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Abstract: A bearing is an important and easily damaged component of mechanical equipment. For early 
fault diagnosis of ball bearings, acoustic emission signals are more sensitive and less affected by mechan-
ical background noise. To cope with the large amount of data brought by the high sampling frequency and 
high sampling points of acoustic emission signals, a compressed sensing processing framework is intro-
duced to research data compression and feature extraction, and a wavelet sparse convolutional network is 
proposed for resolved diagnosis and evaluation. The main research objective of this paper is to maximize 
the compression rate of the signal under the constraint of ensuring the reconstruction error of the acoustic 
emission signal, which can reduce the data volume of the acoustic emission signal and reduce the pressure 
of data analysis for subsequent fault diagnosis. At the same time, a wide convolution kernel based on a 
continuous wavelet is introduced when designing the neural network, and the energy information of differ-
ent frequency bands of the signal is extracted by the wavelet convolution kernel to characterize the fault 
characteristics of the equipment. The energy pooling layer is designed to enhance the deep mining ability 
of compressed features, and the regularized loss function is introduced to improve the diagnostic accuracy 
and robustness through feature sparseness. The experimental results show that the method can effectively 
extract the fault characteristics of the bearing acoustic emission signal, improve the analysis efficiency and 
accurately classify the bearing faults. 

Keywords: acoustic emission signal; compressed sensing; wavelet transform; convolution kernel; en-
ergy pooling layer; sparse feature 
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1. Introduction  

Mechanical equipment often fails, and bearing failure is the main factor causing mechanical 
equipment failure [1]. In rotating machinery, 70% of failures are caused by rolling bearings. 
Among all kinds of failures in the gearbox, bearing failures are second only to gears and account 
for 19%, and 80% of motor failures are motor bearing failures. Therefore, if the bearing fails, it will 
cause downtime, cause serious economic losses and even lead to major safety accidents in addition to 
the failure of machine. Studying the common fault types and fault mechanisms of bearings and carry-
ing out fault monitoring, diagnosis and evaluation of bearings can effectively prolong the service life 
of bearings and mechanical equipment and ensure the normal operation of mechanical equipment [2]. 
One of the difficulties in the field of condition monitoring is accurately detecting the early faults of 
bearings and carrying out timely maintenance and repair [3]. Therefore, it is of great practical signifi-
cance to study the causes of bearing faults and fault diagnosis techniques. In recent years, many new 
bearing fault diagnosis methods have appeared and have achieved good results. Ni et al. proposed a 
fault information-based VMD (FIVMD) method to extract weak bearing repetitive transients, which 
can successfully fault early fault signals, impulse noise signals and planetary bearing signals under 
complex operating conditions of rolling bearing diagnosis [4]. Ji et al. proposed a new robust IFB 
selection method based on correlation entropy fault energy (FECgram for short), which can capture 
fault symptoms for fault diagnosis without being affected by fault-independent impulses and cy-
clostationary disturbances [5]. 

When the bearing fails in the early stage, its fault signal characteristics are extremely weak, and 
the surrounding noise signals can easily cover them. It is difficult to effectively diagnose the bearing 
using the vibration signal [6]. Compared with the vibration signal, the acoustic emission signal has 
weak fault features that are more sensitive, so acoustic emission signals are also widely used in fault 
diagnosis [7]. However, the high sampling frequency of acoustic emission signals requires high sam-
pling equipment which increases the amount of data. A large amount of data needs to occupy a large 
data storage space, which affects the efficiency of fault diagnosis. In recent years, the theory of com-
pressed sensing has begun to rise, which provides a new approach for massive data processing. Donoh 
et al. proposed a new signal acquisition and processing method based on sparse representation and 
signal approximation theory, namely, compressed sensing [8]. The principle of compressed sensing is 
to sample the signal much lower than the Nyquist sampling theorem suggests and to reconstruct the 
original signal with high probability. In other words, the original signal is recovered from the com-
pressed data, so the compressed sensing method can greatly reduce the redundancy of the data while 
retaining the information in the original signal, improving the data transmission efficiency during fault 
diagnosis, and saving storage space. An algorithm for bearing fault diagnosis through compressed 
sensing and match pursuit (MP) rebuilding was proposed by Zhang et al. [9]. Gang et al. proposed 
detecting characteristic harmonics from sparse measurement data using a compressed MP strategy in 
the case of incomplete signal reconstruction [10]. Wang et al. proposed a fault diagnosis means for 
compressing sparse time-frequency feature indication through compressed sensing, which can refactor 
the time-frequency features of fault signals from a small quantity of compressed sampling data includ-
ing noise [11]. Tang et al. proposed a method combining sparse indication and random dimension 
reduction to acquire and classify rotating machinery fault features [12]. Liu et al. proposed a means to 
immediately acquire compression characteristics of acoustic emission signals from compressed sens-
ing data for the evaluation of rotating machinery operating conditions [13]. 

