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Abstract: Salp swarm algorithm (SSA) is a recently proposed, powerful swarm-intelligence based 
optimizer, which is inspired by the unique foraging style of salps in oceans. However, the original SSA 
suffers from some limitations including immature balance between exploitation and exploration 
operators, slow convergence and local optimal stagnation. To alleviate these deficiencies, a modified 
SSA (called VC-SSA) with velocity clamping strategy, reduction factor tactic, and adaptive weight 
mechanism is developed. Firstly, a novel velocity clamping mechanism is designed to boost the 
exploitation ability and the solution accuracy. Next, a reduction factor is arranged to bolster the 
exploration capability and accelerate the convergence speed. Finally, a novel position update equation 
is designed by injecting an inertia weight to catch a better balance between local and global search. 23 
classical benchmark test problems, 30 complex optimization tasks from CEC 2017, and five 
engineering design problems are employed to authenticate the effectiveness of the developed VC-SSA. 
The experimental results of VC-SSA are compared with a series of cutting-edge metaheuristics. The 
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comparisons reveal that VC-SSA provides better performance against the canonical SSA, SSA variants, 
and other well-established metaheuristic paradigms. In addition, VC-SSA is utilized to handle a mobile 
robot path planning task. The results show that VC-SSA can provide the best results compared to the 
competitors and it can serve as an auxiliary tool for mobile robot path planning. 

Keywords: salp swarm algorithm; swarm intelligence; numerical optimization; engineering design 
optimization; robot path planning 
 

1. Introduction  

Global optimization problems exist widely in scientific research and engineering applications. In 
the past, optimization problems were solved using methods such as Newton’s method, Lagrange 
multiplier method, quasi-Newton, and other accurate calculation methods. Although the effectiveness 
of these approaches has long been proven, due to the increasing of data complexity and dimensionality, 
all information in the feature space is unknown in various fields such as machine learning and 
engineering design, so the optimal solutions to all optimization problems cannot be obtained using 
exact mathematical models. Finding optimal solution has become a challenge in the field of 
optimization. To solve this problem, researchers have created metaheuristic algorithms. It is a 
stochastic optimization technique that does not require any prior knowledge and can obtain 
approximate optimal solutions through established steps 1. Swarm intelligence-based algorithms are 
an essential branch of nature inspired algorithms and have become a research hot topic in the 
metaheuristic community, which include but are not limited to: particle swarm algorithm (PSO) 2, 
marine predators algorithm (MPA) 3, ant colony optimization (ACO) 4, earthworm optimization 
algorithm (EWA) 5, artificial bee colony (ABC) algorithm [6,7, moth flame optimizer (MFO) 8, firefly 
algorithm (FA) 910, whale optimization algorithm (WOA) 11, cuckoo search (CS) algorithm 12, grey 
wolf optimization (GWO) algorithm 13, krill herd (KH) algorithm 14, harris hawks optimizer (HHO) 
15, monarch butterfly optimization (MBO) 16, grasshopper optimization algorithm (GOA) 17, 
elephant herding optimization (EHO) 18, slime mould algorithm (SMA) 19, hunger games search 
(HGS) 20, Runge Kutta method (RUN) 21, colony predation algorithm (CPA) 22, weighted mean of 
vectors (INFO) 23. 

In this work, we focus on a relatively novel and well-established population intelligence-based 
approach, called salp swarm optimizer (SSA) 24, which was developed by Mirjalili et al. in 2017. 
Compared with other well-known metaheuristics, SSA has several merits, including few control 
parameters, straightforward framework, and distinctive search pattern. Numerous studies conducted 
on SSA have shown that the optimizer demonstrates competitive performance on function optimization 
and real-world engineering optimization problems. Consequently, SSA is extensively adopted to tackle 
various global optimization tasks. In 25, Wang et al. developed a dynamic version of SSA by 
introducing a boosted orthogonal opposition-based learning component and ranking-based learning 
tactic to the basic SSA. The boosted orthogonal opposition-based learning component helps the leader 
to search for unknown promising regions to improve the convergence speed. The dynamic learning 
mechanism enhances the dynamic nature of the follower’s position update pattern, thus helping the 

algorithm avoid getting trapped in local optima. A series of experiments, including numerical function 
optimization, engineering design problems, and parameter estimation of PV model, validate that this 
SSA variant outperforms the basic SSA, well-known SSA variants, and frontier metaheuristic 
techniques. In addition, the developed SSA-based algorithm is employed to solve the mobile robot 



7758 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 7756-7804. 

path planning problem and its performance is tested on five environmental maps. Simulation results 
show that the proposed path planning approach has competitive performance. In 26, Ewees et al. 
proposed an enhanced SSA algorithm based on the operators of FA, called SSAFA. In SSAFA, the 
operators of FA are used to improve the exploitation ability of the basic SSA. The performance of this 
SSA variant was verified on the unrelated parallel machine scheduling problem. In 27, Tu et al. 
developed a quantum-behaved SSA algorithm. The proposed method introduces quantum mechanics 
theories and trajectory analysis in the position update mechanism to enhance the local search ability 
of followers. The algorithm is applied to solve the localization problem in anisotropic wireless sensor 
networks. Experimental results show that this method outperforms its competitors in terms of accuracy 
and robustness against network anisotropy. In 28, Tubishat et al. suggested a novel SSA variant that 
includes two modifications. The first refinement includes the use of opposition-based learning 
mechanism during the population initialization period to increase the population diversity and to speed 
up the convergence of the algorithm. The second enhancement includes the introduction of a new local 
search mechanism to boost the local search ability. The performance of the developed method was 
validated using the feature selection problem. The experimental results indicate that this approach 
achieves better performance in terms of fitness values, accuracy, convergence curves, and feature 
reduction on most of the employed 18 datasets from UCI repository compared with the other four 
baseline approach. 

Although SSA has demonstrated more competitive performance than some well-known 
metaheuristic approaches in solving numerical and engineering optimization problems, it still has some 
drawbacks, including unbalanced exploitation and exploration properties, poor convergence 
performance, and prone to fall into local optimal. To mitigate the above-mentioned limitations, many 
improved SSA-based algorithms have been developed. In 29, a novel SSA variant incorporating three 
perturbation mechanism was developed. Gaussian mutation was utilized to enhance neighborhood-
informed ability. Cauchy mutation was employed to improve the global search capability. Levy-flight 
mechanism was introduced to boost randomness. The performance of the method was investigated 
using 23 classical benchmark functions. The experimental results show that the three mutation schemes 
can effectively augment the exploration and exploitation abilities. In 30, a hybrid improved whale 
optimization salp swarm algorithm was introduced. First, the linear relationships in WOA are replaced 
with exponential relationships to improve its search ability. Second, the improved WOA algorithm is 
fused with the basic SSA, and the combined algorithm is more flexible and has a faster convergence 
rate and higher convergence accuracy. The performance of the algorithm is verified using 23 classical 
benchmark functions and compared with 8 swarm intelligent algorithms. The comparison results 
demonstrate that the algorithm has good performance. In addition, the method was used to tune the 
adaptive PID controller. From the simulation results, the enhancement of the algorithm is demonstrated 
by different performance metrics. In 31, an improved SSA injected with random opposition-based 
learning, multiple leadership, and simulated annealing mechanisms was developed. The random 
opposition-based learning strategy facilitates the expansion of the population search. The multi-leader 

mechanism can improve the exploration ability. The simulated annealing component enhances the 
local search ability and is beneficial to improve the solution accuracy. The performance of the 
algorithm was tested on CEC2015 benchmark function. The algorithm was also used to train 
feedforward neural networks. The experimental results show that the developed approach has excellent 
performance on both numerical optimization problems and training feedforward neural network 
problems. In 32, the SSA algorithm was enhanced by adding three simple but effective strategies. 
Firstly, the control parameter in SSA responsible for equilibrating exploration and exploitation is 
chaotically altered to catch a better tradeoff between global search and local search. Secondly, a 
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mutualistic strategy is used to augment the neighborhood interaction between leaders. Finally, a 
stochastic technique is adopted to enrich the diversity of the population to expand the search range of 
the followers. To verify the effectiveness of this algorithm, numerical optimization problems and 
practical engineering design cases are applied. Experimental results demonstrate that the algorithm 
outperforms its competitors. In 33, an improved SSA algorithm with Gaussian Barebone mechanism 
and Stochastic Fractal Search strategy, called GBSFSSA, was introduced. In GBSFSSA, Gaussian 
Barebone mechanism and Stochastic Fractal Search strategy effectively enhance the balance between 
exploration and exploitation of the basic SSA algorithm. Experimental results on CEC2017 functions 
show that GBSFSSA has competitive performance. Moreover, this approach is applied to solve image 
segmentation problems and the effectiveness of the proposed methodology is tested on COVID-19 CT 
images. The experimental results show that GBSFSSA is a trustworthy image segmentation tool. 
In 34, differential evolution and chaotic structure were embedded in the basic SSA to improve its 
convergence performance. Chaotic initialization can enrich the population diversity of the initial 
population and thus speed up the convergence rate. The differential evolution mechanism is introduced 
in the search process to make a more solid balance between exploration and exploitation. The improved 
SSA algorithm is tested using the CEC2014 benchmark functions and five classical engineering design 
problems, and the results show that the advocated method outperforms the basic SSA and some popular 
swarm intelligent algorithms. In addition, this SSA variant was used to solve the feature selection 
problem and obtained desirable results. In 35, the location update mechanism of the basic SSA was 
revised and an elite gray wolf domination strategy was inserted in the final stage of population location 
update. The modified location update pattern enhances the local search ability of the algorithm, and 
the elite domination strategy improves the convergence speed of the basic SSA. A series of experiments 
including numerical optimization problems, engineering design cases, and feature selection tasks 
verified the superior performance of the proposed algorithm. In 36, a novel annealing salp swarm 
algorithm named SASSA was proposed. In SASSA, the simulated annealing strategy is introduced in 
the follower position update phase, random walk in simulated annealing is implemented using levy 
flight, and the number of leaders is increased. With the help of these three mechanisms, the SSA 
algorithm achieves a better and solid balance between global search and local search. Experimental 
results on 30 CEC2017 test functions show that the SASSA algorithm outperforms the standard SSA 
and 23 peer algorithms. Additionally, the SASSA method is used to solve five engineering design 
problems and the fertilizer effect function problem, and the experimental results indicate that SASSA 
has strong competitiveness. In 37, a levy flight-based population position update mechanism was 
proposed to replace the location update pattern of the basic SSA. The new location update pattern 
improves the population diversity. Then, the search technique of HHO was introduced for improving 
the global search capability of the algorithm. The results of comparison experiments on CEC2014 test 
function set validate the superiority of the proposed method. This algorithm is also used to segment 
breast cancer microscopic images and the experimental results demonstrate its superior performance. 

