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Abstract: Raw Moutan Cortex (RMC) is a traditional medicinal material commonly used in China. 
Moutan Cortex Carbon (MCC) is a processed product of RMC by stir-frying. As raw and processed 
products of the same Chinese herb pieces, they have different effects. RMC has the effects of clearing 
heat and cooling blood, promoting blood circulation and removing blood stasis, but MCC has the 
contrary effect of cooling blood and hemostasis. Therefore, it is necessary to distinguish them 
effectively. The traditional quality evaluation method of RMC and MCC still adopts character 
identification, and mainly relies on the working experience and sensory judgment of employees with 
experience. This will lead to strong subjectivity and poor repeatability. And the final evaluation result 
may cause inevitable errors and the processed products with different processing degrees in actual 
production，which affects the clinical efficacy. In this study, the electronic nose technology was 
introduced to objectively digitize the odor of RMC and MCC. And the discrimination model of RMC 
and MCC was constructed in order to establish a rapid, objective and stable quality evaluation method 
of RMC and MCC. According to the correlation analysis, the experiment found the content of gallic 
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acid, 5-hydroxymethylfurfural (5-HMF), paeoniflorin and paeonol determined by high performance 
liquid chromatography (HPLC) had a certain correlation with their odor characteristics. Thus, partial 
least squares regression (PLSR) and support vector machine regression (SVR) were compared and 
established the chemical composition quantitative model. Results showed that the quantitative data of 
RMC and MCC odor could be used to predict the contents of the chemical components. It can be used 
for quality control of RCM and MCC. 

Keywords: Moutan Cortex; Moutan Cortex Carbon; discrimination model; composition quantitative 
model; electronic nose; support vector machine regression; HPLC 

 

1. Introduction  

Raw Moutan Cortex (RMC) is the dry root bark of Paeonia suffruticosa Andr [1]. It was first 
published in shennong herbs classic [2,3]. It is a traditional medicine commonly used in China. It 
tastes bitter, spicy and slightly cold, and has the effect of clearing heat and cooling blood, promoting 
blood circulation and removing stasis. Moutan Cortex charcoal is the processed product of RMC. It 
has the function of cooling blood and stopping bleeding. In the actual processing process of MCC, 
due to the different production conditions, equipment and people’s subjective judgment and other 
reasons, the processing results are often too excessive or not reach the standard, so as to obtain the 
different processed product, such as light MCC (LMCC), standard MCC (MCC), and heavy MCC 
(HMCC). Underprocessing or overprocessing will affect the effectiveness of drugs, and then affect 
the clinical efficacy. 

At present, the quality control of MCC mainly adopts the traditional quality evaluation method-
feature recognition, namely [4] “Quality evaluation based on feature recognition”. Chinese 
Pharmacopoeia and local Chinese medicine treatment specifications [5] describe MCC as “dark brown 
on the outer surface, brown on the inner surface, with a burnt aroma, slightly bitter and astringent 
taste”. However, feature recognition often depends on the experience of practitioners and people's 
sensory judgment, which is often easily affected by subjective feelings. The final evaluation may cause 
inevitable error and poor repeatability, and the processed products with different processing degrees in 
actual production. Now, many research have studied about the Chemical changes in RMC and its 
different products, these results showed that most compounds were decreased with the deepening of 
processing degree and the increase of temperature, such as catechin, paeonol, quercetin, Kaempferide, 
isorhamnetin and tannin, While the content of gallic acid and 5-HMF were firstly increased with the 
extension of processing time and then began to decline [6–8]. And at the same time the 
pharmacodynamics studied showed that tannins such as catechin have astringent and hemostatic 
effects [9–11]. Paeonol had the effect of promoting blood circulation and removing blood stasis [12,13]. 
5-HMF was an aldehyde produced by dehydration of glucose and other monosaccharide compounds 
under high temperature or weak acid conditions. As the temperature continues to rise, 5-HMF is easily 
decomposed into levulinic acid and formic acid, which was a marker of heating process [14,15]. 
Chemical components are the material basis of pharmacodynamic effects. Different chemical 
components in different processing degrees will certainly cause the change of effects, and then affect the 
clinical efficacy. Now, high performance liquid chromatography (HPLC), gas chromatography-mass 
spectrometry (GC-MS) [16], thin layer chromatography (TLC) and other analytical methods [17,18] 
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have also used for quantitative quality identification of MCC. Although these methods have great 
advantages in detection accuracy, they also have some disadvantages, such as sample destruction, large 
amount of chemical reagents consumption, long analysis time, and difficulty in obtaining sample 
quality evaluation results quickly in the production process. Therefore, it is necessary to establish a 
fast, nondestructive and sensitive method to evaluate and control the quality of RMC and MCC. 

