ௞ሻݔሺݑ ൌ 0 for ݔ௞ ൌ 0 ,
௜ݔ∀ ∈ Ω௜ ⊂ Թ௡, ݑሺݔ௞ሻ is continuous and ݑሺݔ௞ሻ stabilizes the discrete NCS on Ω௜, ܬሺݔ௜ሻ is finite.

Assumption 1 ensures that the object we use the deep reinforcement learning method to solve is

9268

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

a controllable NCS, and determines that the equilibrium point of the system is ݔ௞ ൌ 0, and the
output of the system function ܨሺ∙ሻ is 0. Assumption 2 ensures that the control law is admissible and
the output is 0 at the equilibrium point, so as to meet the requirements of a controllable NCS. In the
process of control sequence, the performance index function ܬሺݔ௜ሻ is a bounded function. In this
way, we have made restrictive assumptions about the system object and control law.

According to the definition of ݁ሺݔ௞, ,௞ݔ௞ሻ, ݁ሺݑ ௞ሻݑ ൒ 0, then ܴሺݔ௞, ௞ሻ is a positive definiteݑ
function for any ݔ௞ and ݑ௞. Let ܽ଴ሺݔ௞ሻ be an arbitrary admissible control law. According to
Q-learning [43], for ݅ ൌ 0, let ܳ଴ሺݔ௞, ܳ ௞ሻ be the initial iterativeݑ function constructed by
ܽ଴ሺݔ௞ሻ, i.e.,

 ܳ଴ሺݔ௞, ܽ଴ሺݔ௞ሻሻ ൌ ∑ ܴሺݔ௞ା௝, ܽ଴ሺݔ௞ା௝ሻሻ
ஶ
௝ୀ଴ . (27)

Thus, initial iterative ܳ function satisfies the following optimality equation:

 ܳ଴ሺݔ௞, ௞ሻݑ ൌ ܴሺݔ௞, ௞ሻݑ ൅ ܳ଴ሺݔ௞ାଵ, ܽ଴ሺݔ௞ାଵሻሻ. (28)

Then, we get the iterative control law as follows:

 ܽଵሺݔ௞ሻ ൌ argmax
௨ೖ

ܳ଴ሺݔ௞, ௞ሻ. (29)ݑ

Let ܳ௜ሺݔ௞, ݅ ௞ሻ forݔ௞ሻ be the iterative ܳ function constructed by ܽ௜ሺݑ ൌ 1,2, . . ., then we
can get the following generalized optimality equation:

 ܳ௜ሺݔ௞, ௞ሻݑ ൌ ܴሺݔ௞, ௞ሻݑ ൅ ܳ௜ሺݔ௞ାଵ, ܽ௜ሺݔ௞ାଵሻሻ. (30)

Therefore, the iterative control law is updated by:

 ܽ௜ାଵሺݔ௞ሻ ൌ argmax
݇ݑ

ܳ௜ሺݔ௞, ௞ሻ. (31)ݑ

Because the reward function ܴሺݔ௞, ௞, and underݑ ௞ andݔ ௞ሻ is a positive definite function ofݑ
Assumption 1 and 2, the iterative function ܳ௜ሺݔ௞, ,௞ሻݑ ݅ ൌ 0,1, . . ., is positive definite for ݔ௞ and
௞ݑ . According to Eq (30), substitute ܽ௜ሺݔ௞ሻ for ݑ௞，and let ௜ܸሺݔ௞ሻ ൌ ܳ௜ሺݔ௞, ܽ௜ሺݔ௞ሻሻ for ݅ ൌ
0,1, . . ., we can get:

 ௜ܸሺݔ௞ାଵሻ െ ௜ܸሺݔ௞ሻ ൌ ܳ௜ሺݔ௞ାଵ, ܽ௜ሺݔ௞ାଵሻሻ െ ܳ௜ሺݔ௞, ܽ௜ሺݔ௞ሻሻ

 ൌ െܴሺݔ௞, ܽ௜ሺݔ௞ሻሻ ൏ 0. (32)

For ݅ ൌ 0,1, . . ., the function ௜ܸሺݔ௞ሻ is positive definite for ݔ௞ , so ௜ܸሺݔ௞ሻ is a Lyapunov
function. Thus, ܽ௜ሺݔ௞ሻ is a stable control law.

In the above, it is difficult to give a specific expression form for the control objective of the
utility function under the actual control system. We can try to reconstruct the reward function
ܴሺݔ௞, ௞ሻ to replace the utility function with the help of DRM. Therefore, the key step of solvingݑ
nonlinear optimization problem is transformed into the problem of how to construct a reinforcement
learning dynamic environment and optimize the reward function ܴሺݔ௞, ௞ሻ. According to Eqs (15)ݑ
and (16), the determination of evaluation function is one of the important tasks of DRM. Ng et al. [44]
proposed the reward shaping theory, if a potential energy-based function is added to the reward
function, the optimal strategy remains unchanged, realizing the optimal strategy of modifying the
reward without affecting the Markov Decision Process. The reward shaping method is used in

9269

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

multi-agent reinforcement learning, and it is effective in robots collaborative-competitive operations
and multi-objective tasks [45–49]. This approach give us some inspiration, especially in the
construction of the potential energy function and how to avoid reward conflicts.

4. Experimental schemes based on reinforcement learning

Using the mathematical models above, the problem of obtaining a control method for a
nonlinear system can be transformed into a problem of training one or more agents' control strategies,
establishing a value function and obtaining the maximum reward. In this section, by choosing the
inverted pendulum system as the experiment object, we will analyze its characteristics and establish
the dynamic environment, design the reward function through different control objectives, then use
three deep reinforcement learning algorithm models to conduct experiments. the experiments result is
discussed finally.

4.1. Description of the inverted pendulum system model

Figure 3 is a schematic diagram of the structure of the inverted pendulum system. Our ultimate
goal is to control the force exerted to the cart and make it move left or right to maintain the balance
of the single pole mounted on the cart. The typical parameters of inverted pendulum-cart system
setup are selected as: mass of the cart (݉௖): 1.34 kg, mass of the pendulum (݉௣): 0.09 kg, length of
the swing pole (݈): 0.40 m, length of the cart rail (݈௥): 0.40 m, friction coefficient of the cart & pole
rotation is assumed negligible. The acceleration due to gravity g = 9.81 m/s2.

Figure 3. Schematic diagram of the structure of the inverted pendulum system.

In [50], the deep reinforcement learning algorithm model is used to realize the balance of the
cart-pole in the inverted pendulum system, but the relevant control theory in the NCS is not involved,
and the design of the reward function is not introduced in detail. The system function of the inverted
pendulum system model in this paper is expressed as follows [51,52]:

ሷߠ ൌ
௚௠ୱ୧୬ఏିୡ୭ୱఏ൫ிା௠೛௟ఏሶ మ ୱ୧୬ఏ൯

௟௠൫ସ௠/ଷି௠೛ ୡ୭ୱమ ఏ൯
, (33)

 ሷ߯ ൌ
ிା௠೛௟൫ఏሶ మ ୱ୧୬ ఏିఏሷ ୡ୭ୱఏ൯

௠
, (34)

9270

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

where ݉ ൌ ݉௖ ൅݉௣, ሷ߯ is the moving speed of the cart on the rail, ߠሷ is the swing angular speed of
the swing pole. The nonlinear system equations (33) and (34) of inverted pendulum dynamic system
represent the control input affine system. These two nonlinear equations are represented in the
following standard state space form:

ሻݐሶሺݔ ൌ ݂൫ݔሺݐሻ൯ ൅ ݃൫ݔሺݐሻ൯ݑሺݐሻ. (35)

