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Abstract: Background: Studies have demonstrated that immune cell activation and their infiltration in 

the myocardium can have adverse effects on the heart, contributing to the pathogenesis of heart failure 

(HF). The purpose of this study is used by bioinformatics analysis to determine the potential diagnostic 

markers of heart failure and establish an applicable model to predict the association between heart 

failure and immune cell infiltration. Methods: Firstly, gene expression profiles of dilated heart disease 

GSE3585 and GSE120895 were obtained in Gene Expression Omnibus (GEO) database. This study 

then selected differentially expressed genes (DEGs) in 54 patients with HF and 13 healthy controls. In 

this study, biomarkers were identified using Least Absolute Shrinkage and Selector Operation (LASSO) 

and Support Vector Machine‐Recursive Feature Elimination (SVM‐RFE). Additionally, we evaluated 

the prognostic discrimination performance by the receiver operating characteristic (ROC) curve. Cell 

type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) was used for 

analyzing immune cell infiltration in HF tissues. Lastly, immune biomarkers were correlated with each 

other. Result: After 24 DEGs were analyzed using a combinatorial model of LASSO regression and 

SVM-RFE analysis, four key genes were obtained, namely NSG1, NPPB, PHLDA1, and 

SERPINE2.The area under the curve (AUC) of these four genes were greater than 0.8. Subsequently, 

using CIBERPORT, we also found that compared with normal people, the proportion of M1 

macrophages and activated mast cells in heart failure tissues decreased. In addition, correlation 

analysis showed that NPPB, PHLDA1 and SERPINE2 were associated with immune cell infiltration. 

Conclusion: NSG1, NPPB, PHLDA1 and SERPINE2 were identified as potential biomarkers of heart 

failure. It reveals the comprehensive role of relevant central genes in immune infiltration, which 

provides a new research idea for the treatment and early detection in heart failure. 
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1. Introduction  

Heart failure (HF) is a complicated syndrome associated with cardiac tissue injury, which is 

usually accompanied by systemic inflammation, arrhythmia and cardiac conduction defects [1]. As a 

global public health problem with increasing and rapid development, heart failure is the main cause of 

incidence rate, mortality rate and hospitalization in the world, and is also a major burden of clinical, 

social and economic burden [2–4]. 

The heart is also immunoactive and contains all major leukocyte populations, either located in 

the heart or waiting to penetrate into the heart [5,6]. When the heart is ischemic, the death of damaged 

and necrotic cardiomyocytes will lead to the activation of immune cells in the heart tissue. 

Macrophages resident in myocardial tissue undergo a series of obvious phenotypic and functional 

changes to remove dead cells and matrix fragments, lead to the release of cytokines and growth factors, 

and stimulate the formation of connective tissue and new blood vessels [7]. 

Recently, microarray technology and integrated bioinformatics analysis have been applied to 

identify potential key genes associated with different illnesses, which can be further used as biological 

markers for diagnosis and prognosis [8–10]. Machine learning method is widely used to find 

biomarkers. For example, the team used regularized logistic regression to predict biomarkers of 

spontaneous preterm birth from gene expression data [11]. CIBERPORT is a common computational 

method for immune cell identification. CIBERSORT contributes to evaluate the relative 

subpopulations for RNA transcripts and also to quantify cell components [12]. Further, previous 

articles suggest that CIBERSORT can precisely estimate immune cell landscape in several forms of 

malignant tumors, such as hepatocellular carcinoma [13] and bladder cancer [14]. 

In addition to cancer, more and more studies began to focus on the role of immune cell infiltration 

in heart failure. In this study, two machine-learning methods were employed to explore and identify 

the key genes of patients associated with heart failure and to analyze the immune cell infiltration. Then 

further evaluate the correlation between immune cell infiltration and dominant gene in heart failure 

tissues, so as to provide new research ideas for the treatment and early detection of heart failure. 