Electronic nose is an electronic sensing instrument. It simulates human’s sense of smell to obtain 
sample odor data, and performs objective digital processing of odor [19,20]. It is mainly composed of 
gas sensor array, signal processing unit and pattern recognition [21]. It has the advantages of simple 
sample pretreatment, convenient operation and fast reaction speed. The quality, authenticity and 
processing degree of Traditional Chinese medicine determine the characteristics and intensity of odor 
to a certain extent. On the other hand, the odor of traditional Chinese medicine is directly related to its 
internal chemical composition, which can reflect the internal nature and become the correlation point 
between external quality performance and internal material basis. For example, MOS Type Sensor-
Array and machine learning were used to classify and identify the Potato Cultivars [22]. MAU-9 
electronic-nose MOS sensor array components and ANN classification were used to discriminate the 
herb and fruit essential oils [23]. Opto-electronic nose coupled to a Silicon Micro Pre-Concentrator 
Device were used to select sensing of flavored waters [24].  

In this study, electronic nose and machine learning were used to discriminate and quantitative 
analysis chemical composition of RMC and MCC. Firstly, HPLC was used to determine the contents 
of gallic acid, 5-hydroxymethylfurfural, paeoniflorin and paeonol in different processing levels of 
MCC. Secondly, Electronic nose was used to determine the smell information of different processing 
degrees of MCC. Then PCA, SVM and other methods were used for qualitative identification. Finally, 
the PLSR and SVR quantitative models were compared and analysis the content of galic acid, 5-
hydroxymethylfurfural, paeoniflorin and paeonol in RMC and MCC. It provided a rapid, simple and 
non-invasive monitoring method to quality evaluation the RMC and MCC. 

2. Materials and methods 

2.1. Officinal material 

27 batches of RMC pieces were collected and purchased from the pharmaceutical companies all 
over the country. It was identified by Associate Professor Liu Jizhu, School of traditional Chinese 
medicine, Guangdong Pharmaceutical University. Voucher specimens were deposited at the Herbarium 
Centre, Guangdong Pharmaceutical University. Part of each batch was processed at 180C for 3–5, 6–8 
and 9–11 min respectively, and different processing degrees products were achieved, including Light 
Carbon (LMCC), Standard Carbon (SMCC) and Heavy Carbon (HMCC).[6]. All samples were 
crushed by a high-speed multifunctional grinder (JP-150A, Jiupin Industry and Trade Co., LTD., 
Yongkang, China) and then passed through an 80-mesh sieve, and then dried at 45℃ and sealed for 
preservation. All the samples were 108 batches and were summarized in Table 1. 

The reference standards Gallic acid (Batch No: CHB180114), 5-HMF (Batch No: CHB180118) 
and Paeoniflorin (Batch No: CHB190124) (purity≥98% for each) were purchased from Chengdu 
Chroma-Biotechnology Co., Ltd. (Sichuan, China). Chromatographic grade methanol was from 
Oceanpak Alexative Chemical., Ltd. (Sweden). Ultrapure water was used in the whole experiment 
(Watson, China). 
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Table 1. Sample information of RMC and MCC. 
 

