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Abstract: In this paper, a single-species fishery economic model with two time delays is investigated.
The system is shown to be locally stable around the interior equilibrium when the parameters are in
a specific range, and the Hopf bifurcation is shown occur as the time delays cross the critical values.
Then the direction of Hopf bifurcation and the stability of bifurcated periodic solutions are discussed.
In addition, the optimal cost strategy is obtained to maximize the net profit and minimize the waste by
hoarding for speculation. We also design controls to minimize the waste by hoarding for the speculation
of the system with time delays. The existence of the optimal controls and derivation from the optimality
conditions are discussed. The validity of the theoretical results are shown via numerical simulation.
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1. Introduction

The fishery economic model is a kind of model based on biological population- and economic-
related equations. It investigates the development of regulations of the biological population and eco-
nomic income under the influence of the economic value of fishing behavior. By using reasonable
parameters to build a model, the properties of the model are studied by using mathematical theory and
methods. Therefore, we can reasonably explain the phenomenon in the actual fishing, predict the fu-
ture trend and put forward guiding opinions on the reasonable maximization of fishing benefits. Some
authors [1,2] established basic harvesting models to solve optimal harvesting problems. Jerry et al. [3]
established a harvesting economic model and chose the fishing effort variation rate as the controllor to
solve a nonlinear problem of optimal control. Conrad et al. [4] proposed and analyzed a mathematical
model to study the dynamics of a fishery resource system in an aquatic environment that consists of
two zones. Ami et al. [5] considered the optimal management problem by defining the stock density
of the resource and the sum of discounted benefits as the biological indicator and economic indicator,
respectively Bairagi et al. [6] performed a qualitative study of the bioeconomic management of a fish-
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ery in the presence of some infection.
In [7], the author established a single-species fishery economic model based on a logistic model

with a constant harvest. They found that the stock change of fish is related to its own growth and the
catch rate. Additionally, they found that the price change is affected by the market positive linear de-
mand function and the catch rate. It has a positive correlation with the market positive linear demand
function and a negative correlation with the catch rate. So, the fishery economic model is as follows;{

ẋ(t) = rx(t)(1 − x(t)
k ) − Y, x(0) = x0 > 0,

ṗ(t) = s(D(p) − Y), p(0) = p0 > 0,
(1.1)

where the variables x(t) and p(t) denote the fish stock and the unit price of the stock at time t , respec-
tively. D(p) is the positive linear demand function such that D(p) = a − p(t) ≥ 0 [8]. The parameter r
is the intrinsic growth rate of the biomass. k is the carrying capacity of the environment. Y is the catch
rate. a is the market capacity. s is the price speed adjustment. r, k, Y , a and s are positive constants.

Indeed, the catch rate is affected by the total revenue and the total cost. Assume that the catch rate
is positively correlated with the total revenue and negative correlated with the total cost. If the cost is
high, the economic benefits of engaging in fishery production will be reduced accordingly, the attrac-
tion of engaging in relevant industries will be reduced, the human capital will flow to other fields, and
the catch rate will be reduced accordingly. So, only considering the catch rate as a constant simply is
not very reasonable. Therefore the catch rate should be a variable at time t, and it is represented by
y(t). So the following fishery economic model is obtained:

ẋ(t) = rx(t)(1 − x(t)
k ) − y(t),

ẏ(t) = βy(t)(p(t) − c),
ṗ(t) = s(a − p(t) − y(t)),

(1.2)

where β is the response coefficient, c is the cost of catching. β and c are positive constants.
Considering that the development of the system depends on both the current state and the past state,

it is necessary to consider time delays in the model. Chakraborty et al. [9] introduced a single discrete
gestation delay in a differential-algebraic bioeconomic system and investigated Hopf bifurcation in the
neighborhood of the coexisting equilibrium point. Song et al. [10] determined the direction of the
Hopf bifurcation and the stability of the bifurcating periodic solutions of a predator-prey system with
two delays. Liu et al. [11] proposed a delayed Gause predator-prey model with Michaelis-Menten
type harvesting and derived the conditions of local stability and Hopf bifurcation. Zhang et al. [12]
determined the direction of Hopf bifurcation and the stability of bifurcated periodic solutions of a
bioeconomic predator-prey model.

In real life, there is a period of time from fishermen’s capture to sale. That means that the fishermen’s
capture rate is also affected by the price at a certain time in the past, which is recorded as τ1 in the
following model. Considering that there is a certain time delay between the actual market information
and the market information acquired by buyers, a time delay in the process of the price affecting
market demand exists, which is recorded as τ2. So we get the following delayed single-species fishery
economic model: 

ẋ(t) = rx(t)(1 − x(t)
k ) − y(t),

ẏ(t) = βy(t)(p(t − τ1) − c),
ṗ(t) = s(a − p(t − τ2) − y(t)),

(1.3)
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where τ1 ≥ 0 and τ2 ≥ 0 are the time delays, and the other parameters are similar to ones of System
(1.2).

The initial conditions of the delayed single-species fishery economic system given by System (1.3)
are

x(0) ∈ R+, y(0) ∈ R+, p |[−τ,0]∈ C+([−τ, 0]; R+),

with τ = max{τ1, τ2}.
The rest of the paper is organized as follows: In Section 2, the conditions of local stability and

Hopf bifurcation are discussed as functions of the time delays in different intervals. In Section 3,
we investigate the direction of Hopf bifurcation and the stability of bifurcated periodic solutions. In
Section 4, using cost control, the optimal harvesting of fish stocks is considered to maximize the
net profit and minimize the waste caused by hoarding for speculation, while ensuring the sustainable
survival of fish stocks. Besides, a control system with time delays is established, which is about
guiding interventions and aims to reduce the waste. A realistic Penaeus vannamei’s cultivation model
simulation is demonstrated to prove the validity of the theoretical analysis in Section 5. Finally, the
conclusions are presented in Section 6.

2. Local stability analysis and bifurcation

In this section, one concentrates on the local stability and Hopf bifurcation phenomenon around the
equilibria of System (1.3), as the time delays take different values.

System (1.3) has non-negative equilibria S 0 = (0, 0, a), Ŝ 0 = (k, 0, a) and S = (x, y, p), where p = c
and y = a − c, and x satisfies the following equation:

−
r
k

x2 + rx − (a − c) = 0.

After a simple calculation, it can be obtained that x1 =
k
2 +

k
2r

√
r2 − 4r

k (a − c), x2 =
k
2 −

k
2r

√
r2 − 4r

k (a − c). There are two positive interior equilibria S 1,2 = (x1,2, a − c, c) when a − rk
4 < c < a.

The two internal equilibria of the system are merged into one, which is called the degenerate equilib-
rium (x∗0, a − c, c) when c = a − rk

4 . And there is no interior equilibrium when c < a − rk
4 .