2. Materials and methods 

2.1. Data download and dentification of differentially expressed genes (DEGs) 

The series of matrix files of the GSE3585 and GSE120895 datasets were obtained from the GEO 

database (http://www.ncbi.nlm.nih.gov/geo/). The GSE3585 was based on the GPL96 platform of 

Affymetrix Human Genome U133A Array. The GSE120895 was based on the GPL570 platform of 

Affymetrix Human Genome U133 Plus 2.0 Array. The GSE3585 dataset included 7 HFs and 5 controls 

collected from left ventricular tissue samples, whereas the GSE120895 dataset included 47 HFs and 8 

controls collected from the heart tissues. GSE9800 dataset was used for verification, and also from 

GEO database. 12 HFs and 11 controls were obtained from GSE9800. The GSE9800 was based on the 

GPL887 platform of Agilent-012097 Human 1A Microarray (V2) G4110B. 

According to the corresponding probe annotation files, the probe IDs of every dataset were 
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converted to gene symbols. We evaluated probe average to be the ultimate gene level as to multiple 

probes in line with the same gene symbols. In addition to this, subsequent integration analyses were 

conducted with the two datasets, which were integrated as one metadata cohort. Moreover, this work 

adopted R software “SVA” package for removing batch effect [15]. To establish DEGs between the 

HF and the control group, the “limma” package was selected for R software [16]. Samples with an 

adjusted false discovery rate P < 0.05 and |log fold change (FC)| ≥ 1 were considered as the threshold 

points for differentially expressed genes. Volcano map and their corresponding heatmaps were plotted 

with the ggplot2 R package (https://ggplot2.tidyverse.org) in combination with heatmap R package 

(https://CRAN.R-project.org/package =pheatmap). 

2.2. Functional enrichment of DEGs 

R software and the “clusterProfiler” package [17] were used to conduct Gene Ontology (GO) 

analysis. First symbol codes were converted to Entrez ID using Human genome annotation package 

“org.Hs.eg.db”. Disease ontology (DO) enrichment analyses were performed on DEGs using the 

“clusterProfiler” and DOSE packages in R [17,18]. We used the “ggplot2’’ [19] of R software to 

visualize the plots. Adjusted P-value < 0.05 and Q value < 0.05 were considered significant for GO 

analysis and DO enrichment analyses. 

2.3. Candidate diagnostic biomarker screening and diagnostic value of feature biomarkers 

The Least Absolute Shrinkage and Selector Operation (LASSO) applies regularization in 

improving prediction accuracy. Besides, the “glmnet” package was adopted for analyzing LASSO 

regression [20]. Support vector machine (SVM) represents the supervised machine-learning 

technology commonly used in regression and classification. For avoiding overfitting, we selected RFE 

algorithm for choosing those best genes in meta-data cohort. Thus, Support Vector Machine‐

Recursive Feature Elimination (SVM–RFE) was conducted for analyzing proper characteristics aiming 

to recognize the gene set having the maximum discriminative power [21]. The “e1071” package was 

applied in performing the SVM algorithm [22]. We defined those overlapped genes of these two 

algorithms as hub genes. 

This study produced the receiver operating characteristic (ROC) curve with hub gene expression 

data for investigating whether those discovered biomarkers were of prediction value. We used the area 

under curve (AUC) for determining the efficiency in differentiating between HFs and control samples 

and further validated in the GSE9800 dataset. 

2.4. Discovery of immune cell subtypes 

We applied CIBERSORT (https://cibersortx.stanford.edu/) in immune cell infiltration 

calculations. We forecasted the possible levels of immune cells with the reference set containing 1000 

permutations and 22 immune cell subtypes. We created violin plots with R software “vioplot” package 

for visualizing different infiltration degrees of immune cells. Meanwhile, CorrPlot package was used 

to produce a correlation heat map. Adjusted-P value < 0.05 suggested the threshold value for statistical 

significance of the relevant cell type. 
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2.5. Correlation analysis of immune cells with diagnostic biomarker 

The association of immune cells with featured genes of R software was analyzed by Spearman’s 

rank correlation analysis and “ggplot2” package was used for data visualization. P-value < 0.05 

suggested the threshold value for being statistically significant. 

