
MBE, 19(9): 8866–8891.

DOI: 10.3934/mbe.2022411

Received: 19 February 2022

Revised: 30 May 2022

Accepted: 01 June 2022

Published: 17 June 2022

http://www.aimspress.com/journal/MBE

Research article

A multi-strategy firefly algorithm based on rough data reasoning for

power economic dispatch

Ning Zhou*, Chen Zhang and Songlin Zhang

School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

* Correspondence: Email: zhouning@lzjtu.edu.cn.

Abstract: Dynamic economic dispatch (DED) is a multi constraint and nonlinear complex problem,
which is embodied in the dynamic decision-making coupled with each other in time and space. It is
generally transformed into a high-dimensional multi constraint optimization problem. In this paper, a
multi Strategy firefly algorithm (MSRFA) is proposed to solve the DED problem. MSRFA puts
forward three strategies through the idea of opposite learning strategy and rough data reasoning to
optimize the initialization and iteration process of the algorithm, improve the convergence speed of
the algorithm in medium and high dimensions, and improve the escape ability when the algorithm falls
into local optimization; The performance of MSRFA is tested in the simulation experiment of DED
problem. The experimental results show that MSRFA can search the optimal power generation cost
and minimum load error in the experiment, which reflects MSRFA superior stability and ability to
jump out of local optimization. Therefore, MSRFA is an efficient way to solve the DED problem.

Keywords: power system dynamic economic dispatch; firefly algorithm; opposing learning strategies;
rough data reasoning; relational reasoning

1. Introduction

With the rapid and high quality development of the country’s social economy, the demand for
electricity in most industries across the country is also increasing continuously. At the same time the
crisis in the world in terms of non-renewable energy is getting worse day by day, and the rational use
of resources is receiving more and more attention from experts and scholars. Therefore, the rational
utilization of electric power resources has become an important research topic. Dynamic Economic

8867

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

Dispatch (DED) plays an important role in the operation and control of the power system, which is a
dynamic decision problem coupled in time and space, and its main objective is to reduce the total fuel
cost as much as possible while meeting the load demand and operating conditions.

Economic dispatch of power systems solves a multi-constrained, nonlinear and complex problem.
At present, the main research methods are divided into two kinds, one is linear programming technique
based on Lagrangian optimization function and neural network [1], but linear programming requires
derivatives of the problem as well as gradients, and the degree of calculation is too complicated
when dealing with high-dimensional power systems. The other is the iterative population intelligence
based optimization algorithm, which is also a commonly used method, some classical algorithms
such as differential evolution algorithm (DE) [2], genetic algorithm (GA) [3,4], particle swarm
algorithm (PSO) [5,6], etc. In addition to the classical intelligent algorithms, numerous emerging
algorithms are also widely used in DED problems. Literature [7] has proposed an enhanced exploratory
whale optimization algorithm (EEWOA) that improves population diversity using the proposed
adaptive enhanced exploratory mechanism, increases the ability of the algorithm to jump out of the
local optimum, and solves the DED problem using the algorithm. In the literature [8], a chaotic bat
algorithm is proposed to solve the dynamic scheduling problem. The authors demonstrate the
effectiveness of the proposed algorithm by applying it to the 150 kilovolt power system on East
Kalimantanand by comparing it with the bat algorithm and the particle swarm algorithm. In the
literature [9], a multiswarm statistical particle swarm optimization is proposed for solving the
economic management of power planning and resources, and it is tested on a solar photovoltaic power
system, and the experiments prove that the algorithm can effectively solve the renewable energy
dynamic economic dispatch problem. In the literature [10], a dragonfly algorithm (DA), is used to
solve the DED problem, which is derived from the static and dynamic swarming behavior of
dragonflies. The effectiveness of the proposed algorithm in solving the DED problem is demonstrated
through the simulation experiments of the algorithm in the IEEE 5 unit test system. These algorithms
are cited to solve the DED problem and obtain good results.

As a kind of swarm intelligence optimization algorithm, the firefly optimization algorithm
inherits the advantages of its relatively simple structure and easy understanding, and possesses the
features of few parameters, easy adjustment and suitable for parallel computation. Through the study
of literature [11], we found that the firefly algorithm has good convergence speed and solution
accuracy when facing continuous, single-peaked and multi-peaked objective functions, especially
when facing nonlinear and multi-constrained objective functions, the firefly algorithm also has good
solution performance, and compared with other algorithms, the firefly algorithm has strong
adaptability of objective functions; meanwhile, the firefly algorithm has been widely used in
scheduling problems in various industrial fields in recent years [12–15], such as complex optimization
scheduling [16], intelligent production scheduling [17], and cloud computing task scheduling [18],
which proves that the Firefly algorithm has unique advantages in dealing with scheduling problems.
The dynamic power scheduling problem is one of the typical scheduling problems, and in general the
DED problem is modeled with a nonlinear objective function and multiple complex constraints. The
Firefly algorithm is adapted to solve this kind of problem, so the Firefly algorithm is chosen as the
base algorithm to solve the DED problem in this paper.

However, the DED problem includes high-dimensional objectives and functions as well as
nonlinear constraints, and the computation is very complex, so the FA algorithm is prone to problems
such as falling into local optimum, slow convergence and low solution accuracy. This will largely

8868

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

affect the solution quality of the actual DED problem. Inspired by the references [19–22] and the rough
data inference literature [23], this paper proposes a firefly algorithm (MSRFA) based on rough data
inference and with three iterative strategies for solving the DED problem.

The MSRFA algorithm proposed in this paper introduces the opposing learning strategy, the
greedy algorithm idea and the rough inference theory, which are quite different from other
metaheuristic algorithms. 1) The MSRFA algorithm uses a specific contrastive learning approach for
population initialization, which is different from the random initialization of general metaheuristic
algorithms. The initialization approach of contrastive learning strategy can help the algorithm to obtain
good population distribution, diversity and population quality at initialization. Such an approach can
help the algorithm get rid of the influence of initial values on the algorithm solution performance and
improve the algorithm solution accuracy to a certain extent; 2) the introduction of the attractiveness
selection mechanism based on the greedy algorithm and the reasoning of association relations in the
theory of rough inference directly changes the iterative approach of the firefly algorithm. Unlike the
probabilistic selection mechanism of genetic algorithm (GA) and particle swarm algorithm (PSO) that
directly leans toward the better individual, the MSRFA method first uses the attractiveness selection
mechanism when iterating, and the individual calculates the individual with the highest attractiveness
in the population to move, and at the same time uses the associative relationship reasoning when
moving to search around the moving target individual to find other possible better moving points. Such
an approach can greatly accelerate the convergence speed of the algorithm at the early stage of its
operation on the one hand, and also help the algorithm to improve the solution accuracy. 3) The general
metaheuristic algorithm converges faster, but there is no corresponding strategy to help the algorithm
jump out of the local optimum, and it can only rely on the unique mechanism of the algorithm itself,
so most metaheuristic algorithms are easy to fall into the local optimum when solving complex
problems, and cannot obtain better solutions. in the MSRFA algorithm, we introduce the equivalence
relation inference strategy, and when the algorithm falls into the local optimum, it will automatically
enable the strategy is automatically enabled when the algorithm falls into a local optimum, and the
better individuals in the current population are divided into equivalence classes, and the individuals
are adjusted within a certain range to help the algorithm jump out of the local optimum. This approach
also ensures that the algorithm can obtain a good solution accuracy. Therefore, MSRFA is well suited
to solve the DED problem.

2. Dynamic power economic dispatch

The dynamic power economic dispatch problem is one of the fundamental problems in power
system operation. DED [24–26] aims to dispatch the output of online generating units with the
expected load demand in a certain time period so that the power system operates most economically
within the safety limits. That is, the constraints are satisfied on the basis of meeting the hourly load
demand while reducing the total generation cost of the unit so that the generation cost is minimized.

The objective function of the DED is the total production cost of NG generating units at intervals
of T. The production cost can be approximated as a quadratic function from the active power output of
the generating units and is described as

1 1

()
GNT

c ih ih
k i

F F P
 

  (1)

8869

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

 2 min() sin(())it it i it i it i i i it itF P a P b P c e f P P     (2)

where, i = 1,2,3,…,NG.
ia ,

ib and
ic is the cost factor,

ie and
if is the consumption factor, itP is

the actual power output (in MW) of the i-th generator at time t, NG is the number of online generating
units to be dispatched, and T is the total dispatch time.