The characteristic equation of System (1.3) at the equilibrium S 0 can be expressed as follows:

(r − λ)(β(a − c) − λ)(se−λτ2 + λ) = 0,

and it always has two characteristic values λ1 = r > 0 and λ2 = β(a− c) > 0. So S 0 is always unstable.
The characteristic equation of System (1.3) at the equilibrium Ŝ 0 can be expressed as follows:

(r + λ)(β(a − c) − λ)(se−λτ2 + λ) = 0,

and it always has two characteristic values λ1 = −r < 0 and λ2 = β(a − c) > 0. So Ŝ 0 is always
unstable.
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And the characteristic equation of System (1.3) at the equilibria S 1,2 can be expressed as follows:

J(λ, τ) = det


r(1 − 2x

k ) − λ −1 0
0 −λ β(a − c)e−λτ1

0 −s −se−λτ2 − λ


= (r(1 −

2x
k

) − λ)(λ2 + sβ(a − c)e−λτ1 + sλe−λτ2) = 0.

(2.1)

The characteristic Eq (2.1) always has a characteristic value λ∗ = r(1− 2x
k ), and λ∗ |S 1< 0, λ∗ |S 2> 0.

So S 2 is always unstable. In order to study the stability of the equilibrium S 1, we need to further study
other characteristic values.
The other characteristic values are satisfied:

λ2 + sβ(a − c)e−λτ1 + sλe−λτ2 = 0. (2.2)

In the following section, we will investigate the dynamic behavior of System (1.3) around S 1 (we
denote S ∗) according to the time delays τ1 and τ2 with different values, respectively.
Case 1. τ1 = τ2 = 0.

Equation (2.2) becomes
λ2 + sβ(a − c) + sλ = 0,

The two eigenvalues have negative real parts, so we can get the following theorem:

Theorem 1. System (1.3) is asymptotically stable around the interior equilibrium S ∗.

Remark 1. It means that in the absence of a time delay, the system will remain stable, that is, the fish
stock will remain at a stable quantity without extinction; the capture rate and the unit price of the stock
will also remain stable, and they are all stable at the value of the internal equilibrium.
Case 2. τ1 = τ2 = τ > 0.

Equation (2.2) becomes
λ2 + s(β(a − c) + λ)e−λτ = 0. (2.3)

It is assumed that for some values of τ > 0, there exists a real number ω > 0 such that λ = ±iω are two
purely imaginary roots of Eq (2.3). Substituting λ = iω into Eq (2.3) and separating out the real and
imaginary parts, it follows that

ω2 = sβ(a − c) cosωτ + sω sinωτ,
0 = ω cosωτ − β(a − c) sinωτ.

(2.4)

From Eq (2.4), one obtains that

ω4 − s2ω2 − s2β2(a − c)2 = 0.

There is a unique real and positive solution ω∗2 of the above equation.
So the characteristic Eq (2.3) has a pair of purely imaginary roots ±iω∗ for τ∗k. The values of τ∗k are

calculated as follows:

τ∗k =
1
ω∗

[arccos
β(a − c)ω∗2

sω∗2 + sβ2(a − c)2 + 2kπ], k = 0, 1, 2, ... (2.5)
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From [13], by using a method of analyzing the exponential polynomial zero distribution, we get System
(1.3) is locally asymptotically stable around S ∗ for τ ∈ (0, τ∗0).
From Eq (2.3), we can verify the following transversality conditions [14]

sign{
d(Reλ)

dτ
}λ=iω∗ = sign{Re{(

dλ
dτ

)−1}}λ=iω∗ = sign{
2ω∗2 + s2

ω∗4
} > 0

Theorem 2. System (1.3) is asymptotically stable around the equilibrium S ∗ for τ ∈ (0, τ∗0) and
unstable for τ > τ∗0. The system undergoes a bifurcation at τ = τ∗0.

Case 3. τ1 = 0 and τ2 > 0.
Equation (2.2) becomes

λ2 + sβ(a − c) + sλe−λτ2 = 0. (2.6)

Substituting λ = iω into Eq (2.6) and separating out the real and imaginary parts, it follows that

−ω2 + sβ(a − c) + sω sinωτ2 = 0,
sω cosωτ2 = 0.

(2.7)

Similar to Case 2, we get

ω4 − (s2 + 2sβ(a − c))ω2 + s2β2(a − c)2 = 0.

The above equation has two real and positive roots

ω∗2± =
s2 + 2sβ(a − c) ± s

√
s2 + 4sβ(a − c)

2
.

So, the characteristic equation only has two pairs of imaginary roots ±iω∗±. The values of τ∗2k± are given
by Eq (2.8), which is calculated from Eq (2.7).

τ∗2k± =
1
ω∗±

(
π

2
+ kπ), k = 0, 1, 2, ... (2.8)

By calculating from Eq (2.6), it is obtained that

Re{(
dλ
dτ2

)−1}λ=iω∗± =
ω∗2± + sβ(a − c)

ω∗2± (ω∗2± − sβ(a − c))
.

Subsequently, we can verify the following transversality conditions

sign{
d(Reλ)

dτ2
}τ2=τ∗20+,λ=iω∗+ = sign{ω∗2+ (ω∗2+ − sβ(a − c))} > 0,

sign{
d(Reλ)

dτ2
}τ2=τ∗20−,λ=iω∗− = sign{ω∗2− (ω∗2− − sβ(a − c))} < 0,

By using the Butlers lemma [15], we can obtain the following theorem:
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Theorem 3. System (1.3) is asymptotically stable around the equilibrium S ∗ for τ2 ∈

(0, τ∗20+)
⋃

(
j−1⋃
k=0

(τ∗2k−, τ
∗
2k+1+)), and unstable for τ2 ∈ (

j−1⋃
k=0

(τ∗2k+, τ
∗
2k−))
⋃

(τ∗2 j+,+∞), j > 0. The system

undergoes a Hopf bifurcation at τ2 = τ
∗
20±.

Case 4. τ1 > 0 and τ2 = 0.
The calculations are similar to that for Case 1, so we will only list the theorem.

τ∗1k =
1
ω∗

(arcsin
ω∗

β(a − c)
+ 2kπ), k = 0, 1, 2... (2.9)

where ω∗ is satisfied with
ω∗4 + s2ω∗2 − s2β2(a − c)2 = 0.

Theorem 4. System (1.3) is asymptotically stable around the equilibrium S ∗ for τ1 ∈ (0, τ∗10) and
unstable for τ1 > τ

∗
10. The system undergoes a Hopf bifurcation at τ1 = τ

∗
10.

Case 5. τ1 > 0, τ2 ∈ (0, τ∗20+), τ1 , τ2.
In this subsection, τ1 is considered to be a bifurcation parameter and τ2 is confined to a range of

(0, τ∗20+), where τ∗20+ is determined by Eq (2.8). Substituting λ = iω into Eq (2.2) and separating out
the real and imaginary parts, it follows that

−ω2 + sβ(a − c) cosωτ1 + sω sinωτ2 = 0,
−sβ(a − c) sinωτ1 + sω cosωτ2 = 0.