2.6. Construction of heart failure model and quantitative real-time polymerase chain reaction (qRT-

PCR) 

The animal experiment had passed the animal ethics Association of Ningbo University, and the 

ethics number is 11118. C57BL/6 mice were induced to heart failure through ligation of left anterior 

descending coronary artery. The control group was the sham operation group, that is, treated with the 

same surgery without tying the left anterior descending coronary artery. The pale color of the affected 

myocardium during the procedure confirmed the success of left anterior descending coronary artery 

ligation. The concrete method was performed as previously reported [23,24]. After 4 weeks, the mice 

were sacrificed and RNA were extracted from heart tissues by using Trizol reagent (America 

Invitrogen). 

RNA was reverse transcribed into cDNA using primescript one step RT-PCR Kit (Japan Takara). 

Then cDNA was generated and quantitative PCR was performed by using the SYBR Green (America 

sigma). All primers used for quantitative PCR were showed as Table 1. The expression levels of heart 

failure markers ANP, BNP and β-MHC were measured by qRT-PCR. When these markers increase, it 

proves that our heart failure model is successful [25]. GAPDH served as internal control. Expression 

levels of all genes were analyzed by using 2−ΔΔCt method. 

Table1. Primers used in Quantitative Real-Time PCR. 

Primers Sequence (5′-> 3′) 

GAPDH 
Forward 5′- AGGTCGGTGTGAACGGATTTG -3′ 

Reverse 5′- GGGGTCGTTGATGGCAACA -3′ 

ANP 
Forward 5′- GAGAAGATGCCGGTAGAAGA-3′ 

Reverse 5′- AAGCACTGCCGTCTCTCAGA -3′ 

BNP 
Forward 5′- CTGCTGGAGCTGATAAGAGA -3′ 

Reverse 5′- TGCCCAAAGCAGCTTGAGAT -3′ 

β-MHC 
Forward 5′- GTGCCAAGGGCCTGAATGAG-3′ 

Reverse 5′- GCAAAGGCTCCAG-GTCTGA-3′ 

NSG1 
Forward 5′- GTGAAGTTGGGGAATAATTTCGC -3′ 

Reverse 5′- CACGACCTTATCTGGGGGTG -3′ 

PHLDA1 
Forward 5′- GGGCTACTGCTCATACCGC -3′ 

Reverse 5′- AAAAGTGCAATTCCTTCAGCTTG -3′ 

NPPB 
Forward 5′- GAGGTCACTCCTATCCTCTGG -3′ 

Reverse 5′- GCCATTTCCTCCGACTTTTCTC -3′ 

SERPINE2 
Forward 5′- CACATGGGATCGCGTCCATC -3′ 

Reverse 5′- CAGCACTTTACCAACTCCGTTTA -3′ 



8675 

Mathematical Biosciences and Engineering  Volume 19, Issue 9, 8671-8688. 

3. Results 

3.1. Identification of DEGs in HF 

Retrospective analyses were performed on data from 54 HFs and 13 control samples in GSE3585 

and GSE120895 datasets. After removing the batch effects, 24 DEGs were collected (Figure 1A), 

among which, 20 showed up-regulation and 4 showed down-regulation (Figure 1B). 

 

Figure 1. Dataset differential analysis. (A) Heat map of DEGs (adjusted false discovery 

rate P < 0.05, |logFC| ≥ 1). (B)The volcano map of DEGs. The red and green dots are 

presented to up-regulated and down-regulated DEGs; while gray dots stand for rest genes 

with insignificant changes. 

3.2. Enrichment analysis of DEGs 

GO analysis and DO enrichment analyses were conducted to annotate and investigate the 

biological functions of the DEGs. 

The GO project divided into three categories: cellular component, biological process and molecular 

function. We observed that DEGs were mainly enriched in biological process, including regulation of 

systemic arterial blood pressure, vascular process in circulatory system, positive regulation of heart 

contraction and positive regulation of blood circulation. In molecular function, DEGs were mainly 

enriched in G-protein alpha-subunit binding, hormone receptor binding and metalloexopeptidase activity. 