4.2. Reward function design

For Eq (35), Let ݔሺݐሻ ൌ ሺ߯, ሶ߯ , ,ߠ ሶߠ ሻ், and set ߠ௠௔௫ as the maximum limit of the swing pole
deviation from the balance angle, Let ߯௠௔௫	 be the maximum value that the cart deviates from the
origin of the guide rail, ሶ߯௠௔௫ the maximum speed of the cart, and ߠሶ௠௔௫ the maximum rotation
speed of the swing pole. The definition rules of the system state space and evaluation function are
as following:

 Ω௫ ൌ

ۏ
ێ
ێ
ێ
ۍ െ

௟ೝ
ଶ
൑ ߯ ൑

௟ೝ
ଶ

െ ሶ߯௠௔௫ ൑ ሶ߯ ൑ ሶ߯௠௔௫
െߠ௠௔௫ ൑ ߠ ൑ ௠௔௫ߠ
െߠሶ௠௔௫ ൑ ሶߠ ൑ ሶ௠௔௫ߠ ے

ۑ
ۑ
ۑ
ې

, (36)

 ݁଴ሺݔ, ሻݑ ൌ ൜
1, ݔ ∈ Ω௫
0, ݔ ∉ Ω௫

. (37)

The range of the output value of the evaluation function ݁଴ is [0,1]. In order to describe the
expected position of the cart on the rail and guide the cart to run at the equilibrium position of the rail
with greater probability, we make an evaluation function as following:

 ݁ଵሺݔ, ሻݑ ൌ 1 െ sgnሺ ߯ሻ
ଶఞ

௟ೝ
.	 (38)

From the perspective of control, the cart “has to” drive the swing pole into a better state space at
some positions of the rail. In this way, we can establish an evaluation function to better guide the
system into the equilibrium state. If it is said that the desired balance angle is zero in the equilibrium
state, then at different positions of the rail, we assign position-related dynamic balance angles to
guide the movement of the cart. The position-related balance angle is given by:

଴ߠ ൌ െ
ଶఞఏ೘ೌೣ

௟ೝ
. (39)

Then the evaluation function is established as:

 ݁ଶሺݔ, ሻݑ ൌ ൝
1 െ

|ఏିఏబ|

ఏ೘ೌೣ
,	 	 	 ߠ| െ |଴ߠ ൑ ௠௔௫ߠ

0,	 	 	 ߠ| െ |଴ߠ ൐ 	௠௔௫ߠ 	 	ݎ݋ 	 ߠ ൐ 	௠௔௫ߠ 	 	ݎ݋ ߠ ൏ െߠ௠௔௫
. (40)

Notice that the output range of ݁ଶሺ∙ሻ is [0,1], and ߠ௠௔௫ is the maximum allowable deflection
angle of the swing pole.

In the balancing process of inverted pendulum system, not only the system is required to reach
the equilibrium state in a limited time, but also the energy consumed should be considered. It is

9271

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

expected that the energy consumed will reach the minimum in the process of state transition under
two adjacent time steps. Therefore, we make an evaluation function as follows:

 ݁ଷሺݔ, ሻݑ ൌ ,ݔሺߟ ሻ, (41)ݔሻ߮ሺݑ

where, ߟሺݔ, ሻ is the power consumption function of the system under the action of control outputݑ
ݑ in ݔ state; ߮ሺݔሻ is the coefficient function in ݔ state. Without considering the external
disturbance of the system such as air resistance, the force power consumption function can be
expressed by the following formula:

 ,௞ݔሺߟ ௞ሻݑ ൌ ܹ൫ݔ௞ାଵ
௨ୀி൯ ൅ ߫൫ݔ௞ାଵ

௨ୀி൯ െܹ൫ݔ௞ାଵ
௨ୀ଴൯ െ ߫൫ݔ௞ାଵ

௨ୀ଴൯, (42)

here, ܹሺݔ௞ାଵ
௨ୀ଴ሻ is defined as the energy loss after the system transitions to the next state when there

is no action output control in state ݔ௞; in the same case of no action output, ߫ሺݔ௞ାଵ
௨ୀ଴ሻ is the energy

loss caused by system friction. ܹሺݔ௞ାଵ
௨ୀிሻ is defined as the energy loss after the system transitions to

the next state under the action of output control ݑ ൌ ௞ାଵݔ௞, and ߫ሺݔ in state ܨ
௨ୀிሻ is the energy loss

caused by system friction after the system transitions to the next state under the action of output
control ݑ ൌ .௞ݔ in state ܨ

In the system represented by Eqs (33) and (34), friction is not considered, so ߫ሺݔ௞ାଵ
௨ୀ଴ሻ ൌ

߫ሺݔ௞ାଵ
௨ୀிሻ ൌ 0. Therefore, in state ݔ௞, the system energy is:

 ܹሺ݇ݔሻ ൌ ௖ܶሺ݇ݔሻ ൅ ௣ܶሺ݇ݔሻ ൅ ௣ܸሺ݇ݔሻ, (43)

where ௖ܶሺݔ௞ሻ is the kinetic energy of the cart, ௣ܶሺݔ௞ሻ is the kinetic energy of the swing pole, and

௣ܸሺݔ௞ሻ is the potential energy of the swing pole. According to the inverted pendulum model, we
can get:

 ௖ܶሺݔ௞ሻ ൌ
ଵ

ଶ
݉௖ ሶ߯௫ೖ

ଶ , (44)

 ௣ܶሺݔ௞ሻ ൌ
ଵ

ଶ
݉௣ ൬ቀ

ௗሺఏೣೖା௟ ୱ୧୬ఏೣೖ/ଶሻ

ௗ௧
ቁ
ଶ
൅ ቀ

ௗሺ௟ ୡ୭ୱఏೣೖ/ଶሻ

ௗ௧
ቁ
ଶ
൰ ൅

ଵ

଺
݉௣݈ଶߠሶ௫ೖ

ଶ

 ൌ
ଵ

ଶ
݉௣ ሶ߯௫ೖ

ଶ ൅
ଵ

ଶ
݉௣݈ ሶ߯௫ೖߠሶ௫ೖ cos ሶ௫ೖߠ

ଶ ൅
଻

ଶସ
݉௣݈ଶߠሶ௫ೖ

ଶ , (45)

 ௣ܸሺݔ௞ሻ ൌ
ଵ

ଶ
݉௣݈݃ cos ,௫ೖߠ (46)

where ߠ௫ೖ is the swing pole angle in state 	 ௞ݔ . According to the above formulas, calculate

ܹሺݔ௞ାଵ
௨ୀ଴ሻ and ܹሺݔ௞ାଵ

௨ୀிሻ respectively, and then calculate ߟሺݔ௞, ௞ሻ. Note the coefficient functionݑ
߮ሺݔ௞ሻ, which reflects the user's specific allocation method of energy in combination with the current
state. For example, it is required to minimize the single-step energy, or establish the minimum
theoretical value of energy according to the current state, and then require the single-step energy to
approach the value as much as possible, and ensure that the final evaluation function is between 0
and 1.

Note that in the control process of the system, ݁଴ሺݔ, ሻ gives the maximum value ofݑ
evaluation 1, ݁ଵሺݔ, ሻݑ is the evaluation function of cart displacement ߯ in the state vector,

9272

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

݁ଶሺݔ, ,ݔin the state vector, and ݁ଷሺ ߠ ሻ is the evaluation function of ߯ andݑ ሻ is the evaluationݑ
function of ߠ, ሶ߯ 	 	 and ߠሶ in the state vector. The final evaluation effect is expressed as:

 ܴሺݔ௞, ௞ሻݑ ൌ ∏ ݁௜ሺݔ௞, .௞ሻݑ
ଷ
௜ୀ଴ (47)

ܴሺݔ௞, ௞ሻ is a nonlinear description that acts as a utility function, which is different from theݑ
description method of Eq (8). In other words, ܴሺݔ௞, ௞ሻ reflects the user's specific control needs inݑ
a more subtle way. It is commendable that users can add, modify the details of specific control
requirements via the evaluation function, and the modification of a certain evaluation function will
not affect the roles of other evaluation functions. In the dynamic environment, the relationship
between the evaluation functions and the reward function is that the reward function is like
composed of multiple “referees”, and these “referees” are the evaluation functions. Each referee
gives a score ranging from 0 to 1, and then the reward function summarizes the scores of each referee
by means of continuous multiplication. The scoring standard for each referee is based on their
different viewing angles, and the viewing angles of each referee cannot be the same. In fact, the
viewing angles are their observation perspectives as shown in Figure 2. As mentioned above, no
evaluation function can violate the control law of the system, which means that the referee is
required to guide and encourage the effect of “performer”, in other words, the performer (i.e., the
control law) follows the performance guidance effect of a referee's high score, which is easier to
achieve the final effect of control. This final effect is the best one close to ݎ௠௔௫ recognized by
each referee.