(2.10)

From Eq (2.10), ithe following is obtained:

ω4 + A1ω
3 + A2ω

2 + A3 = 0, (2.11)

where

A1 = −2s sinωτ2 < 0, A2 = s2 > 0, A3 = −s2β2(a − c)2 < 0.

Denote F′(ω) = 4ω3 + 3A1ω
2 + 2A2ω. Equation (2.11) has a unique real and positive root ω∗ if

Inequality (2.12) is satisfied. Otherwise, Eq (2.11) has one positive and real root at least.

F′(ω∗) ≥ 0, (2.12)

where ω∗ =
−3A1+

√
9A2

1−24A2

12 . So, Eq (2.2) has imaginary roots if Inequality (2.12) is satisfied, and the
roots of Eq (2.2) have a negative real part when τ1 ∈ (0, τ̃0). τ̃0 is given by the following equation:

τ̃k =
1
ω∗

(arccos
ω∗4 − s2ω∗2 + s2β2(a − c)2

2sβ(a − c)ω∗2
+ 2kπ), k = 0, 1, 2, 3... (2.13)

Then, differentiating Eq (2.2) at τ1 = τ̃0 and separating out the real and imaginary parts, it follows that

U(
dReλ
dτ1

)|τ1=τ̃0 + V(
dω
dτ1

)|τ1=τ̃0 = W,

−V(
dReλ
dτ1

)|τ1=τ̃0 + U(
dω
dτ1

)|τ1=τ̃0 = R,
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where

U = − τ̃0sβ(a − c) cosω∗τ̃0 + s cosω∗τ2 − sτ2ω
∗ sinω∗τ2,

V = − 2ω∗ − τ̃0sβ(a − c) sinω∗τ̃0 + s sinω∗τ2 + sτ2ω
∗ cosω∗τ2,

W =sβ(a − c)ω∗ sinω∗τ̃0,

R =sβ(a − c)ω∗ cosω∗τ̃0.

Thus, we get

(
dReλ
dτ1

)|τ1=τ̃0 =
UW − VR
U2 + V2 > 0,

if
UW − VR > 0. (2.14)

If Inequality (2.12) is not satisfied, it can only hold that System (1.3) is locally asymptotically stable
for τ1 ∈ (0, ˆ̃τ0), where ˆ̃τ0 stands for the smallest τ̃0 corresponding to all positive roots of Eq (2.11).

Theorem 5. If Eqs (2.12) and (2.14) are satisfied, System (1.3) is asymptotically stable for τ1 ∈ (0, τ̃0)
and unstable for τ1 > τ̃0, (τ̃0 is defined in Eq (2.13)). The system undergoes a Hopf bifurcation at
τ1 = τ̃0.

Case 6. τ2 > 0, τ1 ∈ (0, τ∗10), τ1 , τ2.
τ∗10 is determined by Eq (2.9). The calculations are similar to those for Case 5, so we will only state

the theorem.

Theorem 6. If Eqs (2.15) and (2.17) are satisfied, the system is asymptotically stable around the
equilibrium S ∗ for τ2 ∈ (0, τ̃20) (τ̃20 is defined in Eq (2.16)) and undergoes a Hopf bifurcation at
τ2 = τ̃20.

s > 4β(a − c). (2.15)

τ̃2k =
1
ω∗

(arcsin
ω∗4 + s2ω∗2 − s2β2(a − c)2

2sω∗3
+ 2kπ), k = 0, 1, 2... (2.16)

and ω∗ is satisfied with

ω∗4 − (s2 + 2sβ(a − c) cosωτ1)ω∗2 + s2β2(a − c)2 = 0.

UW − VR > 0, (2.17)

where

U = − τ1sβ(a − c) cosω∗τ1 + s cosω∗τ̃20 − sτ̃20ω
∗ sinω∗τ̃20,

V = − 2ω∗ − τ1sβ(a − c) sinω∗τ1 + s sinω∗τ̃20 + sτ̃20ω
∗ cosω∗τ̃20,

W = − sω∗2 cosω∗τ̃20,

R =sω∗2 sinω∗τ̃20.

Remark 2. If the time delays are nonzero, corresponding to each case, when the time delays are small,
the system will remain stable; when they are slightly greater than the bifurcation values, the system
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will undergo Hopf bifurcation. At this time, the fish stock, the capture rate and the unit price of the
stock will fluctuate within a certain range and cannot reach stability. Because of these fluctuations, the
fish stock cannot be stably supplied to the market, and the price fluctuation of fishery resources will
also be relatively large, which is not conducive to the stability of the fishery economy. When the time
delays are particularly large, the system will be unstable. At this time, the fluctuation ranges of the
fish stock, the capture rate and the unit price will be larger and larger, which is not conducive to the
stability of the fishery economy.

3. Stability of bifurcated periodic solutions

In this part, we investigate the direction of Hopf bifurcation and the stability of bifurcated periodic
solutions. For the delay differential equations, when the conditions of the Hopf bifurcation theorem are
satisfied, the calculation formulas for determining the direction of Hopf bifurcation and the stability
of bifurcated periodic solutions can be given by applying the central manifold theory and gauge type
method.

We choose τ1 = τ̃0 + µ as the bifurcation parameter, µ = 0 is the Hopf bifurcation value of System
(1.3) and τ̃0 is defined in Eq (2.13). Without the loss of generality, we assume that τ2 < τ̃0, such that
−1 < − τ2

τ̃0
< 0. Let

u1 = x − x∗,

u2 = y − y∗,

u3 = p − p∗,

and t = tτ̃0, where (x∗, y∗, p∗) is the interior equilibrium S 1. System (1.3) is expressed in the phase
space C := C([−1, 0],R3) which has the following vector form:

u̇(t) = Lµ(ut) + F(µ, ut), (3.1)

where ut = (u1(t), u2(t), u3(t))T ∈ R3, Lµ : C→ R3 and F : R×C→ R3 are the linear part and nonlinear
part respectively,

Lµ(Φ) =(τ̃0 + µ)
(  r(1 − 2x∗

k ) −1 0
0 0 0
0 −s 0

Φ(0) +


0 0 0
0 0 0
0 0 −s

Φ(−
τ2

τ̃0
) +


0 0 0
0 0 β(a − c)
0 0 0

Φ(−1)
)
,

where Φ = (Φ1,Φ2,Φ3)T ∈ C. By the Riesz representation theorem, there exists a 3 × 3 matrix
η(θ, µ) : [−1, 0]→ R3×3 of bounded variation functions, such that

LµΦ =
∫ 0

−1
Φ(θ)dθη(θ, µ),
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and η(θ, µ) in our system can be selected as follows:

η(θ, µ) =



(τ̃0 + µ)

 r(1 − 2x∗
k ) −1 0

0 0 β(a − c)
0 −s −s

 , θ = 0,

(τ̃0 + µ)


0 0 0
0 0 β(a − c)
0 0 −s

 , θ ∈ [−
τ2

τ̃0
, 0),

(τ̃0 + µ)


0 0 0
0 0 β(a − c)
0 0 0

 , θ ∈ (−1,−
τ2

τ̃0
),

03×3, θ = −1.