Sample number batch number producing areas 

RMC1 LMCC1 SMCC1 HMCC1 YPA9A0001 Anhui 

RMC2 LMCC2 SMCC2 HMCC2 YPA8J0001 Anhui 

RMC3 LMCC3 SMCC3 HMCC3 YPA7H0001 Sichuan 

RMC4 LMCC4 SMCC4 HMCC4 YPA8H0001 Sichuan 

RMC5 LMCC5 SMCC5 HMCC5 YPA9C0001 Hebei 

RMC6 LMCC6 SMCC6 HMCC6 181100019 Anhui 

RMC7 LMCC7 SMCC7 HMCC7 170901 Anhui 

RMC8 LMCC8 SMCC8 HMCC8 181201 Anhui 

RMC9 LMCC9 SMCC9 HMCC9 190101 Anhui 

RMC10 LMCC10 SMCC10 HMCC10 180600159 Anhui 

RMC11 LMCC11 SMCC11 HMCC11 20190515 Anhui 

RMC12 LMCC12 SMCC12 HMCC12 180600029 Anhui 

RMC13 LMCC13 SMCC13 HMCC13 1990101 Anhui 

RMC14 LMCC14 SMCC14 HMCC14 181201 Sichuan 

RMC15 LMCC15 SMCC15 HMCC15 190401 Anhui 

RMC16 LMCC16 SMCC16 HMCC16 20180701 Anhui 

RMC17 LMCC17 SMCC17 HMCC17 190409 Anhui 

RMC18 LMCC18 SMCC18 HMCC18 190303 Anhui 

RMC19 LMCC19 SMCC19 HMCC19 190415 Anhui 

RMC20 LMCC20 SMCC20 HMCC20 190235 Anhui 

RMC21 LMCC21 SMCC21 HMCC21 180811 Anhui 

RMC22 LMCC22 SMCC22 HMCC22 180928 Anhui 

RMC23 LMCC23 SMCC23 HMCC23 181117 Anhui 

RMC24 LMCC24 SMCC24 HMCC24 HX19K01 Anhui 

RMC25 LMCC25 SMCC25 HMCC25 190439 Anhui 

RMC26 LMCC26 SMCC26 HMCC26 184902 Anhui 

RMC27 LMCC27 SMCC27 HMCC27 201904 Hebei 

2.2. Instrument for chemical composition content determination 

The contents of gallic acid, 5-HMF, paeoniflorin and paeonol in RMC and different processed 
MCC were determined by HPLC. The instruments used include: Shimadzu high performance liquid 
chromatograph, equipped with LC-20AT binary pump, SPD-M20A detector, SIL-20A injector 
(Shimadzu, Japan),1/100000 electronic balance (sartorius, Germany), KQ-300DE ultrasonic cleaning 
instrument (Shanghai Lingke). 

2.3. E-Nose equipment and measurements 

Samples were detected by portable e-nose PEN3 (Airsense Analytics, Schwerin, Germany), 
which, with the built-in sensor array, sampling and cleaning channels, and data acquisition system, is 
characterized by its automatic adjustment, calibration, and system enrichment functions [25].  
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The sensor array is composed of ten MOS sensors sensitive to different compounds, the sensitive 
characteristics of each sensor was listed in Table 2. The sensor response value was relative resistivity 
G / G0 (G represented the resistance of the sensor after the action of volatile gas in the sample to be 
tested, G0 represented the resistance of the sensor after the action of reference gas filtered by standard 
active carbon). The electronic nose device is shown in Figure 1. 

 

Figure 1. Experimental instrument of PEN-3. 

Table 2. Gas sensor array of PEN-3. 

Number Name of sensor Detection of chemical components 

S1 W1C Aromatic 

S2 W5S Nitrogen Oxides 

S3 W3C Ammonia, aromatic 

S4 W6S hydrogen 

S5 W5C Alkanes, aromatic ingredients 

S6 W1S Methane 

S7 W1W Sulfide 

S8 W2S Ethanol 

S9 W2W Aromatic ingredients, organic sulfur compounds 

S10 W3S Alkanes 

2.4. Determination method of chemical composition 

2.4.1. Preparation of test solution 

Accurately weigh 0.5 g of RMC and MCC with different processing degrees (passing 80 mesh 
sieve), place it in a conical flask with a stopper, accurately add 25 mL of 50% methanol, weigh and 
extract with ultrasound (power 100W) for 30 min, cool to room temperature, weigh, then make up the 
weight loss with 50% methanol, filter, and take the continuous filtrate as the test solution.  
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2.4.2. Preparation of reference solution 

The standard substances of gallic acid, 5-HMF, paeoniflorin and paeonol were accurately weighed 
and dissolved with 50% methanol to obtain the stock solutions at the concentrations of 0.7000, 1.000 
and 2.000 mg/mL respectively. The working standard solutions, after prepared by mixing and diluting 
the stock solutions with methanol, were filtered through a 0.22 μm PTEE filter. The stock solutions 
and working solutions were stored at 4 °C for further use. 

2.4.3. Chromatographic conditions  

The separation was performed on an Ultimate TM XB-C 18 analytical column (250 mm × 4.6 
mm, 5 μm) at 30 °C. The mobile phase consisted of a mixture of 0.1% phosphoric acid in water (A)- 
acetonitrile (B). A gradient program was set as follows: 0–15 min, 5–10% B; 15–25 min, 10–24% B; 
25–50 min, 24–39% B; 50–65 min, 39–50% B; 65–90 min, 50–53% B; 90–95 min, 53–95% B. The 
flow rate was 1.0 mL/min and the detection wavelength was 230 nm, 10 μL of the working solution or 
the sample solution was injected for HPLC analysis.  

