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Abstract: Computed tomography (CT) has been the most effective modality for characterizing and 
quantifying chronic obstructive pulmonary disease (COPD). Radiomics features extracted from the 
region of interest in chest CT images have been widely used for lung diseases, but they have not yet 
been extensively investigated for COPD. Therefore, it is necessary to understand COPD from the lung 
radiomics features and apply them for COPD diagnostic applications, such as COPD stage 
classification. Lung radiomics features are used for characterizing and classifying the COPD stage in 
this paper. First, 19 lung radiomics features are selected from 1316 lung radiomics features per subject 
by using Lasso. Second, the best performance classifier (multi-layer perceptron classifier, MLP 
classifier) is determined. Third, two lung radiomics combination features, Radiomics-FIRST and 
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Radiomics-ALL, are constructed based on 19 selected lung radiomics features by using the proposed 
lung radiomics combination strategy for characterizing the COPD stage. Lastly, the 19 selected lung 
radiomics features with Radiomics-FIRST/Radiomics-ALL are used to classify the COPD stage based 
on the best performance classifier. The results show that the classification ability of lung radiomics 
features based on machine learning (ML) methods is better than that of the chest high-resolution CT 
(HRCT) images based on classic convolutional neural networks (CNNs). In addition, the classifier 
performance of the 19 lung radiomics features selected by Lasso is better than that of the 1316 lung 
radiomics features. The accuracy, precision, recall, F1-score and AUC of the MLP classifier with the 19 
selected lung radiomics features and Radiomics-ALL were 0.83, 0.83, 0.83, 0.82 and 0.95, respectively. 
It is concluded that, for the chest HRCT images, compared to the classic CNN, the ML methods based 
on lung radiomics features are more suitable and interpretable for COPD classification. In addition, 
the proposed lung radiomics combination strategy for characterizing the COPD stage effectively 
improves the classifier performance by 12% overall (accuracy: 3%, precision: 3%, recall: 3%, F1-
score: 2% and AUC: 1%). 

Keywords: radiomics; COPD stage (GOLD); classification; feature combination; Lasso; 
convolutional neural networks (CNN); machine learning (ML); chest HRCT images 
 

1. Introduction  

Chronic obstructive pulmonary disease (COPD) is a heterogeneous inflammatory disease [1] 
characterized by persistent airflow limitations [2]. Due to this characteristic, the gold standard for 
diagnosing and evaluating COPD is the pulmonary function test (PFT) [2], which yields the forced 
expiratory volume in 1 second per forced vital capacity (FEV1/FVC) and FEV1 percentage of predicted 
(FEV1 % predicted). COPD’s primary anatomical and pathophysiological manifestations are small 
airway lesions and emphysema [1,3]. Although PFTs can explain the impact on the symptoms and 
quality of life of COPD patients [4,5], it cannot reflect the change of the lung tissue in COPD patients 
according to the COPD stage evolution. PFT changes only occur when lung tissue is destroyed to a 
certain extent. Therefore, it is also difficult for the PFT to identify the etiology of COPD.  

Compared with PFTs, computed tomography (CT) has been regarded as the most effective 
modality for characterizing and quantifying COPD [6]. For example, chest CT images can indicate 
that the patients have suffered from mild lobular central emphysema and reveal decreased exercise 
tolerance in smokers without airflow limitations in their PFT results [7]. In addition, the chest CT 
images have also been used to quantitatively analyze the bronchial [8,9], airway disease [10–15], 
emphysema [16] and vascular [17,18] problems in COPD patients by measuring the parameters of 
the bronchi and vasculature, or by using the analysis methods for airway disease and emphysema. 
Furthermore, since radiomics was proposed to mine more information from medical images by using 
advanced feature analysis in 2007 [19], it has been widely used for the analysis of lung disease 
images [20–24] and other diseases [25,26]. Unlike normal lungs, the lung texture and density of COPD 
patients are influenced by the increased air abundance [20], leading to changes in chest CT images. 
The radiomics features, which reflect lung texture and density changes, can also predict severe COPD 
exacerbations [27]. They have also been applied to the spirometric assessment of emphysema presence 
and COPD severity [28]. However, radiomics has not been extensively investigated in COPD yet. 
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Currently, there are potential applications of radiomics features in COPD, particularly for the diagnosis, 
treatment and follow-up of COPD and future directions of radiomics features in COPD [29]. Due to 
the characteristics of COPD, an important reason limiting the development of radiomics in COPD is 
its diffuse distribution in the lungs. Therefore, it is challenging to segment the COPD regions. 
Especially, because of the limitations of CT resolution, small airways (diameter 2 mm) and their 
associated vessels cannot be segmented from chest CT images. However, COPD results from the joint 
action of the lung parenchyma. Therefore, the lung radiomics features calculated from the lung 
parenchyma images are considered in this paper. 

Most scholars are committed to improving the classifiers to get better classification results [30,31]. 
However, they ignore the effect of the input features on classification. Therefore, it is necessary to 
construct the lung radiomics combination features that characterize the COPD stage to improve the 
classification performance of the existing classifier. COPD and its heart complications (such as a 
higher resting heart rate) have been studied by using the lung radiomics features [32–37], but the lung 
radiomics features have not been applied for COPD stage classification. 

Our contributions in this paper are briefly described as follows: 1) Lung radiomics features are 
applied to COPD stage classification. The best accuracy, precision, recall, F1-score and area under the 
curve (AUC) of the multi-layer perceptron (MLP) classifier with the 19 lung radiomics features 
selected by Lasso were 0.80, 0.80, 0.80, 0.80 and 0.94, respectively. 2) Two lung radiomics 
combination features, Radiomics-FIRST and Radiomics-ALL, were constructed to characterize COPD 
stage evolution. Radiomics-FIRST or Radiomics-ALL improves the performance of the MLP classifier. 
The accuracy, precision, recall, F1-score and AUC of the MLP classifier with the 19 selected lung 
radiomics features and Radiomics-ALL improved by 3, 3, 3, 2 and 1%, respectively. 3) Compared to 
the classic convolutional neural network (CNN) application to chest high-resolution CT (HRCT) 
images, the machine learning (ML) methods based on lung radiomics features are more suitable and 
interpretable for the COPD classification. 

2. Materials and methods 

2.1. Materials 

The subjects were Chinese people aged 40 to 79 who were enrolled in the National Clinical 
Research Center of Respiratory Diseases in China from May 25, 2009 to January 11, 2011. The enrolled 
subjects rigorously followed this study’s inclusion and exclusion criteria [38]. The 468 subjects 
underwent chest HRCT scans at the full inspiration state and PFTs. The COPD stage was diagnosed 
from Stage 0 to IV by using the PFT, and according to the Global Initiative for Chronic Obstructive 
Lung Disease (GOLD) 2008. COPD Stage 0 is diagnosed without COPD according to GOLD, but it 
may involve some symptoms of respiratory diseases. Please refer to our previous study [36] for a 
more detailed description of the materials.  