The load and loss constraint of the system is Eq (3), where,
DP denotes the total system load and

LP denotes the loss.

1

GN

it Dt Lt
i

P P P


  (3)

where B is obtained using the
LtP factor with the following equation.

1 1

G GN N

Lt it ij jt
i j

P P B P
 

  (4)

The output power of each generator set is at the upper and lower limits directly. The generator
constraint is represented by a pair of inequality constraints.

 min max
i it iP P P  (5)

where min
iP and max

iP are the lower and upper output limits of the power of the i-th station generator

unit. Also the rise and fall rates of each unit satisfy the following constraints.
If the generation capacity increases,

1t

i i iP P UR  (6)

If the generation capacity decreases,

 1t
i i iP P DR   (7)

where, 1t
iP is the power generation of generator unit I in the previous hour,

iUR denotes the upper

slope, and
iDR denotes the lower slope. The experiments are simulated using the following fitness

function model.

2 2

1 2 lim
1 1 1 1 1 1

()
n N n N n N

k i it it Dt it r
t i t i t i

f F P P P P P 
     

          
   

   (8)

where
1 and

2 are penalty factors, n is the number of hours, and N is the number of units. The

penalty factor regulates the objective function such that the algorithm provides a higher cost value.

8870

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

limrP is determined by Eq (9).

(1) (1)

lim (1) (1)

,

,

,

i t i it i t i

r i t i it i t i

it

P DR P P DR

P P DR P P DR

P otherwise

 

 

  


   



 (9)

3. Overview of relevant theories and optimization algorithms

3.1. Opposite learning strategies

For population intelligence algorithms, the quality of the initial population affects the search
capability of the algorithm. Generally, the population is initialized randomly, but it does not guarantee
diversity and does not effectively expand the spatial distribution of solutions, so a contrastive learning
strategy is used to expand the distribution of the initial population as much as possible. First, set the

population size N. Randomly initialize the location),x,...,x,x(p n21 of each individual of the

population to be a point in the n-dimensional space, where ;n,...,,i];U,L[x iii 21 L and U denote

the upper and lower bounds, respectively. The opposing point is.

 1 2(, , ...,),t t t t t
d i i i ip x x x x L U x    (10)

In this way, we can obtain a total of 2N individuals, merge the 2N individuals, and select the best
adapted N individuals from them as the initial population.

3.2. Rough data inference

Rough data inference is data-based inference, and data links that are unclear, non-deterministic,
seemingly present or latent between data are called rough data links. The purpose of introducing rough
data inference is the desire to describe the actual rough data links. Before introducing rough data
inference we introduce the concept of rough inference space.

The rough inference space originates from the approximation space (U,R)M  and is an

extension of the approximation space. To define the rough inference space, let U be the data set,
called the argument domain, whose elements are called the data; let),}(n ≥,...,R,RK={R n 121

 where

nR,...,R,R 21
 are n distinct equivalence relations on U . The equivalence relation UUS  given

on U is called the S-reasoning relation. The structure consisting of U , K and S is denoted as W
and)S,K,U(W  is called the rough inference space [23].The rough inference space is introduced

here to refine the rough data inference more and to make the theory of rough data inference operating
on the space more concrete and clear.

The concepts of antecedents and successors are then introduced on the basis of the rough
reasoning space.

Let)S,K,U(W  be a rough inference space, and for Ub,a  , if Sb,a  , then  b,a

is said to be a S-directed edge, a is called the S-predecessor of b, and b is called the successor of a;
the sequence)n(b,b,b,b,...,b,b,b,a nnn 01211  

 of S-directed edges is called the path from

a to b.

8871

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

On this basis we can obtain the S-successor set R][a  of
R[a] in the rough inference space,

which leads to the definition of rough data inference.
Definition 2.1 [23]

(U,K,S)W  is the space of rough reasoning, Ua and KR .

1) Ub , if R][aRb *  , then we say that a is a direct rough introduction tob,with respect to

R , and we denote it as ba R ;
2) ,Ub,b,...,b,b n 21

)n(bb,bb,...,bb,ba RnnRnRR 01211  
 says that a is roughly

introduced b with respect to R and is denoted as a ⊨ୖ b.
The inference for KR , a about R that is directly roughly introduced or roughly introduced to

b is called rough data inference for R about in (U,K,S)W  , or rough data inference for short [23].

3.3. Standard firefly algorithm

Firefly algorithm (FA) is a mathematical model constructed by imitating the behavior of
information exchange between fireflies and attracting each other’s collections. It mainly uses the
luminescence property of fireflies to simulate the behavior of mutual attraction between fireflies and
search for the optimal solution in the search space. The adaptation value of the objective function is
used to represent the brightness of the fireflies, and each firefly moves its position due to the attraction
of a brighter firefly in the neighboring fireflies. If there is no neighboring firefly that is brighter than
this firefly, then it moves randomly. The mutual attraction and position update between fireflies can be
modeled as an optimization process. The attraction between fireflies increases as the distance between
them decreases.

In the D-dimensional solution space, the position of each firefly is.

 1 2(, ,...,)nX x x x (11)

The relative attraction between the fireflies is given by Eq (12).

2

0() re     (12)

In Eq (12), 0 is its initial attraction, that is, the attraction when the distance between two fireflies
is 0,  is the absorption rate of light by the medium, and r is the distance between two fireflies.

The distance traveled is calculated by the following Eq (13).

2'

0 () ()r
i i i jX X e X X rand     (13)

where iX denotes the location of a firefly that is brighter than the i -th individual, and r denotes
the distance between the i -th firefly and the j-th firefly. rand() is a random perturbation and is the
step factor of the perturbation. Since all individuals will only fly toward individuals with higher
brightness than themselves, then the brightest individual in the population will not update its position.
The brightest individual in the group will update its position according to the following Eq (14).

 ' ()i iX X randGuass  (14)

when the algorithm reaches the maximum number of iterations, the optimal location of the searched
fireflies is output as the solution, otherwise it continues to update the locations of all fireflies.

8872

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

Table 1. FA pseudo-codes.

Algorithm 1 Firefly Algorithm
1: Objective function 1(), (,...,)df x xx x

2: Generate initial population of fireflies (1, 2,...,)ix i n

3: Light intensity iI at ix determined by ()if x

4: Define light absorption coefficient 

5: while (t < Max-Generation) do

6: for 1 :i n all n fireflies do

7: for 1:j i all n fireflies do

8: if (j iI I), Move firefly i towards j in d-dimension; Then

9: end if
10: Attractiveness varies with distance r via exp[]r

11: Evaluate new solutions and update light intensity
12: end for j

13: end for i

14: Rank the fireflies and find the current best

15: end while

16: Postprocess results and visualization

4. Multi-strategy firefly algorithm

4.1. Initialization

The standard FA initializes the population information in a random way, and the original
initialization method produces a large population randomness and unstable population diversity due to
the initial value-sensitive characteristics of the heuristic algorithm, which has a large impact on the
accuracy and speed of the algorithm solution; in this paper, we use the contrastive learning strategy to
initialize the population; the contrastive learning strategy constructs the initial population by
calculating the contrastive points of the initial point In this paper, we use the opposing learning strategy
to initialize the population; the opposing learning strategy calculates the opposing points of the initial
points, constructs 2N individuals, and selects the N individuals with the best fitness as the initial
population, which expands the distribution of the initial population as much as possible and effectively
expands the spatial distribution of the understanding, and also ensures the diversity of the population.

4.2. Update strategy

In the standard FA, two firefly individuals are compared directly to determine the direction of
movement and distance of the individuals, in such a way that most of the individuals will move in each
iteration of the algorithm, resulting in a slow convergence of the algorithm in the beginning stage, and
there is no adjustment of the rules after falling into a local optimum, leading to an algorithm that is
easily fallen into a local optimum, and the algorithm has a low solution accuracy and poor stability.

In this paper, three strategies are proposed to improve the iteration rules of the FA algorithm.
Strategy 1: attractiveness selection strategy

8873

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

In the initial stage of the algorithm operation, the formula for attractiveness selection is introduced
in conjunction with the greedy algorithm as follows.