However, in terms of cellular components, there were no enriched categories (Figure 2A). 

DO pathway enrichment analyses indicated that diseases enriched by DEGs were mainly 

associated with intrinsic cardiomyopathy, cardiomyopathy, hypertrophic cardiomyopathy, atrial heart 

septal defect, dilated cardiomyopathy, heart septal defect and congestive heart failure (Figure 2B). 

The enrichment results of DEG further proved the important role of these DEG in the process of 

heart failure. 
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Figure 2. The functional enrichment analysis of DEGs. (A) The GO enrichment; (B) The 

DO enrichment. 

3.3. Diagnostic biomarker discovery 

Then, we further look for diagnostic biomarkers from the 24 DEGs obtained by the following two 

methods. Using the LASSO regression algorithm and SVM-RFE algorithm, 10 variables were found 

as diagnostic biomarkers of HF by using the LASSO regression algorithm (Figure 3A), and 6 features 



8677 

Mathematical Biosciences and Engineering  Volume 19, Issue 9, 8671-8688. 

of the DEGs were recognized (Figure 3B) by SVM-RFE algorithm. 

Finally, four overlapping features (NSG1, NPPB, PHLDA1, and SERPINE2) of the two 

algorithms were selected (Figure 3C).  

Additionally, ROC analysis was adopted for further evaluation of the predictive value for four 

characteristic genes. The AUC values were 0.91 for NPPB (Figure 4A), 0.927 for NSG1 (Figure 4B), 

0.925 for PHLDA1 (Figure 4C) and 0.899 for SERPINE2 (Figure 4D). It showed that the characteristic 

biomarkers have a high diagnostic ability. 

 

Figure 3. Establishment of prognostic genes. (A) Feature screening in LASSO model. (B) 

A plot showing biomarker screening through the SVM-RFE algorithm. (C) Venn plot 

showing those intersected feature genes between SVM-RFE and LASSO regression. 
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Figure 4. ROC curve showing diagnostic ability of feature genes. (A–D) ROC curve for 

NSG1, NPPB, PHLDA1 and SERPINE2. 

3.4. Immune infiltration analysis 

Differences between controls and HF tissues concerning immune cell infiltration were analyzed 

with 22 subpopulations of immune cells based on the CIBERSORT algorithm. As shown in Figure 5A, 

the percentage for 22 immune cells has been displayed. The proportion of macrophages M1 and 

activated mast cells in heart failure tissues decreased, as shown in the vioplot (Figure 5B). 

Then we analyzed the correlation of 22 immune cells. The correlation heatmap of immune cells 

also revealed the relationship between different immune cells (Figure 6). The Figure 6 showed M0 

Macrophages were observed to be in a positive correlation with activated memory CD4T cells (R = 0.96) 

and M1 macrophages (R = 0.58), while naive B cells were negatively correlated with memory B cells 

(R = -0.82). 
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Figure 5. Visualization and evaluation of infiltration of immune cells. (A) Relative 

percentage of 22 types of immune cells; (B) Violin plot showing diverse immune cells. 

The red and blue bars stand for peripheral blood from HF cases and normal samples, 

separately. 
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Figure 6. Correlation heatmap for immune cells. The blue and red colors are presented to 

negative and positive relations of 22 immune cells, separately. The darker color indicates 

the closer relation. 

3.5. Association between diagnostic biomarker and immune cells 

According to Figure 7A, NPPB showed positive relation to T follicular helper cells (R = 0.28, 

p = 0.022) but a negative correlation was found with resting dendritic cells (R = -0.33, p = 0.006). 

PHLDA1 showed positive relation to T follicular helper cells (R = 0.26, p = 0.031) and M0 

Macrophages (R = 0.26, p = 0.032), but a negative correlation with the remaining Dendritic cells 

(R = -0.27, p = 0.028) (Figure 7B) was observed. SERPINE2 and Plasma cells were positively 

associated with each other (Figure 7C). No correlation was seen between NSG1 and immune cell 

infiltration (R = 0.34, p = 0.0055) (Figure 7D). 
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Figure 7. Correlation of NPPB, PHLDA1, SERPINE2 and NSG1 with immune cells. (A) 

Association of NPPB with immune cells. (B) Association of PHLDA1 with immune cells. 