Traditional shallow learning-based fault diagnosis methods rely too much on the experience of 
diagnostic experts in signal processing and feature extraction. A better solution to this problem has 
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been proposed using deep learning. Deep learning has a strong automatic feature extraction ability and 
can automatically learn representative features from data. Therefore, by combining compressed sens-
ing with deep learning, compressed sensing greatly reduces data redundancy while retaining most of 
the information. Margin, with the help of deep learning to strengthen feature mining and extraction, 
improves the accuracy of fault diagnosis and is used in the current research in the field of fault diag-
nosis. Ahmed et al. proposed a method to classify bearing faults in compression measurements using 
sparse overcomplete features and deep neural networks (DNNs) combined with a sparse-autoencoder-
(SAE)-based unsupervised feature learning algorithm [14]. Shao et al. proposed a novel method based 
on compressed sensing (CS) to improve the convolutional deep belief network (CDBN), which en-
hanced the feature learning ability of mechanical equipment vibration compressed data [15]. Yuan et 
al. proposed a bearing fault diagnosis means combining compressed sensing and a heuristic neural 
network [16]. Aiming at the nonstationarity and nonlinearity of the vibration signal of a planetary 
gearbox, Chen et al. proposed a fault state identification method for planetary gearboxes based on 
convolutional neural networks and discrete wavelet transforms [17].  

Based on the above analysis, this paper performs random dimension reduction projection on the 
acoustic emission signal to obtain the compressed signal as the input of the neural network, designs a 
continuous wavelet wide convolution kernel (CWConv) to improve the first layer structure of the CNN 
and designs an energy pool according to the characteristics of the energy enrichment of the compressed 
signal frequency band. The regularization penalty term is introduced into the network loss function to 
improve the sparsity of features, improve the network learning ability and improve the diagnosis ac-
curacy. The effectiveness of the method is proven by a thrust ball bearing experiment. The experi-
mental results show that the method proposed in this paper has great advantages in accuracy and ro-
bustness. The main contributions of this paper include the following: 
1) Combining compressed sensing theory with acoustic emission signal analysis while retaining ef-

fective information for diagnosis reduces the demand for acoustic emission data for model analysis 
and improves model training and diagnosis efficiency.  

2) The traditional random convolution layer is replaced with a continuous wavelet wide convolution 
layer, a wavelet is used to extract the frequency band information of the compressed signal, and 
the compressed domain information of different frequency bands is extracted.  

3) The energy pooling layer is designed to mine the band information energy features of the com-
pressed signal, enhance the ability of the 1D convolutional network to mine signal energy features 
and fully mine the hidden features of the data. 

4) The regularization penalty term is added to improve the model loss function so that the network 
can learn sparsity features during the learning process. 

2. Theoretical background 

2.1. Compressed sensing 

Compressed sensing theory comes from norm function analysis and approximation theory. It is a 
theory based on functional analysis, matrix analysis, sparse representation, optimal reconstruction and 
other theories. The sparseness of signals is an important prerequisite for compression. However, most 
signals, in reality, do not have sparsity, so it is necessary to find a specific orthonormal basis N NR   

so that the signal 1Nx R   can be represented on the basis  : 

 x  .  (1) 
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In the formula, the transformation coefficient   is sparse, containing only a small number of 
nonzero items, and most of the other items have zero values. The observation base M NR   is se-
lected, and the signal is projected to the observation base   to obtain the dimensionality-reduced 
projection data to realize data compression: 

 y x  .  (2) 

1My R   is the compressed signal obtained after compression. According to the sparsity property, 
when y ,   and   are known, the reconstruction of the signal is achieved by optimizing the norm 

1l  and a greedy algorithm [18,19]. 

2.2. Random energy preservation properties 

According to compressed sensing theory, for the signal 1Nx R  , the M N  dimensional Gauss-
ian random matrix   is used as the projection matrix to compress the signal. The compressed signals 
y x    and 1My R   , where M N  , are obtained after compression. According to the projection 

matrix isometric (distance preserving property, DPP) condition [20], the random projection distance 
maintenance of the time domain signal x  can be described as 

 
2 2

2 2
(1 ) (1x y x     ） ,  (3) 

where  0,1   in the formula. From the perspective of energy, the 2l -norm can be expressed as the 

energy of a vector, so the energy of the signal obtained from the above formula is approximately un-
changed before and after projection. Accordingly, the energy characteristic parameter E  that defines 
the time domain signal and the energy characteristic parameter Ê  of the compressed domain signal 
are described as 

 2 22 2

2 2
1 1

ˆ,
N N

i i
i i

E x x E y y
 

     .  (4)          

The random projection energy retention can be described as 

 Ê E C  ,  (5)          

where C  is a constant with a small value. 
According to Eq (5), the signal energy remains approximately constant during the random pro-

jection process, that is, the energy characteristic E  of the signal in the compression domain and the 
energy characteristic E  of the time domain signal are approximately the same. Based on this property, 
it can be seen that in the process of signal analysis of the bearing, the results of analysis and diagnosis 
using the energy characteristics of the compressed data are approximately consistent with the diagnosis 
results obtained from the energy characteristic parameters of the original signal in the time domain. 