()

()

B t
ij

B t ij

x
P

x R


 (15)

where)t(Bx denotes the relative brightness of the two bodies at the current time t, ijR denotes the

distance between the two bodies, ijP denotes the attractiveness of the two bodies, and each individual

chooses the individual with higher ijP to move, in contrast to the standard FA algorithm, where most

individuals must move among themselves, such a strategy can speed up the convergence of the
algorithm in the initial situation.

Strategy 2: Reasoning strategy under approximation rules
First construct the rough inference space)S,K,U(W  as follows.

U : The thesis domainU is the set of all individuals in the firefly population.
K : Let }R,R{K 21 , where both 1R and 2R are equivalence relations, and they are obtained by

the division of U .
S: The inference relationSis determined by the mutual attraction relation between individuals, i.e.,

}vU,u|u,vu,v{S  . Due to the frequent movement between firefly individuals in the

iteration rule of the FA algorithm, the attraction relation gives the individuals a connection, which
provides the information for the inference relation to be formed. Suppose the inference relation is.

 1 4 2 5 3 5 5 6{ , , , , , , , }S w w w w w w w w          (16)

where, 71 ww  is the current individual and the surrounding points and candidate points when the
current individual moves. The movement of the current individual to a brighter individual will be
determined by the following inference rules.

For the equivalence relation KR , assume that the division of U with respect to R is.

 1 2 3 4 5 6 7/ {{ , , },{ , },{ , }}U R w w w w w w w (17)

The division here is based on the distance between individuals, and the rough inference schematic
in the algorithm can be obtained by combining the above information, as shown in Figure 1.

W1

W2

W3

W4

W5

W6

W7

Figure 1. Schematic diagram of rough data reasoning in individual movement.

In Figure 1, in the process of rough inference, for individual
1w ,

2w ,
3w is obtained by the

8874

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

approximation rule (dividing individuals in a certain range into a group), then dividing
1w ,

2w ,
3w

into a data set, and dividing
74 ~ww by the same reasoning; then

4w is obtained by the inference

rule in
1w , and

5w ,
6w ,

7w by the same reasoning. By the definition of rough data inference, for

1w there is },w,w{w][w R 3211  , },w{wR][wR *
541  then

51 ww R . For individual
5w we have

},w{w][w R 545  , },w{wR][wR *
765  . Then

75 ww R . From
51 ww R ,

75 ww R , we can

obtain
71 ww R . From the above, it can be concluded that there is also a potential correlation

between
1w and

7w , which can provide individuals with new options when moving the selection point.

Strategy 3: Equivalence Reasoning Strategy
Using equivalent inference strategies to help the algorithm improve escape when it reaches a

local optimum.
Using equivalent inference strategies to help the algorithm improve escape when it reaches a local

optimum. In rough data inference for the S path   ,vb,,bb,...,,bb,u,b nnn 1211
 recorded

in the deterministic data linkage corresponds to the trajectory of the individual movement in the
algorithm, the data in the path

ib . By
ib the path can be decomposed into two sub-paths:

  ii ,bb,...,,bb,u,b 1211
 and   ,vb,,bb,...,,bb nnnii 11

, which u are the S path to

ib and the S path from
ib to v , respectively. u ⊨࣬ bࣻ and bࣻ ⊨࣬ which are indicative of the ,ݒ

existence of a definite data link from u to
ib .The R -equivalence class

Ri][b is considered when

the data represented by
ib is problematic or the corresponding fitness falls into a local optimum. For

)b(w][bw iRi  , there are u ⊨࣬ and w ݓ ⊨࣬ i.e., u , ݒ is rough about R pushing out w , and

w is rough about R pushing out v . We can obtain that the equivalence class w of
ib provides us

with new path choices, which can improve the ability of the algorithm to jump out of the local optimum.

4.3. MSRFA implementation process

Based on the above update initialization method and three generation strategies, this paper
proposes the implementation process of MSRFA. In this process, the population is first initialized with
the opposing learning strategy; then the individuals in the firefly are moved using the three generative
strategies; finally, the best solution after the movement is used as the global optimal solution. Figure
2 shows the process of MSRFA implementation. Table 2 shows the pseudo-code of MSRFA.

5. Experimental analysis of the algorithm

Section 5 is divided into two parts. In Section 5.1, the paper describes the functions and some
parameter settings for the benchmark test. In Section 5.2, the proposed MSRFA is compared with PSO,
PPSO [27], FA, and CFA [28] to verify its performance.

5.1. Test function introduction and parameter setting

In Section 5.1, the proposed algorithm will be tested using the CEC2013 suite, which contains 28
benchmark functions (f1–f28). Among them, f1–f5 have 5 single-peaked functions. These functions
have only one global optimal solution. It is usually used to test the convergence speed of the algorithm.
f6–f20 are 15 basic multimodal functions. These functions contain exponential local optimal solutions.
It is used to test the global search ability of the algorithm and to determine whether it can jump out of

8875

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

the local trap. f21–f28 are eight complex functions. These functions have multiple random global
optimal solutions. The search ability of the algorithm can be detected comprehensively. These 28
functions can test the performance of the algorithm in different aspects. More information about
CEC2013 can be found in [29,30].

To reflect the fairness of the experiment, each algorithm was tested 30 times on each benchmark
function. The data obtained include the “mean”, “best” and “standard deviation” of the fitness error.
Table 3 shows the relevant parameters for each algorithm. The dimension of the benchmark function
is set to 30, the search space is from −100 to 100, and the number of initial solutions and iterations
is 100 and 500, respectively. In addition, the number of function tests is the same for all algorithms.

Begin

Set the algorithm parameters and initialize the
population using a contrastive learning strategy

K>Threshold

Retention of
experimental data

Calculate the adaptation degree and record the
optimal individuals and their location information

Iter<1/3Itermax

Strategy 1 Strategy 2

Yes No

Strategy 3

Yes

Iter<Itermax

No

End

No

Yes

Figure 2. MSRFA algorithm flow chart.

5.2. Algorithm testing

In this section, MSRFA is compared with particle swarm algorithm (PSO) [5], A parallel particle
swarm optimization algorithm (PPSO) [27], Firefly Optimization Algorithm (FA) [11] and Firefly
algorithm based on Chaos Theory (CFA) [28] to verify its performance. In this paper, the performance
of the algorithms is evaluated by solution accuracy. Tables 4 and 5 show the solution accuracy of each
algorithm. Figure 3 shows the convergence curves of the above algorithm on the test function.

8876

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

Based on the data in Tables 4 and 5, we find that the proposed MSRFA performs better in the test
environment of cec2013. Compared with PSO, MRSFA achieves 27, 27 and 24 better scores in “mean”,
“optimal” and “standard deviation”, respectively; under the same conditions Finally, the MSRFA
achieves 25, 26 and 24 better results compared with the CFA with chaos optimization, and MSRFA
achieves 25, 26 and 24 better results for complex test functions 21–28. These results demonstrate better
solution accuracy.

Table 2. MSRFA pseudo-codes.

Algorithm 2 MSRFA
1: Objective function 1(), (,...,)df x xx x

2: Initialization population using opposing learning strategies (1, 2,...,)ix i n

3: Light intensity iI at ix determined by ()if x

4: Define light absorption coefficient 

5: while (t < Max-Generation) do

6: Calculate the fitness of each individual

7: if 1/ 3Iter MaxIter then

8: for 1 :i n all n fireflies do

9: According to strategy one, Calculate the degree of attraction

10: Select the individual whose attraction value is the top 1 / 3 to move

11: end for

12: end if

13: if 1/ 3Iter MaxIter then

14: for 1 :i n all n fireflies do

15: According to strategy two, using reasoning strategy to select moving points

16: end for

17: end if

18: Rank the fireflies and find the current best

19: if current best = Last best then 1k k 

20: end if

21: if !k Threshold then

22: Use strategy three to replace the individual of the optimal value

23: end if

24: end while

25: Postprocess results and visualization

Table 3. Parameter settings.