4.3. Deep reinforcement learning model analysis

In this paper, ܴሺ∙ሻ is regarded as the reward value of the dynamic environment, and the deep
reinforcement learning algorithm is designed to interact with the dynamic environment from three
perspectives of state-value, policy and “Actor-Critic”. During the interaction process, the agent's
execution strategy is optimized through the reinforcement learning algorithm to achieve the
maximum reward value. Among them, the deep reinforcement learning algorithm based on
state-value mainly takes Deep Q-Learning (DQN) as an example, the policy-based algorithm mainly
takes the policy-gradient reinforcement algorithm as an example, and the “Actor-Critic” framework
mainly takes Deep Deterministic Policy Gradient as an example. Three deep reinforcement learning
models are analyzed and described below.

4.3.1. Deep Q-learning

DQN is a value-based iteration reinforcement learning algorithm [53]. When the state and
action space generated during the interaction between the agent and the environment is discrete and
the dimension is not high, the Q-Learning method can be used to establish the state-action value Q
table. Update the Q-values in the table according to the Bellman optimality equation. In the inverted
pendulum system, the states of the cart and the swing pole are high-dimensional continuous. Using
the Q-Learning method to build a table is very difficult, and it often causes the “curse of
dimensionality”. When the states and actions are high-dimensional and continuous, the construction
table can be transformed into a function fitting problem, and the Q value is generated by fitting the
function instead of the table, so that similar states can obtain similar output actions. In the function

9273

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

fitting of high-dimensional input, the advantage of deep neural network for complex feature
extraction can be used to map the input to the output through neural network. Therefore, the essence
of the DQN method is to combine the deep neural network and Q-Learning, map the state action
value Q through the network structure, and update the agent action strategy according to the Bellman
optimal equation. Algorithm 1 shows the DQN algorithm flow.

In algorithm 1, ݏ௧൛߯௧, ,௧ߠ ሶ߯௧ , .ݐ ሶ௧ൟ is the state space of the inverted pendulum system at timeߠ
Among them, ߯௧ is the displacement of the cart, ߠ௧ is the angle of the swing pole, ሶ߯௧ is the speed

of the cart, and ߠሶ௧ is the angular speed of the swing pole. ݎ௧ is the reward value obtained during the
interaction with the dynamic environment at time ݐ.

DQN records the tuple ሼݏ௧, ܽ௧, ,௧ାଵݎ ௧ାଵሽ generated by the agent in each state and stores it inݏ
the experience replay. The deep neural network randomly selects the tuple in the experience replay as
the training label to update the network parameters. Randomly selecting previous experience in the
experience replay will make the network more efficient, solving the problem of correlation and
non-static distribution to a certain extent [54].

DQN adopts two network structures with the same structure but different parameters, namely

9274

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

action-value network (Q-network) and target action-value network (target Q-network). When the
action-value network is used to approximate the Q value, the update of the Q value is prone to
oscillation, resulting in unstable learning behavior of the agent. The target action-value network
reduces the correlation between the predicted Q value and the estimated Q value to a certain extent to
improve the stability of the algorithm. In the network parameter update process, the parameters used
by the Q-network are the latest parameters of each update, and the Q-network parameters are copied
to the target Q-network after multiple iterations.

The agent maps the estimated Q value through Q-network at ݏ௧, uses the epsilon-greedy [55]
strategy to select the Q value under the corresponding action, takes the action ܽ௧ corresponding to
the Q value to interact with the environment, and records the generated tuple ሼݏ௧, ܽ௧, ,௧ାଵݎ ௧ାଵሽ andݏ
stores it in the experience replay. The target Q-network maps ݏ௧ାଵ as input to the predicted Q value,
selects the sum of the maximum predicted Q value and the immediate reward ݎ௧ାଵ as the TD
target[56], uses the mean square error between the TD target and the Q value as a loss function for
updating network parameters. The loss function between target action-value function and
action-value function in DQN is as follows:

௥೟శభ	ொൌݐ݁݃ݎܽܶ ൅ ௔ᇲݔܽ݉ߛ ෠ܳݓషሺݏ௧ାଵ, ܽ
ᇱሻ, (48)

ሻߠሺܮ ൌ ሼ௦೟,௔೟,௥೟శభ,௦೟శభሽఢேܧ ൤ቀܶܽݐ݁݃ݎொ െ ,௧ݏሺݓܳ ܽ௧ሻቁ
ଶ
൨. (49)

4.3.2. Reinforce: Monte Carlo Policy Gradient

In the DQN series of reinforcement learning algorithms, we mainly approximate the value
function, learn the action value function based on the value, and then adopt a similar greedy strategy
to select the agent output action according to the estimated action value function. But the DQN series
of reinforcement learning algorithms have the following problems: 1) Algorithms based on value
functions can only process discrete actions, but cannot process continuous actions output by the
agent. 2) The algorithm based on the value function cannot solve the stochastic policy problem. The
optimal strategy corresponding to the DQN series of methods is a deterministic strategy, and the
action corresponding to the maximum value is taken as the optimal strategy. Aiming at the
shortcomings of value-based reinforcement learning algorithms, a policy-based reinforcement
learning algorithm, policy gradient, is introduced [57].

The following is the state value function gradient formula in Monte Carlo sampling, where
Pr	ሺݏ → ,ݔ ݇, :ߨ in ݇ steps under policy ݔ to state ݏ ሻ is the probability of transitioning from stateߨ

ሻݏగሺݒ׏ ൌ ∑ሾ׏ ,ݏగሺݍሻݏ|ሺܽߨ ܽሻ௔ ሿ

 ൌ ∑ ሾߨ׏ሺܽ|ݏሻݍగሺݏ, ܽሻ ൅ ,ݏగሺݍ׏ሻݏ|ሺܽߨ ܽሻሿ௔

 	 ൌ ∑ ,ݏగሺݍሻݏ|ሺܽߨ׏ൣ ܽሻ ൅ ∑׏ሻݏ|ሺܽߨ ,ᇱݏሺ݌ ,ݏ|ݎ ܽሻ௦ᇲ,௥ ሺݎ ൅ ᇱሻሻ൧௔ݏగሺݒ

 ൌ ∑ ሾߨ׏ሺܽ|ݏሻݍగሺݏ, ܽሻ ൅ ∑ሻݏ|ሺܽߨ ,ݏ|ᇱݏሺ݌ ܽሻ௦ᇲ ᇱሻሿ௔ݏగሺݒ׏

 	 ൌ ∑ ∑ Prሺݏ	 → ,ݔ ݇, ሻߨ ∑ ,ݔగሺݍሻݔ|ሺܽߨ׏ ܽሻ.௔
ஶ
௞ୀ଴௫∈ௌ (50)