F(µ, ut) = (τ̃0 + µ)


F1

F2

F3

 ,
where F1 = −

r
kΦ

2
1(0), F2 =

β

2Φ2(0)Φ3(−1) and F3 = 0. The infinitely small generator A(µ) correspond-
ing to the linearization part of System (1.3) is

A(µ)Φ(θ) =


dΦ(θ)

dθ
, θ = [−1, 0),∫ 0

−1
dϵη(µ, ϵ)Φ(ϵ), θ = 0.

(3.2)

Define RΦ(θ) as

RΦ(θ) =

0, θ = [−1, 0),
F(µ,Φ), θ = 0.

(3.3)

Then, Eq (3.1) is equivalent to the abstract ordinary differential equation

u̇t = A(µ)ut + Rut. (3.4)

Defining the formal adjoint matrix of A(µ0) as A∗

A∗Ψ(ϵ) =


−

dΨ(ϵ)
dϵ
, ϵ = (0, 1],∫ 0

−1
dηT

t (t, 0)Ψ(−t), ϵ = 0.

For Ψ ∈ C([0, 1],R3) and Φ ∈ C([−1, 0],R3), we define a bilinear form suitable for the complex vector

⟨Ψ,Φ⟩ = Ψ̄(0)Φ(0) −
∫ 0

−1

∫ θ

ζ=0
Ψ̄(ζ − θ)dη(0, θ)Φ(ζ)dζ. (3.5)

Since A∗ is the formal adjoint matrix of A(µ0), we can obtain that

⟨Ψ, AΦ⟩ = ⟨A∗Ψ,Φ⟩.
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Since ±iω∗τ̃0 are eigenvalues of A(0), they are also eigenvalues of A∗. We suppose that q(θ) =
(q1, q2, 1)T eiω∗τ̃0θ is the eigenvector of A(0) corresponding to iω∗τ̃0, and q∗(s) = D(q∗1, q

∗
2, 1)eiω∗τ̃0 s is

the eigenvector of A∗(0) corresponding to −iω∗τ̃0, where D is a nonzero coefficient. And they satisfy
⟨q∗, q⟩ = 1. It can be obtained that

⟨q∗, q̄⟩ = 0,

from the formal adjoint matrix A∗. Through a simple calculation, we get

A(0) = τ̃0

 r(1 − 2x∗
k ) −1 0

0 0 β(a − c)e−iω∗τ̃0

0 −s −se−iω∗τ2

 ,
A(0)q(θ) = iω∗τ̃0q(θ).

q1 =
− iω∗

s −e−iω∗ τ̃0

r(1− 2x∗
k )−iω∗

, q2 = −
iω∗

s − e−iω∗τ̃0 . Similarly, we can obtain q∗1 =
sω∗ieiω∗τ2+ω∗2

β(a−c)eiω∗ τ̃0
− s, q∗2 =

seiω∗τ2−iω∗

β(a−c)eiω∗ τ̃0
.

Because ⟨q∗, q⟩ = 1, we get

D̄ = (q̄∗1q1 + q̄2q∗2 + 1 − sτ2e−iω∗τ2 + β(a − c)q̄∗2τ̃0e−iω∗τ̃0)−1.

Next, we will realize spectral decomposition. By the center manifold reduction [16], we define

z(t) = ⟨q∗, ut⟩, (3.6)

where ut is the solution of Eq (3.1) for µ = 0. We denote

W(t, θ) = ut(θ) − z(t)q(θ) − z̄(t)q̄(θ); (3.7)

so, W(t, θ) ∈ Q±iω∗τ̃0 . z, z̄ are local coordinates of the center manifold C0 in the direction of q∗ and q̄∗,
where z and z̄ are conjugate complex numbers. On the central manifold C0, W(t, θ) = W(z, z̄, θ), and
we only consider the real solutions here, where W(z, z̄, θ) can be written in the form of a power series
for z and z̄:

W(z, z̄, θ) ≜ W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ ... (3.8)

The solution ut ∈ C0 of Eq (3.1) can be calculated from

ż(t) =⟨q∗(s), u̇t⟩

=iω∗τ̃0z(t) + q̄∗(0)F(0, zq(θ) + z̄q̄(θ) +W(z, z̄, θ)),

where

F(0, zq(θ) + z̄q̄(θ) +W(z, z̄, θ)) = Fz2
z2

2
+ Fzz̄zz̄ + Fz̄2

z̄2

2
+ Fz2 z̄

z2z̄
2
+ ...

The above equation can be rewritten as

ż(t) = iω∗τ̃0z(t) + g(z, z̄)(t), (3.9)

where g(z, z̄) is denoted by

g(z, z̄)(t) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄
2
+ ...
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So, we can obtain that

g20 = q̄∗(0)Fz2 , g11 = q̄∗(0)Fzz̄, g02 = q̄∗(0)Fz̄2 , g21 = q̄∗(0)Fz2 z̄. (3.10)

From Eq (3.7), we can obtain that

ut(θ) = W(t, θ) + z(t)q(θ) + z̄(t)q̄(θ),

where ut(θ) = (u1t(θ), u2t(θ), u3t(θ))T , and W(t, θ) = (W (1)(t, θ),W (2)(t, θ),W (3)(t, θ))T . We can calcu-
late the parameter expression from Eq (3.10), which can determine the direction of Hopf bifurcation,
the stability of periodic solutions and the increase or decrease of the period of bifurcating periodic
solutions. It can be further obtained that

g20 =D̄τ̃0(−
2r
k

q2
1q̄∗1 + βq2q̄∗2e−iω∗τ̃0),

g11 =D̄τ̃0(−
2r
k

q1q̄1q̄∗1 +
β

2
q̄∗2(q2eiω∗τ̃0 + q̄2e−iω∗τ̃0)),

g02 =D̄τ̃0(−
2r
k

q̄1
2q̄∗1 + βq̄2q̄∗2eiω∗τ̃0),

g21 =D̄τ̃0(−
2r
k

(2q1W (1)
11 (0) + q̄1W (1)

20 (0))q̄∗1 +
β

2
(2q2W (3)

11 (−1)+

q̄2W (3)
20 (−1) + 2e−iω∗τ̃0W (2)

11 (0) + eiω∗τ̃0W (2)
20 (0))q̄∗2).

From above, it can be found that g21 depends on the coefficients W20(θ) and W11(θ) of W(z, z̄, θ), while
g20, g11, g02 do not depend on W(z, z̄, θ). Next, we calculate W20(θ) and W11(θ).