The existing SSA variants mainly focus on achieving a delicate balance between cohesion and 

alignment patterns. Despite the development of many effective SSA variants, a research gap still exists 
in this field. While the existing SSA variants improve the overall performance of the basic SSA, 
unbalanced exploitation and exploration operators still exist. This is mainly because the existing SSA 
variants mainly emphasize on improving the exploration or development capability of the algorithm 
in expectation of achieving a balance between the two, but there is no algorithm that can smoothly 
switch between development and exploration. Therefore, in this study, a novel SSA variant, called VC-
SSA, is reported to intensify the overall performance of the standard SSA. The main contributions of 
this paper are summarized as follows: 
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1) A novel version of SSA named VC-SSA is proposed, which embeds three effective but simple 
mechanisms, namely, velocity clamping mechanism, reduction factor tactic, and adaptive weight 
strategy. The ablation study in subsection 4.5 verifies the role of the three components in VC-SSA. 
2) To verify the effectiveness of the proposed VC-SSA algorithm, comparison experiments with a 
number of state-of-the-art swarm intelligent algorithms and SSA variants are carried out using 23 
classical benchmark functions and 30 complex optimization problems from IEEE CEC 2017. The 
results are statistically analyzed by the Friedman test and the Wilcox sign-rank test. 
3) To further prove the superiority of VC-SSA, it is employed to five engineering problems and the 
mobile robot path planning task. The experimental results demonstrate that VC-SSA can achieve 
satisfactory solutions for the above-mentioned cases. 
4) The remainder of this study is arranged as follows: The fundamental principle of the basic SSA is 
explained in Section 2. Three proposed modified mechanisms are described and the developed VC-
SSA algorithm is depicted in Section 3. Section 4 investigates the validity of VC-SSA on twenty-three 
well-known benchmark problems. Section 5 focus on a VC-SSA-based mobile robot path planning 
approach. Finally, the conclusions and future directions of our paper are summarized in Section 6. The 
detailed flow of the work is illustrated in Figure 1. 

 

Figure 1. Overview of the paper. 

2. Salp swarm algorithm 

SSA is a swarm-intelligence based algorithm with a minimalist style developed by Mirjalili et al. [24] 
in 2017, which is motivated by the unique swarming behavior of the salps found in oceans. In SSA, 
the search agents performing optimization are divided into leading salps and followers according to 
their position. The individual at the top of the salp group is considered as the leader, and those behind 
it are classified as followers. The location updating formula for the leading salp is as follows: 

��
� = �

�� + ��((��� − ���)�� + ���)     �� ≥ 0.5

�� − ��((��� − ���)�� + ���)     �� < 0.5
                   (1) 

where x1 
j  represent the location of the leading salp, Fj is the parameter that depicts the jth dimension 

of the food source, ubj denotes the upper limit of the search space and lbj shows the lower limit of the 
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search landscape, c2, and c3 are random numbers between [0, 1], c1 is an essential parameter in SSA, 
which is responsible for maintaining the balance between global search and local exploitation during 
the search process, and its value is updated by the following mathematical model. 

�� = 2��(��/�)                                          (2) 

where t and T represent the current and the maximum iterations, respectively. 
In follower position update phase, the mathematical model is formulated as follows: 

��
� =

�

�
(��

� + ��
���)                                        (3) 

where xi 
j  indicates the jth dimension in the position of the ith search agent. 

3. Structure of the proposed VC-SSA 

The SSA is a population-intelligence based global optimizer with straightforward framework and 
relatively outstanding performance. However, the strong minimalist style of SSA destabilizes its 
inherent tradeoff between convergence and diversity and slows down the convergence rate. Therefore, 
a modified SSA called VC-SSA is proposed for further augmenting the overall performance of the 
standard SSA in this section. In addition, the NFL theorem 38 demonstrates that the average 
performance of any optimization technique on all optimization cases is equal, which is the main 
motivation for us to conduct this study. It is important to state that VC-SSA improves the performance 
of SSA by introducing new operators while keeping its original framework intact. Consecutive 
subsections will elaborate on each of the components in detail. 

3.1. Velocity clamping strategy 

For swarm-intelligence based techniques, the exploration-exploitation trade-off is a core 
imperative that directly affects the convergence rate and the solution precision. In the standard SSA, 
the parameter c1 acting on the leader position update phase is responsible for this aspect. Its value 
decreases nonlinearly over the course of iterations with the hope of helping the salp chain to develop 
the solution landscape during the early iterations and to mine the rough position of the global optimal 
after the lapse of iterations. From Eq (1), the term assisted by c1, i.e., the vector ((ubj-lbj)c2+lbj), can 
essentially be understood as the leader’s velocity. Based on this analysis, Eq (1) can be reformulated as 

��
� = �

�� + ����     �� ≥ 0.5

�� − ����     �� < 0.5
                                     (4) 

�� = ((��� − ���)�� + ���)                                (5) 

where Vj means the jth dimension in the velocity of the leading salp. 
From Eq (4), during the search process, the leader generates a step size depending on the velocity 

V and moves around the food source at that step. Nevertheless, according to Eq (5), the step size 
stemming from the velocity is completely random since the only parameter involved, c2, is an arbitrary 
number between [0, 1]. This would lead to the velocity V escaping the constrain of c1, thus defeating 
the expectation that a smaller step size should be used during the early search process, while the step 
size should reduce as the search progresses. To alleviate this problem, this paper proposes a velocity 
clamping strategy. After the leader generates the velocity, it is adjusted according to the following rule 
and the position is updated in accordance with the modified velocity. 
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max max

min min

      

      

        

j j

j j j

j

V if V V

V V if V V

V otherwise

 

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


                                        (6) 

where Vjmax and Vjmin are the jth dimension in the maximum and minimum legal velocity of the leader, 
respectively. To initialize them, Eqs (7) and (8) are employed. 

max
( )

j j j
V ub lb                                   (7) 

min
( )

j j j
V lb ub                                   (8) 

where  is a constant number called clamping factor. 
Overall, with the help of the velocity clamping strategy, the role of the parameter c1 is enhanced, 

so that the leader can adequately search the solution space using lager step sizes in the early search 
phase, while moving with smaller step sizes to improve the explored area in the later search stage. 

3.2. Reduction factor strategy 

The performance of the basic SSA is improved with the addition of the velocity clamping strategy, 
but it also brings a pitfall. If the velocity in each iteration is always equal to Vmax or Vmin, the search 
agent may be committed to searching on the boundaries of the search region, or it may continue to 
hunt on the boundaries of the already located current global optimal area, but unable to refine this 
promising zone. There are many alternatives to address this challenge. In the current study, we have 
tackled it by inserting a reduction coefficient into the leader position update equation. The 
mathematical expression for this new procedure is presented below. 

��
� = �

�(�)��� + �����     �� ≥ 0.5

�(�)��� − �����     �� < 0.5
                                 (9) 

where H(t) is the reduction factor, and this attenuation is expressed using Eq (10). 

�(�) = ����                                        (10) 

Here, the value of s is defined by Eq (11) 

� = 2 − ��                                          (11) 

where c1 is the conversion parameter of SSA. 
From Eq (11), s decreases nonlinearly during the iterations, and consequently, H increases 

dynamically. As a result, the initial H is favorable for global exploration, while after the lapse of 
iterations, it is preferable for local exploitation. Consequently, the above notion can help the algorithm 
to obtain a subtle tradeoff between the diversification and intensification operators. 

3.3. Adaptive inertia weight mechanism 

In the basic SSA, the follower position update pattern adopts a minimalist style, which makes the 
algorithm easy to accomplish, but also poses some limitations. From Eq (3), the followers update their 
states only pursuant to the neighboring followers, and this procedure does not have any adaptivity, and 
the interaction between followers is relatively inflexible. Once a neighboring individual is trapped in 
the sub-optimal region, all followers behind it will inevitably be lured to that locally optimal region, 
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eventually leading to premature convergence of the optimizer. 
To tackle this limitation, we focus on modifying the position update formula of followers and 

propose an adaptive position update pattern to replace Eq (3). The new mathematical expression is: 

��
� =

�

�
(��

� + ���
���)                                    (12) 

where ω is an inertia weight. 
The concept of inertia weights was first proposed for controlling the velocity of particles in PSO 

and obtained satisfactory results. Inspired by this idea, researchers have introduced this operator to 
other nature-inspired metaheuristic techniques. For example, Jena et al. 39 designed a sigmoid-
adaptive inertia weight and introduced it into the social group optimization (SGO) 40 to improve its 
overall performance. Sun et al. 41 employed the nonlinear inertia weight factor to reinforce the 
equilibrium between exploration and exploitation properties of the atom search optimization (ASO) 
algorithm 42. Ma et al. 43 amended the position update pattern of MFO by utilizing the inertia weights. 
Li et al. 44 adopted the dynamic inertia weight to amend the position equation of sine cosine algorithm 
(SCA) 45. In this work, we design a new adaptively inertia weight coefficient and the mathematical 
formulation is formulated as below: 

10

max min min10
( )

t

t

e

e




   






   


                               (13) 

where ωmax and ωmin represent the maximum and minimum weight values, respectively, λ and μ are 
constant number. 

 

Figure 2. Visualization of proposed inertia weight ω. 

Figure 2 draws the evolution of the proposed inertia weight over 500 iterations. The figure 
indicates that the value of ω decreases nonlinearly during the search process, which is advantageous 
for the algorithm to explore in the early phase of evolution and switch smoothly to exploit after the 
iterations have elapsed. Accordingly, the follower can adaptively update the state to balance 
diversification and intensification. 

3.4. VC-SSA algorithm 

Based on the above analysis, our modifications to the SSA algorithm are mainly based on the 
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three components introduced. For a more systematic understanding of the proposed VC-SSA, its 
pseudo-code is given in Algorithm 1, and Figure 3 displays the flowchart of the proposed VC-SSA. 

To analyze the calculation complexity of VC-SSA, the steps to calculate the complexity are 
as follows: 
1) The computational complexity of population initialization is O(N), where N is the population scale. 
2) The computational complexity of assessing the fitness values of the initial population is O(N). 
3) The computational complexity of sorting the initial population according to fitness values and 
finding the food source position is O(N2). 
4) In the iterative search, the position of each salp is changed and their fitness values are computed. 
The computational complexity of this part is O(2N). 
5) In the final stage of the iteration, the population is sorted and the food source is updated. The 
computational complexity of this operation if O(N2). 

Therefore, the total time complexity of the proposed VC-SSA is as follows: 

�(2�) + �(��) + � × (�(2�) + �(��)) = (� + 1) × (�(2�) + �(��)). 

The generalized time complexity of the VC-SSA on the problem with a d-dimensional search 
space is given by 

�(VC-SSA) = � × � × (�(2�) + �(��)) 

According to the above analysis, the computational complexity of VC-SSA does not increase 
compared to the basic SSA. Analyzed from another perspective, the VC-SSA algorithm focuses on 
adjusting the position update mechanism of SSA and does not include any additional search phase, so 
its time complexity is the same as that of the basic SSA. 

Algorithm 1: Pseudo-code of VC-SSA 

1   Initialize the salp population Xi (i = 1,2,…,N) randomly consider ub and lb 

2   Obtain food source position based on the fitness 

3   while (t < T) do 

4    Update c1 by Eq (2) 

5    for i = 1 to N 

6      if i == 1 (leader) 

7        Calculate the velocity by Eq (5) 

8        Amend the velocity according to Eq (6) 

9        Calculate the reduction factor H(t) by Eq (10) 

10       Calculate the new location of the search agent by Eq (9) 

11     else if (follower) 

12       Calculate the new location of the search agent by Eq (12) 

13     end if 

14   end for 

15   Amend the search agent based on the boundaries 

16   Estimate the salp population with respect to the fitness 

17   Update the food source location 

18   t = t + 1 

19   end while 

20   Output the food source position 
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Figure 3. The flowchart of VC-SSA. 

4. Simulation and comparisons 

To strictly investigate the effectiveness of the developed VC-SSA, a series of experiments are 
performed to tackle various benchmark functions. Any involved algorithm is coded on MATLAB 
R2016b software under Windows 10 operating system with Intel(R) Xeon(R) W-2102 CPU @ 2.90 
GHz with 8 GB RAM. 

4.1. Benchmark test functions 

For comparison purposes, a recognized benchmark set including 11 unimodal and 12 multi-modal 
functions is selected. Details of the covered classical baseline functions are reported in Table 1. 