The ethics committee of the National Clinical Research Center of Respiratory Diseases at 
Guangzhou Medical University in China has approved this study. All 468 subjects submitted written 
informed consent to the First Affiliated Hospital of Guangzhou Medical University before the chest 
HRCT scans and PFTs were performed. 
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Figure 1. Subject selection flow diagram and COPD stage distribution of the subjects in 
this study. (A) Subject selection flow diagram, showing the enrollment, inclusion criteria 
and exclusion criteria; (B) COPD stage distribution of the subjects in this study. 

 

Figure 2. Overall block diagram for the proposed method for this study. (A) Region-of-
interest (ROI) segmentation; (B) Lung radiomics feature calculation; (C) COPD stage 
classification based on ML. 

2.2. Methods 

Our proposed method classifies the COPD stage by applying lung radiomics features selected by 
Lasso and lung radiomics combination features (characterizing the COPD stage evolution) based on 
best-performance ML methods. Figure 2 shows the overall block diagram of this study. We further 
describe our methods in the following sections, i.e., Section 2.2.1 (ROI segmentation), Section 2.2.2 
(Lung radiomics feature calculation) and Section 2.2.3 (COPD stage classification). 

Like the previous radiomics feature analysis methods, we also need to segment the region of 
interest (ROI) in the chest HRCT images and calculate the lung radiomics features based on the ROI. 
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We finally use the lung radiomics features to characterize and classify the COPD stage. Due to the 
COPD characteristics of diffuse distribution in the lungs, it is challenging to segment the COPD 
regions. In addition, CT resolution also limits the segmentation of small airways (diameter 2 mm) 
and their associated vessels. However, COPD results from the joint action of the lung parenchyma. 
Therefore, lung parenchyma images segmented from chest HRCT images, such as the ROI, were used 
to calculate the lung radiomics features in this paper.  

2.2.1. ROI segmentation 

A trained ResU-Net [39] was used to automatically segment the lung region from the chest HRCT 
images. The lung region includes both the right and left lungs in this study. The architecture of the 
ResU-Net has been described in detail in our previous paper [40]. In addition, three experienced 
radiologists have checked and modified all of the lung region segmentation images to ensure the 
accuracy of the segmentation images. Please refer to our previous study [36] for a more detailed 
description of the ROI segmentation process.  

2.2.2. Lung radiomics feature calculation 

The 468 sets of original lung parenchyma images were extracted from the chest HRCT images 
using our previous method [41]. Figure 3 shows the typical parenchyma images with the Hounsfield 
unit (HU) value in the transverse plane. PyRadiomics [42] with the predefined class of radiomics 
features was implemented to calculate the lung radiomics features based on the original and derived 
lung parenchyma images. Finally, 1316 lung radiomics features per subject were obtained. Please also 
refer to our previous study [36] for a more detailed description of the lung radiomics feature calculation. 

 

Figure 3. Typical parenchyma images with the HU value in the transverse plane. The top 
figures are the lung region segmentation images with red color, and the bottom figures are 
the corresponding original lung parenchyma images with the HU value. 

2.2.3. COPD stage classification 

Lung radiomics features are the input features of the ML methods to classify the COPD stage. Before 
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the COPD stage classification, the least absolute shrinkage and selection operator (Lasso) [43,44] selects 
the lung radiomics features by establishing the relationship between the lung radiomics features and 
COPD stages. Then, the selected lung radiomics features are used to pick up the best classifier from 
the different preset ML methods shown in Figure 3(C). This paper also introduces a radiomics 
combination strategy to construct the lung radiomics combination features for characterizing COPD 
stage evolution. Finally, the lung radiomics combination feature characterizing the COPD stage 
evolution is used to improve the performance of the best classifier. 

First, 19 lung radiomics features per subject were selected by Lasso from 1316 lung radiomics 
features. COPD Stages Ⅲ and Ⅳ were considered as one COPD stage to balance each COPD stage. 
The mathematical expression (Eq (1)) of the Lasso model [37] is 

  (1)

where  is the value of the independent variable (1316 lung radiomics features) after a normalization 

operation,  is the value of the dependent variable (COPD Stages 0, I, Ⅱ and Ⅲ&IV), λ is the penalty 
parameter (λ ≥0), βj is the regression coefficient, i∈[1, n] and j∈[0, p]. 

The lung radiomics features of the four COPD stages are normalized by Eq (2). 

  (2) 

where i = 1~468 (468 subjects), j = 1~1316 (1316 kinds of lung radiomics features for each subject), 

 is the ith row and jth column of the 468 × 1316 lung radiomics features and ,  and  

are the mean, maximum and minimum of each kind of lung radiomics feature , respectively.  
Second, the best-performance classifier, i.e., the MLP classifier, is determined from ML 

classifiers, such as Random Forest (RF) [45], Adaboost (Ada) [46], Gradient boosting (GB) [47], 
Multi-layer perceptron (MLP) [48], Linear discriminant analysis (LDA) [49], and Support vector 
machine (SVM) [50] classifiers, as shown in Figure 2(C). The 468 subjects with the selected lung 
radiomics features were divided into 70 and 30%. The data for 70% of subjects trained the ML 
classifiers. Then, the data for 30% of the subjects were used to validate or test the trained ML classifiers. 
Of course, the labels for the 468 subjects were COPD stages (i.e., 0, 1, 2 and 3).  

The evaluation metrics for the classifiers were set as the accuracy, precision, recall, F1-score and 
AUC (a performance measurement for classification). The AUC evaluation metric was calculated 
based on the receiver operating characteristic (ROC) curve. The ROC curve, accuracy, precision, recall 
and F1-score can be calculated and drawn by the confusion matrix, which shows the distribution of 
the predicted and true labels (the COPD stages). A standard Python package “classification_report” 
was used to calculate the accuracy, precision, recall and F1-score. The AUC is usually the evaluation 
metric of binary classification.  

Figure 4 shows the confusion matrix and a schematic diagram of the ROC curve drawing for 
multi-classification. Figure 4(A) shows the confusion matrix of the binary classification. The true 
positive (TP) and false positive (FP) respectively represent the positive and negative samples predicted 
to be positive by the classifier. The false negative (FN) and true negative (TN) respectively represent 
the positive and negative samples predicted to be negative by the classifier. Like Figure 4(A), 4(B) 
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shows that T00–T33 on the diagonal represents the correct classification results, and F represents the 
wrong classification results. Figure 4(C) shows a schematic diagram of the ROC curve drawing for 
multi-classification. The test set’s COPD stages (the true and predicted label) are encoded by 0’s and 
1’s. The position of 1 represents its classification. For example, the COPD stages 0, Ⅰ(1), Ⅱ(2) and Ⅲ & 
Ⅳ(3) are encoded as 1000, 0100, 0010 and 0001, respectively. Suppose the predicted label 
(classification result) is correct. In that case, the position value corresponding to 1 in the probability 
matrix P generated from the classifier is greater than the probability value of the position corresponding 
to 0. The coded COPD stages and their probability matrix P were used to draw the ROC curve 
according to the binary classification method.  