For Eq (3.7), we get Ẇ = u̇t − żq − ˙̄zq̄. Combining with the definitions of the infinitely small
generator A(µ), RΦ(θ) and that given by (3.9), we can get

Ẇ =

AW − gq(θ) − ḡq̄(θ), θ ∈ [−1, 0),
AW − gq(θ) − ḡq̄(θ) + F0, θ = 0.

(3.11)

In addition, on the central manifold Cµ0 , we can obtain that

Ẇ =Wzż +Wz̄ ˙̄z,
=(W20(θ)z +W11(θ)z̄)(iω∗τ̃0z(t) + g(z, z̄))
+ (W11(θ)z +W02(θ)z̄)(−iω∗τ̃0z̄(t) + ḡ(z, z̄)) + ...

(3.12)

Through comparing the coefficients of the items z2

2 and zz̄ between Eq (3.12) and Eq (3.11), we can
obtain that

(2iω∗τ̃0I − A)W20(θ) =

 − g20q(θ) − ḡ02q̄(θ), θ ∈ [−1, 0),
− g20q(0) − ḡ02q̄(0) + Fz2 , θ = 0,

(3.13)

and

− AW11(θ) =

 − g11q(θ) − ḡ11q̄(θ), θ ∈ [−1, 0),
− g11q(0) − ḡ11q̄(0) + Fzz̄, θ = 0,

(3.14)
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8092

where

Fz2 = τ̃0


−2r

k q2
1

βq2e−iω∗τ̃0

0


Fzz̄ = τ̃0


−2r

k q1q̄1
β

2 (q̄2e−iω∗τ̃0 + q2eiω∗τ̃0)
0

 .
For θ ∈ [−1, 0), from Eq (3.13), we can obtain that

Ẇ20(θ) = 2iω∗τ̃0W20(θ) + g20q(θ) + ḡ02q̄(θ). (3.15)

Substituting q(θ) = q(0)eiω∗τ̃0θ into Eq (3.15), we can obtain that

W20(θ) =
ig20

ω∗τ̃0
q(0)eiω∗τ̃0θ +

iḡ02

3ω∗τ̃0
q̄(0)e−iω∗τ̃0θ +C1e2iω∗τ̃0θ. (3.16)

For θ = 0, from Eq (3.13), we can obtain that∫ 0

−1
dθη(0, θ)W20(θ) = 2iω∗τ̃0W20(0) + ḡ02q̄(0) + g02q(0) − Fz2 .

Substitute Eq (3.16) into the above equation to obtain

(iω∗τ̃0I −
∫ 0

−1
eiω∗τ̃0θdθη(0, θ))q(0) = 0,

which gives

C1 =(2iω∗τ̃0I −
∫ 0

−1
e2iω∗τ̃0θdθη(0, θ))−1Fz2 ,

=

 2iω∗ − r(1 − 2x∗
k ) 1 0

0 2iω∗ −β(a − c)e−2ω∗τ̃0

0 s 2iω∗ + se−2iω∗τ̃0


−1 

−2r
k q2

1
βq2e−iω∗τ̃0

0


For θ ∈ [−1, 0), from Eq (3.14), we can obtain that

Ẇ11(θ) = g11q(θ) + ḡ11q̄(θ). (3.17)

From further calculation, we can obtain that

W11(θ) = −
ig11

ω∗τ̃0
q(0)eiω∗τ̃0θ +

iḡ11

ω∗τ̃0
q̄(0)e−iω∗τ̃0θ +C2. (3.18)

Similarly, we can obtain that

C2 = − (
∫ 0

−1
dη(0, θ))−1Fzz̄,

=

 −r(1 − 2x∗
k ) 1 0

0 0 −β(a − c)
0 s s


−1 

−2r
k q1q̄1

β

2 (q̄2e−iω∗τ̃0 + q2eiω∗τ̃0)
0

 .
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Then, we can judge the properties of Hopf bifurcation by the parameters µ2, β2 and T2. We denote

c1(0) =
i

2ω∗τ̃0
(g11g20 − 2|g11|

2 −
|g02|

2

3
) +

g21

2
;

then,

µ2 = −
Re(c1(0))
Re(λ′(τ̃0))

,

β2 = 2Re(c1(0)),

T2 = −
Im(c1(0)) + µ2Im(λ

′

(τ̃0))
ω∗τ̃0

.

(3.19)

So we can obtain the conclusion as follows.

Theorem 7. The parameters µ2, β2 and T2 determine the properties of Hopf bifurcation. µ2 determines
the direction of the Hopf bifurcation: if µ2 > 0 (µ2 < 0), the Hopf bifurcation is supercritical (subcrit-
ical); β2 determines the stability of the bifurcating periodic solution: the bifurcating periodic solution
is stable (unstable) if β2 < 0 (β2 > 0); T2 determines the period of the bifurcating periodic solution:
the period will increase (decrease) if T2 > 0 (T2 < 0).

4. Optimal control problems

In this section, we investigate the optimal control strategy based on System (1.3). The optimal
control problem is to seek the basic principle of control and the limitation of the available principle
[17,18]. It is widely used in aerospace, electronic information-related fields, bioengineering, economic
management and other fields [19–21]. In this section, two optimal control problems with different
control variables are considered.

4.1. Optimal harvesting and cost control

We first consider System (1.3) with time delays τ1 = τ2 = 0. To control the cost, we consider the
optimal harvesting of fish stocks to maximize the net economic income and minimize the waste caused
by the stored amount of fishery resources. Assume that the probability that the harvesting is greater
than the market demand is p1(0 ≤ p1 ≤ 1). When the market demand is greater than the harvesting,
then the sales is equal to harvesting and the total economic income is y(t)(1 − p1)p(t); otherwise, the
sales is equal to market demand and the total economic income is (a − p(t))p1 p(t). And the total cost
is y(t)c(t). Then the net economic income can be expressed as follows:

π(x(t), y(t), p(t), c(t)) = (a − p(t))p1 p(t) + y(t)(1 − p1)p(t) − y(t)c(t).

In the process of marine fish breeding, the management of the fishing ground is bound to produce
corresponding resource management costs. When the monthly fish stock is greater than the catch
rate, the excess fish stock is hoarded for speculation. The larger the value of this part, the more
management costs will be incurred in theory. We do not want the waste caused by the stock of fish
resources. The waste caused by monthly hoarding for speculation is represented byx(t) − y(t), and
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A is the corresponding positive weight parameter. For the fishing process, the fishery administration
department can adjust the costs incurred during the fishing process to a certain extent by adjusting the
relevant tariff preferences, ocean fishing vessel construction subsidies, fuel subsidies and other support
policies. The optimal control problem involves determining the control variable c to maximize the
objective function∫ ∞

0
e−δt((a − p(t))p1 p(t) + y(t)(1 − p1)p(t) − y(t)c(t) + A(y(t) − x(t)))dt,

where δ is the instantaneous annual discount rate and p(x), x(t) and y(t) are state variables of System
(1.3). Using the Pontryagin maximization principle, we construct the Hamiltonian function as follows

H(x(t), p(t), y(t), c(t)) =e−δt((a − p(t))p1 p(t) + y(t)(1 − p1)p(t) − y(t)c(t) + A(y(t) − x(t)))+

λ1(rx(t)(1 −
x(t)
k

) − y(t)) + λ2(βy(t)(p(t) − c(t))) + λ3s(a − p(t) − y(t)),

where λ1, λ2 and λ3 are adjoint variables and c is the control variable, which can be varied within the
range a − rk

4 < c(t) < a. The condition for a singular control to be optimal is

∂H
∂c
= 0.