2.3. Continuous wavelet transform 

The principle of the continuous wavelet transform is to use the scale parameter 0s   and trans-
lation parameter r R   of the mother wavelet ( )    to represent a general wavelet dictionary 

,{ ( )}r s t  in the time domain [21–23]: 



8061 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 8057–8080. 

 ,

1
( ) ( )r s

t r
t

ss
  

 .  (6) 

In the formula, s  is the scale parameter, which is inversely proportional to the frequency, r  is 
the translation parameter, and t  is the time. The scale parameter s  represents that the signal can be 
scaled and transformed. The scale parameter determines the amount of information we obtain. The 
larger the scale parameter is, the less detailed information we obtain. In contrast, the smaller the scale 
parameter is, the more detailed information we obtain [24]. The inner product of the signal  x t  and 

the wavelet dictionary , ( )r s t  is the process of the continuous wavelet transform of the signal, which 

can be expressed as follows: 

 *
,

1
( , ) ( ), ( ) ( ) ( )f r s

t r
CWT r s x t t x t dt

ss
  

   ,  (7) 

where *( )   is the complex conjugate of the mother wavelet ( )  . Equation (7) shows that the CWT 

(continuous wavelet transform) and the Fourier transform process are roughly the same, and the Fou-
rier transform is the inner product of the signal and the trigonometric function. The Fourier transform 
is usually carried out over the entire frequency band, so it does not have multiscale properties, whereas 
the wavelet transform can achieve the multiscale analysis of the nonstationary signal by scaling pa-
rameters and shifting parameters [24]. The CWT (continuous wavelet transform) mainly includes three 
steps, as shown in Figure 1:  

1) A wavelet basis function is chosen, and the ( , )fCWT r s  formula is used to calculate the simi-

larity factors with some signals. 
2) The wavelet is continuously shifted to the right by r , and the similarity factors are calculated 

until all parts of the signal are calculated. 
3) The scale parameter s  of the wavelet is altered, and the above procedures are duplicated to 

complete the analysis of all scales. 
Through the above steps, the signal  x t  is decomposed into a series of similarity coefficients 

and then combined with the wavelet dictionary, and the signal is projected onto the two-dimensional 
(2-D) time dimension and scale dimension. 

 

Figure 1. Process of continuous wavelet transform. 
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3. One-dimensional convolutional neural network improved wavelet sparse convolutional network 

One-dimensional CNNs have features such as local connections, weight sharing and downsam-
pling and have been widely used in the field of fault diagnosis [25,26]. An input layer, multiple hidden 
layers and an output layer together form a one-dimensional CNN, where the input layer is used to input 
data, the hidden layer is mainly used to extract features, and the output layer is used to output results. 
Typically, hidden layers include one-dimensional convolutional layers, one-dimensional pooling lay-
ers, activation layers and fully connected layers. 

3.1. Continuous wavelet convolutional layer 

In a standard one-dimensional convolution layer, each randomly initialized convolution kernel is 
convolved with the input signal, and the process of the convolution operation can be expressed as 

 ( )l l l
k k kh w x t b   ,  (8) 

where l
kw  represents the weight of the k -th convolution kernel of the l -th layer,  x t  represents 

the input signal, l
kb  represents the deviation, and   is the convolution operator. An activation func-

tion is required after the convolution operation, and the activation process can be expressed as follows: 

 ( )l l
k ky f h ,  (9) 

where  f x  is the activation function of the l -th convolutional layer, and l
ky  is the output of the 

feature map after activation. 
The first convolutional layer is displaced by a continuous wavelet convolutional layer (CWConv). 

By choosing basis functions , ( )r s t  of different scales, the first convolutional layer of the convolu-
tional neural network is replaced by a continuous wavelet convolutional layer, where the wavelet con-
volutional layer is composed of wavelet kernels with different scale parameters and translation param-
eters [24,29], as shown in Figure 2. 

 

Figure 2. Schematic diagram of wavelet convolution layer operation. 
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The time domain is converted to the frequency domain by convolving the signal with the defined 
, ( )r s t   and using convolution kernels of different scales to obtain different frequency band infor-

mation of the signal. This function only depends on two learnable parameters, r  and s , as follows: 

 , ( ) ( )r sh t x t    (10) 

where  x t  represents the input signal, and the basic functions , ( )r s t of different scales can be wave-

let functions with time-domain expressions, representing the result of continuous wavelet convolution 
operations. The signal will distribute some local feature information in different frequency bands. 
Combining the feature information in all frequency bands can effectively improve the fault classifica-
tion accuracy. 