2.4.4. Methodology validation. 

The linearity of the HPLC method for each analyte was evaluated by calibration curves. Each 
analyte at a series of different concentrations was analyzed in triplicates. The linearity of the calibration 
curve was constructed by plotting the peak area ratios vs. the concentration of four components. The 
precision of the HPLC method was determined by intraday and interday measurements. The working 
standard solution was analyzed in six replicates on the same day to obtain the intraday precision while 
the interday precision was obtained by analyzing the working standard solution daily (six replicates) 
for three successive days. Meanwhile, the stability was assessed by analyzing the same sample solution 
(LMCC4) at 0, 3, 6, 9, 12, and 24 h, respectively. Besides, recovery tests (LMCC4) were performed 
according to Chinese pharmacopeia to investigate the accuracy of the developed HPLC method. Mixed 
standard solutions at the uniform concentration level (100%) were added into 0.5 g of the known real 
samples, and each solution was done three copies in parallel according to the proposed HPLC method. 
The results were expressed as relative standard deviation (RSD %) of the measurements. 

2.5. Data acquisition of electronic nose 

2.5.1. Experimental pretreatment 

The different batch of RMC and MCC were firstly put them in the quartz container separately, 
and then sealed the quartz container with double-layer fresh-keeping film. Before each test, let the 
samples stand for 30 min to fill the whole quartz container with volatile smell; Warmed up the 
machine and flushed the metal sensor of electronic nose for 300 s before detection.  

2.5.2. Detecting parameters  

The electronic nose was connected to the computer, and the corresponding curve of the sample 
sensor was obtained in real time by Winmaster workstation. After the sample standed for 30 min, insert 
the injection needle of the electronic nose was inserted into the fresh-keeping film and fixed it, and 
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inhaled the sample gas to be tested at a flow rate of 150 mL/min. The intake air was passing through 
activated carbon. Each sampling time is 120 s, the sampling interval is 1 s, and the sensor cleaning 
time is 120 s. when measuring the sample, the ambient temperature and humidity are controlled at 
about 25C and 30% respectively. Each batch of samples were measured three times in parallel, and 
the average response curve was taken as the test data of the samples, and the odor response value 
matrix of 108 batches of samples was obtained.  

2.6. Method validation 

Precision of the method was determined by intraday and interday measurements. The sample 
Powder (LMCC14) was analyzed in six replicates on the same day to obtain intraday precision, and 
they were analyzed daily (six replicates) for three successive days to obtain the interday results. The 
stability was assessed by analyzing the same sample powder (LMCC14) at 0, 2, 4, 6, 8 h, respectively. 

2.7. Data analyzing and Statistical tests 

Data analysis was completed in the MATLAB 2020 environment, qualitative analysis using 
Classification toolbox 5.2. PCA was performed with SIMCA-P + 12.0 software. The significance test 
was carried out by two-tailed test in this paper. 

3. Experimental results and analysis 

3.1. Determination results of chemical composition 

3.1.1. Methodology validation 

The results of the methodology validation for HPLC analysis were shown in Table 3 and Figure 2. 
The calibration curves of each analyte displayed good linearity over the range (R2 > 0.9997) of 
different concentrations. The RSD values of the precision test were 0.10–2.74% for intraday assays 
and 0.52–1.64% for interday assays. The RSD values of stability tests were 0.14–2.79%. The recoveries 
of the HPLC method were above 96.94%, and the RSD values were less than 3.0%. The results 
demonstrated that the developed HPLC method was capable of accurately determining the contents of 
the twelve chemical ingredients in different RMC and MCC samples. 

3.1.2 Sample analysis 

The developed HPLC method was applied to simultaneously determine the contents of the 
chemical ingredients in RMC and MCC. The results were shown in Table 4. There was a significant 
difference in the contents of the four chemical ingredients between RMC and different products of 
MCC. The contents of paeoniflorin and paeonol in RMC were higher than the different degree process 
product of MCC. And their contents were declined with the extension of processing time. While the 
content of gallic acid and 5-HMF were the highest among the RMC and MCC, at the same time they 
were firstly increased and then declined with the processing time. This results was consisted with 
previous studies [6]. 
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(a)

(b) 

Figure 2. HPLC chromatogram. 