From the above equation, we can obtain that λ2(t) = − 1
β
e−δt. For the adjoint variables λ1, λ2 and λ3, the

following equations can be satisfied:

dλ1

dt
= −
∂H
∂x
= Ae−δt − λ1r(1 −

2x
k

), (4.1)

dλ2

dt
= −
∂H
∂y
= −e−δt((1 − p1)p − c + A) + λ1 − λ2β(p − c) + λ3s, (4.2)

dλ3

dt
= −
∂H
∂p
= −e−δt((a − 2p)p1 + y(1 − p1)) − λ2βy + λ3s. (4.3)

By substituting λ2(t) = − 1
β
e−δt into Eq (4.3), it can be obtained that

dλ3

dt
− λ3s = −e−δt(a − 2p − y)p1.

Then adding the integrating factor e−st [22], we can obtain that

λ3 =
(a − 2p − y)p1

δ + s
e−δt. (4.4)

By substituting λ2 and λ3 into Eq (4.2), we can obtain that

λ1 = e−δt(
δ

β
− p1 p + A −

sp1(a − 2p − y)
δ + s

). (4.5)

By substituting Eq (4.5) into Eq (4.1), we can obtain that

(r(1 −
2x
k

) − δ)(
δ

β
− p1 p + A −

sp1(a − 2p − y)
δ + s

) = A. (4.6)
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Equation (4.6) is the optimal control path S δ(xδ, yδ, pδ) of System (1.2) under the control of cost. And
the optimal cost and the optimal harvesting are as follows:

cδ = a − rxδ(1 −
2xδ
k

), yδ = rxδ(1 −
2xδ
k

).

Equation (4.6) provides an equation for the singular path and gives the optimal equilibrium levels of
x = xδ, y = yδ and p = pδ. λieδt, i = 1, 2, 3 represents the shadow prices along the singular path.
From Eqs (4.4) and (4.5) and λ2(t) = − 1

β
e−δt, it may be concluded that these shadow prices may remain

constant over the time interval in an optimal equilibrium when they satisfy the strict transversality
condition at ∞. Further, they remain bounded when t → ∞. There exist an optimal control cδ and
corresponding solutions xδ, yδ and pδ that maximize the objective function. The optimal control path
can involve any combination of the three variables xδ, yδ and pδ that satisfy the constraints.

4.2. Optimal control with guiding interventions

The fisheries and fishery administrations play a crucial role in the process of cultivation, harvesting
and the market circulation of aquatic products. They put forward guiding interventions to assist cul-
tivation enterprises and individual farmers in finding a reasonable scale for farming scientifically, and
they publicize marketing strategies for aquatic products reasonably and moderately. By doing so, com-
panies and individuals will reduce the waste caused by hoarding for speculation or income loss caused
by too few products, and maximize their interests, boosting the economic growth of the country.

According to the above idea, System (1.3) is generalized by incorporating two controls. The con-
trols u1(t) and u2(t) stand for the influence of guiding interventions on finding reasonable scale for
farming and marketing strategies, respectively. Regarding finding a reasonable scale for farming, the
government adjusts the breeding scale by increasing subsidies to fish fry suppliers and feed suppliers,
thereby reducing the loan interest of enterprises of this product, and opening directional loans. Re-
garding marketing strategies, the regulatory authorities adjust the market price of the commodity by
increasing import tariffs, limiting the import quantities of similar agricultural products, implementing
the export tax rebate policy and refunding the domestic tax when the commodity is declared for export.
At the same time, it also affects the capture rate for fishermen and farms. C1 and C2 are positive weight
parameters. So, we obtain the following system:

ẋ(t) = rx(t)(1 − x(t)
k ) − y(t) − u1(t)x(t),

ẏ(t) = βy(t)(p(t − τ1) − c) +C1u2(t)y(t),
ṗ(t) = s(a − p(t − τ2) − y(t)) −C2u2(t)p(t).

(4.7)

The state vector of System (4.7) is given by

X = (x(t), y(t), p(t)) ∈ R3
+.

Considering the biological significance, we assume that the initial conditions of System (4.7) are given
as follows:

(φ1(θ), φ2(θ), φ3(θ)) ∈ C+ = C([−τ, 0],R3
+), φi(0) > 0, i = 1, 2, 3,

where τ = max(τ1, τ2). The optimal control problem involves determining the control variables u1(t)
and u2(t) to minimize the objective function

J(u1(t), u2(t)) =
∫ t f

0
(A(x(t) − y(t)) +

1
2

B1u1(t)2 +
1
2

B2u2(t)2)dt,
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where x(t)−y(t) is the waste caused by hoarding for speculation and A is positive weight parameter. The
squares of the control variables reflect the severity of the side effects of guiding interventions on finding
a reasonable scale for farming and marketing strategies; B1 and B2 are positive weight parameters that
are associated with them. The variables u1(t), u2(t) ∈ U and U represent the control set defined by

U = {u = (u1, u2) ∈ L∞([0, t f ],R2) | 0 ≤ ui(t) ≤ umax
i = 1, t ∈ [0, t f ], i = 1, 2},

where umax
i represents the maximum attainable values of ui. To solve the optimal control problem, we

must prove the existence of the optimal control first. It will be proved if the following conditions are
satisfied:
(1) The set of controls and state variables is nonempty.
(2) The control space is closed and convex.
(3) The right side of System (4.7) is bounded by a linear function with the state and control.
(4) The integrand in the objective function is convex with respect to the input controls u1 and u2.
(5) There exists a constant D1 > 1 and positive numbers D2 and D3 such that the integrand of the
objective functional satisfies

A(x − y) +
1
2

B1u2
1 +

1
2

B2u2
2 ≥ D2(| u1 |

2 + | u2 |
2)D1/2 − D3.