In Table 1, these 23 classical benchmarks have different characteristics, and by testing on them, 
the global search and partial exploration abilities of the optimizer can be comprehensively investigated. 
The unimodal problems possess only one global optimal solution and are appropriate for testing the 
approach’s capability to exploit in a narrow region. On the contrary, the multimodal cases have multiple 
local minima and are appropriate for examining the global exploration ability of the optimizer 46. 

4.2. Compared against SSA and SSA variants 

To evaluate the effectiveness of the developed VC-SSA approach, we conducted tests on 23 
classical benchmark functions with 100 dimensions, the details are presented in Table 1. The VC-SSA 
approach was compared with 11 SSA variants, including the basic SSA 24, ISSA 28, GSSA 29, 
IWOSSA 30, ASSA 47, RDSSA 48, CSSA 49, ESSA 50, LSSA 51, OBSSA 52, ASSO 53. The general 
parameters of all the mentioned approaches identical, i.e., the population size and the maximum 
evaluations were 30 and 500, respectively. The specific parameters of the involved approaches were 
extracted from the respective source work. The details are reported in Table 2. In the proposed VC-
SSA algorithm,  = 0.003, μ = 0.04, max = 0.9, min = 0.2, λ = 3, where the value of  is set using test 
and trail. Each algorithm was executed 30 trials and the average minimum (Mean) and standard 
deviation (Std) were employed as metrics to evaluate the effectiveness of the algorithms. To strengthen 
the belief in the VC-SSA algorithm, Friedman’s rank test was employed. In addition, to observed the 
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statistical differences in outcomes of VC-SSA and its competitors, the Wilcoxon signed rank test with 
significance level 5% has been considered. The comparison results of VC-SSA with its competitors 
and the average ranking of each method are reported in Table 3. The p-value from Wilcoxon signed 
rank test are provided in Table 4. The symbols “+/-/=” in Table 4 indicate that the VC-SSA performs 
significantly superior, inferior, or similar to its peers. 

From Table 3, VC-SSA finds theoretical optimal solutions on all benchmarks except f7 and f13. 
Compared with SSA, IWOSSA, CSSA, ISSA, ASSA, and LSSA, VC-SSA provides superior values 
on all test cases. Concerning GSSA, VC-SSA finds superior and similar scores on 21 and two cases, 
respectively. VC-SSA outperforms ESSA and OBSSA on 17 test functions, and for f5, f12~f14, f17, and 
f21, they achieve similar results. With respect to ASSO and RDSSA, VC-SSA shows better and similar 
performance on 18 and 5 test cases, respectively. Moreover, the average ranking presented at Table 3 
indicates that VC-SSA gets the highest ranking while the basic SSA has the lowest ranking, which 
demonstrates that all SSA variants intensify the performance of the standard SSA, with VC-SSA 
enhancing it the most. As shown in Table 4, there is almost no p-value lager than 0.05, which proves 
that the differences between VC-SSA and the comparison methods are statistically significant. 

In addition, Figure 4 illustrates the average ranking of the involved approaches on the selected 23 
tested functions in the form of a radar plot. The radar chart shows that the VC-SSA algorithm is ahead 
of the comparison algorithms on all benchmark problems. 
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Table 2. Parameter settings of SSA variants used for comparative analysis. 

Algorithm Parameters 

SSA c1, c2, c3 
ISSA c1, c2, c3 
GSSA c1, c2, c3, μ = 0,  = 1 

IWOSSA 
c1, c2, c3, r1 = random [0, 1], r2 = random [0, 1], a = exponentially decreased from 2 
to 0, l = random [-1.73, 1] 

ASSA c1, c2, c3, adaptive population 
RDSSA c1, c2, c3 
CSSA c1, c2, c3, tent chaotic map 
ESSA c1, c2, c3, r1 = integer random [0, 1]; r2 = random [0, 1] 
LSSA c1, c2, c3, λ1 = 4.0, λ2 = 0.44, λ3 = 1.1 
OBSSA c1, c2, c3 
ASSO c1, c2, c3, ωmax = 2, ωmin = 0, a = 1/2 

 

Figure 4. Radar chart for consolidated ranks of 23 benchmarks with the VC-SSA and the 
involved SSA variants. 
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Table 3. Comparisons of twelve optimizers on 23 benchmarks with 100 dimensions. 

Function Results SSA ESSA LSSA CSSA ASSA ISSA GSSA OBSSA ASSO RDSSA IWOSSA VC-SSA 

f1 Mean 1.42E+03. 2.03E-43 3.50E-03 1.5878 0.0398 103.4197 2.69E-14 4.63E-32 2.02E-26 7.70E-55 1.45E-06 0 

 Std 4.75E+02 1.11E-42 6.10E-03 1.8430 0.0290 23.3033 7.14E-14 5.99E-32 2.21E-27 4.22E-54 7.61E-07 0 

 f-rank 12 3 8 10 9 11 6 4 5 2 7 1 

f2 Mean 908.4570 1.98E-40 0.1554 0.7546 0.0178 50.8115 1.83E-16 3.01E-32 1.04E-26 7.48E-40 5.53E-07 0 

 Std 226.5479 1.08E-39 0.1022 0.6672 0.0106 13.1040 4.57E-16 2.86E-32 1.37E-27 4.10E-39 4.85E-07 0 

 f-rank 12 2 9 10 8 11 6 4 5 3 7 1 

f3 Mean 5.44E-04 6.73E-36 7.33E+03 1.80E+04 1.90E+04 2.13E+03 1.44E+04 5.09E-30 1.84E-25 6.89E-40 1.11E+05 0 

 Std 3.08E+04 3.69E-35 4.93E+03 8.79E+03 1.20E+04 751.5218 7.91E+03 9.47E-30 8.37E-26 3.77E-39 2.33E+04 0 

 f-rank 11 3 7 9 10 6 8 4 5 2 12 1 

f4 Mean 26.8536 5.76E-23 23.8694 24.3837 10.0738 5.6898 23.0690 4.95E-17 3.49E-14 5.87E-30 42.7411 0 

 Std 2.9965 2.79E-22 5.5154 2.4304 2.6223 0.6011 3.0543 2.67E-17 3.31E-15 3.01E-29 7.7522 0 

 f-rank 11 3 9 10 7 6 8 4 5 2 12 1 

f5 Mean 2.70E+03 0 9.2000 128.5000 13.9333 464.3333 0 0 0 0 1.3333 0 

 Std 578.4251 0 4.9578 34.1081 6.0739 99.3289 0 0 0 0 2.6566 0 

 f-rank 12 1 8 10 9 11 1 1 1 1 7 1 

f6 Mean 0.2735 1.83E-88 0.0052 3.35E-06 1.09E-07 7.43E-04 0.0307 4.46E-70 1.60E-59 7.30E-129 2.44E-12 0 

 Std 0.1192 7.52E-88 0.0040 4.63E-06 1.90E-07 2.64E-04 0.0330 1.07E-69 4.61E-60 4.00E-128 5.77E-12 0 

 f-rank 12 3 10 8 7 9 11 4 5 2 6 1 

f7 Mean 2.6063 8.30E-05 0.5879 0.2971 0.0917 0.1049 0.1946 8.38E-05 1.08E-04 6.72E-04 0.1073 5.58E-05 

 Std 0.5632 9.57E-05 0.2509 0.0720 0.0209 0.0367 0.3215 7.01E-05 1.23E-04 7.01E-04 0.0679 5.72E-05 

 f-rank 12 2 11 10 6 7 9 3 4 5 8 1 

f8 Mean 2.65E-06 7.81E-51 1.23E-10 2.31E-06 2.54E-26 1.22E-07 6.49E-35 4.98E-39 5.32E-36 1.97E-87 2.37E-15 0 

 Std 1.90E-06 4.26E-50 3.71E-10 2.63E-06 1.20E-25 1.70E-07 3.56E-34 1.08E-38 9.77E-36 1.08E-86 1.29E-14 0 

 f-rank 12 3 9 11 7 10 6 4 5 2 8 1 

f9 Mean 9.40E+07 7.71E-41 1.0180 8.58E+05 131.2321 3.49E+06 8.01E-15 4.29E-27 1.31E-21 5.39E-57 0.0120 0 

 Std 4.48E+07 2.82E-40 1.1596 3.64E+05 94.4958 1.63E+06 2.26E-14 4.56E-27 4.13E-22 2.77E-56 0.0093 0 

 f-rank 12 3 8 10 9 11 6 4 5 2 7 1 

f10 Mean 5.92E+13 1.35E-46 8.32E+08 2.17E+09 8.57E+05 9.56E+09 3.25E+13 3.85E-35 4.99E-32 6.69E-81 3.38E+05 0 

 Std 3.75E+13 7.39E-46 2.26E+09 2.45E+09 9.80E+05 7.25E+09 4.42E+13 7.78E-35 7.48E-32 3.67E-80 8.64E+05 0 

 f-rank 12 3 8 9 7 10 11 4 5 10 6 1 

f11 Mean 1.17170 3.01E-44 2.08E-04 0.2968 1.33E-10 0.3814 2.13E-05 3.73E-33 5.34E-30 2.60E-80 3.21E-09 0 

 Std 1.9917 1.33E-43 5.19E-04 0.8082 5.45E-10 0.4976 8.68E-05 7.24E-33 7.95E-30 1.42E-79 3.83E-09 0 

 f-rank 12 3 9 10 6 11 8 4 5 2 7 1 

f12 Mean 237.5810 0 161.4550 178.0876 207.0592 63.6131 7.81E-10 0 0 0 333.8639 0 

 Std 41.3978 0 85.5654 28.2649 41.6477 13.6057 3.48E-09 0 0 0 130.4643 0 

 f-rank 11 1 8 9 10 7 6 1 1 1 12 1 

f13 Mean 10.1023 8.88E-16 0.0264 4.5661 0.0268 3.8197 9.05E-10 8.88E-16 1.84E-14 4.44E-15 0.6653 8.88E-16 

 Std 1.0767 0 0.0196 0.6729 0.0081 0.2982 1.44E-09 0 2.46E-15 0 3.6432 0 

 f-rank 12 1 7 11 8 10 6 1 5 4 9 1 

f14 Mean 13.8946 0 0.0414 0.4276 0.0558 1.8593 1.95E-14 0 0 0 0.0057 0 

 Std 3.9399 0 0.0715 0.2683 0.0412 0.1729 7.06E-14 0 0 0 0.0126 0 

 f-rank 12 1 8 10 9 11 6 1 1 1 7 1 

f15 Mean 28.6555 6.03E-24 13.1498 18.7772 8.3729 23.8194 1.44E-14 1.32E-17 1.12E-14 4.01E-22 17.8688 0 

 Std 5.6915 3.24E-23 11.1280 4.2692 4.5133 7.4723 2.45E-14 5.66E-18 8.08E-16 2.19E-21 14.6364 0 

 f-rank 12 2 8 10 7 11 6 4 5 3 9 1 

f16 Mean 348.7569 1.03E-36 141.1216 325.2005 43.9365 32.5928 4.91E-08 2.00E-32 8.28E-27 9.76E-49 14.7505 0 

 Std 51.0819 5.62E-36 125.2993 90.5840 27.4721 10.8309 1.79E-07 2.49E-32 8.41E-28 5.34E-48 30.6389 0 

 f-rank 12 3 10 11 9 8 6 4 5 2 7 1 

f17 Mean 4.5875 0 1.2547 3.0950 1.47E-04 0.1476 0 0 0 0 1.82E-09 0 

 Std 0.6527 0 0.7694 0.6764 3.34E-04 0.0337 0 0 0 0 1.02E-09 0 

 f-rank 12 1 10 11 8 9 1 1 1 1 7 1 

f18 Mean 69.0543 2.08E-43 0.0283 0.1697 0.0091 1.75E+03 9.74E-09 211.9922 1.74E-28 3.41E-46 0.0178 0 