Algorithm Parameters settings

PSO

PPSO

FA

CFA

MSRFA

49.1,4.09.0,10,10 21minmax  cctoVV 

49.1

,4.09.0,10,10,20,4

21

minmax




cc

toVVRG 

97.0,1,0.1,2.00.1 0maxmin0   ，

97.0,1,0.1,2.00.1 0maxmin0   ，

97.0,1,0.1,2.00.1 0maxmin0   ，

8877

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

From these data, it can be seen that the MSRFA proposed in this paper has good performance,
which proves the effectiveness of the contrastive learning strategy and the update iteration strategy.
Meanwhile, the above results show that the optimization algorithm has good performance in solving
complex functions, and it can be obtained that the optimization algorithm will have better performance
in solving complex problems with multiple constraints and non-linearity like DED. However, in the
table we can also get relatively poor data of the improved algorithm, for example, on f4, f13, f15, f19,
f21 and f24, the MSRFA has significantly poorer optimization impact compared to other algorithms,
so in future research, the escape capability of the algorithm when it falls into local optimum will be
further enhanced.

Table 4 Performance of PSO, PPSO and MSRFA in CEC2013.

 PSO PPSO MSRFA

30D Mean Best Std Mean Best Std Mean Best Std

1 1.54 × 102 2.79 2.66 × 102 0.664 8.54 × 10−2 0.535 1.65 × 10−2 3.59 × 10−3 4.56 × 10−2

2 6.07 × 106 1.69 × 106 3.59 × 106 3.34 × 106 8.64 × 105 1.42 × 106 7.56 × 105 7.20 × 102 8.22 × 105

3 8.61 × 109 1.22 × 109 7.88 × 109 3.18 × 109 6.31 × 108 2.23 × 109 5.26 × 108 2.56 × 107 6.24 × 108

4 1.61 × 104 5.37 × 103 5.54 × 103 2.52 × 104 8.78 × 103 5.17 × 103 6.45 × 103 4.58 × 103 7.59 × 102

5 98.4 25.0 36.4 33.4 1.45 26.8 1.59 × 10−2 8.55 × 10−3 4.51 × 10−2

6 93.7 26.7 34.5 65.4 15.4 28.7 58.1 5.43 19.2

7 1.45 × 102 57.5 41.8 1.07 × 102 50.7 26.7 44.9 30.6 16.1

8 25.8 20.6 6.53 × 10−2 21.9 20.8 8.22 × 10−2 19.6 15.8 4.56 × 10−2

9 38.8 25.4 3.54 31.5 24.3 3.44 6.04 2.46 8.54

10 65.7 7.05 55.8 7.88 2.58 3.67 1.23 0.458 6.54

11 2.52 × 102 1.35 × 102 54.8 2.48 × 102 1.23 × 102 46.8 13.6 12.3 27.5

12 2.48 × 102 1.06 × 102 57.3 2.38 × 102 1.02 × 102 55.8 52.6 24.6 57.6

13 3.59 × 102 2.27 × 102 55.9 3.41 × 102 2.16 × 102 45.2 6.51E+01 40.2 32.4

14 4.34 × 103 2.53 × 103 6.07 × 102 4.51 × 103 1.86 × 103 6.44 × 102 1.05 × 103 6.58 × 102 2.37 × 102

15 4.53 × 103 3.21 × 103 5.08 × 102 4.21 × 103 2.09 × 103 6.73 × 102 5.24 × 103 2.58 × 103 4.26 × 102

16 1.56 0.438 0.427 1.23 0.407 0.389 0.765 0.897 9.92 × 10−2

17 2.76 × 102 1.72 × 102 59.1 2.08 × 102 1.22 × 102 33.8 85.1 54.9 13.4

18 2.43 × 102 1.70 × 102 52.6 2.02 × 102 95.0 34.6 91.4 64.8 17.5

19 23.0 9.59 8.64 12.8 4.59 4.63 12.6 9.58 0.615

20 15.3 13.1 0.370 15.1 14.6 0.257 2.56 1.49 2.37

21 3.82 × 102 2.25 × 102 77.6 3.76 × 102 1.29 × 102 81.3 3.64 × 102 1.17 × 102 61.5

22 5.47 × 103 3.66 × 103 9.06 × 102 5.13 × 103 3.60 × 103 8.24 × 102 1.96 × 103 9.84 × 102 2.48 × 102

23 5.63 × 103 3.13 × 103 1.14 × 103 5.30 × 103 3.80 × 103 7.28 × 102 1.85 × 103 8.74 × 102 3.44 × 102

24 3.12 × 102 2.77 × 102 16.1 3.06 × 102 2.47 × 102 10.9 1.52 × 102 1.32 × 102 9.15 × 102

25 3.45 × 102 2.86 × 102 17.9 3.43 × 102 3.02 × 102 17.6 2.75 × 102 2.42 × 102 6.15

26 3.31 × 102 2.05 × 102 85.5 2.77 × 102 2.00 × 102 87.5 2.25 × 102 1.93 × 102 6.59

27 1.28 × 103 9.02 × 102 1.15 × 102 1.23 × 103 9.57 × 102 89.2 8.19 × 102 6.35 × 102 91.6

28 2.78 × 103 4.55 × 102 8.67 × 102 2.18 × 103 1.23 × 102 1.03 × 103 7.26 × 102 3.48 × 102 6.49 × 102

8878

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

Table 5. Performance of FA, CFA and MSRFA in CEC 2013.

 FA CFA MSRFA

30D Mean Best Std Mean Best Std Mean Best Std

1 2.49 × 10−2 2.60 × 10−2 1.51 × 10−2 2.21 × 10−2 1.52 × 10−2 5.20 × 10−3 1.65 × 10−2 3.59 × 10−3 4.56 × 10−2

2 7.88 × 105 7.62 × 105 8.14 × 105 1.16 × 106 2.10 × 105 8.01 × 105 7.56 × 105 7.20 × 102 8.22 × 105

3 7.05 × 108 9.54 × 108 6.57 × 109 7.03 × 109 7.26 × 108 8.95 × 109 5.26 × 108 2.56 × 107 6.24 × 108

4 2.74 × 104 2.36 × 104 3.47 × 103 2.66 × 104 1.30 × 104 5.69 × 104 6.45 × 103 4.58 × 103 7.59 × 102

5 3.03 0.509 4.07 1.48 7.10 × 10−2 0.423 1.59 × 10−2 8.55 × 10−3 4.51 × 10−2

6 53.5 7.97 75.9 70.5 8.86 67.5 58.1 5.43 19.2

7 2.59 × 102 40.5 1.78 × 102 2.21 × 102 25.7 19.2 44.9 30.6 16.1

8 20.4 20.3 9.88 × 10−2 20.5 10.3 20.5 19.6 15.8 4.56 × 10−2

9 8.02 6.36 2.42 7.08 3.20 9.10 6.04 2.46 8.54

10 1.80 0.660 0.994 1.76 0.580 2.58 1.23 0.458 6.54

11 21.7 1.96 12.2 14.9 11.9 0.995 13.6 12.3 27.5

12 96.7 6.39 25.3 43.3 35.8 43.8 52.6 24.6 57.6

13 72.0 38.9 16.0 69.0 48.2 96.2 65.1 40.2 32.4

14 3.80 × 103 1.89 × 103 1.43 × 103 1.24 × 103 9.78 × 102 2.06 × 102 1.05 × 103 6.58 × 102 2.37 × 102

15 3.55 × 103 2.14 × 103 2.26 × 102 3.54 × 103 3.48 × 103 1.47 × 103 3.24 × 103 2.58 × 103 4.26 × 102

16 66.8 17.8 88.3 22.9 13.3 7.80 0.765 0.897 9.92 × 10−2

17 4.25 × 102 3.81 × 102 2.83 × 102 2.44 × 102 1.53 × 102 59.0 85.1 54.9 13.4

18 4.12 × 102 3.29 × 102 2.97 × 102 3.10 × 102 2.03 × 102 57.1 91.4 64.8 17.5

19 27.2 25.2 19.2 19.6 14.8 3.49 12.6 9.58 0.615

20 4.45 3.85 0.336 2.44 1.55 2.49 2.56 1.49 2.37

21 3.77 × 102 3.01 × 102 37.8 3.97 × 102 1.96 × 102 3.96 × 102 3.64 × 102 1.17 × 102 61.5

22 1.88 × 103 1.60 × 103 2.67 × 102 1.85 × 103 1.30 × 103 1.16 × 103 1.96 × 103 9.84 × 102 2.48 × 102

23 1.63 × 103 1.23 × 103 2.09 × 102 1.53 × 103 1.08 × 103 1.85 × 102 1.85 × 103 8.74 × 102 3.44 × 102

24 1.04 × 102 1.00 × 102 5.36 1.56 × 102 1.01 × 102 1.01 × 102 1.52 × 102 1.32 × 102 9.15 × 102

25 5.40 × 102 3.54 × 102 1.18 × 103 4.49 × 102 2.00 × 102 1.59 × 102 2.75 × 102 2.42 × 102 6.15

26 3.12 × 102 2.96 × 102 3.44 × 102 2.58 × 102 1.47 × 102 3.07 × 102 2.25 × 102 1.93 × 102 6.59

27 6.45 × 103 3.21 × 103 0.663 5.27 × 103 2.32 × 103 3.21 × 102 8.19 × 102 6.35 × 102 91.6

28 1.31 × 103 1.01 × 103 1.01 × 102 7.39 × 102 1.01 × 102 5.26 × 102 7.26 × 102 3.48 × 102 6.49 × 102

Table 6. Running time of each algorithm.