In the process of backpropagation [27], the CWConv layer, as the first layer, only needs to update 
the parameters r  and s , and we have 
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, (11) 

 ,
k kk k r k k sr r s s     , (12) 

where   is the derivative operator, ,
k
r s  is the k -th wavelet filter of the first layer of length L , and 

kr  and ks  are the translation parameters and scale parameters, respectively. Parameters r  and s  

will be updated by subtracting the product of learning rate   and gradient  . For example, the par-
tial derivatives , /r s r   and , /r s s   of the Laplace wavelet dictionary (Laplace) [28] can be de-

rived by the following formulas. First, the Laplace wavelet is a complex exponential wavelet number 
with unilateral decay, expressed as 

 
2(( / 1 ) )( ) ,   0cu w tt Ae t      ,  (13) 

 ( ) 0,    0t t   ,  (14) 

where   corresponds to the frequency bandwidth of the wavelet in the frequency domain, and fre-
quency cw  determines the number of significant oscillations of the wavelet in the time domain and 

corresponds to the center frequency of the wavelet in the frequency domain. A is an arbitrary scale 
factor used to normalize the wavelet function. Second, the resulting wavelet dictionary is 

 

2(( / 1 ) ) ( )

,

1
( )

u w t rc

s
r s t Ae

s

 


   

 .  (15) 

We introduce , /r s r   and , /r s s   into Eqs (11) and (12) to update the parameters s  and r  

of the Laplace wavelet convolutional layer. The continuous wavelet convolution layer can automati-
cally mine the fault feature information of signals in different frequency bands [29] and accomplish 
adaptive feature extraction for local feature information of different frequency bands. 
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3.2. Energy pooling layer 

For the standard one-dimensional pooling layer, the maximum pooling method is generally used, 
and the calculation method of convolution is as follows: 

  1

( 1) 1
( ) max ( )l l

i i
u w t uw

p u q t

   
 .  (16) 

In the formula, ( )l
ip u  is the value corresponding to the neuron in the l  layer, w  is the 

width of the pooling area, and 1( )l
iq t  is the output value of the i -th neuron in the 1l   layer, 

where  ( 1) 1,t u w uw   . Based on the principle of compressed sensing, the continuous wavelet 

convolution is mined to the energy information of different frequency bands of the signal to rep-
resent the equipment fault characteristics, and the energy pooling layer is designed to mine the 
energy characteristics of the frequency bands by using the energy information of different fre-
quency bands [27]. Root mean square (RMS) is a time-domain statistical feature used to describe 
signal energy. It has the characteristics of stability and good repeatability in diagnostic indicators. 
It is an important indicator for judging equipment operating status and diagnosing component fail-
ures. For signal X , the energy calculation formula for the RMS value is 

 

2

1

M

i
i

rms

x
X

M



.  (17) 

The continuous wavelet convolution layer mines the fault feature information of signals in differ-
ent frequency bands and uses the energy pooling method to mine the energy characteristics of different 
frequency bands in the fault characteristic information. For signal X , the calculation formula of the 
signal channel energy pooling method is 

 ( )

p

p x X

x
f X

M



.  (18) 

The main function of the pooling layer is to reduce the dimension, compress the features and 
reduce the amount of calculation. Combining Eqs (17) and (18), when p  is infinity, it is equiva-
lent to a max pooling operation; when 1p  , it is equivalent to an average pooling operation. In 
this paper, 2p   is taken. When 2p  , the energy pooling calculation method is similar to the 

root mean square value of the input channel. It can be used to describe the band energy index and 
reflect the abnormal situation in the nonstationary signal. Maximum pooling mainly reduces the 
dimension by taking the maximum feature points in the neighborhood, average pooling mainly 
reduces the dimension by averaging the feature points in the neighborhood, and the energy pooling 
calculation method extracts the average value of the input channel. The square root energy statis-
tical value is used to reduce the feature dimension, which is used to describe the signal and the 
root mean square value of the energy statistical characteristic index. It has the characteristics of 
stability and good repeatability in the diagnosis index and is an important indicator of failures such 
as component wear. 
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3.3. Fully connected layer 

The convolutional layer extracts local features, and the fully connected layer reassembles the 
previous local features extracted by the convolutional layer and the pooling layer into a complete col-
umn through the weight matrix, which is expressed as 

 ( )l l l l
k k k kf w p b   . (19) 

In the formula, (1, )k n  with a total of n neurons, l  represents the number of layers, l
kw  rep-

resents the weight of the k -th neuron in the l -th layer, l
kb  represents the threshold of the k -th neu-

ron in the l -th layer, l
k  represents output of the k -th neuron in the l  layer, and  f x  is the ac-

tivation function. 

3.4. Softmax classification layer 

The model of the convolutional network usually has a softmax layer at the end. The main function 
of this layer is to output the probability of each class. The calculation formula is 

 ( )
i

j

J

j

e
s i

e







.  (20) 

In the formula,  s i  is the probability of each output, and the sum of all  s i  is 1; J  is the 

number of categories of multiclassification problems. 