 Std 16.5279 1.14E-42 0.0326 0.1576 0.0067 4.37E+03 3.09E-08 37.5769 3.73E-29 1.36E-45 0.0266 0 

 f-rank 10 3 8 9 6 12 5 11 4 2 7 1 

f19 Mean 17.4862 1.04E-48 0.0097 7.6192 1.65E-04 10.7372 1.04E-16 9.66E-35 3.90E-29 2.96E-46 2.30E-09 0 

 Std 4.2696 5.70E-48 0.0374 3.7965 1.31E-04 4.6346 3.98E-16 7.83E-35 5.45E-30 1.62E-45 1.39E-09 0 

 f-rank 12 2 9 10 8 11 6 4 5 3 7 1 

f20 Mean 5.0798 1.82E-12 0.2658 4.0590 1.7211 2.2862 4.21E-10 4.79E-09 1.30E-07 2.37E-14 0.0855 0 

 Std 0.1582 9.52E-12 0.1518 0.3076 0.4478 0.0946 4.02E-10 1.53E-09 4.27E-09 1.28E-13 0.2302 0 

 f-rank 12 3 8 11 9 10 4 5 6 2 7 1 

f21 Mean 194.4929 0 10.4383 65.8560 0.5684 71.4322 4.14E-16 0 0 0 1.29E-06 0 

 Std 30.9901 0 4.5683 8.4227 0.6392 8.4400 1.47E-15 0 0 0 1.19E-06 0 

 f-rank 12 1 9 10 8 11 6 1 1 1 7 1 

f22 Mean 4.2550 4.99E-12 4.2451 5.1620 4.1830 1.9226 1.1235 4.35E-09 1.20E-07 0.0168 4.0824 0 

 Std 0.1876 1.64E-11 0.2626 0.4098 0.2032 0.1101 0.5455 1.13E-09 4.11E-09 0.0231 1.1409 0 

 f-rank 11 2 10 12 9 7 6 3 4 5 8 1 

f23 Mean 2.66E-04 5.04E-126 8.82E-06 1.20E-06 7.52E-11 8.61E-05 7.34E-05 1.02E-108 1.85E-92 6.39E-127 3.82E-09 0 

 Std 1.90E-04 2.76E-125 6.42E-06 1.03E-06 1.03E-10 4.94E-05 5.20E-05 4.27E-108 8.95E-93 3.50E-126 1.36E-08 0 

 f-rank 12 3 9 8 6 11 10 4 5 2 7 1 

 Average f-rank 11.73913 2.26087 8.695652 9.956522 7.913043 9.608696 6.4347 3.478261 4.043478 2.608696 7.869565 1 

 Overall f-rank 12 2 9 11 8 10 6 4 5 3 7 1 
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Table 4. Statistical conclusions of the multiple-problem Wilcoxon’s test on benchmark 
cases with 100 dimensions. 

Function 
SSA 

p-value 

ESSA 

p-value 

LSSA 

p-value 

CSSA 

p-value 

ASSA 

p-value 

ISSA 

p-value 

GSSA 

p-value 

OBSSA 

p-value 

ASSO 

p-value 

RDSSA 

p-value 

IWOSSA 

p-value 

f1 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f2 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f3 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f4 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f5 1.21E-12 N/A 1.15E-12 1.20E-12 1.17E-12 1.21E-12 N/A N/A N/A N/A 6.60E-04 

f6 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f7 3.02E-11 0.6100 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 0.06 0.04 2.61E-10 3.02E-11 

f8 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 4.57E-12 1.21E-12 

f9 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f10 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f11 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f12 1.21E-12 N/A 1.21E-12 1.21E-12 1.21E-12 1.21E-12 0.0028 N/A N/A N/A 1.21E-12 

f13 1.21E-12 N/A 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 N/A 6.21E-13 1.69E-14 1.21E-12 

f14 1.21E-12 N/A 1.21E-12 1.21E-12 1.21E-12 1.21E-12 8.86E-07 N/A N/A N/A 1.21E-12 

f15 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f16 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f17 1.21E-12 N/A 1.21E-12 1.21E-12 1.21E-12 1.21E-12 N/A N/A N/A N/A 1.21E-12 

f18 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f19 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f20 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f21 1.21E-12 N/A 1.21E-12 1.21E-12 1.21E-12 1.21E-12 0.0028 N/A N/A N/A 1.21E-12 

f22 8.26E-13 1.21E-12 1.21E-12 9.47E-13 1.21E-12 1.17E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f23 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

+/=/- 23/0/0 16/7/0 23/0/0 23/0/0 23/0/0 23/0/0 21/2/0 17/6/0 18/5/0 18/5/0 23/0/0 

4.3. Scalability test 

In this subsection, the effect of dimensionality variation on the performance of the algorithm is 
discussed through scalability test. For further experiments, VC-SSA is employed to tackle the 23 
benchmark problems with 10000 dimensions in Table 1. The parameter settings are identical to those 
in Subsection 4.2. The VC-SSA approach is performed 30 times on per test case, and the optimal (Best), 
worst (Worst), average minimum (Mean), and standard deviation (Std) of the objective function values 
are reported in Table 5. Moreover, the success rate indicator was introduced to estimate the 
performance of the VC-SSA algorithm in dealing with high-dimensional problems. For this purpose, 
the following flag is designed to distinguish whether a solution is successful or not. 

�

|�����|

�
≤ 10��, �� ≠ 0

|�� − ��| ≤ 10��, �� = 0
                             (14) 

where SA indicates the result achieved by the optimizer on the benchmark problem, and ST represents 
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the theoretical optimal solution of the corresponding case. If the solution provided by the proposed 
approach on the test case satisfies the above equation, it means that this solution is successful. Note 
that the success rate listed in Table 5 is the proportion of the successful times out of 30 experiments. 

From Table 5, the VC-SSA algorithm obtains global optimal solutions on 21 benchmarks; for f7 
and f13, although VC-SSA fails to converge to the theoretical optimum, the solutions obtained are 
still satisfactory. From another perspective, comparing the results in Table 5 with those reported in 
Table 2, we can see that the suggested approach exhibits similar performance on large-scale problems 
as on 100-dimensional functions, which represents that the impact caused by dimensionality variation 
on the VC-SSA algorithm is negligible. Also, in terms of SR%, VC-SSA can achieve 100% success 
rate on 22 tested functions; for f7, the VC-SSA algorithm has 80% success rate. According to the above 
analysis, the proposed optimizer has excellent scalability and is available as as an auxiliary tool for 
tackling large-scale optimization cases. 

Table 5. Results obtained by VC-SSA on 10000-dimensional functions. 

Function 
VC-SSA  
Best Worst Mean Std SR% 

f1 0 0 0 0 100 
f2 0 0 0 0 100 
f3 0 0 0 0 100 
f4 0 0 0 0 100 
f5 0 0 0 0 100 
f6 0 0 0 0 100 
f7 6.78E-08 2.08E-04 5.71E-05 5.02E-05 80 
f8 0 0 0 0 100 
f9 0 0 0 0 100 
f10 0 0 0 0 100 
f11 0 0 0 0 100 
f12 0 0 0 0 100 
f13 8.88E-16 8.88E-16 8.88E-16 0 100 
f14 0 0 0 0 100 
f15 0 0 0 0 100 
f16 0 0 0 0 100 
f17 0 0 0 0 100 
f18 0 0 0 0 100 
f19 0 0 0 0 100 
f20 0 0 0 0 100 
f21 0 0 0 0 100 
f22 0 0 0 0 100 

f23 0 0 0 0 100 

4.4. Comparison against other meta-heuristic algorithms 

To further validate the effectiveness of the anticipated VC-SSA algorithm, 11 cutting-edge 
metaheuristic techniques, including TSA 54, SOGWO 55, MPA 3, HGS 20, EO 46, ArOA 57, AOA 

58, IGWO 59, WEMFO 60, DMMFO 43, and OGWO 61, were utilized as the comparison approaches. 
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The general parameters of the approaches involved are consistent with those mentioned in Subsection 
4.2, and each method was performed 30 times to mitigate the effect of random values. The specific 
parameter settings of the competitors were adopted from the respective original work, as detailed in 
Table 6. The detailed results with 100 dimensions, including the average minimum (Mean), standard 
deviation (Std), and the average ranking are listed in Table 7. The Wilcoxon signed-rank test with 
significance level 5% are presented in Table 8 to check the significant variances between the VC-SSA 
and its competitors on the benchmark functions. 

Table 6. Parameter settings of cutting-edge algorithms used for comparative analysis. 

Algorithm Parameters 

TSA Pmax = 4, Pmin = 1 

SOGWO d = 2 

MPA Fish aggregating devices = 0.2, P = 0.5, R = random [0, 1] 

HGS l = 0.03, LH = 100 

EO Generation probability = 0.5, a1 = 2, a2 = 1 

ArOA  = 5, μ = 0.5 

AOA C1 = 2, C2 = 6, C3 = 2, C4 = 0.5 

IGWO a was linearly decreased from 2 to 0 

WEMFO ω1 and ω2 were nonlinearly reduced from 1 to 0 and from 2 to 0, respectively. 

DMMFO Constant coefficient b = 1 

OGWO a was nonlinearly decreased from 2 to 0 

From Table 7, the performance of VC-SSA is better than TSA and DMMFO on all test functions. 
Compared to IGWO and OGWO, VC-SSA provides superior and similar outcomes on 22 and one 
problems, respectively. Regarding EO, AOA and WEMFO, the suggested method presents better and 
similar performance on 19 and four benchmarks, respectively. Compared with MPA, VC-SSA gets the 
better results on 18 cases; for f5, f12, f14, f17 and f21, they successfully find the global optimal solution. 
Concerning HGS, VC-SSA provides better results on 17 functions; for the other seven problems, two 
optimizers converge to the theoretical optimum. VC-SSA outperforms ArOA on 16 cases; for the other 
seven benchmarks, two algorithms find the theoretical optimum. Moreover, according to the average 
ranking results of the 12 methods, VC-SSA obtained the first ranking, TSA ranked last, and the rest of 
the approaches ranked second to eleventh. The above analysis reveals that the overall performance of 
the proposed VC-SSA algorithm outperformed its peers. 

From Table 8, the reported p-values are less than 0.05 except for six pairwise comparisons (ArOA 
versus VC-SSA on f2, ArOA versus VC-SSA on f7, ArOA versus VC-SSA on f21, HGS versus VC-SSA 
on f6, EO versus VC-SSA on f14, and AOA versus VC-SSA on f14). This implies that VC-SSA 
outperforms its peers and that the difference between VC-SSA and the comparison algorithms is 
statistically significant. 

Figure 5 draws a radar plot to highlight the rank variation of VC-SSA and other state-of-the-art 
metaheuristic techniques over 23 benchmark problems. From the radar diagram, the developed 
approach achieves better rankings on all cases compared to the competitors, which represents that the 
suggested VC-SSA outperforms all the competitors. 
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Table 7. Comparisons of twelve algorithms on 23 test functions with 100 dimensions. 