By neglecting the negative terms in System (4.7), we obtain
dx(t)

dt < rx(t),
dy(t)

dt < βy(t)p(t − τ1) +C1u2y(t),
dp(t)

dt < sa.
(4.8)

From the third equation of the above system, the solution of p(t) in finite time is bounded and exists
according to the comparison theorem [22]. System (4.8) can be rewritten in the vector form as follows:

ẋ
ẏ
ṗ

 <


r 0 0
0 C1u2 + βpmax 0
0 0 0




x
y
p

 +


0
0
sa

 ,
where pmax is the maximum of p. This system is linear in finite time with bounded coefficients. Then
the solutions of this linear system are uniformly bounded. Therefore, the solutions of the nonlinear
system given by System (4.8) are bounded and exist. Hence, Condition 1 is satisfied. Condition 2 is
satisfied by the definition of U. System (4.7) can be rewritten as

G(X, Xτ1 , Xτ2) =

 rx(t)(1 − x(t)
k ) − y(t) − u1(t)x(t)

βy(t)(p(t − τ1) − c) +C1u2(t)y(t)
s(a − p(t − τ2) − y(t)) −C2u2(t)p(t)

 ,
where X(t) = (x(t), y(t), p(t))T , Xτ1(t) = (x(t−τ1), y(t−τ1), p(t−τ1))T , Xτ2 = (x(t−τ2), y(t−τ2), p(t−τ2))T

are the vectors of the state variables. According to the Hölder inequality [23], X1, Xτ11, Xτ21, X2, Xτ12

and Xτ22 exist and satisfy

| G(X1, Xτ11, Xτ21)−G(X2, Xτ21, Xτ22) |≤ (| C | +Q) | X1−X2 | +βymax | Xτ11−Xτ12 | + | Cτ || Xτ21−Xτ22 |,
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where

C =


r − u1 −1 0

0 −βc +C1u2 0
0 −s −C2u2

 ,Cτ =


0 0 0
0 0 0
0 0 −s

 ,
Q = max{ 2r

k xmax, βpmax} < ∞. This means that G(X) is uniformly Lipschitz continuous, Condition 3 is
satisfied. Condition 4 is verified by the definition. Finally,

A(x − y) +
1
2

B1u2
1 +

1
2

B2u2
2 ≥ D2(| u1 |

2 + | u2 |
2)D1/2 − D3,

where D2 = max{ B1
2 ,

B2
2 }, D1 = 2, D3 > 0. Condition 5 is satisfied. So the following theorem is

obtained.

Theorem 8. There exist optimal control functions u1δ, u2δ and a set of corresponding solutions xδ(t),
yδ(t), pδ(t) so that J(u1δ, u2δ) = minJ(u1, u2), u1, u2 ∈ U.

Then, using Pontryagin’s maximization principle, we construct the Hamiltonian function as follows

H = A(x(t) − y(t)) +
1
2

B1u2
1(t) +

1
2

B2u2
2(t) + λ1(rx(t)(1 −

x(t)
k

) − y(t) − u1(t)x(t))

+λ2(βy(t)(p(t − τ1) − c) +C1u2(t)y(t)) + λ3(s(a − p(t − τ2) − y(t)) −C2u2(t)p(t)),

Let χ[0,t f−τ](t) be the indicator function of the interval [0, t f − τ]

χ[0,t f−τ](t) =
{

1 i f t ∈ [0, t f − τ],
0 otherwise.

By using optimality, we can obtain that
∂H
∂u1
= B1u1(t) − λ1xδ(t) = 0,

∂H
∂u2
= B2u2(t) +C1λ2yδ(t) −C2λ3 pδ(t) = 0.

So, we can find that

u1δ = max{min{
λ1xδ(t)

B1
, umax

1 }, 0},

u2δ = max{min{
C2λ3 pδ(t) −C1λ2yδ(t)

B2
, umax

2 }, 0},

with x(0) = x0, y(0) = y0, p(0) = p0. The adjoint equations and transversality conditions are obtained
using

dλ
dt
= −
∂H
∂X

(t) − χ[0,t f−τ1](t)
∂H
∂Xτ1

(t + τ1) − χ[0,t f−τ2](t)
∂H
∂Xτ2

(t + τ2), λ(t f ) = 0.

It is obtained that
dλ1

dt
= −A − λ1(r(1 −

2xδ(t)
k

) − u1δ(t)),

dλ2

dt
= A + λ1 − λ2(β(pδ(t) − c) +C1u2δ(t)) + λ3s,

dλ3

dt
= −χ[0,t f−τ1](t)λ2(t + τ1)βyδ(t + τ1) + χ[0,t f−τ2](t)λ3(t + τ2)s + λ3C2u2δ(t),

λ1(t f ) = λ2(t f ) = λ3(t f ) = 0,
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where (xδ, yδ, pδ) is the optimal solution for the optimal controls u1δ(t), u2δ(t), and they satisfy System
(4.7).

5. Numerical simulations

Penaeus vannamei is an important commercial shrimp and there are many experiments and studies
on its cultivation [24, 25]. There are also some reports on the breeding, fishing and marketing of
Penaeus vannamei [26] . In this section, the above theoretical results will be applied to the culture of
Penaeus vannamei.

For System (1.3), we take r = 0.86, k = 700, β = 0.4, c = 50.07, a = 88.92, s = 0.05 and the
set initial value X0(x0, y0, p0) = (650, 38, 50). We take the month as the time unit. The value of c is
the unit cost (ten thousand yuan) and the value of a is the monthly market demand (tons); their values
are derived from the preliminary treatment of the fishing situation investigation results of Penaeus
vannamei in [26], where c and a, respectively, are the average cost and total sales of Penaeus vannamei
in China. The value r is converted and averaged according to the survival rate of the seedlings in several
environments in a culture experiment report [24] to obtain an estimated value. The above-mentioned
parameter values are in line with the definition of the parameters in our model. By calculation, it can
be obtained that S 1 = (651.4596, 38.8500, 50.0700) and S 2 = (48.5404, 38.8500, 50.0700). When
τ1 = τ2 = 0, there is only one equilibrium S 1, according to Theorem 1, the internal equilibrium point
S 1 is globally asymptotically stable, which can be seen in Figure 1. The points near S 2 always reach
a steady-state S 1, which can be seen in Figure 2. From Case 1 and Eq (2.5), it can be obtained that
ω∗ = 2.8100 and τ∗0 ≈ 0.0637. So, the interior equilibrium S 1 remains stable for τ < τ∗0, which can
be seen in Figure 3. As τ increases through τ∗0, Hopf bifurcation occurs. The bifurcating periodic
solution exists for τ slightly larger than τ∗0 which can be seen in Figure 4. The phase space trajectory
shows a limit cycle corresponding to the periodic solution in the solution curves, which forms around
the fixed point. For τ > τ∗0, the interior equilibrium becomes unstable, which can be seen in Figure
5. The solution of System (1.3) varies as the bifurcation parameter τ for τ1 = τ2, which is shown in
Figure 6. And from this figure, we can observe that the solution changes from stable to unstable as the
bifurcation parameter τ increases through the bifurcation value τ∗0. From Eq (2.8), it can be obtained
that τ∗20+ ≈ 0.1767, τ∗20− ≈ 0.2276. From Eq (2.9), it can be obtained τ∗10 ≈ 0.2054. The graphs that
show dynamical variation of System (1.3) when τ1 , τ2 , 0 are similar to τ1 = τ2.