9275

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

	 :ሻ in Eq (50) is converted as followsݏగሺݒ׏

ሻݓሺܬ׏ ൌ ଴ሻݏగሺݒ׏

 ൌ ∑ ∑ Pr	ሺݏ଴ 	 → ,ݏ ݇, ∑ሻߨ ,ݏగሺݍሻݏ|ሺܽߨ׏ ܽሻ௔
ஶ
௞ୀ଴௦

 ൌ ∑ ∑ሻݏሺߟ ,ݏగሺݍሻݏ|ሺܽߨ׏ ܽሻ௔௦

 ൌ ∑ ∑ᇱሻݏሺߟ
ఎሺ௦ሻ

∑ ఎሺ௦ᇲሻೞᇲ
௦ ∑ ,ݏగሺݍሻݏ|ሺܽߨ׏ ܽሻ௔௦ᇲ

 ൌ ∑ ∑ᇱሻݏሺߟ ሻ௦ݏሺߤ ∑ ,ݏగሺݍሻݏ|ሺܽߨ׏ ܽሻ௔௦ᇲ

 ∝ ∑ ሻ௦ݏሺߤ ∑ ,ݏగሺݍሻݏ|ሺܽߨ׏ ܽሻ௔

 ൌ ∑గሾܧ ,గሺܵ௧ݍ ܽሻߨ׏ሺܽ|ܵ௧,ݓሻ௔ ሿ. (51)

 ሻ is the policy distribution under the policyݏሺߤ ,ሻ is the gradient of the policy parametersݓሺܬ׏
 ሻ, so the update ofݓሺܬ and the learning goal of the policy parameters is to maximize the value of ,ߨ
the policy parameters is similar to solving the gradient of ܬሺݓሻ ,which is:

 ௧ାଵݓ

 ൌ ௧ݓ ൅ ௧ሻݓሺܬ׏ߙ

 ൌ ௧ݓ ൅ ∑గሾܧߙ ,గሺܵ௧ݍ ܽሻߨ׏ሺܽ|ܵ௧,ݓሻ௔ ሿ

 ൌ ௧ݓ ൅ ∑ߙ ොݍ ቀܵ௧, ܽ, ቁ、ݓ 	ሻݓ,ሺܽ|ܵ௧ߨ׏ .௔ (52)

In the above equation, ݓ、and ݓ are the parameters in the action value network and the policy

network, respectively. In the Monte Carlo Policy Gradient, the sampling ܣ௧ is used to replace ܽ
under the policy ߨ. Therefore, ܬ׏ሺݓሻ can be defined as:

ሻݓሺܬ׏ ൌ ∑గሾܧ ,గሺܵ௧ݍ ܽሻߨ׏ሺܽ|ܵ௧,ݓሻ௔ ሿ

 ൌ గܧ ൤∑ ሻ௔ݓ,ሺܽ|ܵ௧ߨ ,గሺܵ௧ݍ ܽሻ
൯ݓ,గ൫ܽหܵ௧׏

గ൫ܽหܵ௧,ݓ൯
൨

 ൌ గܧ ൤ݍగሺܵ௧, ௧ሻܣ
൯ݓ,௧หܵ௧ܣగ൫׏

గ൫ܣ௧หܵ௧,ݓ൯
൨

 ൌ గܧ ൤ܩ௧
൯ݓ,௧หܵ௧ܣగ൫׏

గ൫ܣ௧หܵ௧,ݓ൯
൨.	 (53)

௧ܩ ,௧ represents the reward obtained in the ܵ௧ stateܩ
గሺ஺೟|ௌ೟,௪ሻ׏

గሺ஺೟|ௌ೟,௪ሻ
 can be calculated by sampling,

the expected value is equal to the gradient. Introducing the above gradient into the formula ݓ௧ାଵ ൌ
௧ݓ ൅ :௧ሻ, we getݓሺܬ׏ߙ

9276

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

௧ାଵݓ ൌሶ ௧ݓ ൅ ௧ܩߙ
೟ሻݓ,గሺ஺೟|ௌ೟׏
గሺ஺೟|ௌ೟,ݓ೟ሻ

 	 ൌ ௧ݓ ൅ ௧ሻ. (54)ݓ,௧|ܵ௧ܣሺߨ݈݊׏௧ܩߙ

Algorithm 2 shows the process of the Monte Carlo Policy Gradient reinforce algorithm. In

algorithm 2, ݏ ൌ ൛߯, ,ߠ ሶ߯ , ሶߠ ൟ represents the state space in the inverted pendulum system, and ݎ

represents the immediate reward obtained when the state is transferred, which is equivalent to
ܴሺݔ௞, .௞ሻݑ

4.3.3. Deep deterministic policy gradient

According to the output action characteristics of the agent in reinforcement learning, strategies
can be divided into deterministic strategies and random strategies. Deterministic policy means that
the action of the agent output through the policy in a certain state is deterministic. The random
strategy refers to the probability that the agent outputs multiple actions through the strategy in a
certain state, and the agent chooses to execute the action according to the probability. In the DQN
series of methods, the greedy strategy is used to select the action corresponding to the maximum Q
value, which belongs to the greedy deterministic strategy. When the action set output by the agent is
continuous-valued or discrete-valued with very high dimensionality, we use a stochastic strategy to
study the probability of action output, which increases the amount of computation. The Deep
Deterministic Policy Gradient (DDPG) algorithm is often used to solve the action selection problem
in a high-dimensional continuous state space [58]. The algorithm is tuned on the basis of the
Actor-Critic framework, making full use of DQN and policy gradients. The DDPG algorithm uses a
training network and a target network in the design of the network structure. Through the target

9277

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

network, the correlation between the predicted value and the estimated value can be reduced to a
certain extent, and the stability of the algorithm can be improved. Training the network with samples
from the experience replay minimizes the correlation between samples.

The DDPG algorithm mainly includes the following parts: ① The network includes two parts,
Actor and Critic, in which Actor and Critic are composed of training network and target network
respectively. ② Introduce the experience replay to store the data of the interaction between the
agent and the environment, and use soft update to update the parameters of the target network to
ensure the stability of the training network [59]. ③ Add random noise to the Actor network output
to ensure that the agent has a certain exploration ability when selecting actions [60]. Algorithm 3
shows the process of the DDPG algorithm.

In algorithm 3, ࣨ is random noise, ߤሺݓ|ݏఓሻ is the Actor network, ܳሺݏ, ொሻ is the Criticݓ|ܽ

network, ߤᇱ൫ݏหݓఓᇲ൯ is the target Actor network and ܳᇱ൫ݏ, ܽหݓொᇲ൯ is the target critic network. The

agent obtains the execution action ܽ௧ through the network ߤ at ݏ௧ , and interacts with the
environment after adding noise to the action to generate an immediate reward ݎ௧ାଵ, and the state is
updated to ݏ௧ାଵ. The agent stores the tuple ሼݏ௧, ܽ௧, ,௧ାଵݎ ௧ାଵሽ in the experience replay. When theݏ
experience replay data reaches a certain amount, it samples data from the experience replay to train

9278

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

the network ܳ. ܳ-Network needs to evaluate the actions made by ߤ. Therefore, ܳ-Network uses
the deterministic policy gradient method to optimize the network parameters of ߤ, and the network
parameter replication process adopts a soft update method. The agent keeps repeating the above
process until the policy network converges.

The target action value function in the DDPG algorithm can be expressed as:

௜ݕ ൌ ௜ାଵݎ ൅ ᇱ൫ܳߛ ,௜ାଵݏ ᇱ൫ߤ ௜ାଵݏ ∣∣ ఓᇲݓ ൯ ∣∣ ொᇲݓ ൯. (55)

The loss function of the Critic network is:

ሻݓሺܮ ൌ ଵ

ே
∑ ሺݕ௜ െ ܳሺݏ௜, ܽ௜ ∣ ொሻሻଶ.௜ݓ (56)

Using the deterministic sampling strategy gradient to update the policy network parameter can
be expression as:

 	 ܬഋݓ׏ ൎ
ଵ

ே
∑ ,ݏ௔ܳሺ׏ ݓ|ݏሺߤഋݓ׏ொሻ|௦ୀ௦೔,௔ୀఓሺ௦೔ሻݓ|ܽ

ఓሻ|௦.௜ (57)

4.4. Comparison and analysis of experimental results

This section describes and analyzes the experimental results. We use three reinforcement
learning algorithms to train the inverted pendulum control model, and analyze the differences
between the different algorithms based on their training data and test data (Section 4.4.1). Finally, we
discuss the current research deficiencies and propose future research directions (Section 4.4.2).