(C) Association of SERPINE2 with immune cells. (D) Association of NSG1 with immune 

cells. Dot size stands for association strength of gene biomarkers with immune cells. Dot 

color stands for P-value. 

3.6. Validation of diagnostic biomarkers 

Finally, in order to produce more accurate and reliable results, GSE9800 dataset is used to verify 

the expression of these four characteristic genes. The expression levels of NSG1 in heart failure tissues 

were significantly lower than those in the control group (Figures 8A,B; P < 0.05), and the expression 

levels of NPPB and PHLDA1 in heart failure tissues were significantly higher than those in the control 

group (Figure 8C; P < 0.05). SERPINE2 was up-regulated in the heart failure group, but there was no 

significant difference in SERPINE2 (Figure 8D; P > 0.05). 

The diagnostic ability of other three biomarkers in discriminating HFs from the control samples 

in GSE9800 dataset demonstrated a favorable diagnostic value. The AUC of NSG1 was 0.848 (95% 

CI 0.667–0.970) (Figure 8E), NPPB was 0.784 (95% CI 0.572–0.981) (Figure 8F), PHLDA1 was 0.833 

(95% CI 0.621–0.985) (Figure 8G), and the AUC of SERPINE2 was 0.720 (95% CI 0.492–0.909) 

(Figure 8H). 

Then we constructed the heart failure model in mice, and obtained the heart tissue of heart failure 

mice. The heart failure markers ANP, BNP and β-MHC increased significantly in the heart failure 
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model group(Figures 9A–C; P < 0.05), indicating the success of our heart failure model. Compared 

with the control group, we observed a significant increase in the expression levels of NSG1, NPPB, 

PHLDA1 and SERPINE2 in heart failure tissues (Figures 10A–D, P < 0.05). 

 

Figure 8. Validation of the expression of diagnostic biomarkers in the GSE9800dataset. 

(A–D) The expression level of NSG1, NPPB, PHLDA1 and SERPINE2. (E–H) ROC 

curve for NSG1, NPPB, PHLDA1 and SERPINE2. 
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Figure 9. Expression of heart failure markers. (A–C) The expression level of ANP, BNP 

and β-MHC. * represents P < 0.05, ** represents P < 0.01. *** represents P < 0.001. 

 

Figure 10. Validation of the expression of diagnostic biomarkers in the mice heart failure 

model. (A–D) The expression level of NSG1, NPPB, PHLDA1 and SERPINE2. * 

represents P < 0.05, ** represents P < 0.01. 
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4. Discussion 

Gene expression differences exert significant effects both on heart failure diagnosis and therapy. 

During the previous decades, microarray technology and bioinformatics analysis have been 

extensively used to screen gene changes at the genomic level, to propose novel personalized therapies, 

and to explore the functions of associated biomolecules. 

Support vector machine is one of the important tools of machine-learning [22]. It has excellent 

performance in classification and prediction, and is widely used in disease diagnosis or medical 

assistance. However, at first, the application of SVM in analyzing biomedical data was limited. The 

proposal of SVM-RFE enables us to accurately select variables and explain the direction and intensity 

of the correlation between predictors and results when analyzing biomedical data [26]. LASSO is a 

regression-based method, which allows the use of a large number of covariates in the model and has 

the unique characteristics of punishing the absolute value of regression coefficient [27]. The traditional 

regression technology is widely limited in analyzing and synthesizing a large number of covariates. 

Therefore, LASSO has been more and more widely used in biomedicine [28]. 

Here, a combinatorial assay of the lasso regression model and SVM-RFE algorithm was adopted to 

select candidate biomarkers with the highest value for diagnosis: NSG1, NPPB, PHLDA1, and SERPINE2.  