Function Results TSA SOGWO MPA HGS EO ArOA AOA IGWO WEMFO DMMFO OGWO VC-SSA 

f1 Mean 3.56E-10 2.96E-12 1.73E-19 1.01E-134 3.03E-29 0.0272 5.94E-80 3.21E-12 2.89E-22 3.20E+04 2.83E-15 0 

 Std 4.67E-10 3.18E-12 1.51E-19 5.54E-134 4.04E-29 0.0106 2.13E-79 2.33E-12 8.58E-22 8.14E+03 3.22E-15 0 

 f-rank 10 8 6 2 4 11 3 9 5 12 7 1 

f2 Mean 3.05E-10 5.27E-13 8.70E-20 4.32E-141 2.38E-29 6.43E-86 2.20E-78 8.45E-13 1.76E-24 1.41E+04 7.27E-16 0 

 Std 4.94E-10 4.94E-13 1.12E-19 2.37E-140 5.50E-29 3.52E-85 1.13E-77 9.05E-13 3.89E-24 2.81E+03 8.51E-16 0 

 f-rank 11 9 7 2 5 3 4 10 6 12 8 1 

f3 Mean 1.39E+04 1.28E+03 9.6562 1.82E-22 22.9242 0.7175 1.94E-57 5.69E+03 3.64E-11 2.34E+05 1.37E+03 0 

 Std 6.76E+03 1.25E+03 14.2133 9.98E-22 62.6396 0.5256 1.06E-56 2.12E+03 1.30E-10 4.18E+04 1.95E+03 0 

 f-rank 11 8 6 3 7 5 2 10 4 12 9 1 

f4 Mean 55.0716 0.7470 2.31E-07 2.86E-64 4.75E-04 0.0920 9.37E-39 3.7153 3.17E-10 88.3981 2.0555 0 

 Std 10.2327 0.4040 1.07E-07 1.34E-63 5.60E-04 0.0122 4.82E-38 1.4176 8.52E-10 2.2765 2.3980 0 

 f-rank 11 8 5 2 6 7 3 10 4 12 9 1 

f5 Mean 17.2000 0 0 0 0 0 0 0 0 3.38E+04 0 0 

 Std 11.3939 0 0 0 0 0 0 0 0 5.69E+03 0 0 

 f-rank 11 1 1 1 1 1 1 1 1 12 1 1 

f6 Mean 8.56E-19 3.05E-25 6.78E-41 1.03E-317 4.10E-50 0 3.45E-160 1.86E-22 1.40E-47 101.2232 9.21E-29 0 

 Std 2.22E-18 4.24E-25 1.33E-40 0 1.89E-49 0 1.87E-159 4.97E-22 7.56E-47 16.5895 1.77E-28 0 

 f-rank 11 9 7 3 5 1 4 10 6 12 8 1 

f7 Mean 0.0496 0.0072 0.0019 0.0011 0.0020 6.40E-05 5.44E-04 0.0134 0.0015 98.5698 0.0026 5.52E-05 

 Std 0.0162 0.0027 0.0011 0.0021 8.40E-04 7.06E-05 4.61E-04 0.0046 9.74E-04 25.9483 0.0028 4.56E-05 

 f-rank 11 9 6 4 7 2 3 10 5 12 8 1 

f8 Mean 3.56E-33 3.71E-61 1.50E-59 6.70E-76 2.87E-125 0 7.44E-189 7.73E-61 1.58E-82 0.0018 2.40E-51 0 

 Std 1.95E-32 2.02E-60 7.50E-59 3.67E-75 1.44E-124 0 0 4.12E-60 8.00E-82 0.0016 1.25E-50 0 

 f-rank 11 7 9 6 4 1 3 8 5 12 10 1 

f9 Mean 6.27E-07 5.04E-09 9.74E-16 3.51E-170 1.81E-25 117.8736 3.02E-73 3.35E-09 2.30E-18 2.01E+08 6.56E-12 0 

 Std 1.04E-06 4.31E-09 1.22E-15 0 3.41E-25 140.8922 1.29E-72 2.63E-09 9.09E-18 6.83E+07 7.29E-12 0 

 f-rank 10 9 6 2 4 11 3 8 5 12 7 1 

f10 Mean 0.0576 3.82E-16 3.04E-39 2.21E-58 5.19E-48 0.6707 6.91E-169 2.59E-10 3.22E-45 2.93E+17 1.64E-20 0 

 Std 0.2656 7.61E-16 5.27E-39 9.73E-58 2.65E-47 0.3197 0 7.01E-10 1.76E-44 9.95E+16 5.47E-20 0 

 f-rank 10 8 6 3 4 11 2 9 5 12 7 1 

f11 Mean 3.66E-20 4.13E-35 7.94E-53 2.74E-42 1.28E-65 0 1.27E-180 1.11E-28 2.28E-58 0.9418 5.01E-39 0 

 Std 1.41E-19 7.37E-35 1.83E-52 1.41E-41 5.83E-65 0 0 2.31E-28 1.24E-57 0.4020 1.78E-38 0 

 f-rank 11 9 6 7 4 1 3 10 5 12 8 1 

f12 Mean 991.6601 9.0738 0 0 0 0 0 143.7451 431.8780 830.9407 1.0877 0 

 Std 91.9241 6.1775 0 0 0 0 0 47.4518 330.5842 67.3292 2.3463 0 

 f-rank 12 8 1 1 1 1 1 9 10 11 7 1 

f13 Mean 1.20E-05 1.42E-07 4.90E-11 8.88E-16 3.56E-14 6.01E-04 19.9667 1.65E-07 0.0034 19.7348 5.99E-09 8.88E-16 

 Std 2.08E-05 5.83E-08 2.94E-11 0 8.43E-15 0.0011 1.21E-04 6.24E-08 0.0162 0.1648 2.71E-09 0 

 f-rank 8 6 4 1 3 9 12 7 10 11 5 1 

f14 Mean 0.0091 0.0059 0 0 9.06E-04 639.2493 0.0023 0.0015 0 320.3774 0.0022 0 

 Std 0.0169 0.0122 0 0 0.0050 185.3638 0.0124 0.0049 0 60.0949 0.0070 0 

 f-rank 10 9 1 1 5 12 8 6 1 11 7 1 

f15 Mean 153.2401 0.0039 3.83E-12 1.50E-69 3.99E-18 1.15E-61 1.46E-41 0.0046 57.0003 57.1239 3.79E-04 0 

 Std 24.2002 0.0019 3.04E-12 8.24E-69 2.48E-18 6.32E-61 7.10E-41 0.0022 26.7735 9.5240 7.96E-04 0 

 f-rank 12 8 6 2 5 3 4 9 10 11 7 1 

f16 Mean 139.6205 0.9104 3.29E-15 3.22E-150 3.16E-26 1.14E-64 5.04E-71 9.4036 4.89E-22 1.53E+03 6.39E-21 0 

 Std 116.3671 1.7319 1.49E-14 1.76E-149 6.35E-26 6.22E-64 2.04E-70 4.8555 2.67E-21 340.2941 2.91E-20 0 

 f-rank 11 9 8 2 5 4 3 10 6 12 7 1 

f17 Mean 3.6610 2.75E-14 0 0 0 0 0 2.22E-14 0 12.8129 4.74E-15 0 

 Std 2.7571 5.93E-15 0 0 0 0 0 8.39E-15 0 1.7195 3.07E-15 0 

 f-rank 11 10 1 1 1 1 1 9 1 12 8 1 

f18 Mean 1.05E-11 2.11E-13 4.35E-19 1.16E-94 6.62E-28 1.32E+03 1.51E-71 2.05E-12 1.09E-24 491.1379 1.36E-15 0 

 Std 1.05E-11 1.68E-13 4.56E-19 6.37E-94 1.87E-27 104.7894 8.21E-71 1.54E-12 3.21E-24 83.6894 1.01E-15 0 

 f-rank 10 8 6 2 4 12 3 9 5 11 7 1 

f19 Mean 2.13E-04 4.58E-15 3.73E-22 1.69E-154 1.16E-31 1.24E-82 8.25E-80 1.13E-14 2.14E-25 174.8451 3.02E-25 0 

 Std 0.0012 3.65E-15 3.19E-22 9.27E-154 3.25E-31 5.67E-82 3.77E-79 9.38E-15 6.55E-25 28.0411 1.19E-24 0 

 f-rank 11 9 8 2 5 3 4 10 6 12 7 1 

f20 Mean 2.8095 0.0107 5.85E-07 2.36E-34 1.44E-09 0.0018 4.20E-22 0.0109 8.04E-09 8.5093 9.13E-05 0 

 Std 1.3209 0.0027 8.29E-07 1.29E-33 5.96E-10 0.0059 1.74E-21 0.0041 8.03E-09 0.3460 5.09E-05 0 

 f-rank 11 9 6 2 4 8 3 10 5 12 7 1 

f21 Mean 4.3723 1.29E-12 0 0 0 7.40E-12 0 2.06E-12 0 2.19E+03 1.17E-15 0 

 Std 9.9305 1.71E-12 0 0 0 2.94E-11 0 1.99E-12 0 360.5419 1.55E-15 0 

 f-rank 11 8 1 1 1 10 1 9 1 12 7 1 

f22 Mean 6.9978 1.5147 0.6369 6.06E-40 0.2623 0.0175 0.0158 2.9821 0.0039 7.4149 0.8292 0 

 Std 0.5640 0.2502 0.0815 2.89E-39 0.0613 0.0256 0.0110 0.3593 0.0055 0.2655 0.2141 0 

 f-rank 11 9 7 2 6 5 4 10 3 12 8 1 

f23 Mean 2.37E-14 1.51E-32 4.82E-55 7.4968 3.07E-64 0 4.83E-239 1.39E-25 2.55E-67 0.5292 8.76E-59 0 

 Std 7.38E-14 5.13E-32 2.07E-54 8.8417 1.59E-63 0 0 5.29E-25 1.39E-66 0.1852 0.1852 0 

 f-rank 10 8 7 12 5 1 3 9 4 11 6 1 

 Average f-rank 10.69565 8.086957 5.26087 2.782609 4.193913 5.347826 3.391304 8.782609 4.913043 11.73913 7.173913 1 

 Overall f-rank 11 9 6 2 4 7 3 10 5 12 8 1 



7773 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 7756-7804. 

Table 8. Statistical conclusions of the multiple-problem Wilcoxon’s test on benchmark 

cases with 100 dimensions. 