3.5. Regular penalty term for the loss function 

In the process of model training, the convolutional network generally selects cross entropy as the 
loss function, which can be expressed as 

 ˆ ˆ ˆ( , ) [ log (1 ) log(1 )]L y y y y y y       .  (21) 

In deep learning, it is often seen that an extra item is added after the loss function. There are 
generally two common extra items. One is 2l  regularization, and the other is 1l  regularization. 1l   
regularization and 2l  regularization can be regarded as penalty terms of the loss function, and the 
penalty terms impose some restrictions on some parameters in the loss function. 1l  regularization can 

produce a sparse weight matrix, that is, a sparse model that can be used for feature selection. A sparse 
matrix refers to a matrix in which many elements are 0 and only a few elements are nonzero values, 
that is, most of the coefficients of the obtained linear regression model are 0. Usually, there are many 
features in deep learning, and it is difficult to select too many features during classification. However, 
if the model obtained by substituting these features is a sparse model, it means that only a few 
features contribute to the model, and most features do not contribute or contribute very little (be-
cause the coefficients in front of them are 0 or very small values; even if they are removed, it does 
not affect the model). At this time, we can only focus on the features whose coefficients are non-
zero values. 2l  regularization can prevent model overfitting (overfitting); to a certain extent, 1l  

can also prevent overfitting. 
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Therefore, to extract the sparsity feature from the compressed data, the 1l  penalty term is added 

to the loss function. ( ) i
i

h h    at this time, and the loss function becomes 

 ˆ ˆ ˆ( , ) ( ) [ log (1 ) log(1 )] i
i

L y y h y y y y h          ,   (22) 

where ih  represents the activation value of the output of each neuron in layer n-1. All the neurons are 
also located in network, and   is the regularization coefficient. y  is the true label, and ŷ  is the 

model prediction. When 1 represents that the true label is true, the closer the predicted output is to the 
true label 1, the smaller the loss function L ; the closer the predicted output is to 0, the larger the loss 
function L . When 0 represents that the true label is true, it also conforms to the true situation. 

4. Fault diagnosis of thrust ball bearing acoustic emission signals based on a wavelet sparse 
convolutional network 

In this paper, the fault diagnosis of thrust ball bearings is carried out based on the acoustic emis-
sion signal of compressed sensing. Combining compressed sensing theory with a wavelet sparse con-
volutional network, compressed sensing effectively solves the problem of data redundancy in acoustic 
emission signals, but some time-domain features will be lost in the process of compression, and similar 
random features will be generated. At this time, the conventional acoustic emission signal analysis 
method can no longer meet the requirements. Because the compression of the signal is based on the 
energy preservation property of random projection, the compressed data maintain the same signal 
structure and energy as the original signal, and the wavelet sparse convolutional network can realize 
the independent selection of the frequency band energy features, including the primary feature infor-
mation, avoiding subjective parameter settings and uncertain effects on the experimental results. After 
compressing and sampling the original signal, the amount of data is greatly decreased. The compressed 
data of the signal are used as input, and the feature information of different frequency bands is extracted 
from the input signal through wavelet convolution. Finally, the energy pooling layer is used for mining 
the energy characteristics of each frequency band. To extract sparsity features from compressed data, 

an 1l  penalty term is added to the loss function ( ) i
i

h h    at this time. This solves the problem 

of a large amount of acoustic emission signal data in fault diagnosis, resolves the issues of faint fault 
features in compressed data and extracts compressed domain features. Finally, the softmax classifier 
is used to classify and predict thrust ball bearings with different fault types. The basic flow of the 
method proposed in this paper is shown in Figure 3. 
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Figure 3. Wavelet sparse convolutional network flow chart. 

4.1. Wavelet sparse convolution model structure 

In this section, the structural parameters of the wavelet sparse convolutional network are set as 
shown in Table 1. The first convolutional layer is used as a continuous wavelet convolutional layer, 
and the remaining multiple convolutional layers are standard one-dimensional convolutional layers. 
The continuous wavelet convolutional layer can obtain the feature information of different frequency 
bands of the signal in the first layer, while the remaining convolutional layers and deeper network 
structures can fully exploit the signal's hidden fault features. 

To suppress overfitting and improve the generalization ability of the model, the dropout func-
tion is added; to solve the problem of gradient disappearance or explosion, batch normalization 
(BN) is added after each convolutional layer. The training process stipulates that the initial learning 
rate is 0.001, the decay rate is 0.9, the batch learning size is 100, and all parameters are updated using 
backpropagation and Adam optimization algorithms. 

When training the model in this paper, the cross-entropy loss function combined with the 1l  reg-

ular penalty term is used for measuring the difference distribution between the predicted value and the 
actual value. The loss function is defined as follows: 
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The last layer of the network uses the softmax function to output ŷ , where m  represents the 
total number of samples, y  is the fault class label corresponding to the sample, and ih  is the exci-

tation value of the i -th neuron. 

 

1
ˆ( ( , ) ( ))

1
ˆ ˆ([ log (1 ) log(1 )] )

x

i
x i

Loss L y y h
m

y y y y h
m



 

       



 
  (23) 

Table 1. Network structure parameters. 