Algorithm Convergence iterations Calculation time/min Convergence time/min

FA 200 7.82 3.12

CFA 216 8.16 3.52

PSO 273 9.65 5.23

PPSO 327 7.63 5.02

MSRFA 411 7.54 6.15

8879

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

Figure 3. The convergence curves of algorithms under CEC2013.

0 100 200 300 400 500

0

2000

4000

6000

8000

10000

12000

14000

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

(1)Function1

0 100 200 300 400 500

0.0

2.0x108

4.0x108

6.0x108

fu
nc
t
io

n
v
al

ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

(2)Function2

0 200 400 600

0

2

4

6

8

10

100 120 140 160 180 200 220

0

2

4

6

8

fu
nc

ti
on

va
lu
e

iterations

10

fu
nc
t
io

n
v
al

ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

1012

(3)Function3

100 200 300 400 500

0

2

4

6

8

10

fu
nc
t
io

n
v
al

ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

106

(4)Function4

0 100 200 300 400 500

0

500

1000

1500

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

(5)Function5

0 100 200 300 400 500

0

5000

10000

15000

20000

25000

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

(14)Function14

0 100 200 300 400 500

0

200

400

600

800

1000

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

(6)Function6

0 100 200 300 400 500

0

200

400

600

800

1000

fu
nc
t
io

n
v
al

ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

(7)Function7

0 200 400
10

15

20

25

30

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

(8)Function8

0 200 400 600
0

5

10

15

20

25

30

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

(9)Function9

0 100 200 300 400 500

0

100

200

300

400

500

600

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

(10)Function10

0 100 200 300 400 500
0

5

10

15

20

25

30

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

(11)Function11

0 100 200 300 400 500
0

20

40

60

80

100

120

140

160

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

(12)Function12

0 100 200 300 400 500
10

20

30

40

50

60

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

(13)Function13

0 100 200 300 400 500

0

5

10

15

20

(15)Function15

104

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

0 100 200 300 400 500

0.0

0.5

1.0

1.5

2.0

2.5

3.0

60 80 100 120 140 160 180 200

0.0

0.2

0.4

f
u
nc
t
io
n
 v
a
lu
e

iterations

(17)Function17

104

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

0 100 200 300 400 500

0

1

2

3

4

5

40 60 80 100 120 140 160 180

0.0

0.2

0.4

0.6

0.8

fu
nc

ti
on

 v
a
lu

e

iterations

(16)Function16

102

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

0 100 200 300 400 500

0

2

4

6

8

10

0 100 200 300 400 500

0.0

0.5

1.0

1.5

2.0

2.5

3.0

fu
nc
ti

on
 v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

(18)Function18

103

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

0 100 200 300 400 500

0.0

0.5

1.0

1.5

2.0

2.5

3.0

100 200 300

0.0

0.2

f
u
nc
t
i
on

v
al
u
e

iterations

(19)Function19

103

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

0 100 200 300 400 500

0

5

10

15

20

(20)Function20

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

0 100 200 300 400 500
0

2

4

6

8

10

12

14

(21)Function21

102

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

0 100 200 300 400 500

0

1

2

3

4

5

6

(22)Function22

104

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

0 100 200 300 400 500

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(23)Function23

104

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

0 100 200 300 400 500

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

(24)Function24

102

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

0 100 200 300 400 500

2.0

2.5

3.0

3.5

4.0

4.5

(25)Function25

102

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

0 100 200 300 400 500
1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

102

(26)Function26

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

0 100 200 300 400 500
0.5

1.0

1.5

2.0

2.5

3.0

3.5

(27)Function27

103

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

0 100 200 300 400 500

0

1

2

3

4

5

6

7

8

103

fu
nc
t
io
n
v
al
ue

iterations

 FA
 CFA
 PSO
 PPSO
 MSRFA

(28)Function28

8880

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

Table 6 shows the average number of convergence iterations, average running time and average
convergence time of each algorithm on 28 test functions.

From the data in the table, it can be seen that the computation time of the proposed algorithm
is 7.54 min, which saves 0.09 min compared with the PPSO algorithm; the running time of MSRFA
algorithm is 3, 8 and 27% shorter than the running time of FA, CFA and PSO algorithms, respectively.
Although, the average number of convergence iterations and the average convergence time of the
algorithm in this paper are not superior, it also shows that the algorithm proposed in this paper can
continuously escape from the local optimum and approach to the global optimum through the proposed
improvement strategy; the data in the table explain, to a certain extent, the reason why the MSRFA
algorithm can achieve better convergence accuracy.

5.3. Time complexity analysis

Time complexity is an important indicator to evaluate the efficiency of algorithm execution.
Suppose the size of the solution problem is D-dimensional, the size of the firefly population is a
positive integer N, and the time required to solve the objective function is f(D). In general the time
complexity of the traditional firefly algorithm is:

 2()T O N (18)

However, due to the increasing complexity of the objective function, the time required to calculate
the objective function can no longer be ignored, so the time complexity of the firefly algorithm in this
paper is:

 2(())FT O N f D (19)

where the time complexity of the firefly algorithm position update formula is:

 2()T O N (20)

In MSRFA, the initialization method based on the dyadic learning strategy is a deterministic
initialization method that can be directly retrieved as local information after determining the number
of algorithmic individuals N by executing it only once. Assuming that the execution time required to
run the contrastive learning strategy is t1 and the time required to generate a single individual is t2, the
initialization population time complexity of MSRFA is:

 1 1 2(()) ()T O N t t O N   (21)

In the text, strategy 1 needs to be calculated using the attractiveness selection formula, calculating
the attractiveness between D-dimensional individuals once takes)(3 Dft , N-1 times, and the total time
taken is)()1(3 DftN ; and the individual with the greatest attractiveness needs to be selected to move
toward it, and the time taken to select the individual is 4t N , and the time taken to move the
individual is t5; then strategy 1 only takes effect when max3/1 IterIter is in, so the time complexity
of strategy 1 is.

 max
2 3 4 5(((1) ())) (())

3

Iter
T O N t f D t N t O Nf D     (22)

In strategy 2, the population is divided based on the location and brightness of the individual
distribution, and the objective function is computed once in f(D), which takes N-1 times, and the total

8881

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

time consumed is (N-1)f(D); at the same time, an individual needs to be selected to perform the move
operation, which takes t6 to select the individual and t7 to move the operation. strategy 2 takes effect
at maxmax3/1 IterIterIter  , so the operation time consumed is:

 max
3 6 7

2
(((1) ())) (())

3

Iter
T O N f D t t O Nf D     (23)

In strategy 3, when the algorithm triggers the threshold, the algorithm is judged to fall into the
local optimum, the current population of optimal individuals is selected, and the equivalence relation
is reasoned, firstly, the position in the current individual is updated randomly, which takes time t8, and
the value of the individual objective function before and after the update is calculated, which takes
time 2f(D), and is compared. Therefore, the time complexity of strategy 3 is:

 4 8(2 ()) (())T O f D t O f D   (24)

Since the MSRFA algorithm proposed in this paper converges faster and easily falls into local
optimum, the consumption time of strategy 3 cannot be ignored, so the time complexity of the MSRFA

algorithm when the maximum number of iterations is maxIter is.