Function 
TSA 

p-value 

SOGWO 

p-value 

MPA 

p-value 

HGS 

p-value 

EO 

p-value 

ArOA 

p-value 

AOA 

p-value 

IGWO 

p-value 

WEMFO 

p-value 

DMMFO 

p-value 

OGWO 

p-value 

f1 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f2 1.21E-12 1.21E-12 1.21E-12 6.64E-05 4.57E-12 0.1608 1.66E-11 1.21E-12 1.21E-12 1.21E-12 5.77E-11 

f3 1.21E-12 1.21E-12 1.21E-12 1.31E-07 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f4 1.21E-12 1.21E-12 1.21E-12 8.87E-07 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f5 1.20E-12 N/A N/A N/A N/A N/A N/A N/A N/A 1.21E-12 N/A 

f6 1.21E-12 1.21E-12 1.21E-12 0.1608 1.21E-12 N/A 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f7 3.02E-11 3.02E-11 3.02E-11 5.46E-06 3.02E-11 0.8073 7.83E-10 3.02E-11 5.49E-11 3.02E-11 4.50E-11 

f8 1.21E-12 1.21E-12 1.21E-12 2.21E-06 1.21E-12 N/A 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f9 1.21E-12 1.21E-12 1.21E-12 1.46E-04 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f10 1.21E-12 1.21E-12 1.21E-12 1.27E-05 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f11 1.21E-12 1.21E-12 1.21E-12 8.87E-07 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f12 1.21E-12 1.21E-12 N/A N/A N/A N/A N/A 1.21E-12 5.85E-09 1.21E-12 1.21E-12 

f13 1.21E-12 1.21E-12 1.21E-12 N/A 8.67E-13 3.13E-04 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f14 1.21E-12 1.21E-12 N/A N/A 0.3337 1.21E-12 0.3337 1.21E-12 N/A 1.21E-12 1.21E-12 

f15 1.21E-12 1.21E-12 1.21E-12 1.27E-05 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f16 1.21E-12 1.21E-12 1.21E-12 1.46E-04 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f17 1.21E-12 1.04E-12 N/A N/A N/A N/A N/A 1.11E-12 N/A 1.21E-12 5.25E-10 

f18 1.21E-12 1.21E-12 1.21E-12 6.61E-05 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f19 1.21E-12 1.21E-12 1.21E-12 6.61E-05 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f20 1.21E-12 1.21E-12 1.21E-12 6.61E-05 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

f21 1.21E-12 1.21E-12 N/A N/A N/A 0.1608 N/A 1.21E-12 N/A 1.21E-12 1.20E-12 

f22 1.21E-12 1.21E-12 1.11E-12 1.27E-05 1.14E-12 1.21E-12 1.21E-12 1.21E-12 1.19E-12 7.72E-13 1.21E-12 

f23 1.28E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12 N/A 1.66E-11 1.21E-12 1.21E-12 1.21E-12 1.21E-12 

+/=/- 23/0/0 22/1/0 18/5/0 16/7/0 18/5/0 14/9/0 18/5/0 22/1/0 19/4/0 23/0/0 22/0/0 

 

Figure 5. Radar chart for consolidated ranks of 23 benchmarks with the VC-SSA and the 
cutting-edge meta-heuristic methods. 
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4.5. Component analysis 

The developed VC-SSA algorithm enhances the overall performance of the standard SSA by 
introducing three novel components, namely, velocity clamping strategy, reduction factor tactic, and 
adaptive inertia weight mechanism. In this subsection, we perform several suites of comparison 
experiments to check the validity of the modifications. For this purpose, 23 classical numerical 
functions from Table 1 were used, and the dimensionality was set to 100. The parameter settings were 
identical to those in Subsection 4.2. The naming rules for the SSA-based approaches equipped with a 
single improvement strategy are: the enhanced SSA using only the velocity clamping strategy is called 
VSSA; the improved SSA adopting only the reduction factor is noted as RSSA; and the boosted SSA 
applying only the adaptive inertia weight mechanism is known as ISSA. Each method is executed 30 
times independently for each benchmark problem, and the corresponding average minimum (Mean) 
and standard deviation (Std) as well as average rankings are selected as performance indicators and 
recorded in Table 9. 

From Table 9, ISSA, RSSA and VSSA outperform the standard SSA on all benchmark functions, 
which proves that the three developed components are effective. Moreover, according to the pairwise 
comparison between the single-strategy algorithm and the VC-SSA, VC-SSA obtains better outcomes 
than VSSA on all benchmark functions. With respect to ISSA, VC-SSA shows better performance on 
17 benchmark functions, and for the other 6 problems, both algorithms get theoretically optimal 
solutions. VC-SSA and RSSA obtain similar results on most benchmark functions, while for f7, VC-
SSA gets better results than RSSA, which indicates that the reduction factor can improve the 
performance of the basic SSA, but the exploitation capability is still insufficient. It is necessary to use 
velocity clamping and adaptive inertia weighting strategies to further improve the ability to refine the 
already explored region. Finally, the average ranking derived from the Friedman’s rank test indicates 
that the VC-SSA algorithm ranks first, followed by RSSA, ISSA, and VSSA, which further validates 
that the proposed strategies are efficient and can maximize the performance improvement when the 
three introduced components collaborate to assist SSA. 

Table 9. Comparisons of SSA, VSSA, RSSA, ISSA and VC-SSA on 23 benchmark 

functions with 100 dimensions. 

Function Results SSA ISSA RSSA VSSA VC-SSA 

f1 Mean 101.9661 6.51E-30 0 9.6847 0 

 Std 23.6750 8.99E-31 0 2.7464 0 

 f-rank 5 3 1 4 1 

f2 Mean 52.3696 3.26E-30 0 10.5935 0 

 Std 11.1902 5.27E-31 0 2.5934 0 

 f-rank 5 3 1 4 1 

f3 Mean 2.11E+03 1.71E-28 0 669.6495 0 

 Std 970.9828 1.52E-28 0 204.1917 0 

 f-rank 5 3 1 4 1 

f4 Mean 5.7138 6.99E-16 0 4.4588 0 

 Std 0.6158 1.01E-16 0 0.9816 0 

 f-rank 5 3 1 4 1 

f5 Mean 460.6333 0 0 273.8333 0 

 Std 117.4976 0 0 99.7013 0 

 f-rank 5 1 1 4 1 

Continued on next page 
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f6 Mean 7.61E-04 1.80E-66 0 2.48E-05 0 

 Std 3.37E-04 6.83E-67 0 1.13E-05 0 

 f-rank 5 3 1 4 1 

f7 Mean 0.1001 1.07E-04 8.33E-05 0.0452 6.71E-05 

 Std 0.0411 1.06E-04 7.86E-05 0.0204 5.91E-05 

 f-rank 5 3 2 4 1 

f8 Mean 9.64E-08 1.39E-36 0 8.61E-09 0 

 Std 1.50E-07 4.83E-36 0 1.04E-08 0 

 f-rank 5 3 1 4 1 

f9 Mean 3.36E+06 4.98E-25 0 1.23E+06 0 

 Std 1.32E+06 1.53E-25 0 4.47E+05 0 

 f-rank 5 3 1 4 1 

f10 Mean 8.42E+09 1.69E-33 0 1.46E+08 0 

 Std 5.41E+09 5.64E-33 0 1.38E+08 0 

 f-rank 5 3 1 4 1 

f11 Mean 0.5521 1.28E-31 0 0.0158 0 

 Std 0.6718 3.77E-31 0 0.0431 0 

 f-rank 5 3 1 4 1 

f12 Mean 61.5251 0 0 5.5763 0 

 Std 12.1160 0 0 2.1549 0 

 f-rank 5 1 1 4 1 

f13 Mean 3.7691 8.88E-16 8.88E-16 3.1683 8.88E-16 

 Std 0.2472 0 0 0.3735 0 

 f-rank 5 1 1 4 1 

f14 Mean 1.8677 0 0 1.0855 0 

 Std 0.1991 0 0 0.0189 0 

 f-rank 5 1 1 4 1 

f15 Mean 23.0309 2.04E-16 0 7.1201 0 

 Std 7.5508 1.42E-17 0 5.9783 0 

 f-rank 5 3 1 4 1 

f16 Mean 34.3256 2.59E-30 0 23.3460 0 

 Std 10.6110 3.49E-31 0 5.2071 0 

 f-rank 5 3 1 4 1 

f17 Mean 0.1305 0 0 0.0129 0 

 Std 0.0360 0 0 0.0032 0 

 f-rank 5 1 1 4 1 

f18 Mean 71.0173 6.89E-32 0 3.8100 0 

 Std 14.8584 2.72E-32 0 1.0623 0 

 f-rank 5 3 1 4 1 

f19 Mean 11.6823 1.26E-32 0 3.7714 0 

 Std 5.3239 1.86E-33 0 3.1951 0 

 f-rank 5 3 1 4 1 

f20 Mean 2.2905 1.74E-08 0 2.0389 0 

 Std 0.1032 6.81E-10 0 0.1163 0 

 f-rank 5 3 1 4 1 

f21 Mean 73.6870 0 0 56.6792 0 

 Std 10.4842 0 0 6.5283 0 

 f-rank 5 1 1 4 1 

Continued on next page 

 



7776 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 7756-7804. 

 

f22 Mean 1.9538 1.61E-08 0 1.7078 0 

 Std 0.1127 6.33E-10 0 0.1515 0 

 f-rank 5 3 1 4 1 

f23 Mean 1.20E-04 7.82E-103 0 1.34E-06 0 

 Std 1.51E-04 3.86E-103 0 9.75E-07 0 

 f-rank 5 3 1 4 1 

 Average f-rank 5 2.4783 1.0435 4 1 

 Overall f-rank 5 3 2 4 1 

4.6. Convergence analysis 

The proposed VC-SSA algorithm aims to expedite the convergence speed and convergence 
precision of the standard SSA, thus providing a well-performance optimization tool for global 
optimization tasks. In this subsection, the convergence performance of the VC-SSA approach will be 
investigated. In Figure 6, the convergence curves of VC-SSA and SSA-based algorithms on 15 
representative functions in Table 1 are plotted. In Figure 7, the convergence graphs of VC-SSA and 11 
frontier methods on 15 typical functions in Table 1 are drawn. In Figure 8, the convergence curves of 
VC-SSA and SSA using different optimization mechanisms are plotted. In all experiments, the 
dimensionality of the function is set to 100, the algorithm terminates after 500 iterations, and the 
specific parameters of all algorithms are set as before. 

From Figure 6, the VC-SSA algorithm progressively converges during the early evaluation 
process and becomes faster over the course of iterations. The main reason is that a well-established 
swarm intelligence algorithm needs to allocate a large number of steps in the initial stage to explore 
the search domain and find the rough location of the global optimum, and in the later phase, it needs 
to shift from global search to local exploitation and precisely search the already explored region 
precisely to improve the solution accuracy. Therefore, as shown in Figure 6, the comparison algorithms 
fall into search stagnation after several iterations, while VC-SSA continues to converge, and the overall 
convergence rate and convergence precision are better than the involved peer approaches. From Figure 7, 
the suggested algorithm converges sluggishly during the early search phase. After the lapse of few 

iterations, the converge speed becomes faster. Compared with other frontier algorithms, VC-SSA 
shows a greater advantage in terms of convergence rate and solution accuracy, which is due to that the 
developed method can maintain a proper equilibrium between exploration and exploitation. According 
to Figure 8, the convergence performance of all three SSA algorithm using different optimization 
mechanisms outperforms the basic SSA, which proves that the proposed optimization mechanisms are 
effective. In addition, the VC-SSA algorithm outperforms the SSA using a single strategy in terms of 
convergence speed and convergence accuracy, which indicates that the three strategies can maximize 
the performance of SSA when they help SSA collaboratively. According to the convergence graph, 
RSSA facilitates to accelerate the convergence speed of the algorithm in the later iteration, VSSA 
contributes to improve the search ability of the algorithm in the early iteration stage, and ISSA 
solidifies the balance between exploitation and exploration of the algorithm. Overall, the convergence 
performance of VC-SSA outperforms the other SSA variants and the compared cutting-edge methods. 
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Figure 6. Convergence curves of SSA-based algorithms on some selected functions. 
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Figure 7. Convergence curves of VC-SSA and eleven cutting-edge algorithms on some 
selected functions. 
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Figure 8. Convergence curves of VC-SSA and SSA using different optimization 
mechanisms on some selected functions. 