No. Layer Kernel Size Activation Output Size 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

CWConv 1 

LPPooling 

Conv 2 

Maxpool 1 

Conv 3 

Maxpool 2 

Dropout 

Conv 4 

Maxpool 3 

Conv 5 

Dropout 

Flatten 

FC 1 

Dropout 

54811   ReLU 81768  

14    

558181   ReLU 81192  

14    

558181   ReLU 8148  

14    

   

556481   ReLU 6412  

14    

556464   ReLU 643  

   

   

64192  ReLU 164  

   

FC 2 364  Softmax 13  

5. Experimental verification and analysis 

To examine the effectiveness of the proposed method in this thesis, the thrust ball bearing is taken 
as the object of the simulated experiment, and three states of the bearing are simulated: namely, normal 
bearing, rolling element failure, and race failure. The thrust ball bearing is installed on a bearing failure 
simulation test bench, which is mainly composed of a driving device, gearing, an experimental device, 
a loading device, a guide rail device and an anti-overload preservation device. The acoustic emission 
sensor is used to collect the acoustic emission signal of the bearing, and the acoustic emission system 
consists of five parts: sensor, preamplifier, data acquisition card, host and display. The installation 
position of the test facilities and sensor is exhibited in Figure 4. 
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Figure 4. Bearing failure test bench. 

When simulating the weak fault of the bearing, EDM (electric discharge machining) technology 
is used to process the single-point dimple at the center position of the bearing race and rolling element, 
as shown in Figure 5. Part of the fault location is enlarged, as exhibited in Figure 6. The spindle speed 
of the experimental equipment is 400 revolutions per minute, the sampling frequency is 1 MHz, and 
the number of data points is 20,000,000. 

 

Figure 5. Schematic diagram of bearing component failure. 
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Figure 6. Partially enlarged view of bearing component failure. 

5.1. Acoustic emission signal compression 

 

Figure 7. Reconstruction error curves under different compression ratios. 

For compressed signals, the compression ratio is an indicator reflecting the degree of signal com-
pression and an important parameter for data compression. The larger the compression ratio  (orig-
inal signal data length / compressed data length), the more obvious the degree of data compression, 
the greater the data volume is reduced, and the greater the original signal features are lost in the com-
pressed domain signal. Therefore, it is necessary to choose an appropriate compression ratio that can 
significantly reduce data while retaining key information and significantly reducing computational 
costs. In this paper, the discrete cosine transform (DCT) is used to sparsely represent the original 
acoustic emission signal, and the orthogonal matching pursuit algorithm (OMP) is used to reconstruct 
the signal. The influence of different compression ratios on the reconstruction error is studied. The 
reconstruction error is defined as ˆrrE or x x x  . The changing trend of the reconstruction error at 

the lower rate is used to select an appropriate compression rate. The compression ratio range is selected as 

R
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(1,20)R , and the reconstruction error curves under different compression ratios are obtained, as shown 

in Figure 7. 

 
(a)                             (b) 

 
(c)                              (d) 

Figure 8. The time-domain waveform diagrams and spectrograms of the acoustic emission 
original signal and compressed signal in different states. (a) Time-domain waveform of the 
original acoustic emission signal; (b) spectrogram of the original acoustic emission signal; 
(c) time-domain waveform of compressed signal; (d) spectrogram of a compressed signal. 
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It is evident from the figure that the greater the compression ratio is, the greater the reconstruction 
error. According to the analysis of the reconstruction error curve shown in Figure 7, the relationship 
between the compression ratio and the reconstruction error is similar to a linear relationship. According 
to actual experience, a reconstruction error rror 25%E   can meet the actual needs. As shown in Fig-
ure 7, when the compression rate 10R  , the reconstruction error 21.73%Error  , which is accepta-
ble in practical applications. Therefore, a compression ratio of 10 times is selected to compress the 
original signal. In this way, the compressed data can not only retain the important information in the 
original signal but also reconstruct the signal with low reconstruction error. It is also ready for the 
network to extract enough feature information in the compressed domain in the future. 

In the process of generating compressed data, the property of approximately equidistant projec-
tion can ensure that the structure of the signal is approximately unchanged before and after compressed 
projection, while random projection, as a commonly used linear projection method, has been studied 
in many fields, especially in compressed sensing. In research, since the Gaussian random matrix is 
irrelevant to the vast majority of sparse matrices, the Gaussian random matrix is often used as the 
observation matrix for signal compression sampling in compressed sensing. Since the Gaussian ran-
dom matrix satisfies the property conditions of the approximate equidistant projection, the Gaussian 
random matrix is selected. The random matrix is used as the projection matrix [30]. In this paper, the 
original signal is randomly dimensionally reduced by constructing a Gaussian random matrix to obtain 
compressed data. According to the error of the reconstructed error curve under different compression 
ratios in Figure 7, a compression ratio of 10 times is selected to compress the original signal. Figure 8 
shows the time domain waveform and frequency spectrum of the acoustic emission signal of the thrust 
ball bearing before and after compression under three states: normal, rolling element fault and race 
fault. Figure 8 shows that the strength of the shock signal carried by the original signal is different. 
Comparing the compressed acoustic emission signal and the original acoustic emission signal shown 
in Figure 8, the time-domain waveforms and spectrograms in the three different states obviously show 
similar randomness characteristics. This is because some time-domain features of the signal are lost in 
the process of compression measurement, so the conventional acoustic emission signal analysis meth-
ods are unable to extract and accurately analyze the signal features. 