4.4.1. Deep reinforcement learning algorithm validation and performance evaluation

This section compares the experimental results of three deep reinforcement learning algorithms
(DQN, policy-gradient, DDPG) in the dynamic environment of the inverted pendulum system,
including the impact of the DRM settings on the experimental accuracy, and the differences between
different algorithms. The experiment is divided into two parts: i) The influence of the setting of the
detail-reward function under three deep reinforcement learning algorithms on the experimental
accuracy in the training and testing phase. ii) Differences between three deep reinforcement learning
algorithms under the same detail-reward function. In the dynamic environment of the inverted
pendulum system, the initial states of the inverted pendulum system in the training and testing phase
are shown in Table 1.
1) Experimental comparison of reward functions with different details under the same algorithm

Tables 2 and 3 show the reinforcement learning parameters and network parameters of the DQN
algorithm in the inverted pendulum system.

In Table 3, we set the number of outputs of the action-value Q network equal to 25. It can be seen
from reference [61] that the richer the choice of control vector ݑሺ݇ሻ, the higher the controllability, but
if it is too large, the convergence effect of the network model becomes worse in the training process.
Therefore, reasonable selection of the number of action values output by Q network can improve the
controllability of inverted pendulum system without affecting the effect of training.

9279

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

Table 1. Initial state parameters of the inverted pendulum system.

experimental phases Cart position (/m) Cart speed (m/s) Swing pole angle (/rad) Swing pole speed

(rad/s)

Training phase (−0.2,0.2) (−0.05,0.05) (−0.174,0.174) (−0.05,0.05)

Testing phase −0.12 0.2 0.1 0.2

*Note: In the training phase of the inverted pendulum system, the initial state of the cart and swing pole is a random

number within the corresponding parameter range. In the experiment, the position of the cart and the angle unit of

the swing pole are the same as those in the table.

Table 2. Deep reinforcement learning parameters.

Episodes Steps Discount factor Epsilon(ߝ) Memory

2000 300 0.95 0.9 2000

Table 3. Neural network parameters.

Network Network structure Learning rate Loss function Activation function Batch size

Action-value

Q network

(4,128)

(128,128)

(128,25)

0.0002 MSE RELU 32

We first give an illustration of the agent training rules for the following experiments. Episode is
a round of agent training, and in each episode, the maximum number of times the agent is allowed to
learn is 300. The setting range of cart position is [−0.2, 0.2], and the setting range of the swing pole
angle is [−0.174, 0.174]. During the training of the agent, as long as the cart and the swing pole are
in the areas of the set values, the agent can continue to learn in this episode, and the step value is
increased by 1 while the sum of the reward value is also added to the instant reward value, otherwise
the learning round will be exited, and the sums of steps and rewards under each episode is recorded.

Figure 4 shows the training and testing process of an inverted pendulum system using the DQN
algorithm in a dynamic environment. Figure 4(a) shows the number of admissible control actions
output by the inverted pendulum system agent under each episode in the training process. Figure 4(b)
shows the cumulative sum of the reward values obtained by the agent under each episode during the
training process. Figure 4(c),(d) show the experimental results in the testing phase. Figure 4(c) shows
the position of the cart at each step. Figure 4(d) shows the swing pole angle at each step. In the
inverted pendulum system, the cart should be controlled to be near the midpoint of the rail ሺ߯ ൌ 0ሻ
and the swing pole angle to be near the 0 degree (ߠ ൌ 0).

As can be seen from Figure 4, the setting of the DRM affects the reinforcement learning effect
of the inverted pendulum. In Figure 4(a),(b), a single-reward function (i.e., ܴ ൌ ݁଴) is used, when the
episode value is less than 400, the number of times the rule is met is less than 50, and the reward
value under each episode is less than 50. When the number of episodes is greater than 400, the
reward value gradually increases, but the reward distribution curve fluctuates greatly, the
generalization of the trained model is weak, and the agent cannot learn useful experience well. When
detail-reward function (i.e., ܴ ൌ ∏݁௜) is used, the number of times the rule is met is proportional to the
number of the episodes. In Figure 4(b), when the episodes are greater than 200, the training process
tends to converge, the reward value is close to 250, and the reward distribution curve is relatively flat.

9280

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

In Figure 4(c),(d), when steps = 15 and a single-reward function is used, the position of the cart
is 0.01 and the swing pole angle is 0.33, which means that the agent control fails. After 40 steps, by
using detail-reward function, the position of the cart is close to zero, the swing pole angle is close to
zero degrees, and the distribution of the position and angle curves is relatively gentle.

The above analysis of the distribution curves of steps, rewards, cart position, and swing pole
angle in Figure 4 shows that when using the DQN algorithm to train an agent in a dynamic
environment of inverted pendulum system, the experimental effect of detail-reward function is better
than a single-reward function.

(a) steps distribution (b) reward distribution

(c) cart position (d) swing pole angle

Figure 4. The training and testing results of DQN.

Tables 4 and 5 show the reinforcement learning parameters and network parameters of the policy
gradient algorithm in the inverted pendulum system. Figure 5 shows the training and testing process of
an inverted pendulum system using the policy gradient algorithm in a dynamic environment.

Table 4. Deep reinforcement learning parameter.

Episodes Steps Discount factor

15000 300 0.99

9281

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

Table 5. Neural network parameters.

Network Network structure Learning rate Loss function Activation function

Policy network

(4,128)

(128,128)

(128,3)

1 × 10−3 Cross entropy Adam

As can be seen from Figure 5(a),(b), the training process converges faster when a single-reward
function is used. When the episode is equal to 3000, the step and the reward reach the maximum
value of 300 respectively; when using the detail-reward function, the training process converges
slowly and the reward rises more gently. When the number of episodes is 14,000, the step and
reward reach their maximum values of 300 and 250 respectively. According to Eq (37), a
single-reward function means that only the evaluation function ݁଴ሺ∙ሻ plays a role, and its values are
only 0 and 1. The final value range of the detail-reward function is [0, 1]. Therefore, the maximum
values of reward in these two cases are different.

(a) steps distribution (b) reward distribution

(c) cart position (d) swing pole angle

Figure 5. The training and testing results of policy gradient.

It area A2 of Figure 5(c), when the detail-reward function is used, the position curve distribution
of the cart is relatively flat, the minimum position is −0.05, and the maximum position is 0.04. While
using a single-reward function, the cart position distribution curve oscillates greatly, the minimum

9282

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

position and maximum position are −0.077 and 0.05 respectively. It can be seen from area A1 of
Figure 5(d) that when the detail-reward function is used, the variation range of the swing pole
angle is [−0.05, 0.05]. When the single-reward function is used, the range of the swing pole angle
is [−0.07, 0.06], and the data illustrate the swing angle range of the former is smaller than that of
the latter.

By analyzing the distribution curves of step, reward, cart position and swing pole angle in
Figure 5, we can get: When an agent is trained with the policy-gradient algorithm, the single-reward
function makes the training rounds less than the detail-reward function, but in the test phase, the
experimental effect of detail-reward function is better than that of single-reward function.

Tables 6 and 7 show the reinforcement learning parameters and network parameters of the
DDPG algorithm in the inverted pendulum system. Figure 6 shows the training and testing process
while using the DDPG algorithm in a dynamic environment.

Table 6. Deep reinforcement learning parameters.

Episodes Steps Discount factor Soft update coefficient Memory

2000 300 0.99 1 × 10−2 10,000

Table 7. Neural network parameters.