*Note: a. HPLC Chromatogram of reference substance; b. HPLC Chromatogram of samples; 

1. gallic acid; 2. 5-HMF; 3. paeoniflorin; 4. paeonol; A. RMC; B. LMCC; C. SMCC; D. HMCC 

Table 3. The results of methodology validation for HPLC analysis. 

composition 
regression equation/ 

R2 

linear rang 

(μg/mL) 

Recovery (%) Precision/ RSD (%) Repeatability 

RSD (%) mean RSD Intra-day Inter-day 

gallic acid 
Y = 26797X + 40702 

R2=0.9999 
1.75~134.75  96.94 0.02 2.20  2.22 2.19 

5-HMF 
Y = 11417X + 6233.3 

R2=0.9999 
3.00~125.00  100.55 0.55 0.36 1.04 2.22 

paeoniflorin 
Y = 13372X - 20305 

R2=0.9997 
0.50~190.5 0 100.47 1.15 2.74 2.79 0.52 

paeonol 
Y = 31918X - 49375 

R2=0.9999 
20.00~400.00 98.83 1.85 0.10 0.14 1.59 

3.2. Results of electronic nose data processing 

3.2.1. Methodological investigation  

The RSD values of precision test were 0.44–2.51% for intraday assays and 1.84–3.14% for 
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interday assays. The RSD values of stability test were 0.68–4.21% (Table 5). The system was 
considered suitable for analysis of RMC and MCC.  

Table 4. Average content of chemical components in RMC and MCC (N = 27). 

 gallic acid (mg/g) 5-HMF (mg/g) paeoniflorin (mg/g) Paeonol (mg/g) 

RMC 2.13 ± 0.48 0 8.31 ± 1.28 12.09 ± 3.28 

LMCC 4.41 ± 0.78 3.86 ± 1.00 2.78 ± 0.97 9.26 ± 1.51 

SMCC 2.60 ± 0.89 2.97 ± 1.10 0.55 ± 0.36 6.75 ± 1.39 

HMCC 0.29 ± 0.19 0.38 ± 0.18 0.16 ± 0.02 2.78 ± 0.71 

Table 5. Investigation on the precision of electronic nose sensor. 

sensor 

RSD (%) 

sensor Stability RSD (%) 

RSD (%) 

Stability RSD (%) Intraday 

(n = 6)  

Interday 

(n = 6)  

Intraday 

(n = 6)  

Interday 

(n = 6)  

W1C 0.84 2.13 W1S 0.96 2.34 2.13 4.21 

W5S 1.11 3.14 W1W 3.42 0.46 2.01 3.18 

W3C 1.06 1.98 W2S 0.83 2.51 2.09 4.01 

W6S 0.44 1.84 W2W 0.68 0.67 1.87 4.18 

W5C 0.67 2.76 W3S 0.81 1.09 2.01 0.93 

 

Figure 3. Response curve of electronic nose sensor. 

3.2.2. Response curve of odor sensor 

Figure 3 showed the odor response curve of 10 sensors, using electronic nose on one sample 
within 120 seconds. It could be seen from the figure that the change of the sensor response value 
increased gradually and then tended to be gentle. This was because during headspace injection, the 
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concentration of volatile substances in the sample entering the sensor channel increases continuously 
and finally reaches dynamic equilibrium.  

3.2.3. Response value of odor sensor 

The radar diagram of the sample odor sensor using the response value of each sensor were 
construct when it reached equilibrium (Figure 4). From the radar diagram, it could be seen that the 
strongest sensor of RMC was W5S (nitrogen oxide), followed by W1S (methyl) and W2W (organic 
sulfide), indicating that the volatile gas substances of RMC were mainly nitrogen oxide, methyl and 
organic sulfide.  

The response values of sensors W1C (aromatic components), W3C (ammonia) and W5C 
(aromatic alkanes) changed little, while the response values of sensors W5S (nitrogen oxides), W1S 
(methyl), W1W (sulfide), W2S (alcohols) and W2W (organic sulfide) changed greatly, which revealed 
that nitrogen oxides, methyl, sulfide, alcohols and organic sulfide were the differential compounds of 
odor between RMC and MCC. On the whole, the difference of sensor response values between carbon 
products with different processing degrees was small. It was difficult to distinguish carbon products 
with different degrees by radar map alone, and other discrimination methods needed to be used for 
further analysis. 

 

Figure 4. Radar diagram of odor sensor of RMC and MCC. 