The energy of the signal remains approximately unchanged in the random projection process, that 
is, the energy characteristic Ê  of the compressed signal is approximately the same as the energy 
characteristic E  of the original signal. Based on this property, the following conclusions are drawn. 
In the process of analyzing the acoustic emission signal of the thrust ball bearing, using the energy 
characteristic parameters of the compressed data for analysis and diagnosis, the results obtained are 
approximately consistent with the results obtained using the energy characteristic parameters of the 
original data. 

Typically, ordinary convolutional networks perform a set of temporal convolutions between the 
input signal and some finite impulse response filters in the first layer. However, the shock components 
in the signal can not be effectively extracted from the compressed data through ordinary convolution 
operations, and the extracted features have no effective information. To extract effective energy fea-
tures from compressed data, a deep model combining continuous wavelet convolution and energy fea-
tures is proposed in the compressed domain, and a continuous wavelet convolutional layer is con-
structed to replace the first layer of ordinary convolutional networks. The wavelet convolution layer is 
convolved with the original signal to obtain signals in different frequency bands. Only the scale pa-
rameters and transformation parameters in the CWConv layer can be learned directly from the raw 
data, which is a very efficient way to obtain a filter bank suitable for the input data. The wavelet 
convolution structure is used to mine the frequency domain information of the signal, and after wavelet 
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convolution, energy pooling is used to extract energy features from multiband signals. The compressed 
data have sparse characteristics. Referring to the structural design of the sparse feature extraction in 
the sparse autoencoder, the 1l  regularization penalty is added to the design of the loss function in this 

method so that the network can learn the sparse features during the learning process. 
To optimize the operation speed of the model and make the data samples contain more peri-

odic signals, three types of data are used: normal, roller fault and race fault. Each type of raw data 
selects 16,384,000 data points for compression, each type of data point is divided into 2000 samples, 
and the size of the dataset becomes 2000 × 8192. The compressed data length becomes 1,638,000 data 
points, which are also divided into 2000 samples, and the data size becomes 2000 × 819. The size of 
the compressed data becomes 1 /10  that of the original data. According to the ratio settings of 80 and 20%, 
the dataset is divided into a training dataset and a test dataset. The training dataset in the original data 
contains 1600 × 3 samples, and the test dataset contains 400 × 3 samples. The sample segmentation 
information is shown in Tables 2 and 3. 

Table 2. Original dataset description. 

Sample type Number of sam-
ple points 

The number of 
training set sam-
ples

The number of 
samples in the 
test set

Category tag 

Normal 2000 × 8192 1600 400 0 
0.5 Roller 2000 × 8192 1600 400 1 
0.5 Seat ring 2000 × 8192 1600 400 2 

Table 3. Compressed dataset description. 

Sample type Number of sam-
ple 
points 

The number of 
training set sam-
ples

The number of 
samples in the 
test set

Category tag 

Normal 2000 × 819 1600 400 0 
0.5 Roller 2000 × 819 1600 400 1 
0.5 Seat ring 2000 × 819 1600 400 2 

5.2. Experimental results and discussion 

5.2.1. Different types of fault diagnosis 

Since the compressed data show randomness and sparsity of the amplitude, to obtain more feature 
information from the signal, this paper uses wavelet convolution and energy pooling combined with 
1l  regularization to improve the model structure and then uses the compressed data as the model input. 

To prove the effectiveness of this method in this thesis, different methods are used to diagnose the 
faults of the thrust ball bearings. In method 1, the original signal is directly input into the convolutional 
neural network for fault diagnosis. The compressed signal is directly fed into the model proposed in 
this thesis for learning. Under the same conditions of each parameter, the diagnosis results are shown 
in Table 4. It can be seen from the table that the method proposed in this thesis can exhibit 98.50% 
accuracy in diagnosis. The effect of the proposed method is almost the same as that using the original 
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signal for direct fault diagnosis, but it only takes 1/13 of the time of method 1, which obviously im-
proves the efficiency, proving that the method proposed in this paper can effectively extract com-
pressed signal features and perform fault diagnosis. 

Table 4. Diagnostic results of different methods. 

Method Accuracy (%) Training time (s) 
Method 1 100.00 2752.65 
The method of this paper 98.75 194.71 

The t-SNE method proposed by Laurens [28] is used to visualize the features learned by two 
different methods. Figure 9(a) is the mapping result output by method 1 in the fully connected layer, 
showing obvious classification results; Figure 9(b) is the mapping result output by the method in this 
paper in the fully connected layer. It can also be seen that the basic classification has been completed, 
and the classification effect has been achieved. 

 

(a)Method1                     (b)The method of paper 

Figure 9. t-SNE dimensionality reduction feature visualization. 

5.2.2. Fault diagnosis of different sizes 

Table 5. Parameters of each component. 