 1 2 3 4 (())MT T T T T O Nf D     (25)

In summary, FM TT  . The time complexity of MSRFA is less than or equal to the time complexity

of FA, so the introduction of the contrastive learning strategy and rough data inference theory does not
increase the time complexity of the algorithm.

6. Simulation testing and data analysis

The DED model was tested and experimented on a computer with hardware configuration of
Intel(R) Core(TM) i7-9750H CPU @2.6GHz using Python 3.7 programming and compared with FA
algorithm, CFA algorithm [28], and Hybrid Immune Genetic Algorithm (HIGA) [3] to analyze the
convergence and stability of different algorithms by analyzing the effectiveness of MSRFA for the
DED problem was verified by analyzing the convergence and stability of different algorithms.

6.1. Simulation experiment setup

Test Case 1:
The first group was tested using unit 3, where the 24-hour unit 3 test system data, corresponding

to the electrical load, were 171 158 153 145 145 145 151 171 198 242 245 258 265 238 245 248 258
274 256 245 234 218 198 185, in megawatts (WM). The data related to unit 3 are shown in Tables 7–9.

Table 7. Unit coefficient settings.

Unit ia ib ic ie if

1 0.0053 11.6 213 100 0.0562

2 0.0088 10.3 200 140 0.0486

3 0.0074 10.8 240 160 0.0392

8882

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

Table 8. Upper and lower limits of unit output power and climbing slope.

minP maxP UR DR

50 200 40 40

37.5 150 30 30

45 180 30 30

Table 9. Inter-unit loss factor.

Unit 1 2 3

1 0.0670 0.00953 0.00507

2 0.00953 0.05210 0.00901

3 0.00507 0.00901 0.02940

Test Case 2:
The system data for the second set of tests were taken from [31]. In this case, the system data for

the 24-hour 5-unit test, corresponding to the electrical load demand, are: load demand is: 410 435 475
530 558 608 626 654 690 704 720 740 704 690 654 580 558 608 654 704 680 605 527 463, in
megawatts (WM). Also, in this test, the algorithm of this paper is compared with the algorithm
proposed in the literature [31].

In order to apply the MSRFA algorithm in the DED problem, a maximum number of 1000
iterations is used in the simulation study of the two test systems. Also, to ensure adequate analysis of
the optimization results, different population sizes were applied in this experiment to compare the
results. Tables 10–12 list the power dispatch related data of the system.

Table 10. Unit factor settings.

Unit ia ib ic ie if

1 0.0080 2.0 25 100 0.0422

2 0.0030 1.8 60 140 0.0403

3 0.0012 2.1 100 160 0.0384

4 0.0012 2.0 120 180 0.0375

5 0.0015 1.8 40 200 0.035

Table 11. Upper and lower limits of power output and climbing slope of the unit.

minP maxP UR DR

10 75 30 30

20 125 30 30

30 175 40 40

40 250 50 50

50 300 50 50

8883

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

Table 12. Inter-unit loss factor.

Unit 1 2 3 4 5

1 0.000049 0.000014 0.000015 0.000015 0.0000202

2 0.000014 0.000045 0.000016 0.000020 0.0000183

3 0.000015 0.000016 0.000039 0.000010 0.0000124

4 0.000015 0.000020 0.000010 0.000040 0.0000145

5 0.0000202 0.0000183 0.0000124 0.0000145 0.000035

Test Case 3:
The system data for the third set of tests were taken from [32]. The system contains 10 units, and

in this case the corresponding 24-hour electrical load demand is: 1052, 1126, 1259, 1397, 1467, 1663,
1749, 1836, 1954, 2073, 2119, 2267, 1998, 1889, 1843, 1562, 1522, 1653, 1791, 2007, 1904, 1543,
1276, 1228 in megawatts (WM). In this test, the algorithm of this paper is compared with the DE-
PSO [32]. Tables 13 and 14 lists the data related to the power dispatch of this system.

Table 13. Unit parameters.

 ia ib ic ie if minP maxP UR DR

1 4.3 × 10−4 21.60 958.2 400 0.041 150 470 80 80

2 6.3 × 10−4 21.05 1313.6 600 0.036 135 460 80 80

3 3.9 × 10−4 20.81 604.9 320 0.028 73 340 80 80

4 7 × 10−4 23.90 471.6 260 0.052 60 300 50 50

5 7.9 × 10−4 21.62 480.29 280 0.063 73 243 50 50

6 5.6 × 10−4 17.87 601.75 310 0.048 57 160 50 50

7 2.11 × 10−3 16.51 502.7 300 0.086 20 130 30 30

8 4.8 × 10−3 23.23 639.4 340 0.082 47 120 30 30

9 0.109 19.58 455.6 270 0.098 20 80 30 30

10 9.5 × 10−3 22.54 692.4 380 0.094 55 55 30 30

Table 14. Inter-unit loss factor (B × 10−5).

 1 2 3 4 5 6 7 8 9 10

1 8.7 0.43 −4.61 0.36 0.32 −0.66 0.96 −1.6 0.8 −0.1

2 0.43 8.3 -0.97 0.22 0.75 −0.28 5.04 1.7 0.54 7.2

3 −4.61 −0.97 9 −2 0.63 3 1.7 −4.3 3.1 −2

4 0.36 0.22 −2 5.3 0.47 2.62 −1.96 2.1 0.67 1.8

5 0.32 0.75 0.63 0.47 8.6 −0.8 0.37 0.72 -0.9 0.69

6 −0.66 −0.28 3 2.62 -0.8 11.8 −4.9 0.3 3 −3

7 0.96 5.04 1.7 −1.96 0.37 −4.9 8.24 −0.9 5.9 −0.6

8 −1.6 1.7 −4.3 2.1 0.72 0.3 −0.9 1.2 −0.96 0.56

9 0.8 0.54 3.1 0.67 −0.9 3 5.9 −0.96 0.93 −0.3

10 −0.1 7.2 −2 1.8 0.69 −3 −0.6 0.56 −0.3 0.99

8884

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

6.2. DED experimental results and analysis

Tables 15 and 16 give the experimental results of MSRFA and other comparative algorithms in
the DED simulation, Unit 3 and 5 tests. Here, the function dimension of each algorithm is uniformly
set to 30 and the number of iterations is 1000 for 30 independent runs, and the experimental simulations
are performed at population sizes of 30, 50, 100 and 300.

Table 15. Experimental results of four algorithms in 3 sets with different dimensions.

Size Algorithm Best Worst Average Variance

30

FA 76253.08 76366.89 76304.75 2073.05

CFA 76312.58 76357.45 76336.21 1879.21

MSRFA 76147.75 76352.68 76249.83 1959.62

HIGA 76012.53 77403.51 76438.67 24503.3

50

FA 75654.24 76214.56 75982.24 1586.52

CFA 75632.45 75727.87 75687.64 1549.58

MSRFA 75563.74 75732.54 75665.58 1654.93

HIGA 75858.38 77811.49 76157.21 331100

100

FA 75789.56 76154.65 75973.56 1879.56

CFA 75695.31 75768.27 75729.86 2578.65

MSRFA 75546.27 75768.96 75664.73 1956.58

HIGA 75717.74 75877.21 75788.14 2441.64

300

FA 75712.56 76429.76 76143.81 2349.67

CFA 75697.37 76028.48 75849.61 1849.51

MSRFA 75459.42 75548.37 75502.18 2102.57

HIGA 75623.28 75720.46 75664.68 4688.67

From the experimental results in Tables 15 and 16, we can see that the MSRFA has better search
accuracy compared with other algorithms with the same population size. MSRFA can obtain the
optimal value when the population size is 50, 100 and 300; when the population size is 30, it fails to
obtain the optimal value, but its average value is optimal, which indicates that MSRFA reduces the
influence of initialization or other factors on the results and enhances the stability of the algorithm. In
Table 15, with the expansion of the population size, the MSRFA further improves its optimal search
ability. At the population size of 100 and 300, the optimal solutions obtained by the MSRFA are much
larger than those obtained by other algorithms, indicating that the introduction of rough data inference
helps the algorithm to improve its optimal search ability when the population size is expanded.
Looking at the experimental results in Tables 15 and 16, it is found that the MSRFA performs better
under the trend of increasing the number of units and the population size. It can not only search for the
optimal solution, but also get the optimal mean value, in addition to that, it can also get a better variance
value, which indicates that the population convergence is higher when the MSRFA is obtaining the
optimal solution.