For case 5, we fix τ2 = 0.0670 < τ∗20+; by calculation, it can be obtained that ω∗ ≈ 2.8640, τ̃0 ≈

0.0598. Based on our analysis in Section 3, we can compute the crucial values with the help of Matlab
to get µ2 = −2.7672 × 10−4, β2 = 7.4396 × 10−4, T2 = 2.514610−5. Therefore, according to Theorem
8, when τ1 = τ

∗
0 = 0.0598, it can be concluded that the direction of the local Hopf bifurcation is

subcritical additionally, the nontrivial periodic solutions bifurcating from the interior equilibrium S 1 =

(651.4596, 38.8500, 50.0700) are unstable and increase on the center manifold, which can be seen in
Figure 7. The solution of System (1.3) varies according to the bifurcation parameter τ1, for τ2 =

0.0670, which is shown in Figure 8.
The optimal control problem of System (4.7) cannot be solved analytically; ,consequently, reliable

numerical methods are essentially required. It is transformed into a nonlinear programming problem.
The rough steps are as follows. Let A = 0.001, B1 = 1000, B2 = 10, C1 = C2 = 10. Under the
assumption that there exist a step size h > 0 and integers (n, g1, g2) ∈ N3 with t f = nh, τ1 = g1h and
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τ2 = g2h, let τ1 = 0.05, τ2 = 0.5, h = 0.01, t f = 300, so that n = 3000, g1 = 1, g2 = 10 and other
parameters are the same as above. We set X(θ) = (xθ/h, yθ/h, pθ/h) = X0, θ ∈ [−τ, 0] and λ j(θ) = λ

θ/h
j = 0,

where, θ ∈ [t f , t f + τ], j = 1, 2, 3, where τ = max{τ1, τ2}. By using backward difference approximation,
adjoint functions with transversality conditions can be obtained as

λn−i−1
1 = λn−i

1 − h(−A − λn−i
1 (r(1 −

2xi

k
) − ui

1)),

λn−i−1
2 = λn−i

2 − h(A + λn−i
1 − λ

n−i
2 (β(pi − c) +C1ui

2) + λn−i
3 s),

λn−i−1
3 = λn−i

3 − h(−χ[0,t f−τ1](tn−i)λ
n−i+g1
3 βyi+g1 + χ[0,t f−τ2](tn−i)λ

n−i+g2
3 s + λn−i

3 C2ui
2).

By utilizing combinations of the forward and backward difference approximations, it can be derived
that

xi+1 = xi + h(rxi(1 −
xi

k
) − yi − ui

1xi),

yi+1 = yi + h(βyi(pi−g1 − c) +C1ui
2yi),

pi+1 = pi + h(s(a − pi−g2 − yi) −C2ui
2 pi).

The optimal harvest controls are updated by values of the state and adjoint variables

ui+1
1 = max{min{

λn−i
1 xi+1

B1
, umax

1 }, 0},

ui+1
2 = max{min{

C2λ
n−i
3 pi+1 −C1λ

n−i
2 yi+1

B2
, umax

2 }, 0},

where umax
1 = umax

2 = 1. Repeat the above steps for i = 0, ..., n − 1. From these steps, we obtain Figure
9. From this figure we can get that under the reasonable controls, the waste caused by hoarding for
speculation is reduced. We also get that the interior equilibrium of System (1.3) is stable when the cost
is c = 56.8426 and the time delay τ1 = τ2 < τ

∗
0, which is shown in Figure 9.

6. Conclusions

In this paper, a delayed single-species fishery economic model was established. It is considered
that the catch rate was affected by the total revenue and the total cost. Two time delays were added
to the system; they were found to be related to the effects of price on the catch rate and the market
requirements respectively. For the delayed system, the local stability behaviors around the interior
equilibrium point were discussed. It could be seen that the time delays had a great influence on the
stability of the system. When the time delays are too large, the system will change from stable to
unstable. This is reflected in the sharp fluctuations of fishery resources and prices in fisheries, which
we do not want to see. If we can reduce these two time delays as much as possible, we can increase
the stability of the fishery industry. For example, we would be able to feedback market information to
fishermen and farms in real time, improve price transparency and reduce the time delay of price in the
fishing process. For another example, the pricing of the current year is affected by the previous pricing
experience, resulting in a time delay of the price. The supervision department can lead the scientific
research institutes to make scientific predictions on the market trend of that year, guide the market
price and reduce the time delay. Using the central manifold theory,we obtained the direction of Hopf
bifurcation, stability and existence of the bifurcated periodic orbit.
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Figure 1. Solution curves and phase space trajectories for the fish stock, catch rate and unit
price of the stock without any time delay, beginning with x0 = 650, y0 = 38 and p0 = 50,
finally stabilizing at S 1.
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Figure 2. Solution curves and phase space trajectories for the fish stock, catch rate and unit
price of the stock without any time delay, beginning with x0 = 48, y0 = 38 and p0 = 50
around S 2, finally stabilizing at S 1.
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Figure 3. Solution curves and phase space trajectories for the fish stock, catch rate and unit
price of the stock with time delay τ1 = τ2 = 0.01 < τ∗0, beginning with x0 = 650, y0 = 38 and
p0 = 50, finally stabilizing at S 1.
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Figure 4. Solution curves and phase space trajectory for the fish stock, catch rate and unit
price of the stock with time delay τ1 = τ2 = 0.067 > τ∗0, beginning with x0 = 650, y0 = 38
and p0 = 50, producing a stable periodic solution.
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p0 = 50.
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Figure 7. Solution curves and phase space trajectory for the fish stock, catch rate and unit
price of the stock with time delay τ1 = 0.0598, τ2 = 0.067, beginning with x0 = 650, y0 = 38
and p0 = 50.
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Figure 9. Stable dynamical variations of the fish stock, catch rate and unit price of the stock
with controls or without controls.

Using Pontryagin’s maximum principle, we obtained the optimal cost strategy. According to the
optimal cost strategy, guidances could be given to regulatory agencies’ subsidies and tax adjustments
to fisheries. This will only ensure the maximization of economic benefits and minimize the waste, but
also realize the sustainable development of the population. We also got the stable dynamical variation
of the delayed system under the control of guiding interventions. This showed that there would be less
waste caused by hoarding for speculation if fisheries and fishery administrations could assist cultivation
enterprises and individual farmers in finding a reasonable scale for farming scientifically, and publicize
marketing strategies for aquatic products reasonably and moderately. And, from the simulation results,
compared with that before adding the optimal control with guiding interventions, the waste caused by
hoarding is indeed reduced on the premise of ensuring the stability of the system.

There are some topics remaining to refine our modeling and further the analysis. These include the
influences of other species on the target species in polycultural mode and the influences of environ-
mental complexity caused by algae, fungi and other microorganisms in water on population growth, as
well as the global stability analysis and other bifurcation in the sense of mathematical theory.
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