Network Network structure Learning rate Loss function Activation function Batch size

Actor network

(4,128)

(128,128)

(128,1)

1 × 10−3 െܳሺݏ, ொሻ Adam 64ݓ|ܽ

Critic network

(5,128)

(128,128)

(128,1)

1 × 10−2 MSE Adam 64

It can be seen from Figure 6(a),(b) that in the case of using single-reward function, when the
episodes are less than 180, the number of times the rule is met is less than 100, and the reward value
under each episode is less than 50. As the episodes gradually increase, the distribution of step and
reward curves fluctuates greatly. In contrast, using detail-reward function, when the episodes are
greater than 180, the distribution of the reward curve is relatively flat, and the reward distribution
under each episode is around 210.

In Figures 6(c),(d), when steps = 15 and the single-reward function is used, the position of the
cart is located at 0.05 in the positive direction, and the swing pole angle is 0.3, which means that
the agent control fails. After 200 steps, by using detail-reward function, both the cart position and
the swing pole angle are close to zero, while the distribution of the position and angle curves is
relatively gentle.

From the above analysis it can be concluded that in the process of using the DDPG algorithm to
train an agent, the reward obtained by using the single-reward function is greater than that obtained by
using the detail-reward function in most cases. However, the distribution of the reward curve under the
single-reward function fluctuates greatly and the model stability is poor. In addition, the model trained
with single-reward function will lead to its out of control in the process of testing. The experimental
effect of using the detail-reward function is better than that of using the single-reward function.

9283

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

(a) steps distribution (b) reward distribution

(c) cart position (d) swing pole angle

Figure 6. The training and testing results of DDPG.

2) Comparison of experimental effects of different algorithms under the same detail-reward
function

Through the analysis and comparison of the above experimental results, the following
conclusions can be drawn: i) The method of using DRM in the inverted pendulum system under deep
reinforcement learning is effective and innovative. ii) A good design of evaluation functions is
crucial for the training and testing process. Under different algorithms, the detail-reward function
produces better experimental results than a single-reward function.

Figures 7 and 8 show the experimental comparison of the models generated by different deep
reinforcement learning algorithms during training under the same detail-reward function in the
testing phase. Figure 7 shows the distribution curves of cart positions in each step of the inverted
pendulum system when DRM is applied in the experiment. After 50 steps, the model generated by
DQN algorithm converges to a point close to 0 in the test phase, while the model generated by
policy-gradient algorithm fluctuates in the range of [−0.06, 0.05], and the model generated by DDPG
algorithm shows that the moving position of the cart gradually converges to the vicinity of zero
with the increase of the number of steps. The right part of Figure 7 is an enlarged schematic
diagram of area B. It can be seen from the figure that the model generated by the policy-gradient
algorithm fluctuates greatly, i.e., the moving position of the cart fluctuated wildly in the range of

9284

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

more than 0.06. The data of area B also shows that the models generated by DQN and DDPG
algorithms has a small fluctuation range, both mean that the cart fluctuates reasonably near the
equilibrium point.

Figure 8 is the distribution curves of swing pole angle at each step under the models generated
by three algorithms under the application of DRM in the experiment. After 50 steps, the model
generated by DQN algorithm converges to near zero during the test process, the model generated by
the policy-gradient algorithm fluctuates in the range of [−0.05, 0.05], and the model generated by the
DDPG algorithm gradually converges to zero with the increase of steps. The right part of Figure 8 is
the enlarged schematic diagram of area A. After 200 steps, the models generated by DDPG and DQN
will guide the swing pole angle to vibrate around 0. The fluctuation range of the swing pole angle
under the model generated by policy-gradient is [−0.06, 0.06], which is larger than that of the above
two models.

Figure 7. Comparison of test accuracy under different algorithms (cart position).

Figure 8. Comparison of test accuracy under different algorithms (swing pole angle).

By analyzing the distribution curves in Figures 7 and 8, the following conclusions can be drawn:
i) The system stability of the policy-gradient algorithm is weaker than that of DQN and DDPG
during the test process, and the car position and the swing pole angle are difficult to converged to
zero. ii) During the test process of the DQN algorithm, the cart position and the swing pole angle
distribution are both close to the zero. However, the output of the DQN algorithm is a discrete action.

9285

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

In a continuous control system, the frequent output of discrete actions will affect the stability of the
system, and on a physical platform, the large-scale pulsed current output can greatly reduce the
lifetime of electronic devices. iii) DDPG algorithm is continuous action output. Compared to the
DQN algorithm, the convergence rate is slower. During the test, as the number of steps increased, the
cart position and the swing pole angle distribution gradually converged to zero. In an inverted
pendulum system, the output of the DDPG model can ensure the stability of the system. Compared
with the above three deep reinforcement learning algorithms, as a continuous action output algorithm,
DDPG can be applied to the inverted pendulum control system and achieve good experimental
results by introducing DRM into the algorithm.

4.4.2. Insufficient research and future work

According to the characteristics of the inverted pendulum NCS, deep reinforcement learning
with DRM can solve the optimal control problem of the system. Through the above experiments, the
control accuracy of the inverted pendulum system under different reward functions is compared. At
present, this paper has the following deficiencies in experimental details: 1) This paper just introduce
DRM to the inverted pendulum system without using more complex nonlinear systems. 2) In this
paper, a novel DRM method is given, and the evaluation functions and reward function are
established by taking the inverted pendulum system as an example, but the unified rules for the
establishment of evaluation function are not given, i.e., it depends on the designer's personalized
design. 3) The parameters of the inverted pendulum system used have limitations. For example, we
only set the angle of the swing pole in the range of [−0.174, 0.174], and did not study the control
problem of a broader state space. 4) When designing the dynamic environment of the inverted
pendulum system in this paper, the unstable disturbance of the real inverted pendulum
experimental platform is not considered, which has certain limitations for deploying agent models
to real physical platforms.

Future work will improve in the following aspects: 1) We will use the method of DRM in more
nonlinear systems and summarize the applicability of the method in a wider experimental setting. 2)
The construction of the evaluation function is a reward realization for a specific observation
perspective. In the course of experiments in more nonlinear environments, the validity of the
evaluation function and the design method will be summarized. 3) We will increase the control range
of the swing pole angle in the inverted pendulum system, and use the deep reinforcement learning
algorithms to solve the global optimal control problems. 4) We will design the target policy and
action policy separately according to the importance sampling off policy learning theory in deep
reinforcement learning. The action strategy is a strategy optimized for training in a dynamic
environment, and the target strategy is a real experimental platform. The control strategy uses the
action strategy to sample the data in the dynamic environment, which is used to predict the target
strategy under the real experimental platform, so as to realize the optimal control of the real system.

5. Conclusions

In this paper, a reward mechanism based on control details is proposed for the first time.
According to the specific requirements of control objectives, the state space is divided into different
observation perspectives, and then the evaluation function is designed. Finally, the final reward

9286

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

function is composed in the form of continuous multiplication of the evaluation functions, which
replaces the utility function in HJB equation. Based on Lyapunov stability theory and Q-learning, the
stability of the control law is proved. Then taking the nonlinear inverted pendulum system as the
experiment object, the detail-reward mechanism is introduced into the deep reinforcement learning
algorithms. After designing the reward function according to the detail-reward mechanism, the
effects of different reward functions on the experimental accuracy are compared under three
algorithms: DQN, policy-gradient and DDPG. The effectiveness of this method is proved by
experiments, and the optimal reward function and deep reinforcement learning algorithm model of
inverted pendulum system are determined. We will do the following work in the future: 1) Apply the
detail reward mechanism to other deep reinforcement learning algorithms for verification, such as
A3C, TD3 and PPO. 2) Apply the detail reward mechanism to more nonlinear control systems, such
as multi-agent, robot motion control systems, etc. 3) Optimize the model generated by the deep
reinforcement learning algorithm to improve the control effect.

Acknowledgments

The author acknowledge the support from the Joint Development Research Institute of
Intelligent Motion Control Technology of the Liaoning Provincial Department of Education and the
National Key R&D Program of China (Grant No. 2017YFB1300700).