 

Figure 4. Typical parenchyma images with the HU value in the transverse plane. The top 
figures are the lung region segmentation images with red color, and the bottom figures are 
the corresponding original lung parenchyma images with the HU value. 

Third, a radiomics combination strategy was proposed to construct the lung radiomics 
combination features used to characterize the COPD stage evolution. The lung radiomics combination 
features can be constructed using the class of the selected radiomics features. Eq (3) is the 
mathematical form of the lung radiomics combination strategy: 

  (3) 

where N is the number of the selected lung radiomics features in each class, and βi is the coefficient of 
the selected lung radiomics features xi generated by Lasso. 

The lung radiomics combination features are named Radiomics-X. The symbol “X” in Radiomics-
X is the class name of the selected lung radiomics features, such as FIRST, SHAPE, GLCM, GLRLM, 
GLSZM, NGTDM and GLDM in Figure 2(B). In particular, Radiomics-ALL is constructed by using 
all selected lung radiomics features and their coefficients generated by Lasso. Finally, Radiomics-FIRST 
and Radiomics-ALL were picked up from the lung radiomics combination features (P-value < 0.05 
between any two COPD stages) to characterize the COPD stage. 

Lastly, the 19 selected lung radiomics features with Radiomics-FIRST/Radiomics-ALL were 
used to train and validate the MLP classifier to improve the performance of the MLP classifier. 
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2.2.4. Experiments 

Figure 5 presents the experimental design of this study to show the lung radiomics features’ 
classification ability, highlight Lasso’s role in classification and prove the proposed lung radiomics 
combination strategy’s effectiveness in improving the performance of the MLP classifier. 

 

Figure 5. Experimental design of this study. 

First, to compare the classification abilities of CNNs derived from chest HRCT image results and 
ML methods based on the lung radiomics features, we adopted two classic CNNs, DenseNet and 
GoogleNet, which achieved the best classification performance in our previous study [51]. The input 
images of DenseNet (2D/3D) and GoogleNet (2D/3D) were the original chest HRCT images or original 
parenchyma images, respectively. To obtain good classification performance based on the chest HRCT 
image results, before inputting the two classic CNNs, we also applied the following processes to the 
original chest HRCT images: 1) deleting the non-lung-region images (Fine selection); 2) deleting 1/6 
images at the beginning and the end of all the slicers, respectively (Rough selection) and 3) applying 
multiple-instance learning [52]. After Rough selection, only the middle 4/6 slicers of the original chest 
HRCT images are used for COPD classification. In addition, multiple-instance learning was also 
applied to the original parenchyma images before inputting to the two classic CNNs. Table 1 shows 
the chest HRCT image data set division for the two classic CNNs. Tables 2 and 3 show the detailed 
parameters that were set for DenseNet and GoogleNet training. For the 2D CNN, the classification 
results were decided by the mean probability of all slices of the chest HRCT images. However, for the 
3D CNN, the classification results were determined by the probability of the selected slices from the 
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chest HRCT images. The numbers of selected slices were 20 slices and 16 slices, as shown in Tables 2 
and 3. 

Table 1. Chest HRCT image data set division for the two classic CNNs. 

Data set (6:1:3)  Stage 0  Stage Ⅰ Stage Ⅱ Stage Ⅲ & Ⅳ  Total 

Training set 
76 subjects  65 subjects 75 subjects 64 subjects  280 subjects
43,694 images   40,550 images 43,510 images 40,944 images  168,698 images

Validation set 
13 subjects  11 subjects 12 subjects 11 subjects  47 subjects
7705 images  6981 images 7672 images 6924 images  29,282 images

Test set 
41 subjects  33 subjects 35 subjects 32 subjects  141 subjects
23,940 images  21,141 images 22,283 images 20,478 images  87,842 images

Table 2. Parameters set to train the DenseNet. 

DenseNet: Input images   Batch size (2D/3D)Input size (2D/3D) Epoch (2D/3D) Drop rate (2D/3D)

Original chest HRCT images  
 
20/2 

 
512 × 512/ 

512 × 512 × 20* 

 

50/50 

 
 
0.5/0.2 

Fine selection (HRCT images) 
Rough selection (HRCT images) 
Rough selection (HRCT images) 
Rough selection (HRCT images) 

Multiple instance (HRCT images)  
16/2 

512 × 512**/ 

512 × 512 × 16*** 
50/50 

 
0.5/0.2 Multiple instance (parenchyma) 

Note:* Each case (a set of chest HRCT images) was equally divided into 20 segments, with one slice taken 

equidistantly to obtain 20 slices in each case. 

** After rough selection, each case was equally divided into 10 bags, with one slice taken randomly to obtain 10 

slices in each case. 

*** After rough selection, each case was equally divided into 16 bags, with one slice taken equidistantly to obtain 

16 slices in each case. 

Table 3. Parameters set to train the GoogleNet. 

DenseNet: Input images   Batch size (2D/3D)Input size (2D/3D) Epoch (2D/3D) Drop rate (2D/3D)

Original chest HRCT images  
 
16/2 

 
512 × 512/ 

512 × 512 × 20* 

 

50/50 

 
 
0.2/0.2 

Fine selection (HRCT images) 
Rough selection (HRCT images) 
Rough selection (HRCT images) 
Rough selection (HRCT images) 
Multiple instance (HRCT images)  

16/2 

512 × 512**/ 

512 × 512 × 16*** 
50/50 

 
0.2/0.2 Multiple instance (parenchyma) 

Note:* Each case (a set of chest HRCT images) was equally divided into 20 segments, with one slice taken 

equidistantly to obtain 20 slices in each case. 

** After rough selection, each case was equally divided into 10 bags, with one slice taken randomly to obtain 10 

slices in each case. 

*** After rough selection, each case was equally divided into 16 bags, with one slice taken equidistantly to obtain 

16 slices in each case. 
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Second, the lung radiomics features and their selected lung radiomics features were respectively 
used to train and test the different ML classifier, as shown in Figure 5, to highlight Lasso’s role in 
classification. The selected lung radiomics features were determined by Lasso from the lung radiomics 
features directly calculated by PyRadiomics. Then, the ML classifier with the best classification 
performance was determined. 

Finally, the lung radiomics combination features that characterized the COPD stage were used to 
improve the performance of the best classifier.  