4.7. Experiment on CEC2017 benchmark functions 

In this section, the effectiveness of VC-SSA is verified using the CEC 2017 test function set. The 
performance of VC-SSA is compared with the state-of-the-art swarm intelligent algorithms, including 
SSA, MFO 8, MVO 72, SCA 45, GWO 13, HGS 20, WOA 11, and HHO 15. In this experiment, the 
population size is set to 30 and the maximum number of evaluations is set to D × 10,000, where D 
denotes the dimension of the problem. The parameter settings of the compared algorithms are the same 
as those recommended in the respective original literature. The parameters of the VC-SSA algorithm 
are the same as those used in Subsection 4.2. All algorithms are run 30 times independently on each 
function, and the mean (Mean) and standard deviation (Std) for all fitness are recorded. In addition, 
the results of the Friedman’s rank test are also provided. To investigate the effect of the problem 
dimensions on the algorithms, the algorithms are tested using test functions with different dimensions. 
The statistical results are shown in Table 10 when D is set to 30, and the statistical results are reported 
in Table 11 when D is set to 50. 
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functions. Compared with SSA, MFO, and GWO algorithms, VC-SSA achieves better and inferior 
results on 28 and one cases, respectively. VC-SSA beats MVO on 27 benchmarks and is inferior to 
MVO on two cases. With respect to HGS, VC-SSA achieves superiority on 23 problems and is worse 
than HGS on six functions. According to the average ranking, the proposed VC-SSA received the top 
rank, followed by MVO, HGS, GWO, SSA, MFO, HHO, WOA, and SCA. From Table 11, VC-SSA 
outperforms SSA on 23 test functions and underperforms SSA on the remaining six problems. 
Compared to MFO and HHO, VC-SSA wins on 28 test cases and loses to the competitor on only one 
function. With respect to MVO, VC-SSA shows better performance on 26 benchmark problems and 
slightly worse performance on three functions. The proposed VC-SSA beats SCA and WOA on all test 
functions. Compared to GWO, VC-SSA achieves superiority on 21 test functions and shows inferiority 
on eight problems. VC-SSA beat HGS on 12 test problems and inferior to HGS on 17 benchmarks. 

Table 10. Comparison results of nine algorithms on CEC 2017 benchmark functions with 
30 dimensions. 
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n 
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1.56E+
02 

2.39E+
02 

1.87E+
02 

1.98E+
02 

1.34E+
02 

 f-rank 4 5 2 8 3 6 9 7 1 

F21 Mean 
2.43E+
03 

2.47E+
03 

2.40E+
03 

2.58E+
03 

2.38E+
03 

2.44E+
03 

2.59E+
03 

2.56E+
03 

2.37E+
03 

 Std 
5.32E+
01 

4.48E+
01 

3.02E+
01 

2.56E+
01 

2.78E+
01 

3.79E+
01 

4.21E+
01 

5.67E+
01 

2.13E+
01 

 f-rank 4 6 3 8 2 5 9 7 1 
Continued on next page 
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F22 Mean 
3.74E+
03 

5.87E+
03 

4.97E+
03 

9.02E+
03 

4.74E+
03 

4.97E+
03 

6.81E+
03 

6.02E+
03 

5.25E+
03 

 Std 
2.13E+
03 

1.99E+
03 

1.47E+
03 

2.12E+
03 

2.04E+
03 

1.57E+
03 

2.44E+
03 

2.04E+
03 

1.35E+
03 

 f-rank 1 6 4 9 2 3 8 7 5 

F23 Mean 
2.76E+
03 

2.80E+
03 

2.75E+
03 

3.04E+
03 

2.75E+
03 

2.78E+
03 

3.09E+
03 

3.14E+
03 

2.69E+
03 

 Std 
3.08E+
01 

3.59E+
01 

3.50E+
01 

4.08E+
01 

3.19E+
01 

2.62E+
01 

9.67E+
01 

1.22E+
02 

1.67E+
02 

 f-rank 4 6 3 7 2 5 8 9 1 

F24 Mean 
2.92E+
03 

2.97E+
03 

2.91E+
03 

3.22E+
03 

2.93E+
03 

2.99E+
03 

3.21E+
01 

3.37E+
03 

2.87E+
03 

 Std 
3.39E+
01 

2.82E+
01 

2.63E+
01 

3.27E+
01 

6.24E+
01 

5.03E+
01 

8.67E+
01 

1.16E+
02 

1.59E+
01 

 f-rank 3 5 2 8 4 6 7 9 1 

F25 Mean 
2.92E+
03 

3.24E+
03 

2.89E+
03 

3.36E+
03 

2.97E+
03 

2.89E+
03 

3.06E+
03 

2.95E+
03 

2.89E+
03 

 Std 
2.02E+
01 

2.84E+
02 

1.48E+
01 

1.32E+
02 

3.66E+
01 

1.49E+
01 

4.51E+
01 

2.39E+
01 

4.9219 

 f-rank 4 8 3 9 6 2 7 5 1 

F26 Mean 
4.72E+
03 

5.50E+
03 

4.66E+
03 

7.44E+
02 

4.72E+
03 

4.88E+
03 

8.14E+
03 

7.79E+
03 

4.46E+
03 

 Std 
1.04E+
03 

5.19E+
02 

5.73E+
02 

4.53E+
02 

3.82E+
02 

6.27E+
02 

1.15E+
03 

8.04E+
02 

1.91E+
02 

 f-rank 3 6 2 7 4 5 9 8 1 

F27 Mean 
3.24E+
03 

3.23E+
03 

3.22E+
03 

3.47E+
03 

3.23E+
03 

3.23E+
03 

3.43E+
03 

3.44E+
03 

3.21E+
03 

 Std 
2.25E+
01 

1.02E+
01 

1.67E+
01 

4.22E+
01 

1.73E+
01 

1.36E+
01 

1.10E+
02 

1.19E+
02 

9.5398 

 f-rank 6 4 3 9 5 2 7 8 1 

F28 Mean 
3.27E+
03 

3.80E+
03 

3.24E+
03 

4.14E+
03 

3.37E+
03 

3.26E+
03 

3.26E+
03 

3.46E+
03 

3.24E+
03 

 Std 
4.91E+
01 

6.05E+
02 

4.34E+
01 

2.98E+
02 

5.95E+
01 

5.95E+
01 

4.12E+
01 

6.75E+
01 

4.57E+
01 

 f-rank 4 8 1 9 6 3 7 5 2 

F29 Mean 
4.18E+
03 

3.97E+
03 

3.78E+
03 

4.97E+
03 

3.75E+
03 

3.87E+
03 

5.26E+
03 

4.62E+
03 

3.63E+
03 

 Std 
2.56E+
02 

2.54E+
02 

1.76E+
02 

2.57E+
02 

1.51E+
02 

1.96E+
02 

5.18E+
02 

4.09E+
02 

1.59E+
02 

 f-rank 6 5 3 9 2 4 8 7 1 

F30 Mean 
6.98E+
06 

3.22E+
05 

4.12E+
06 

1.25E+
08 

8.28E+
06 

9.55E+
04 

2.03E+
07 

3.74E+
06 

5.39E+
05 

 Std 
6.84E+
06 

3.71E+
05 

2.41E+
06 

4.91E+
07 

7.29E+
06 

1.39E+
05 

1.67E+
07 

2.37E+
06 

5.28E+
05 

 f-rank 6 2 5 8 7 1 9 4 3 

 
Averag
e f-
rank 

4.2414 6.0689 3.0689 8.2759 4.1724 3.3793 7.9655 6.3793 1.3793 

 
Overal
l f-rank 

5 6 2 9 4 3 8 7 1 
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Table 11. Comparison results of nine algorithms on CEC 2017 benchmark functions with 

50 dimensions. 

Functio
n 

Results SSA MFO MVO SCA GWO HGS WOA HHO 
VC-
SSA 

F1 Mean 
8.05E+
03 

3.41E+
10 

5.17E+
06 

5.62E+
10 

5.37E+
09 

1.81E+
07 

4.17E+
09 

3.11E+
08 

5.17E+
06 

 Std 
9.85E+
03 

1.32E+
10 

1.17E+
06 

5.96E+
09 

2.33E+
09 

1.35E+
07 

1.74E+
09 

8.67E+
07 

8.51E+
03 

 f-rank 1 8 3 9 7 4 6 5 2 

F3 Mean 
1.20E+
05 

3.24E+
05 

2.09E+
04 

1.60E+
05 

1.11E+
05 

6.94E+
04 

2.12E+
05 

1.01E+
05 

2.08E+
04 

 Std 
3.58E+
04 

5.98E+
04 

5.72E+
03 

2.24E+
04 

2.12E+
04 

1.77E+
04 

6.94E+
04 

1.80E+
04 

8.17E+
03 

 f-rank 6 9 2 7 5 3 8 4 1 

F4 Mean 
6.28E+
02 

3.84E+
03 

5.79E+
02 

9.80E+
03 

9.37E+
02 

6.04E+
02 

1.59E+
03 

8.71E+
02 

5.78E+
02 

 Std 
4.94E+
01 

2.18E+
03 

5.05E+
01 

2.14E+
03 

2.91E+
02 

6.40E+
01 

3.08E+
02 

1.13E+
02 

4.59E+
01 

 f-rank 4 8 2 9 6 3 7 5 1 

F5 Mean 
8.32E+
02 

9.21E+
02 

7.30E+
02 

1.09E+
03 

6.98E+
02 

7.72E+
02 

1.03E+
03 

9.04E+
02 

7.30E+
02 

 Std 
5.49E+
01 

7.22E+
01 

5.12E+
01 

3.37E+
01 

3.31E+
01 

3.86E+
01 

9.87E+
01 

3.83E+
01 

4.99E+
01 

 f-rank 5 7 3 9 1 4 8 6 2 

F6 Mean 
6.58E+
02 

6.47E+
02 

6.35E+
02 

6.78E+
02 

6.14E+
02 

6.16E+
02 

6.87E+
02 

6.73E+
02 

6.35E+
02 

 Std 
1.19E+
01 

1.01E+
01 

1.48E+
01 

5.9721 
3.78E+
02 

6.2744 
1.31E+
01 

5.4802 3.4388 

 f-rank 6 5 4 8 1 2 9 7 3 

F7 Mean 
1.15E+
03 

1.69E+
03 

1.08E+
03 

1.75E+
03 

1.05E+
03 

1.17E+
03 

1.76E+
03 

1.84E+
03 

1.08E+
03 

 Std 
1.18E+
02 

3.56E+
02 

8.28E+
01 

9.00E+
01 

6.26E+
01 

7.89E+
01 

1.16E+
02 

9.54E+
01 

4.03E+
01 

 f-rank 4 6 3 7 1 5 8 9 2 

F8 Mean 
1.12E+
03 

1.23E+
03 

1.03E+
03 

1.40E+
03 

1.03E+
03 

1.06E+
03 

1.31E+
03 

1.19E+
03 

1.03E+
03 

 Std 
5.40E+
01 

7.21E+
01 

4.13E+
01 

2.88E+
01 

5.75E+
01 

5.07E+
01 

9.11E+
01 

3.61E+
01 

3.84E+
01 

 f-rank 5 7 2 9 3 4 8 6 1 

F9 Mean 
1.39E+
04 

1.79E+
04 

1.42E+
04 

2.78E+
04 

6.58E+
03 

1.23E+
04 

3.22E+
04 

2.48E+
04 

1.43E+
04 

 Std 
2.61E+
03 

5.18E+
03 

6.27E+
03 

4.06E+
03 

3.42E+
03 

3.02E+
03 

9.50E+
03 

3.40E+
03 

1.79E+
03 

 f-rank 3 6 4 8 1 2 9 7 5 

F10 Mean 
7.69E+
03 

8.32E+
03 

7.18E+
03 

1.52E+
04 

7.32E+
03 

6.66E+
03 

1.19E+
04 

9.23E+
03 

7.18E+
03 

 Std 
1.16E+
03 

1.22E+
03 

1.05E+
03 

4.68E+
02 

1.65E+
03 

7.45E+
02 

1.46E+
03 

9.60E+
02 

1.01E+
03 

 f-rank 5 6 3 9 4 1 8 7 2 

F11 Mean 
1.65E+
03 

9.65E+
03 

1.51E+
03 

9.86E+
03 

3.95E+
03 

1.38E+
03 

3.39E+
03 

1.65E+
03 

1.51E+
03 

 Std 
1.12E+
02 

6.52E+
03 

8.69E+
01 

2.15E+
03 

1.54E+
03 

6.36E+
01 

5.96E+
02 

1.40E+
02 

7.17E+
01 

 f-rank 5 8 3 9 7 1 6 5 2 

F12 Mean 
1.43E+
08 

2.26E+
09 

7.90E+
07 

1.67E+
10 

4.82E+
08 

3.63E+
07 

9.73E+
08 

2.47E+
08 

4.47E+
07 

 Std 
1.05E+
08 

2.09E+
09 

3.68E+
07 

2.83E+
09 

3.94E+
08 

3.17E+
07 

4.80E+
08 

1.52E+
08 

3.59E+
07 

 f-rank 4 8 3 9 6 1 7 5 2 
Continued on next page 

 



7784 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 7756-7804. 