Conflict of interest

The authors declared that they have no conflicts of interest in this work.

References

1. J. Wu, W. Sun, S. F. Su, Y. Q. Wu, Adaptive quantized control for uncertain nonlinear systems
with unknown control directions, Int. J. Robust Nonlinear Control, 31 (2021), 8658–8671.
https://doi.org/10.1002/rnc.5748

2. A. Shatyrko, J. Diblík, D. Khusainov, M. Růžičková, Stabilization of Lur’e-type nonlinear
control systems by Lyapunov-Krasovskii functionals, Adv. Diff. Equations, 2012 (2012), 1–9.
https://doi.org/10.1186/1687-1847-2012-229

3. K. Tatsuya, Limit-cycle-like control for 2-dimensional discrete-time nonlinear control systems
and its application to the Hénon map, Commun. Nonlinear Sci. Numer. Simul., 18 (2013),
171–183. https://doi.org/10.1016/j.cnsns.2012.06.012

4. Y. H. Wei, Lyapunov stability theory for nonlinear nabla fractional order systems, IEEE Trans.
Circuits Sys., 68 (2021), 3246–3250. https://doi.org/10.1109/TCSII.2021.3063914

5. G. Pole, A. Girard, P. Tabuada, Approximately bisimilar symbolic models for nonlinear control
systems, Automatica, 44 (2008), 2508–2516. https://doi.org/10.1016/j.automatica.2008.02.021

6. H. G. Zhang, X. Zhang, Y. H. Luo, J. Yang, An overview of research on adaptive dynamic
programming, Acta Autom. Sin., 39 (2013), 303–311.
https://doi.org/10.1016/S1874-1029(13)60031-2

9287

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

7. M. Volckaert, M. Diehl, J. Swevers, Generalization of norm optimal ILC for nonlinear systems
with constraints, Mech. Syst. Signal Proc., 39 (2013), 280–296.
https://doi.org/10.1016/j.ymssp.2013.03.009

8. W. N. Gao, Z. P. Jiang, Nonlinear and adaptive suboptimal control of connected vehicles: A
global adaptive dynamic programming approach, J. Intell. Rob. Syst., 85 (2017), 597–611.
http://doi.org/10.1007/s10846-016-0395-3

9. E. Trélat, Optimal control and applications to aerospace: Some results and challenges, J. Optim.
Theory Appl., 154 (2012), 713–758. https://doi.org/10.1007/s10957-012-0050-5

10. M. Margaliot, Stability analysis of switched systems using variational principles: An
introduction, Automatica, 42 (2006), 2059–2077.
https://doi.org/10.1016/j.automatica.2006.06.020

11. A. Maidi, J. P. Corriou, Open-loop optimal controller design using variational iteration method,
Appl. Math. Comput., 219 (2013), 8632–8645. https://doi.org/10.1016/j.amc.2013.02.075

12. F. H. Clarke, R. B. Vinter, The relationship between the maximum principle and dynamic
programming, SIAM J. Control Optim., 25 (1987), 1291–1311. http://doi.org/10.1137/0325071

13. R. W. Beard, G. N. Saridis, J. T. Wen, Approximate solutions to the time-invariant
Hamilton–Jacobi–Bellman equation, J. Optim. Theory Appl., 96 (1998), 589–626.
http://doi.org/10.1023/A:1022664528457

14. J. A. Roubos, S. Mollov, R. Babuška, H. B. Verbruggen, Fuzzy model-based predictive control
using Takagi–Sugeno models, Int. J. Approximate Reasoning, 22 (1999), 3–30.
http://doi.org/10.1016/S0888-613X(99)00020-1

15. D. A. Bristow, M. Tharayil, A. G. Alleyne, A survey of iterative learning control, IEEE Control
Syst. Mag., 26 (2006), 96–114. https://doi.org/10.1109/MCS.2006.1636313

16. P. J. Werbos, W. T. Miller, R. S. Sutton, A menu of designs for reinforcement learning over time,
Neural networks for control, MIT press, Cambridge, (1990), 67–95.

17. J. Wang, R. Y. K. Fung, Adaptive dynamic programming algorithms for sequential appointment
scheduling with patient preferences, Artif. Intell. Med., 63 (2015), 33–40.
https://doi.org/10.1016/j.artmed.2014.12.002

18. D. V. Prokhorov, D. C. Wunsch, Adaptive critic designs, IEEE Trans. Neural Networks, 8 (1997),
997–1007. http://doi.org/10.1109/72.623201

19. J. J. Murray, C. J. Cox, G. G. Lendaris, R. Saeks, Adaptive dynamic programming. IEEE Trans.
Syst. Man Cybern., 32 (2002), 140–153. http://doi.org/10.1109/TSMCC.2002.801727

20. H. G. Zhang, Q. L. Wei, D. R. Liu, An iterative adaptive dynamic programming method for
solving a class of nonlinear zero-sum differential games, Automatica, 47 (2011), 207–214.
http://doi.org/10.1016/j.automatica.2010.10.033

21. Q. L. Wei, H. G. Zhang, D. R. Liu, Y. Zhao, An optimal control scheme for a class of
discrete-time nonlinear systems with time delays using adaptive dynamic programming, Acta
Autom. Sin., 36 (2010), 121–129. http://doi.org/10.1016/S1874-1029(09)60008-2

22. J. Ding, S. N. Balakrishnan, Approximate dynamic programming solutions with a single
network adaptive critic for a class of nonlinear systems, J. Control Theory Appl., 9 (2011),
370–380. http://doi.org/10.1007/s11768-011-0191-3

9288

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

23. D. R. Liu, D. Wang, D. B. Zhao, Adaptive dynamic programming for optimal control of
unknown nonlinear discrete-time systems, in 2011 IEEE Symposium on Adaptive Dynamic
Programming and Reinforcement Learning (ADPRL) IEEE, (2011), 242–249.
https://doi.org/10.1109/ADPRL.2011.5967357

24. J. Modayil, A. White A, R. S. Sutton, Multi-timescale nexting in a reinforcement learning robot,
Adapt. Behav., 22 (2014), 146–160. http://doi.org/10.1177/1059712313511648

25. C. X. Mu, Y. Zhang, Z. K. Gao, C. Y. Sun, ADP-based robust tracking control for a class of
nonlinear systems with unmatched uncertainties, IEEE Trans. Syst. Man Cybern. Syst., 50
(2019), 4056–4067. http://doi.org/10.1109/TSMC.2019.2895692

26. H. Y. Dong, X. W. Zhao, B. Luo, Optimal tracking control for uncertain nonlinear systems with
prescribed performance via critic-only ADP, IEEE Trans. Syst. Man Cybern. Syst., 52 (2020),
561–573. https://doi.org/10.1109/TSMC.2020.3003797

27. R. Z. Song, L. Zhu, Optimal fixed-point tracking control for discrete-time nonlinear systems via
ADP, IEEE/CAA J. Autom. Sin., 6 (2019), 657–666. https://doi.org/10.1109/JAS.2019.1911453

28. M. M. Liang, Q. L. Wei, A partial policy iteration ADP algorithm for nonlinear neuro-optimal
control with discounted total reward, Neurocomputing, 424 (2021), 23–34.
https://doi.org/10.1016/j.neucom.2020.11.014

29. B. Fan, Q. M. Yang, X. Y. Tang, Y. X. Sun, Robust ADP design for continuous-time nonlinear
systems with output constraints, IEEE Trans. Neural Networks Learn. Syst., 29 (2018),
2127–2138. https://doi.org/10.1109/TNNLS.2018.2806347

30. X. Yang, H. B. He, Self-learning robust optimal control for continuous-time nonlinear systems
with mismatched disturbances, Neural Networks, 99 (2018), 19–30.
https://doi.org/10.1016/j.neunet.2017.11.022