3.2.4. Optimization of sensor array 

The sensitivity of sensors to gas was partially crossed and relatively nonspecific, so collinearity 
and other problems may occur between some sensors. In order to reduce the miscellaneous information 
between sensor arrays and the complexity of high-dimensional data on the model, Pearson correlation 
analysis was used to calculate the correlation coefficient between the two gas sensors by taking the 
response values of 10 sensors as variables. When the correlation coefficient value of the two sensors 
was larger, it proved that the correlation of the two sensors was better, and the consistency of the 
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information obtained was closer. So, the two sensors could replace each other, and one of them could 
be considered to eliminated. 

Table 6. Correlation analysis results of electronic nose sensors in RMC and MCC  

 W1C W5S W3C W6S W5C W1S W1W W2S W2W W3S 

W1C 1 -0.842 0.984 -0.827 0.934 -0.921 -0.900 -0.924 -0.919 -0.805 

W5S  1 -0.822 0.752 -0.786 0.855 0.898 0.875 0.887 0.801 

W3C   1 -0.782 0.971 -0.867 -0.892 -0.884 -0.91 -0.734 

W6S    1 -0.702 0.851 0.800 0.842 0.830 0.904 

W5C     1 -0.776 -0.886 -0.816 -0.899 -0.621 

W1S      1 0.810 0.980 0.830 0.884 

W1W       1 0.813 0.995 0.762 

W2S        1 0.833 0.875 

W2W         1 0.780 

W3S          1 

From Table 6, it could be seen that the correlation coefficient of W1C and W3C, W3C and W5C, 
W1S and W2S, W1W and W2W were large, namely 0.984, 0.971, 0.980 and 0.995 respectively. 
Therefore, W1W, W5C, W1W and W2S sensors were eliminated in the subsequent analysis. 

 

Figure 5. Load analysis diagram of electronic nose odor sensor. 

Load analysis diagram of electronic nose odor sensor in RMC and MCC was listed in Figure 5. 
It could be seen that the variance contribution rates of the 10 sensors on the first principal component 
were basically the same, and the factor loads of sensors W1S and W2S, W1W and W2W were very 
close, which indicated that sensors W1S and W2S, W1W and W2W were similar to each other, and 
one of them can be eliminated to optimize the sensor array. In the second principal component, the 
contribution rate of W5S was the smallest, so the W5S sensor was removed. According to the results 
of correlation analysis and load analysis, sensors W3C, W6S, W1S, W2W and W3S were selected to 
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form a new sensor array for subsequent analysis. 

3.3. Rapid discrimination of RMC and MCC 

3.3.1. Principal component analysis 

In this experiment, the sample odor response value was used as the input variable, and the 
unsupervised identification of RMC and MCC samples was carried out by principal component 
analysis (PCA) [26]. The effects of sensor array optimization of the models were compared (Figure 6). 
before the sensor array optimized, the cumulative interpretation of nine principal component reached 
99.98% (Figure 6a), among of the first two principal components reached 92.85% (PC1 = 86.61%, 
PC2 = 6.24%). After optimized, the accumulation interpretation of six principal components 
reached 100% (Figure 6b), and the cumulative interpretation of the first 2 principal component score 
reaches 92.76% (PC1 = 87.17%, PC2 = 5.59%). The results indicated that the first two principal 
components can represent above 92% of all odor information characteristics of the sample, and the 
extracted information was well representative.  

(a) (b) 

Figure 6. The Sensor array optimization results of PCA model explanatory variables and 
cumulative explanatory variable. (a) before optimization (b) after optimization 

The scores of the first two principal components of the PCA model before and after the 
optimization of the sensor array were shown in Figure 7. It could be seen from the figure that the RMC 
had a large spatial distribution range, indicating that there were large differences in odor information 
among raw products, which may be related to the origin and production date of them, but there was no 
spatial overlap between raw products and carbon products, indicating that the odor of MCC samples 
has changed significantly after processed. The smell information of MCC with different processing 
degrees overlaps seriously in space. At the same time, after the optimization of sensor array, the spatial 
distribution range of MCC smell information was further reduced, and the clustering effect of the same 
category was better. So, the unsupervised recognition method of PCA could not effectively distinguish 
MCC with different processing degrees, the supervised pattern recognition method with better training 
effect needs to be adopted. 
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Figure 7. Scores of the PCA model before (a) and after the optimization of the 
sensor array model (b).  