3. Results 

This section shows the results of Lasso, the radiomics combination strategy and the experiments. 

3.1. Lung radiomics features selected by Lasso 

Table 4 presents the lung radiomics features selected by Lasso in detail, including the name, class 
and regression coefficient. To conveniently describe the selected lung radiomics features, we define 
the selected lung radiomics features as Radiomics1–19. Figure 6 further shows more detailed 
information on Radiomics1–19. Specifically, Figure 6(A) shows that Radiomics18 was the dominant 
feature in Radiomics1–19. Figure 6(B) shows that the FIRST class had seven selected lung radiomics 
features, i.e., the maximum number in all classes. Figure 6(C) also shows that the FIRST class is the 
most important of all classes.  

 

Figure 6. Detailed information on Radiomics1–19. (A) Comparison of regression 
coefficients; (B) Feature numbers for each class; (C) Feature importance for each class.  
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Table 4. 19 lung radiomics features selected by Lasso. 

Definition  Name of the 19 selected lung radiomics features Class   Coefficient

Radiomics1  original_shape_Elongation  Shape   0.0056
Radiomics2  original_shape_Maximum2DDiameterSlice Shape  -0.0789
Radiomics3  original_shape_Sphericity  Shape  0.0624
Radiomics4  log.sigma.1.0.mm.3D_firstorder_Maximum First Order   0.0665
Radiomics5  log.sigma.1.0.mm.3D_glcm_ClusterProminence GLCM 1  -0.0425
Radiomics6  log.sigma.1.0.mm.3D_glszm_ZoneEntropy GLSZM 2   0.0394
Radiomics7  log.sigma.2.0.mm.3D_firstorder_Maximum First Order   0.0129
Radiomics8  log.sigma.2.0.mm.3D_ngtdm_Contrast NGTDM 3  -0.0318
Radiomics9  log.sigma.2.0.mm.3D_gldm_DependenceVariance GLDM 4  -0.0136
Radiomics10  log.sigma.4.0.mm.3D_firstorder_10Percentile First Order   -0.0760
Radiomics11  log.sigma.5.0.mm.3D_firstorder_10Percentile First Order   -0.1669
Radiomics12 wavelet.LLH_firstorder_RootMeanSquared First Order   -0.0252
Radiomics13 wavelet.HLH_firstorder_Mean First Order   0.0599
Radiomics14 wavelet.HLH_glcm_Idmn  GLCM 1  -0.0022
Radiomics15 wavelet.HLH_ngtdm_Busyness NGTDM 3  0.0444
Radiomics16 wavelet.HHL_gldm_SmallDependenceLowGrayLevelEmphasis GLDM 4  -0.0168
Radiomics17 wavelet.HHH_glszm_GrayLevelNonUniformityNormalized GLSZM 2  -0.0043
Radiomics18 wavelet.LLL_firstorder_10Percentile First Order   -0.5314
Radiomics19 wavelet.LLL_glcm_Imc2  GLCM 1  0.1383

Note: 1 Gray level co-occurrence matrix. 
2 Gray level size zone matrix. 
3 Neighboring gray tone difference matrix.  
4 Gray level dependence matrix. 

The P-values and significant differences for Radiomics1–19 according to COPD stage evolution 
were further investigated. A Bonferroni-Dunn multiple comparisons test was applied to calculate the 
P-values among Radiomics1–19 according to COPD stage. Figure 7(N) and Table 5 show no 
significant differences for Radiomics14, regardless of COPD stage. Figure 7(A)–(C), (E), (H), (I), (L), 
(M), (O), (R) and (S) and Table 5 show that only Radiomics1–3, 9, 13, 15 and 19 significantly 
increased, and that Radiomics5, 8, 12 and 18 significantly decreased with COPD stage evolution from 
COPD Stage 0 to COPD Stage Ⅰ, respectively. Figure 7(A), (C), (D), (F), (H), (J)–(L), (O), (P), (R) 
and (S) and Table 5 show that only Radiomics1, 3, 4, 6, 13, 15 and 19 significantly increased, and that 
Radiomics8, 10–12, 16 and 18 significantly decreased with COPD stage evolution from COPD Stage 
0 to COPD Stage Ⅱ, respectively. Figure 7(A), (C)–(E), (F)–(H), (J)–(M) and (O)–(S) and Table 5 
show that only Radiomics1, 3, 4, 6, 7, 13, 15 and 19 significantly increased and Radiomics5, 8, 10–12 
and 16–18 significantly decreased with COPD stage evolution from COPD Stage 0 to COPD Stages 
Ⅲ & Ⅳ, respectively. Figure 7(A)–(D), (F)–(K), (M), (R) and (S) and Table 5 show that only 
Radiomics1, 3, 4, 6, 7, 13 and 19 significantly increased, and that Radiomics2, 8–11 and 18 
significantly decreased with COPD stage evolution from COPD Stage Ⅰ to COPD Stages Ⅲ & Ⅳ, 
respectively. Figure 7(A)–(C), (J)–(L), (O), (R) and (S) and Table 5 show that only Radiomics1–3, 15 
and 19 significantly increased, and that Radiomics10–12 and 18 significantly decreased with COPD 
stage evolution from COPD Stage Ⅱ to COPD Stages Ⅲ & Ⅳ, respectively. Unfortunately, there were 
no significant differences between at least two COPD stages for the 19 selected lung radiomics features. 
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Table 5. P-values for the 19 selected lung radiomics features for the different COPD stages. 

Features  0 vs. Ⅰ  0 vs. Ⅱ  0 vs. Ⅲ & Ⅳ Ⅰ vs. Ⅱ Ⅰ vs. Ⅲ & Ⅳ  Ⅱ vs. Ⅲ & Ⅳ

Radiomics1  < 0.0001  < 0.0001  < 0.0001 0.9999 (ns1) < 0.0001  < 0.0001

Radiomics2  0.0039  0.4406 (ns)  > 0.9999 (ns) 0.5975 (ns) < 0.0001  0.0164

Radiomics3  0.0004  < 0.0001  < 0.0001 > 0.9999 (ns) < 0.0001  0.0026

Radiomics4  > 0.9999 (ns)  0.0244  0.0016 0.0066 0.0004 > 0.9999 (ns)

Radiomics5  0.0009  0.4707 (ns)  0.0243 0.2483 (ns) > 0.9999 (ns)  > 0.9999 (ns)

Radiomics6  0.8609 (ns)  < 0.0001  < 0.0001 0.0016 < 0.0001  0.7552 (ns)

Radiomics7  > 0.9999 (ns)  0.1892 (ns)  0.0005 0.2978 (ns) 0.0013 0.3961 (ns)

Radiomics8  < 0.0001  < 0.0001  < 0.0001 > 0.9999 (ns) 0.0229 0.5546 (ns)