Fault state Rotating speed (rpm) Fault size (mm) 
Roller 400 0 mm 

400 0.5 mm 

400 1 mm 

Seat ring 400 1.5 mm 

400 0 mm 

400 0.5 mm 

400 1 mm 

400 1.5 mm 
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To further illustrate the advantages of the proposed method in extracting compressed data features 
and saving time, the diagnostic effect is verified on roller faults and race faults of different sizes. The 
parameters of each component are shown in Table 5. Method 1 is used to directly input the original 
signal into the convolutional neural network for fault diagnosis, and the method in this paper directly 
sends the compressed signal to the rewritten neural network model structure for fault diagnosis. Under 
the same conditions of each parameter, the diagnosis results are shown in Table 5. It can be seen from 
the table that the diagnostic accuracy of the method proposed in this paper is almost the same as that 
of method 1 using the original signal for direct fault diagnosis, the time consumption is significantly 
reduced, and the efficiency is significantly improved. 

Table 6. Diagnosis effects for different sizes. 

Fault state Method Accuracy (%) Training time (s)
Roller (0, 0.5, 1, 1.5 mm) Method 1 97.38% 3327.95 

The method of this paper 97.88% 255.17 
Seat ring (0, 0.5, 1, 1.5 mm) Method 1 99.94% 3093.05 

The method of this paper 98.81% 261.11 

The t-SNE method is also used for visualizing the features learned by the two different methods, as 
shown in Figure 10. It can be seen from the figure that both methods show obvious classification effects. 

 

 

Figure 10. (a) Roller failure–Method 1; (b) Roller failure–Method proposed here; (c) Race 
failure–Method 1; (d) Race failure–Method proposed here. 

To more clearly show the recognition results of the method in this paper on various types of 
signals in the test set, a confusion matrix is introduced for three experiments (three different fault types, 

(a) (b) 

(c) (d) 
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four different sizes of roller faults and four different sizes of race faults). It can be seen from the 
confusion matrix that the model can achieve a recognition accuracy of more than 95% for each state, 
showing excellent performance, as shown in Figure 11.  

 

  

Figure 11. (a) Three types of faults; (b) four roller faults; (c) four race faults. 

To further illustrate the advantages of the proposed method in extracting features from com-
pressed data, three fault types are utilized, as shown in Table 7. The method in this paper is compared 
with the sparse autoencoder (SAE) and support vector machine (SVM) fault diagnosis methods. The 
radial basis function is chosen as the kernel function of the SVM, and the classification features used 
by the SVM algorithm are 9 eigenvalues of the mean square value, effective value, skewness, kurtosis, 
peak value, peak-to-peak value, form factor, impulse factor and crest factor. The diagnosis results are 
shown in Figure 12. As seen from the figure, the diagnostic results of our method are higher than those 
of SAE and SVM. This paper combines compressed sensing theory with wavelet convolution, energy 

(a) 

(b) (c) 



8077 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 8057–8080. 

pooling and sparsity to generate new network structures. While retaining most of the feature infor-
mation of the signal, the method in this paper adaptively selects the frequency band information to 
enhance the faint fault features of the compressed signal and can use fewer data to achieve higher 
classification accuracy. Meanwhile, SAE mainly extracts features from the input data, which are passed 
to the decoder to reconstruct the original data. For the compressed data of the processing object in this 
paper, it is impossible to obtain all the information of the signal accurately, resulting in a low fault 
diagnosis and recognition rate of the network. In addition, the performance of the traditional shallow 
model of SVM relies heavily on subjective artificial feature extraction, so the fault diagnosis accuracy 
and generalization ability when combined with the SVM classifier are low. The diagnosis results of 
the three methods are shown in Figure 12. 

Table 7. Three fault types. 

Type-1 Type-2 Type-3
Three different types of fail-
ures 

Four different sizes of roller 
failure

Four different sizes of seat 
ring failure 

89.4%

34.5%

30.8%

35.1%

96.3%

86.6%

98.8%

97.9%

98.8%

SVM

SAE

WSCNN

 

Figure 12. Accuracy comparison. 

6. Conclusions 

In this paper, a method for diagnosing acoustic emission signals of thrust ball bearings based on 
compressed sensing combined with deep learning is proposed. This method projects the acoustic emis-
sion time domain signal into the compressed domain to obtain the compressed signal, which greatly 
reduces the data redundancy and improves the analysis efficiency while retaining most of the infor-
mation. The compressed signal is taken as the network input, and the wavelet sparse convolution net-
work is used to carry out wavelet changes on the signals in the compressed domain to obtain the infor-
mation of each frequency band. Then, the energy pooling layer is used for mining the energy features 
of each frequency band, and the 1l  regularization penalty term is added in the design of the loss func-

tion to make the network learn the sparse features in the learning process. This solves the problem of 
the large amount of acoustic emission signal data in fault diagnosis and solves the problem of difficulty 
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in extracting fault features in the compressed domain due to the randomness of the signal due to com-
pression. Finally, the experimental results show that the proposed method gives better diagnostic re-
sults than other traditional methods. In the meantime, it offers a new diagnosis means for equipment 
fault diagnosis under modern big data and can carry out fault diagnosis more efficiently under the 
condition of ensuring high diagnosis accuracy. 
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