3.3.2. Supervised pattern recognition 

In this experiment, taking the collected sample odor quantitative data as the independent variable 
and the sample category as the dependent variable, the discriminant models of RMC and MCC samples 
with different processing degrees were established by using linear discriminant (LDA) [27], partial 
least squares-discriminant analysis (PLS-DA) [28,29] and support vector machine (SVM) [30,31]. The 
performance of the model was evaluated by 10-fold cross validation and external validation. The 
samples were divided into training set and verification set according to the ratio of 2:1, which 
included 72 batches of training set and 36 batches of verification set. The training set was used to train 
the model and optimize the best parameters of the model; The validation set was used to test the 
application effect of the model. The identification results of LDA, PLS-DA and SVM discrimination 
models based on the response value of electronic nose odor sensor were shown in Table 7. Comparing 
the results of the three models, it could be seen that the positive judgment rates of cross validation and 
external validation of SVM models were higher than 90.00%, indicating that this method could 
accurately complete the rapid discrimination of RMC raw products and MCC with different 
processing degrees. 

Table 7. Supervised pattern recognition results.  

Model Parameter 

Training set Validation set 

RMC  LMC  SMC HMC 
Correct-

judgment 
RMC LMC SMC HMC 

Correct-

judgment

LDA - 18/18 16/18 13/18 12/18 81.94% 9/9 9/9 6/9 6/9 83.33% 

PLS-

DA 
Components = 3 12/18 9/18 6/18 11/18 50.00% 6/9 4/9 2/9 1/9 36.11% 

SVM 

RBF kernel 

function 

C = 2, g = 0.0052 

18/18 17/18 17/18 14/18 91.67% 9/9 9/9 7/9 8/9 91.67% 
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3.4. Quantitative analysis of internal components of RMC and MCC based on electronic nose 

3.4.1. Correlation analysis 

In this experiment, the odor quantitative data of RMC and MCC were correlated with the content 
of internal components, and the Pearson correlation analysis was carried out by SPSS 23.0 software. 
The Pearson correlation analysis results were shown in Table 8. From the correlation coefficient, it 
could be seen that the correlation between gallic acid content and each sensor was low, and the 
correlation coefficients are lower than 0.3; The contents of 5-HMF, paeoniflorin and paeonol were 
significantly correlated with the sensors W3C, W6S, W1S, W2W and W3S (significance less than 0.01). 
The contents of 5-HMF were positively correlated with the sensors W3C and negatively correlated with 
W6S, W1S, W2W and W3S, while the contents of paeoniflorin and paeonol were negatively correlated 
with the sensors W3C and positively correlated with W6S, W1S, W2W and W3S. To a certain extent, 
the higher the W3C response value of the sensor, the lower the W6S, W1S, W2W and W3S of the sensor, 
the higher the content of 5-HMF, and the opposite was true for paeoniflorin and paeonol. 

Table 8. Correlation analysis results between odor characteristics and internal component 
content of RMC and MCC (number of cases = 108). 

  W3C W6S W1S W2W W3S 

gallic acid 
Pearson correlation -0.183 0.143 -0.045 0.238* -0.061 

Significance (2-tailed) 0.057 0.141 0.644 0.013 0.530 

5-HMF 
Pearson correlation 0.265** -0.362*** -0.488*** -0.268** -0.527*** 

Significance (2-tailed) 0.005 0.000 0.000 0.005 0.000 

paeoniflorin 
Pearson correlation -0.761*** 0.889*** 0.777*** 0.890*** 0.831*** 

Significance (2-tailed) 0.000 0.000 0.000 0.000 0.000 

paeonol 
Pearson correlation -0.662*** 0.682*** 0.564*** 0.784*** 0.557*** 

Significance (2-tailed) 0.000 0.000 0.000 0.000 0.000 

Note: *: Significance (2-tailed) < 0.05; **: Significance (2-tailed) < 0.01; ***: Significance (2-tailed) < 0.001. 

3.4.2. Regression model for compounds content of RMC and MCC based on odor quantification 

According to the results of “3.4.1” correlation analysis, the content of gallic acid,5-HMF, 
paeoniflorin and paeonol had a certain correlation with their odor characteristics. In this experiment, 
the quantitative data of odor were taken as independent variables, gallic acid, 5-HMF, paeoniflorin and 
paeonol were taken as dependent variables, and partial least squares regression (PLSR) and support 
vector machine regression (SVR) were used to establish the component content regression model. The 
performance of the model was evaluated by 10-fold cross validation and external validation. The 
determination coefficient (R2), root mean square error (RMSE) and relative analysis error (RPD) were 
used as the evaluation indexes of the regression model.  
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Table 9. Results of chemical composition quantitative model based on odor response value 
of electronic nose. 