Radiomics9  0.0021  > 0.9999 (ns)  0.6507 (ns) 0.0026 < 0.0001  0.6705 (ns)

Radiomics10  > 0.9999 (ns)  0.0001  < 0.0001 < 0.0001 < 0.0001  0.0045

Radiomics11  0.0626 (ns)  < 0.0001  < 0.0001 0.0001 < 0.0001  0.0055

Radiomics12  < 0.0001  0.0006  < 0.0001 0.4505 (ns) 0.2677 (ns)  0.0006

Radiomics13  < 0.0001  < 0.0001  < 0.0001 0.1717 (ns) < 0.0001  0.0800 (ns)

Radiomics14  > 0.9999 (ns)  > 0.9999 (ns)  > 0.9999 (ns) > 0.9999 (ns) 0.1873 (ns)  0.6492 (ns)

Radiomics15  < 0.0001  0.0011  < 0.0001 > 0.9999 (ns) 0.0878 (ns)  0.0019

Radiomics16  0.7928 (ns)  0.0077  0.0005 0.6650 (ns) 0.1161 (ns)  0.8141 (ns)

Radiomics17  > 0.9999 (ns)  0.1001 (ns)  0.0011 > 0.9999 (ns) 0.1153 (ns)  0.9721 (ns)

Radiomics18  < 0.0001  < 0.0001  < 0.0001 0.1691 (ns) < 0.0001  < 0.0001

Radiomics19  < 0.0001  < 0.0001  < 0.0001 > 0.9999 (ns) < 0.0001  < 0.0001 

Note: 1 ns: no significance. 

Table 6. P-values for the seven lung radiomics combination features according to COPD stages. 

Features  0 vs. Ⅰ 0 vs. Ⅱ  0 vs. Ⅲ & Ⅳ Ⅰ vs. Ⅱ Ⅰ vs. Ⅲ & Ⅳ  Ⅱ vs. Ⅲ & Ⅳ

Radiomics-SHAPE  > 0.999 (ns1) 0.4005 (ns) < 0.0001 0.2587 (ns) < 0.0001  0.0003

Radiomics-FIRST  < 0.0001  < 0.0001 < 0.0001 0.0003 < 0.0001  < 0.0001

Radiomics-GLCM  < 0.0001  < 0.0001 < 0.0001 > 0.999 (ns) < 0.0001  < 0.0001

Radiomics-GLSZM  0.9780 (ns)  < 0.0001 < 0.0001 0.0010 < 0.0001  0.7294 (ns)

Radiomics-NGTDM  < 0.0001  < 0.0001 < 0.0001 > 0.999 (ns) < 0.0051  0.0211

Radiomics-GLDM  > 0.999 (ns)  0.0111  < 0.0001 0.0057 < 0.0001  0.3038 (ns)

Radiomics-ALL  < 0.0001  < 0.0001 < 0.0001 0.0006 < 0.0001  < 0.0001

Note:1 ns: no significance. 

Table 7. Other evaluation metrics for applying the DenseNet to the test set. 

DenseNet: Input images  Accuracy (2D/3D) Precision (2D/3D) Recall (2D/3D)  F1-score (2D/3D)

Original chest HRCT images 0.39/0.54 0.22/0.56 0.39/0.54  0.28/0.51
Fine selection (HRCT images)  0.41/0.54 0.38/0.58 0.41/0.54  0.33/0.52
Rough selection (HRCT images)  0.34/0.57 0.45/0.65 0.34/0.57  0.24/0.54
Multiple instance (HRCT images)  0.40/0.59 0.32/0.62 0.40/0.59  0.32/0.57
Original parenchyma images 0.47/0.58 0.47/0.61 0.47/0.58  0.43/0.58
Multiple instance (parenchyma)  0.49/0.50 0.48/0.59 0.49/0.50  0.44/0.44
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Figure 7. Box plots showing the 19 selected lung radiomics features at different COPD 
stages. (A)–(S) show the box plots for Radiomics1–19 at different COPD stages, respectively. 

3.2. Lung radiomics combination features 

The P-values and significant differences among different COPD stages are respectively shown in 
Figure 8 and Table 3 for the seven lung radiomics combination features. The Bonferroni-Dunn multiple 
comparisons test was also applied to calculate the P-values for the seven lung radiomics combination 
features according to COPD stage. 

Figure 8(B), (C), (E) and (G) and Table 3 show that only Radiomics-FIRST, Radiomics-GLCM, 
Radiomics-NGTDM and Radiomics-ALL significantly increased from COPD Stage 0 to Ⅰ, respectively. 
Figure 8(B)–(G) and Table 3 show that only Radiomics-SHAPE, Radiomics-GLCM, Radiomics-
GLSZM, Radiomics-NGTDM, Radiomics-GLDM and Radiomics-ALL significantly increased from 
COPD Stage 0 to Ⅱ, respectively. Figure 8(A)–(G) and Table 3 show that all seven of the lung 
radiomics combination features significantly increased from COPD Stage 0 to Stages Ⅲ & Ⅳ, and 
from COPD Stage Ⅰ to Stages Ⅲ & Ⅳ. Figure 8(B), (E), (F) and (G) and Table 3 show that only 
Radiomics-FIRST, Radiomics-GLSZM, Radiomics-GLDM and Radiomics-ALL significantly 
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increased from COPD Stage Ⅰ to Ⅱ. Figure 8(A)–(C), (E) and (G) and Table 3 show that only 
Radiomics-SHAPE, Radiomics-FIRST, Radiomics-GLCM, Radiomics-NGTDM and Radiomics-ALL 
significantly increased from COPD Stage Ⅱ to Stages Ⅲ & Ⅳ. Therefore, only Radiomics-FIRST and 
Radiomics-ALL significantly increased with COPD stage evolution (P-value < 0.05). 

 

Figure 8. Box plots showing the seven lung radiomics combination features at different 
COPD stages. (A)–(G) show the box plots for the seven lung radiomics combination 
features at COPD Stages 0, Ⅰ, Ⅱ and Ⅲ & Ⅳ, respectively. 

3.3. Experimental results 

This section shows the classification results for the CNN classifier, ML classifier and our 
proposed method. 

Table 8. Other evaluation metrics for applying the GoogleNet to the test set. 

GoogleNet: Input images  Accuracy (2D/3D) Precision (2D/3D) Recall (2D/3D)  F1-score (2D/3D)

Original chest HRCT images 0.55/0.40 0.67/0.49 0.55/0.40  0.50/0.37
Fine selection (HRCT images)  0.39/0.48 0.40/0.56 0.39/0.48  0.37/0.44
Rough selection (HRCT images)  0.37/0.36 0.31/0.37 0.37/0.36  0.33/0.32
Multiple instance (HRCT images)  0.39/0.38 0.37/0.36 0.39/0.38  0.28/0.33
Original parenchyma images 0.55/0.39 0.56/0.47 0.55/0.39  0.55/0.34
Multiple instance (parenchyma)  0.41/0.49 0.54/0.46 0.41/0.49  0.33/0.43
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3.3.1. Classification results for the CNNs 

Figures 9–11 show the classification results for the DenseNet and GoogleNet. The other 
evaluation metrics in Tables 7 and 8 were calculated from Figures 10 and 11, respectively. In Figures 10 
and 11, the confusion matrices visually show the classification effect of each COPD stage.  