31. D. R. Liu, X. Yang, D. Wang, Q. L. Wei, Reinforcement-learning-based robust controller design
for continuous-time uncertain nonlinear systems subject to input constraints, IEEE Trans.
Cybern., 45 (2015), 1372–1385. http://doi.org/10.1109/TCYB.2015.2417170

32. X. Yang, D. R. Liu, D. Wang, Reinforcement learning for adaptive optimal control of unknown
continuous-time nonlinear systems with input constraints, Int. J. Control, 87 (2014), 553–566.
https://doi.org/10.1080/00207179.2013.848292

33. J. G. Zhao, M. G. Gan, Finite-horizon optimal control for continuous-time uncertain nonlinear
systems using reinforcement learning, Int. J. Syst. Sci., 51 (2020), 2429–2440.
https://doi.org/10.1080/00207721.2020.1797223

34. B. Zhao, D. R. Liu, C. M. Luo, Reinforcement learning-based optimal stabilization for unknown
nonlinear systems subject to inputs with uncertain constraints, IEEE Trans. Neural Networks
Learn. Syst., 31 (2019), 4330–4340. https://doi.org/10.1109/TNNLS.2019.2954983

35. D. Wang, J. F. Qiao, Approximate neural optimal control with reinforcement learning for a
torsional pendulum device, Neural Networks, 117 (2019), 1–7.
https://doi.org/10.1016/j.neunet.2019.04.026

36. J. W. Kim, B. J. Park, H. Yoo, T. H. Oh, J. H. Lee, J. M. Lee, A model-based deep reinforcement
learning method applied to finite-horizon optimal control of nonlinear control-affine system, J.
Proc. Control, 87 (2020), 166–178. https://doi.org/10.1016/j.jprocont.2020.02.003

37. F. Y. Wang, N. Jin, D. R. Liu, Q. L. Wei, Adaptive dynamic programming for finite-horizon
optimal control of discrete-time nonlinear systems with epsilon-error bound, IEEE Trans.
Neural Networks, 22 (2010), 24–36. https://doi.org/10.1109/TNN.2010.2076370

9289

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

38. K. G. Vamvoudakis, F. L. Lewis, Multi-player non-zero-sum games: Online adaptive learning
solution of coupled Hamilton–Jacobi equations, Automatica, 47 (2011), 1556–1569.
https://doi.org/10.1016/j.automatica.2011.03.005

39. Q. L. Wei, D. R. Liu, An iterative epsilon-optimal control scheme for a class of discrete-time
nonlinear systems with unfixed initial state, Neural Networks, 32 (2012), 236–244.
https://doi.org/10.1007/978-981-10-4080-1_2

40. D. R. Liu, Q. L. Wei, P. F. Yan, Generalized policy iteration adaptive dynamic programming for
discrete-time nonlinear systems, IEEE Trans. Syst. Man Cybern. Syst., 45 (2015), 1577–1591.
https://doi.org/10.1109/TSMC.2015.2417510

41. S. H. Li, H. B. Du, X. H. Yu, Discrete-time terminal sliding mode control systems based on
euler’s discretization, IEEE Trans. Autom. Control, 59 (2013), 546–552.
https://doi.org/10.1109/TAC.2013.2273267

42. D. Bertsekas, Dynamic Programming and Optimal Control: Volume I, Athena scientific, 2012.
43. C. J. C. H. Watkins, P. Dayan, Q-learning, Mach. Learn., 8 (1992), 279–292.

https://doi.org/10.1007/BF00992698
44. A. Y. Ng, D. Harada, S. Russell, Policy invariance under reward transformations: Theory and

application to reward shaping, LCML, 99 (1999), 278–287.
45. L. Buşoniu, B. D. Schutter, R. Babuška, Approximate dynamic programming and reinforcement

learning, in Interactive collaborative information systems, (2010), 3–44.
https://doi.org/10.1007/978-3-642-11688-9_1

46. T. Aotani, T. Kobayashi, K. Sugimoto, Bottom-up multi-agent reinforcement learning by reward
shaping for cooperative-competitive tasks, Appl. Intell., 51 (2021), 4434–4452.
https://doi.org/10.1007/s10489-020-02034-2

47. C. HolmesParker, A. K. Agogino, K. Tumer, Combining reward shaping and hierarchies for
scaling to large multiagent systems, Knowl. Eng. Rev., 31 (2016), 3–18.
https://doi.org/10.1017/S0269888915000156

48. P. Mannion, S. Devlin, K. Mason, J. Duggan, E. Howley, Policy invariance under reward
transformations for multi-objective reinforcement learning, Neurocomputing, 263 (2017), 60–73.
https://doi.org/10.1016/j.neucom.2017.05.090

49. P. Mannion, S. Devlin, J. Duggan, E. Howley, Reward shaping for knowledge-based
multi-objective multi-agent reinforcement learning, Knowl. Eng. Rev., 33 (2018).
https://doi.org/10.1017/S0269888918000292

50. C. Y. Hu, A confrontation decision-making method with deep reinforcement learning and
knowledge transfer for multi-agent system, Symmetry, 12 (2020), 631.
https://doi.org/10.3390/sym12040631

51. A. G. Barto, R. S. Sutton, C. W. Anderson, Neuronlike adaptive elements that can solve difficult
learning control problems, IEEE Trans. Syst. Man Cybern. Syst., 5 (1983), 834–846.
https://doi.org/10.1109/TSMC.1983.6313077

52. L. B. Prasad, B. Tyagi, H. O. Gupta, Optimal control of nonlinear inverted pendulum system
using PID controller and LQR: Performance analysis without and with disturbance input, Int. J.
Autom. Comput., 11 (2014), 661–670. https://doi.org/10.1007/s11633-014-0818-1

53. V. Mnih, K. Kavukcuoglu, D. Silver, J. Veness, A. Graves, M. Riedmiller, et al, Human-level
control through deep reinforcement learning, Nature, 518 (2015), 529–533.
https://doi.org/10.1038/nature14236

9290

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9258–9290.

54. T. d. Bruin, J. Kober, K. Tuyls, R. Babuˇska, Experience selection in deep reinforcement
learning for control, J. Mach. Learn. Res., 19 (2018).

55. B. C. Stadie, S. Levine, p. Abbeel, Incentivizing exploration in reinforcement learning with deep
predictive models, preprint, arXiv: 1507.00814.

56. Z. L. Ning, P. R. Dong, X. J. Wang, JJPC. Rodrigues, F. Xia, Deep reinforcement learning for
vehicular edge computing: An intelligent offloading system, in ACM Transactions on Intelligent
Systems and Technology , 10 (2019), 1–24. https://doi.org/10.1145/3317572

57. H. Yoo, B. Kim, J. W. Kim, J. H. Lee, Reinforcement learning based optimal control of batch
processes using Monte-Carlo deep deterministic policy gradient with phase segmentation,
Comput. Chem. Eng., 144 (2021), 107133.
https://doi.org/10.1016/j.compchemeng.2020.107133

58. T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, et al, Continuous control with
deep reinforcement learning, preprint, arXiv: 1509.02971.

59. S. Satheeshbabu, N. K. Uppalapati, T. Fu, G. Krishnan, Continuous control of a soft continuum
arm using deep reinforcement learning, in 2020 3rd IEEE International Conference on Soft
Robotics (RoboSoft), IEEE, (2020), 497–503.
https://doi.org/10.1109/RoboSoft48309.2020.9116003

60. Y. Ma, W. B. Zhu, M. G. Benton, J. Romagnoli, Continuous control of a polymerization system
with deep reinforcement learning, J. Proc. Control, 75 (2019), 40–47.
https://doi.org/10.1016/j.jprocont.2018.11.004

61. R. B. Zmood, The euclidean space controllability of control systems with delay, SIAM J. Control,
12 (1974), 609–623. https://doi.org/10.1137/0312045

©2022 the Author(s), licensee AIMS Press. This is an open access
article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0)