The test results for the 10-unit system are given in Table 17. Figure 4 shows the specific
scheduling scheme of the MSRFA method proposed in this paper. The experimental data from the
literature [32] will be cited for comparison in this test.

8885

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

Table 16. Experimental results of four algorithms in 5 sets with different dimensions.

Size Algorithm Best/$ Worst Average Variance

30

FA 41332.20 41425.96 41375 866.22

CFA 41281.08 41321.56 41304.37 110.69

MSRFA 40575.92 40765.27 40709.14 742.95

M-GA 40498.67 40920.28 40721.15 34731.18

50

FA 41306.84 41351.97 41329.77 1180.38

CFA 41267.98 41306.52 41282.69 1451.14

MSRFA 40635.34 40719.68 40680.11 728.71

M-GA 41902.52 41951.27 41661.29 1614.23

100

FA 40557.86 40677.41 40619.97 804.11

CFA 40292.15 40341.03 40312.19 257.77

MSRFA 40252.18 40292.29 40271.91 212.19

M-GA 40361.98 40411.44 40357.28 242.81

300

FA 40287.60 40338.87 40312.33 419.11

CFA 40279.60 40659.60 40469.75 355.26

MSRFA 40248.47 40299.61 40267.06 227.06

M-GA 40558.24 40598.83 40619.34 1096.54

The optimization results of the four algorithms show that compared with FA and CFA methods,
the MSRFA method proposed in this paper saves 30 and 22% of the cost, respectively, and obtains a
better scheduling scheme; compared with the DE-PSO method, it saves $31,255. Although the cost
saving is only 3.9%, the algorithm proposed in this paper takes only 7.88 min in terms of running time,
which is The time required for scheduling is greatly reduced.

Figure 4. Unit system output value.

8886

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

Table 17. Results of algorithms related to 10 units.

Algorithm Best/$ Average Variance Running time/min

FA 1047316.54 1110476.49 965423.51 9.26

CFA 956279.18 981254.37 756316.84 10.61

MSRFA 782701.05 784457.31 758253.94 7.88

DE-PSO 813956.81 852325.46 896611.63 10.14

The above data show that for the DED problem, the MSRFA has the following advantages over
other algorithms that introduce the idea of contrastive learning strategy with coarse data inference.

1) Introducing cubic mapping to initialize the population, which is superior to the traditional
logistic mapping, this mapping can make a great improvement in the population diversity within the
unit output. Thus, it can help the algorithm to have some improvement in the optimization seeking
ability, and it can make the algorithm free from the influence of initial values to a certain extent, which
is beneficial to the improvement of the stability of the algorithm.

2) MSRFA introduces the idea of rough data inference, and uses the way of relational inference
to optimize the way of individual movement; standard FA, each individual moves directly like brighter
individuals. MSRFA, before the individual movement, divides the current individual using the
approximation rule, and after the division, uses the inference rule of rough data inference, among
multiple approximation relations to find the optimal moving trajectory. In this way, the number of
moves per traversal is reduced to a certain extent and the complexity of the algorithm is reduced. At
the same time, using such rules can make the algorithm have a better optimization finding ability.

3) The traditional FA, when the algorithm falls into the local optimum, there is no good strategy
to help the algorithm jump out of the optimum, which is an important reason why the FA results are
not stable. The improved MSRFA, when the algorithm falls into a local optimum, triggers the
algorithm’s get rid of mechanism to help the algorithm jump out of the local optimum. This mechanism
uses the idea of equivalence relation reasoning in rough data inference to help the algorithm jump out
of the local optimum to some extent by calculating the equivalence class of the current unit output
power when the algorithm falls into the local optimum, and then by using the equivalence class to
replace the current individual. MSRFA optimization algorithm, using the way of rough data inference,
discovers the potential relationship between the unit output power, thus making the algorithm has a
good optimization finding capability.

Figures 5 and 6 show the convergence curves and errors of the algorithms for population
dimensions of 30 and 100. For the four algorithms, the dimension is uniformly 50 and the number of
iterations is 1000 for 30 independent runs. The horizontal axis is the number of iterations and the
vertical axis is the value of the algorithm’s fitness, which is the total generation cost of the 3 units.
From the figure, it can be seen that the initial values of FA, CFA and MSRFA are similar; the initial
value of HIGA is very low, but at this time the value of HIGA does not satisfy the error constraint in
the actual simulation, and the HIGA will gradually reduce its error value with iterations, so its
convergence curve is in a rising state. As can be seen from the figure, the initial position of the
convergence curve of the MSRFA is smaller than that of the FA during the early iterations, and has a
higher search capability. It can find a better solution in a limited number of iterations, and for the DED
problem, it can obtain a lower generation cost. MSRFA can achieve the optimal value when the number
of populations is 100, and the curve zigzags as the number of iterations increases, indicating that the
algorithm jumps out of the local optimum several times. And it can be seen from the error curve plots
in different dimensions that the improved algorithm has more stable error values and smaller mean

8887

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

values. In summary, it can be concluded that the improved algorithm is more suitable for scheduling
the unit output in the DED problem, so as to achieve cost reduction.

From the above data, we can see that for this simulation experiment, MSRFA has better
performance in providing in providing the optimal solution while ensuring the stability of the
algorithm and obtaining the optimal average value. Through the DED simulation test, we found that
the MSRFA optimization algorithm has better stability and global search capability. From the
obtained results, MSRFA with the introduction of coarse data inference can well avoid falling into
local optimum too early and thus obtain good convergence results. When the population dimension
increases, or the objective function becomes complex, MSRFA can obtain solutions of better quality
than other comparative algorithms. This can also show that it is effective for us to introduce the idea
and method of rough data inference to optimize the iterative process of the algorithm, as well as to
use the method of equivalence relation inference to improve the measures of the algorithm when it
falls into a local optimum.

(a) Convergence curve (b) Error curve

Figure 5. Convergence curve and error curve of 30-dimensional algorithm in 3 units.

(a) Convergence curve (b) Error curve

Figure 6. The 100-dimensional algorithm convergence curve and error curve.

8888

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

6.3. Simulation time efficiency analysis

Table 18 shows the comparison of the FA, CFA, MSRFA and GA in terms of computational time
for the DED problem. Each algorithm is run independently 50 times with 1000 iterations and a function
dimension of 50, and the mean value of the time required for the test algorithm to complete one cycle
of scheduling for 5 groups. From the table, it is clear that the MSRFA algorithm outperforms the other
methods in terms of time simulation. The above data show that the MSRFA algorithm effectively
improves the search efficiency and reduces the search time.

Table 18. Time comparison of the four algorithms on the DED problem.

Algorithm Time (s)

FA 567.88

CFA 578.65

MSRFA 431.32

HIGA 489.34

7. Conclusions

In order to solve the DED problem, an improved firefly optimization algorithm MSRFA is
proposed, and its improvement measures are mainly three, 1) initialize the population by using a
contrastive learning strategy to increase the population diversity in the search range and obtain a better
initial solution; 2) propose the attractiveness selection strategy combined with greedy algorithm, by
screening the individuals with greater attractiveness to move in the beginning of the algorithm
accelerates the convergence of the algorithm; 3) proposes to combine rough inference with the firefly
algorithm to optimize the iterative process of the algorithm by using associative relational inference
under approximate rules; 4) uses equivalence relational inference to enhance the ability of the
algorithm to jump out of the local optimum. The comparison of MSRFA with other three algorithms
to solve the DED problem in the paper verifies that MSRFA has better convergence, global search
ability and stability, and is an efficient method to solve the DED problem. At the same time, we realize
that realistically, the cost function of the DED problem is influenced by various factors, such as:
generator equipment wear and tear, aging, and other issues. When the accurate mathematical model is
not available, the swarm intelligence algorithm will not be able to have a better performance in solving
this problem. The literature [33] proposes a method to fit the cost function of the DED problem using
reinforcement learning, after which we will try to combine this method with the swarm intelligence
algorithm to solve the DED problem with uncertain objective function.