 

Figure 9. ROC curves derived from the CNNs. (A) ROC curves from DenseNet; (B) ROC 
curves from GoogleNet.  

Figure 9(A) and Table 7 show that the DenseNet with 3D images (3D DenseNet) had consistently 
better classification performance (based on the evaluation metrics) than the DenseNet with 2D images 
(2D DenseNet). Figure 10 intuitively shows the classification results for the 2D and 3D GoogleNet. 
The classification performance of the 2D and 3D DenseNet with original parenchyma images was 
better than that with the original chest HRCT images. Compared with the chest HRCT images after 
the fine selection, the classification performance of the 2D DenseNet with the chest HRCT images 
after the rough selection was lower for the test set, except for precision. However, the classification 
ability of the 3D DenseNet with the chest HRCT images after the rough selection was higher than that 
with the chest HRCT images after the fine selection. In particular, Figure 9(A) shows that the best 
AUC value (0.82) for the DenseNet was achieved by applying multiple-instance learning to 3D chest 
HRCT images. Table 7 shows that the other evaluation metrics based on applying multiple-instance 
learning to the 3D chest HRCT images processed with DenseNet were 0.59 (accuracy), 0.62 
(precision), 0.59 (recall) and 0.57 (F1-score). However, it was lower than the rough selection result 
for the 3D chest HRCT images (0.65) in terms of precision. 
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Figure 10. Confusion matrix results for the DenseNet. (A) Confusion matrix results for 
the DenseNet with 2D input images; (B) Confusion matrix results for the DenseNet with 
3D input images.  
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Figure 11. Confusion matrix results for the GoogleNet. (A) Confusion matrix results for 
the GoogleNet with 2D input images; (B) Confusion matrix results for the GoogleNet with 
3D input images. 
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Figure 12. ROC curves for the different ML classifiers. (A) ROC curves for the different 
ML classifiers with 1316 lung radiomics features; (B) ROC curves for the different ML 
classifiers with 19 lung radiomics features selected by Lasso.  

Figure 9(B) and Table 8 show that the best performance of GoogleNet was based on the 2D 
original parenchyma images. Finally, Figure 11 intuitively shows the classification results for the 2D 
and 3D GoogleNet. Specifically, the classification performance of the 2D GoogleNet with the original 
chest HRCT images/the original parenchyma images was better than that of the 3D GoogleNet. 
Furthermore, the classification performance of the 2D GoogleNet with the rough selection of the 
original chest HRCT images was also better than that of the 3D GoogleNet, except for precision. The 
classification performance of the 2D GoogleNet with the multiple-instance learning of the original 
chest HRCT images was also better than that of the 3D GoogleNet, except for the F1-score. However, 
the classification performance of the 2D GoogleNet with the fine selection of the original chest HRCT 
images was worse than that of the 3D GoogleNet. Furthermore, the classification performance of the 
2D GoogleNet with the multiple-instance learning of the original parenchyma images was also worse 
than that of the 3D GoogleNet, except for precision. In particular, Figure 9(A) shows that the best AUC 
value (0.81) for the GoogleNet was achieved with the 2D original parenchyma images. Table 8 further 
shows that the other evaluation metrics of the 2D original parenchyma images process using 
GoogleNet were 0.55 (accuracy), 0.56 (precision), 0.55 (recall) and 0.55 (F1-score). It was lower than 
the 2D original chest HRCT images (0.67) in terms of precision. 

For all of the six kinds of input images in Tables 7 and 8, the results show that the classification 
performance of the 3D DenseNet was better than that of the 3D GoogleNet. However, the classification 
performance of the 2D GoogleNet with the original chest HRCT images/the original parenchyma 
images was also better than that of the 2D DenseNet. 

3.3.2. Classification results for the ML classifier 

The classification performances of different ML classifiers were evaluated by using 1316 lung 
radiomics features and 19 selected lung radiomics features. In addition, the best-performance classifier 
(MLP classifier) was also determined, as described in this section.  
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Figure 13. Confusion matrix results for the different ML classifiers. (A) Confusion matrix 
results for the ML classifiers with 1316 lung radiomics features; (B) Confusion matrix 
results for the ML classifiers with 19 selected lung radiomics features. 

Figure 13 intuitively shows the classification results for different ML classifiers with 1316 lung 
radiomics features and 19 selected lung radiomics features. Table 9 reports the classification 
performance of the classifier with 1316 lung radiomics features. Compared with the classification 
performance of the CNNs (DenseNet and GoogleNet), that of the ML classifiers with 1316 lung 
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radiomics features had an overwhelming effect on COPD stage classification. The accuracy, precision, 
recall, F1-score and AUC of the ML classifiers improved significantly. Overall, the classification 
performance of the ML classifiers was better than the DenseNet with the multiple-instance learning of 
the 3D chest HRCT images (best performance in DenseNet), even for the worst LDA classifier with 
1316 lung radiomics features (except for precision). Compared with the classification performance of 
the ML classifiers with 1316 lung radiomics features, that of the ML classifiers with 19 selected lung 
radiomics features was further improved. 

Table 9. Evaluation metrics for the different ML classifiers with the 1316 lung radiomics 
features when applied to the test set. 

Classifier  Accuracy  Precision Recall F1-score  AUC 
RF classifier  0.72 0.72 0.72 0.72 0.90 
Ada classifier  0.70 0.69 0.70 0.69 0.90 
GB classifier  0.72 0.73 0.72 0.72 0.92 
MLP classifier  0.78 0.78 0.78 0.78 0.92 
LDA classifier  0.60 0.60 0.60 0.59 0.85 
SVM classifier  0.62 0.62 0.63 0.61 0.87 
RF classifier  0.72 0.72 0.72 0.72 0.90 

Table 10. Evaluation metrics for the different ML classifiers with 19 selected lung 
radiomics features when applied to the test set. 