In addition to NSG1, almost all genes had been well verified. There are two probable reasons for 

the increase of NSG1 in the heart failure mice model. One is that the species are different. In the GEO 

database, we choose human samples, but we use mice to simulated heart failure model. Second, we 

use the heart failure model caused by myocardial infarction in mice, but there are many reasons for 

heart failure. For example, studies have used single-cell RNA-sequencing to reveal the cell types 

involved in heart failure, and researchers have found the potential difference between ischemic 

cardiomyopathy and dilated cardiomyopathy in heart failure. For example, ischemic cardiomyopathy 

has more specific immune cell types than dilated cardiomyopathy, such as macrophages and dendritic 

cells [29]. But in general, NPPB, PHLDA1 and SERPINE2 have been repeatedly certified in the 

experimental results, which further verifies the reliability of our model. 

SERPINE2 is a serine protease inhibitor, a 44 kDa to 50 kDa glycoprotein, and a key regulator of 

biological processes inside and outside cells [30]. According to the current research, SERPINE2 is 

expressed in many organs, including the heart [31]. A recent observation shows that SERPINE2 is 

closely related to cardiac tissue fibrosis. The researchers observed the increased expression of 

SERPINE2 in pathological cardiac fibrosis and found that SERPINE2 caused cardiac fibrosis mainly 

by increasing collagen deposition, and ERK1/2 signaling pathway played an important role in this 

process [32]. Another study also found that aspirin can reduce cardiac interstitial fibrosis by inhibiting 

ERK1/2-SERPIN signaling pathway [33]. PHLDA1, known as Pleckstrin homology-like domain, 

family A, member 1, was first identified in T cell receptor activation induced apoptosis [34]. Up to 

now, many studies have found that phlda1 is closely related to a variety of heart diseases, such as; 

Ischemic cardiomyopathy [35]，dilated cardiomyopathy [36]，myocardial damage [37]. Similarly, 

through bioinformatics studies, we observed that PHLDA1 was highly expressed in heart failure 

tissues and was significantly corelated with T follicular helper cells. PHLDA1 is expected to become 

a new marker of heart failure. 

In order to further explore the infiltration of immune cells in heart failure tissues and the role of 

these four genes in the pathogenesis of heart failure. Using CIBERSORT, we observed that M1 

macrophages and activated mast cells infiltrated differently in heart failure tissues and normal tissues. 
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In addition, NPPB and PHLDA1 showed positive relation to T follicular helper cells. SERPINE2 was 

positively associated with plasma cells. 

As far as we know, mast cells are one of the resident cell groups in heart tissue, which may play 

an important role in the progression of myocardial infarction. Stimulated by a series of inflammatory 

factors, mast cells release TNF and histamine, triggering a series of inflammatory reactions after 

myocardial infarction [38]. 

Macrophage population is also one of the resident cell groups in myocardial tissue [39]. Heart 

failure is generally accompanied by cardiac inflammation and subsequent tissue damage. Macrophages 

are activated and infiltrated into the myocardium, coordinate with other immune cells, and become a 

key regulator of tissue repair or regeneration [40]. However, when infiltrating macrophages are over 

stimulated by inflammatory cytokines, the macrophages will have functional disorder, which can then 

lead to abnormal repair and sustained injury of cardiomyocytes, and finally progress to heart failure [40]. 

CIBERSORT results showed that when heart failure occurs, various types of immune cells are 

infiltrating into myocardial tissue, and the immune cells infiltrating into cardiac tissue play a complex 

mechanism. However, this study had some limitations and requires further experimental data, such as 

confirmation of immunophenotype by immunohistochemistry. 

5. Conclusions 

In short, our study identified four key genes through two machine-learning methods. In the future, 

it is possible to distinguish patients with heart failure from patients without heart failure by detecting 

the expression of these four genes. At the same time, combined with CIBERPORT, the identified 

immune cells may be developed as the target of immunotherapy for patients with heart failure, 

providing new insights for the diagnosis and treatment of patients with heart failure. 
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