Acknowledgments

The work was supported by Tianyou Innovation Team of Lanzhou Jiaotong University (TY202003).

Conflict of interest

The authors declare there is no conflict of interest.

8889

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

References

1. A. M. Malyscheff, D. Sharma, S. C. Linn, J. N. Jiang, Challenges towards an improved
economic dispatch in an interconnected power system network, Electr. J., 32 (2019), 44–49.
https://doi.org/10.1016/j.tej.2019.01.013

2. G. Chen, X. Ding, E. Bian, Application of a dynamic differential evolution algorithm based on
chaotic sequence in dynamic economic dispatching of power system, China Power, 49 (2016),
101–106. http://doi.org/10.11930/j.issn.1004-9649.2016.06.101.06

3. B. Mohammadi-Ivatloo, A. Rabiee, A. Soroudi, Nonconvex dynamic economic power dispatch
problems solution using hybrid immune-genetic algorithm, IEEE Syst. J., 7 (2013), 777–785.
https://doi.org/10.1109/JSYST.2013.2258747

4. C. L. Chiang, Improved genetic algorithm for power economic dispatch of units with valve-point
effects and multiple fuels, IEEE Trans. Power Syst., 20 (2005), 1690–1699.
https://doi.org/10.1109/TPWRS.2005.857924

5. D. X. Zou, S. Li, Z. Li, X. Kong, A new global particle swarm optimization for the economic
emission dispatch with or without transmission losses, Energy Convers. Manage., 139 (2017),
45–70. https://doi.org/10.1016/j.enconman.2017.02.035

6. P. Somasundaram, N. M. J. Swaroopan, Fuzzified particle swarm optimization algorithm for
multi-area security constrained economic dispatch, Electr. Power Compon. Syst., 39 (2011), 979–
990.

7. W. Yang, Z. Peng, Z. Yang, Y. Guo, X. Chen, An enhanced exploratory whale optimization
algorithm for dynamic economic dispatch, Energy Rep., 7 (2021), 7015–7029.

8. Y. T. K. Priyanto, M. F. Maulana, A. Giyantara, Dynamic economic dispatch using chaotic bat
algorithm on 150kV Mahakam power system, in 2017 International Seminar on Intelligent
Technology and Its Applications (ISITIA), (2017), 116–121.
https://doi.org/10.1109/ISITIA.2017.8124065

9. R. Keswani, H. K. Verma, S. K. Sharma, Dynamic economic load dispatch considering renewable
energy sources using multiswarm statistical particle swarm optimization, in 2020 IEEE
International Conference on Computing, Power and Communication Technologies (GUCON),
(2020), 405–410. https://doi.org/10.1109/GUCON48875.2020.9231171

10. Q. Iqbal, A. Ahmad, M. K. Sattar, S. Fayyaz, H. A. Hussain, M. S. Saddique, Solution of non-
convex dynamic economic dispatch (DED) problem using dragonfly algorithm, in 2020
International Conference on Electrical, Communication, and Computer Engineering (ICECCE),
(2020), 1–5. https://doi.org/10.1109/ICECCE49384.2020.9179177

11. X. S. Yang, Firefly algorithms for multimodal optimization, in Proceedings of the 5th
Internationa Conference on Stochastic Algorithms: Foundations and Applications, (2009), 169–
178. https://doi.org/10.1007/978-3-642-04944-6_14

12. H. Zhuo, Q. Chen, H. He, Development of welding process expert system based on firefly neural
network, Mechatron. Technol., 4 (2020), 27–29.
http://doi.org/10.19508/j.cnki.1672-4801.2020.04.008

13. J. Lai, S. Liang, Optimization of wireless sensor network coverage based on improved artificial
firefly algorithm, Comput. Meas. Control., 22 (2014), 1862–1864.
http://doi.org/10.3969/j.issn.1671-4598.2014.06.062

8890

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

14. J. Wang, Z. Wang, J. Chen, X. Wang, X. Wang, L. Tian, Microgrid source-load game model and
analysis based on firefly optimization algorithm, Autom. Electr. Power Syst., 38 (2014), 7–12.
http://doi.org/10.7500/AEPS20131127010

15. X. Pei, R. Zhang, X. Yu, Hybrid firefly algorithm for multi-object replacement flow shop
scheduling problem, Inf. Control, 4 (2020), 478–488.

16. J. Zhao, W. Chen, R. Xiao, J. Ye, Firefly algorithm with division of roles for complex optimal
scheduling, Front. Inf. Technol. Electr. Eng., 10 (2021), 1311–1332.

17. J. Zhang, X. Li, Research on intelligent production line scheduling problem based on Lévy firefly
algorithm, Comput. Sci., 48 (2021), 668–672. http://doi.org/ 10.11896/jsjkx.210300118

18. J. Tal, Research on multi-objective task scheduling problem of cloud computing based on
improved particle swarm algorithm, Master thesis, Hefei University of Technology, 2020.

19. J. Yan, Z. Pan, J. Tan, H. Tian, Water quality evaluation based on BP neural network based on
firefly algorithm, South-to-North Water Diversion Water Sci. Technol., 4 (2020), 104–110.

20. Y. Sun, Z. Liu, Application of convolutional networks optimized by firefly algorithm in image
saliency detection, Comput. Digital Eng., 48 (2020), 1474–1478.
http://doi.org/10.3969/j.issn.1672-9722.2020.06.040

21. W. Liu, Y. Sun, Y. An, X. Gao, C. Sun, Optimization of vehicle routing problem based on FA-
IACS algorithm, J. Shenyang Univ. Technol., 42 (2020), 442–447.
http://doi.org/10.7688/j.issn.1000-1646.2020.04.16

22. H. Zhang, J. Yang, J. Zhang, X. Xu, Energy management optimization of on-board fuel cell DC
microgrid based on multiple firefly algorithm, Proc. Chin. Soc. Electr. Eng., 41 (2021), 13.
http://doi.org/10.13334/j.0258-8013.pcsee.201117

23. S. Yan, Research and application of rough data reasoning based on upper approximation, Ph. D
thesis, Beijing Jiaotong University, 2017.

24. L. Zuo, Y. Yu, H. Sun, Research on dynamic environmental economic dispatch model of power
system, J. East China Jiaotong Univ., 35 (2018), 134–142.
https://doi.org/10.16749/j.cnki.jecjtu.2018.03.020

25. X. Jiang, J. Zhou, H. Wang, Y. Zhang, Modeling and solving economic dispatch of power system
dynamic environment, Power Grid Technol., 37 (2013), 385v391.

26. Y. Zhu, Research on environmental economic optimal dispatch of power system, Ph. D thesis,
Zhengzhou University, 2016

27. J. Chang, J. Roddick, J. Pan, S. Chu, A parallel particle swarm optimization algorithm with
communication strategies, J. Inf. Sci. Eng., 21 (2005), 809–818.

28. Y. Feng, J. Liu, Y. He, Dynamic population firefly algorithm based on chaos theory, Comput.
Appl., 54 (2013), 796–799. https://doi.org/10.3724/SP.J.1087.2013.00796

29. J. J. Liang, B. Y. Qu, P. N. Suganthan, A. G. Hernández-Díaz, Problem definitions and evaluation
criteria for the CEC 2013 special session on real-parameter optimization, in Computational
Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nan yang Technological
University, Singapore, (2013), 281–295.

30. J. Tvrdík, R. Poláková, Competitive differential evolution applied to CEC 2013 problems, in 2013
IEEE Congress on Evolutionary Computation, (2013), 1651–1657.
https://doi.org/10.1109/CEC.2013.6557759

31. Y. J, Y. Fang, Q. Li, Multi-objective genetic algorithm for solving economic load allocation of
power system, East China Electr. Power, 40 (2012), 648–651.

8891

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8866–8891.

32. S. Kong, Research on dynamic economic dispatch of power system based on particle computing,
Master thesis, Yanshan University, 2020.

33. P. Dai, W. Yu, G. Wen, S. Baldi, Distributed reinforcement learning algorithm for dynamic
economic dispatch with unknown generation cost functions, IEEE Trans. Ind. Inf., 16 (2019):
2258–2267. https://doi.org/10.1109/TII.2019.2933443

©2022 the Author(s), licensee AIMS Press. This is an open access
article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0)