Classifier  Accuracy  Precision Recall F1-score  AUC 
RF classifier  0.76 0.76 0.76 0.76 0.93 
Ada classifier  0.77 0.76 0.77 0.76 0.93 
GB classifier  0.73 0.74 0.73 0.73 0.92 
MLP classifier  0.80 0.80 0.80 0.80 0.94 
LDA classifier  0.65 0.65 0.65 0.65 0.89 
SVM classifier  0.71 0.71 0.71 0.71 0.92 
RF classifier  0.76 0.76 0.76 0.76 0.93 

Table 9 shows that the accuracy, precision, recall, F1-score and AUC of the MLP classifier with 
the 1316 lung radiomics features were 0.78, 0.78, 0.78, 0.78 and 0.92, respectively. Therefore, the 
MLP classifier is regarded as the best-performance classifier for the 1316 lung radiomics features. In 
addition, Table 10 shows that all of the evaluation metrics improved, and that the MLP classifier was 
also the best-performance classifier for the 19 selected lung radiomics features. The accuracy, precision, 
recall, F1-score and AUC of the MLP classifier with the 19 selected lung radiomics features were 0.80, 
0.80, 0.80, 0.80 and 0.94, respectively. 

3.3.3. Classification results for the proposed method 

The 19 selected lung radiomics features with Radiomics-FIRST/Radiomics-ALL were used to 
further evaluate the MLP classifier’s performance. 

Figure 14(A) and Table 11 show the evaluation metrics for the MLP classifier with one lung 
radiomics combination feature (Radiomics-X). Figure 14(A) shows that the AUC of the MLP classifier 
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with Radiomics-FIRST/Radiomics-ALL was 0.87/0.85, which is better than that of the other lung 
radiomics combination features. Figure 15(A) intuitively shows the classification results for the MLP 
classifier with seven lung radiomics combination features. The MLP classifier with Radiomics-
GLSZM/ Radiomics-GLSZM/ Radiomics-GLDM could not distinguish COPD Stage Ⅰ from the other 
COPD stages (“0” at COPD stage, predicted label). Radiomics-FIRST and Radiomics-ALL, which 
characterized the COPD stage, showed better classification performance than the other lung radiomics 
combination features. However, Radiomics-ALL showed the best classification performance for all 
lung radiomics combination features. The accuracy, precision, recall, F1-score and AUC of the MLP 
classifier with Radiomics-ALL were 0.60, 0.58, 0.60, 0.59 and 0.87, respectively. 

Table 11. Test set evaluation metrics for the MLP classifier with one lung radiomics 
combination feature (Radiomics-X). 

Radiomics-X Accuracy Precision Recall F1-score AUC 
Radiomics-FIRST 0.56 0.56 0.56 0.56 0.85 
Radiomics-SHAPE 0.39 0.40 0.39 0.36 0.64 
Radiomics-GLCM 0.49 0.51 0.49 0.47 0.72 
Radiomics-GLSZM 0.36 0.27 0.36 0.31 0.62 
Radiomics-NGTDM 0.42 0.32 0.42 0.36 0.66 
Radiomics-GLDM 0.28 0.21 0.28 0.24 0.58 
Radiomics-ALL 0.60 0.58 0.60 0.59 0.87 

Table 12. Test set evaluation metrics for the MLP classifiers with 19 selected lung 
radiomics features and Radiomics-FIRST/Radiomics-ALL (20 lung radiomics features). 

MLP Classifier: Input features  Accuracy Precision Recall F1-score  AUC
19 radiomics features + Radiomics-FIRST 0.81 0.82 0.81 0.81  0.94
19 radiomics features + Radiomics-ALL 0.83 0.83 0. 83 0.82  0.95

 

Figure 14. ROC curves for the MLP classifiers with different features. (A) ROC curves 
for the MLP classifier with one lung radiomics combination feature (Radiomics-X); (B) 
ROC curves for the MLP classifier with 19 selected lung radiomics features and 
Radiomics-FIRST/Radiomics-ALL (20 lung radiomics features). 
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Figure 14(B) and Table 12 show the evaluation metrics for the MLP classifier with 19 selected 
lung radiomics features and Radiomics-FIRST/Radiomics-ALL. Figure 15(B) intuitively shows the 
classification results for the MLP classifier with the 19 selected lung radiomics features and 
Radiomics-FIRST/Radiomics-ALL. Compared with the MLP classifier with the 19 selected lung 
radiomics features, all of the evaluation metrics for the MLP classifier with the 19 selected lung 
radiomics features and Radiomics-FIRST/Radiomics-ALL improved. The accuracy, precision, recall, 
F1-score and AUC of the MLP classifier with the 19 selected lung radiomics features and Radiomics- 
FIRST were 0.81, 0.82, 0.81, 0.81 and 0.94, respectively. The accuracy, precision, recall, F1-score 
and AUC of the MLP classifier with the 19 selected lung radiomics features and Radiomics-ALL 
were 0.83, 0.83, 0.83, 0.82 and 0.95, respectively. 

4. Discussion 

Four topics will be discussed, including 1) the classification ability of the classic CNN based on 
the images and that of the ML classifiers based on the lung radiomics features; 2) the role of feature 
selection and 3) the reason why the constructed lung radiomics combination features characterizing 
the COPD stage can improve the lung radiomics combination features.  

4.1. Classification abilities of the CNN and ML classifiers 

The classification ability of the classic CNN based on the images was worse than that of the ML 
classifiers based on the lung radiomics features. The following discussion focuses on the characteristics 
of COPD and the classic CNN. 

First, COPD diffusely distributes in the lung. Therefore, there may be no lesions on some slices 
of chest HRCT images from a patient with COPD (Stage Ⅰ to Ⅳ). In addition, even if some participants 
were diagnosed without COPD (no airflow restriction), primary or mild lesions may already exist on 
their HRCT images. Alternatively, some slices of the chest HRCT images may not have lesions. 
Although we have made many attempts, including fine selection, rough selection and multiple-instance 
learning [52], to eliminate the above problems, the classification ability of the classic CNN based on 
the images still makes us disappointed. 

Second, the 3D DenseNet achieved better classification results than the 2D DenseNet. The reason 
is that, compared with the 2D DenseNet, the 3D DenseNet can extract interlayer information. 
Compared with the original chest HRCT images, the lung parenchyma image removes the non-lung 
region containing redundant information. Therefore, when inputting the lung parenchyma images, 
DenseNet (2D and 3D) can focus more on extracting the features of the lung region to achieve better 
classification results. Compared with the chest HRCT images after the fine selection (deleting the non-
lung-region images), the classification ability of the 2D DenseNet with the chest HRCT images after 
the rough selection (deleting 1/6 images at the beginning and the end, respectively) was lower, except 
for precision. The reason is that, although the rough selection of the chest HRCT images deletes no 
redundant information interference (non-lung images), there is also a lack of effective information on 
the 2/6 deleted images for COPD classification. However, compared with the chest HRCT images after 
the fine selection, the classification ability of the 3D DenseNet with the chest HRCT images after the 
rough selection was better. The reason is that the spacing of the 20 slices (Table 2) after the rough 
selection was less than that after the fine selection.  
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Figure 15. Confusion matrix results for the MLP classifiers with different features. (A) Confusion 

matrix results for the MLP classifier with one lung radiomics combination feature (Radiomics-X); 