 Model Parameter R2c RMSEc R2p RMSEp RPD 

gallic acid 

PLSR PCs = 5 0.3773 1.2839 0.2848 1.3492 1.1992 

SVR 
c = 8 

g = 8 
0.8251 0.6600 0.8509 0.6161 2.6259 

5-HMF 

PLSR PCs = 4 0.5339 1.1621 0.4579 1.2702 1.3840 

SVR 
c = 724.0773 

g = 0.7071 
0.7457 0.7364 0.6605 0.8705 2.0194 

paeoniflorin 

PLSR PCs = 3 0.8757 1.1215 0.8970 1.1792 3.1600 

SVR 
c = 32 

g = 1.4142 
0.9585 0.6477 0.9229 1.0205 3.6510 

paeonol 

PLSR PCs = 5 0.6242 2.2585 0.7175 2.3485 1.9082 

SVR 
c = 2 

g = 9.7656e-04 
0.8182 1.5706 0.8019 1.9669 2.2784 

The results of the quantitative model of compounds content of RMC and MCC based on odor 
quantitative data were shown in Table 9. According to the model evaluation indexes in the table, the 
fitting effect of the regression model established by SVM was better than that of PLSR model, the 
model correlation coefficients R2c and R2p were significantly improved, and RMSEc and RMSEp were 
smaller, such as gallic acid quantitative model, R2c and R2p increased from 0.3773 and 0.2848 to 0.8251 
and 0.8509 respectively, RMSEc and RMSEp decreased from 1.2839 and 1.3492 to 0.6600 and 0.6161 
respectively, and RPD increased from 1.1992 to 2.6259, indicating that SVM had high prediction effect 
in dealing with the quantitative problem of component content with low correlation with odor 
characteristics. This may be related to its working principle in dealing with nonlinear problems. The 
correlation results between the measured values and predicted values of each component were shown 
in Figure 8. It could be observed that the predicted results of 5-HMF were scattered on the regression 
line, and the correlation coefficient of the quantitative model was lower than 0.75, indicating that the 
performance of the model may be improved. The other compounds gallic acid, paeoniflorin, paeonol 
were concentrated on the regression line. From the above results revealed that SVM was able to 
identify the electronic nose relevant to the target compounds and accurately predict the contents of 
these compounds except for 5-HMF. At the same time with a good prediction, which enabled electronic 
nose to accurately analyze the influence of processed on MCC quality. 

In fact, it is a very popular work to detect samples by electronic nose to obtain the effect of 
different other conditions on samples. For example, Sana Tatli et al. used electronic nose to detect the 
response difference of volatile organic compound emission in cucumber to track the effect of different 
urea fertilizers [32]；Robert Rusinek et al. analyzed the effects of fiber additives on vocs in bread using 
electronic nose technology [33]. Faraneh Khodamoradi et al. investigated the effects of different 
nitrogen fertilizer amounts on basil [34]. However, all of these studies were based on qualitative 
analysis, and this study combined qualitative and quantitative analysis to provide a more accurate 
monitoring of the degree of carbon frying in moutan cortex. 
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(a) (b) 

(c) (d) 

Figure 8. Predicted values and measured values of chemical composition. 
(a)—gallic acid; (b)—5-HMF; (c)—paeoniflorin; (d)—paeonol 

4. Conclusions 

The electronic nose combined with chemometrics was introduced to digitize the smell of RMC 
and MCC. The discrimination model and chemical composition quantitative model of RMC and MCC 
with different processing degrees were constructed. The experimental results showed that: 

1) After the RMC was stir-fried, there was little difference in the odor response of MCC with 
different processing degrees, indicating that the volatile components did not change significantly with 
the deepening of processing degree; Combined with supervised SVM model, MCC with different 
processing degrees could be identified and predicted accurately, and the correct rate of sample 
discrimination was 91.67%. 

2) Based on the odor digitization of RMC and MCC, combined with PLSR and SVM, the 
quantitative models of gallic acid, 5-HMF, paeoniflorin and paeonol in RMC and MCC were 
established. Except for 5-HMF, the determination coefficients (R2) of the quantitative models of gallic 
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acid, paeoniflorin and paeonol were higher than 0.8. The results showed that the quantitative data of 
RMC and MCC odor could be used to predict the contents of three chemical components; The fitting 
effect of 5-HMF quantitative model based on odor response value was general, and the model could 
be optimized and improved by fusing the eigenvalues of other sensors. 

In addition, this study established a reliable quantitative model, which is not available in most of 
the latest studies mentioned above. Quantitative research not only gives more accurate interpretation 
of samples, but also can be used to control the degree of processing more accurately, which is a more 
comprehensive perspective of analysis. 
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