(B) Confusion matrix results for the MLP classifier with 19 selected lung radiomics features and 

Radiomics-FIRST/Radiomics-ALL (20 lung radiomics features). 
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Third, similar to DenseNet, GoogleNet also cannot achieve the ideal classification effect with a 
small amount of training data. When the network dimension was transformed from 2D to 3D, the 
classification performance of DenseNet was greatly improved. However, the classification 
performance of GoogleNet improved only slightly, or even decreased. The 2D GoogleNet was 
proposed based on the classification of natural images (RGB images). Its structure does not have a 
targeted design for the details of these natural images. Inception network structure of 2D GoogleNet 
with many 1 × 1 convolution kernels strengthens the channel connection of RGB images, which cannot 
be reflected in the chest HRCT images. The classification ability of the 2D GoogleNet with the chest 
HRCT images after rough/fine selection was worse than that of the 2D GoogleNet with the original 
chest HRCT images. The reason is that non-lung slicers (fine selection) or few lung slicers (rough 
selection) are removed, but they are still effective information for COPD classification. The accuracy 
of the 2D GoogleNet with the chest HRCT images after the fine selection was higher than that resulting 
from rough selection, which confirms the above discussion. The accuracy of the 2D GoogleNet with 
the original chest HRCT images and the multiple-instance learning was the same. This also shows the 
role of multiple-instance learning in dealing with COPD classification, which aligns with its original 
intention. The AUC resulting from the 2D GoogleNet with the original parenchyma images was the 
maximum, showing that the ROI improves the AUC. In addition, the classification performance of the 
2D GoogleNet with the multiple-instance learning of the original parenchyma images was better than 
that based on the original chest HRCT images. This further illustrates that the ROI improves the 
classification performance under the conditions of multiple-instance learning. The research on 3D 
GoogleNets is minimal [53–56]. As the number of 3D GoogleNet parameters increases, the problem 
of the limited number of training data will become more obvious. The Inception module structure is 
specially designed for 2D images. Different convolution kernels extract features from the 2D images, 
and then feature concatenation is implemented. The stitching is aligned and spliced according to the 
two dimensions of the tensor. Therefore, compared to the 2D GoogleNet, the 3D GoogleNet has 
more dimension tensors, which weakens the effect of the receptive fields. 

The classification ability of the ML classifiers based on the lung radiomics features is better than 
that of the classic CNN based on the images. Compared with the classic CNN based on the images, 
the ML classifiers with the lung radiomics features calculated by preset formulas are more interpretable 
for the COPD classification. The lung radiomics features were calculated based on information from 
all of the slicers of the parenchyma images. Therefore, the lung radiomics features cannot be affected 
by the location of lesions in the chest HRCT images.  

4.2. Role of feature selection for classification 

Compared to the classification performance of the ML classifiers with the 1316 lung radiomics 
features, that of the ML classifiers with the 19 selected lung radiomics features was better. Lasso is 
often used with survival analysis models to determine variables and eliminate the collinearity problem 
between variables [43,44]. In this study, Lasso was applied to select the classification features, and the 
classification performance improved. Lasso selects the classification features by establishing the 
relationship between the independent and dependent variables (lung radiomics features and the COPD 
stages). This operation selects the lung radiomics features related to COPD stages to reduce the 
complexity of the ML classifiers and avoid overfitting. While reducing the complexity of the ML 
classifiers, the ML classifiers can focus on the 19 selected lung radiomics features and improve the 
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classification performance. At the same time, it also endows the lung radiomics features used for 
classification with strong explanatory power. Radiomics18 of the 19 selected lung radiomics features 
was the dominant feature with the maximum coefficient.  

4.3. Constructed lung radiomics combination features for characterizing the COPD stage 

T-tests have been widely used to select significant variables in survival analysis models, 
generalized linear models and regression models [57]. Therefore, we were inspired to construct 
features that can characterize the COPD stage to improve classification performance. The two lung 
radiomics combination features, Radiomics-FIRST and Radiomics-ALL, were constructed to 
characterize the COPD stage (P-value < 0.05 for all COPD stages). The features with P-value < 0.05 
for all COPD stages showed improved classification performance. The reason can be explained from 
the perspective of statistics. Generally, a P-value of two groups that is < 0.05 means significant 
correlation between these two groups. Therefore, using them (P-value < 0.05) to classify the two 
groups can improve the classification performance.  

4.4. Limitations of this study and future direction 

There are some limitations of this study. First, regarding the materials used in this study, there 
were not enough cases at the COPD Stage Ⅳ. Second, regarding the methods used in this study, many 
attempts were made to eliminate the problems of lesions in the HRCT images mentioned in Section 4.1, 
but the classification performance of the classic CNN remained unsatisfactory. The MLP classifiers 
with the 19 selected lung radiomics features and Radiomics-ALL achieved good classification 
performance, but the fixed calculation equations limit further development of the lung radiomics 
features. However, the CNN based on the chest HRCT images was not subject to the above restrictions. 
Fully combining a CNN classifier with the limited number of 3D medical images is an urgent problem 
to be solved. Transfer learning [58] in CNNs has become the first choice to solve the problem of a 
limited number of 3D medical images. Similarly, the method of data augmentation should be further 
tried. Inspired by lung radiomics features, which derive many features from each set of chest HRCT 
images, the 3D chest HRCT images of each subject can be resized into small-sized 3D images. For 
example, 3D chest HRCT images with 512 × 512 × N can be resized into other sizes, such as 256 × 
256 × 300 and 64 × 64 × 50. Finally, the chest HRCT images used in this study were collected from 
2009 to 2011, but they are still a rare and standard study cohort. We will also try our best to collect the 
updated study cohort in the future. 

5. Conclusions 

The lung radiomics features were used to characterize and classify the COPD stage in this study. 
Compared with classic CNN classifiers based on the chest HRCT images, the ML method based on 
the use of lung radiomics features is more suitable and interpretable for COPD classification. Lasso 
was applied to select the lung radiomics features for enhancing the ML method’s classification 
performance. The best-performance classifier, i.e., the MLP classifier, was determined. Two lung 
radiomics combination features, Radiomics-FIRST and Radiomics-ALL, were constructed based on 19 
selected lung radiomics features by using the proposed lung radiomics combination strategy for 
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characterizing COPD stage evolution. Radiomics-FIRST/Radiomics-ALL was used further to improve 
the classification performance of the MLP classifier. As a result, the accuracy, precision, recall, F1-
score and AUC of the MLP classifier with the 19 selected lung radiomics features and Radiomics-ALL 
were 0.83, 0.83, 0.83, 0.82 and 0.95, respectively.  
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