 

F13 Mean 
1.70E+
05 

1.97E+
08 

2.27E+
05 

5.22E+
09 

9.48E+
07 

2.70E+
04 

3.61E+
07 

4.66E+
06 

2.27E+
05 

 Std 
1.68E+
05 

5.29E+
08 

1.16E+
05 

2.09E+
09 

1.48E+
08 

1.45E+
04 

3.47E+
07 

3.74E+
06 

2.83E+
04 

 f-rank 2 8 4 9 7 1 6 5 3 

F14 Mean 
2.43E+
05 

1.51E+
06 

1.98E+
05 

4.49E+
06 

6.97E+
05 

4.54E+
05 

2.49E+
06 

1.31E+
06 

1.98E+
05 

 Std 
1.59E+
05 

1.83E+
06 

1.15E+
06 

2.28E+
06 

5.70E+
05 

2.96E+
05 

1.48E+
06 

1.12E+
06 

9.32E+
04 

 f-rank 3 7 2 9 5 4 8 6 1 

F15 Mean 
7.59E+
04 

1.19E+
07 

1.04E+
05 

7.34E+
08 

1.46E+
07 

1.98E+
04 

4.11E+
06 

6.29E+
05 

1.04E+
05 

 Std 
5.86E+
04 

2.69E+
07 

4.40E+
04 

255E+0
8 

2.02E+
07 

8.19E+
03 

7.65E+
06 

2.25E+
05 

1.89E+
04 

 f-rank 2 7 4 9 8 1 6 5 3 

F16 Mean 
3.87E+
03 

4.17E+
03 

3.18E+
03 

5.93E+
03 

3.15E+
03 

3.97E+
03 

5.61E+
03 

4.61E+
03 

3.18E+
03 

 Std 
4.47E+
02 

4.96E+
02 

3.82E+
02 

3.10E+
02 

5.07E+
02 

4.73E+
02 

8.91E+
02 

7.06E+
02 

3.41E+
02 

 f-rank 4 6 3 9 1 5 8 7 2 

F17 Mean 
3.42E+
03 

3.89E+
03 

3.25E+
03 

4.86E+
03 

2.99E+
03 

3.34E+
03 

4.27E+
03 

3.77E+
03 

3.25E+
03 

 Std 
3.59E+
02 

4.80E+
02 

3.37E+
02 

3.04E+
02 

4.09E+
02 

3.84E+
02 

5.39E+
02 

3.47E+
02 

2.64E+
02 

 f-rank 5 7 3 9 1 4 8 6 2 

F18 Mean 
3.52E+
06 

9.07E+
06 

2.20E+
06 

2.79E+
07 

5.13E+
06 

4.32E+
06 

1.87E+
07 

3.75E+
06 

2.19E+
06 

 Std 
3.10E+
06 

1.02E+
07 

1.50E+
06 

1.18E+
07 

4.46E+
06 

3.05E+
06 

1.28E+
07 

2.32E+
06 

7.36E+
05 

 f-rank 3 7 2 9 6 5 8 4 1 

F19 Mean 
5.85E+
06 

7.22E+
06 

3.95E+
06 

4.44E+
08 

4.16E+
06 

2.12E+
04 

5.89E+
06 

1.27E+
06 

3.95E+
06 

 Std 
3.67E+
06 

3.26E+
07 

2.84E+
06 

1.90E+
08 

9.44E+
06 

1.81E+
04 

7.34E+
06 

9.71E+
05 

6.12E+
05 

 f-rank 6 8 4 9 5 1 7 2 3 

F20 Mean 
3.24E+
03 

3.48E+
03 

3.11E+
03 

4.20E+
03 

2.84E+
03 

3.24E+
03 

3.85E+
03 

3.45E+
03 

3.11E+
03 

 Std 
3.95E+
02 

3.63E+
02 

3.39E+
02 

2.18E+
02 

3.09E+
02 

3.30E+
02 

3.31E+
02 

3.06E+
02 

2.68E+
02 

 f-rank 5 7 3 9 1 5 8 6 2 

F21 Mean 
2.65E+
03 

2.69E+
03 

2.52E+
03 

2.93E+
03 

2.52E+
03 

2.56E+
03 

2.99E+
03 

2.82E+
03 

2.52E+
03 

 Std 
7.45E+
01 

6.89E+
01 

4.43E+
01 

4.88E+
01 

6.85E+
01 

4.91E+
01 

1.06E+
02 

8.57E+
01 

3.38E+
01 

 f-rank 5 6 2 8 3 4 9 7 1 

F22 Mean 
9.54E+
03 

1.07E+
04 

9.00E+
03 

1.68E+
04 

8.86E+
03 

8.78E+
03 

1.32E+
04 

1.16E+
04 

9.01E+
03 

 Std 
1.03E+
03 

1.74E+
03 

1.02E+
03 

2.99E+
02 

8.68E+
02 

1.05E+
03 

9.62E+
02 

8.29E+
02 

9.93E+
02 

 f-rank 5 6 3 9 2 1 8 7 4 

F23 Mean 
3.03E+
03 

3.10E+
03 

2.95E+
03 

3.63E+
03 

2.96E+
03 

3.00E+
03 

3.73E+
03 

3.82E+
03 

2.95E+
03 

 Std 
8.01E+
01 

6.84E+
01 

5.68E+
01 

8.54E+
01 

6.77E+
01 

5.26E+
01 

1.77E+
02 

1.83E+
02 

3.12E+
01 

 f-rank 5 6 2 7 3 4 8 9 1 

F24 Mean 
3.14E+
03 

3.19E+
03 

3.11E+
03 

3.78E+
03 

3.12E+
03 

3.27E+
03 

3.81E+
03 

4.15E+
03 

3.11E+
03 

 Std 
6.31E+
01 

5.17E+
01 

5.67E+
01 

6.76E+
01 

7.24E+
01 

1.00E+
02 

1.62E+
02 

1.65E+
02 

2.83E+
01 

 f-rank 4 5 2 7 3 6 8 9 1 
Continued on next page 

 



7785 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 7756-7804. 

 

F25 Mean 
3.10E+
03 

4.69E+
03 

3.05E+
03 

7.89E+
03 

3.47E+
03 

3.09E+
03 

3.66E+
03 

3.28E+
03 

3.05E+
03 

 Std 
4.19E+
01 

1.46E+
03 

3.95E+
01 

1.06E+
03 

2.25E+
02 

3.39E+
01 

2.23E+
02 

6.34E+
01 

2.46E+
01 

 f-rank 4 8 2 9 6 3 7 5 1 

F26 Mean 
5.05E+
03 

7.89E+
03 

6.05E+
03 

1.32E+
04 

6.16E+
03 

5.52E+
03 

1.39E+
04 

1.07E+
04 

6.04E+
03 

 Std 
2.09E+
03 

7.26E+
02 

5.53E+
02 

8.52E+
02 

5.81E+
02 

2.19E+
03 

1.50E+
03 

2.03E+
03 

3.73E+
02 

 f-rank 1 6 4 8 5 2 9 7 3 

F27 Mean 
3.55E+
03 

3.54E+
03 

3.35E+
04 

4.73E+
03 

3.57E+
03 

3.42E+
03 

4.67E+
03 

4.50E+
03 

3.41E+
03 

 Std 
1.22E+
02 

7.71E+
01 

4.99E+
01 

1.96E+
02 

8.32E+
01 

6.52E+
01 

5.52E+
02 

4.47E+
02 

6.44E+
02 

 f-rank 4 3 9 8 5 2 7 6 1 

F28 Mean 
3.39E+
03 

7.73E+
03 

3.30E+
03 

7.91E+
03 

4.01E+
03 

3.41E+
03 

4.55E+
03 

3.87E+
03 

3.76E+
03 

 Std 
5.01E+
01 

1.07E+
03 

2.33E+
01 

8.57E+
02 

2.41E+
02 

8.23E+
01 

3.59E+
02 

1.53E+
02 

1.33E+
03 

 f-rank 2 8 1 9 6 3 7 5 4 

F29 Mean 
5.21E+
03 

5.02E+
03 

4.86E+
03 

8.02E+
03 

4.53E+
03 

4.44E+
03 

8.02E+
03 

6.42E+
03 

4.33E+
03 

 Std 
4.64E+
02 

4.60E+
02 

3.28E+
02 

7.27E+
02 

2.57E+
02 

3.19E+
02 

1.03E+
03 

7.41E+
02 

3.84E+
02 

 f-rank 6 5 4 9 3 2 8 7 1 

F30 Mean 
1.23E+
08 

2.39E+
07 

6.49E+
07 

9.76E+
08 

1.08E+
08 

1.99E+
06 

2.19E+
08 

5.62E+
07 

2.99E+
07 

 Std 
3.21E+
07 

5.65E+
07 

1.77E+
07 

3.59E+
08 

3.29E+
07 

7.80E+
05 

1.11E+
08 

2.48E+
07 

1.04E+
07 

 f-rank 7 2 5 9 6 1 8 4 3 

 
Averag
e f-
rank 

4.1724 6.5517 3.1379 8.5517 4.0690 2.8966 7.6552 5.9655 2.0689 

 
Overal
l f-rank 

5 7 3 9 4 2 8 6 1 

5. Application to engineering disciplines 

In this section, five restricted practical engineering problems are chosen to testify the applicability 

of VC-SSA on real applications. These five problems namely, car side impact design (CSID) 62, 
pressure vessel design (PVD) 57, cantilever beam design (CBD) 63, speed reducer design (SRD), and 
three-bar truss design (TBTD) 57, which have been extensively studied to evaluate the ability of the 
metaheuristic approach to address real-life problems. The applied practical design cases have different 
constrains, and it is indispensable to use adequate methods to deal with them to successfully obtain 
feasible solutions. In this experiment, we use the penalty function approach 64 to cope with the 
optimization constrains. The parameter settings are as consistent with Subsection 4.2. 

5.1. CSID problem 

The CSID problem was originally introduced by Gu et al. 65. For this case, the vehicle finite 
element model illustrated in Figure 9 is adopted to investigate the crashworthiness of the vehicle. The 
object of the problem is to optimize the gross weight of the vehicle by identifying eleven hybrid 
variables. All the decision variables are continuous except for the eighth and ninth variables. This 
challenging problem is restricted by ten unequal constrains. 
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The mathematical model of the CSID problem can be described as follows: 
Objective function: 

1 2 3 4 5 7
( ) 1.98 4.90 6.67 6.98 4.01 1.78 2.73f x x x x x x x                        (15) 

Subject to: 

1 2 4 2 10 3 9 6 10

2 1 2 1 8 2 7 3 5

5 10 6 9 8 11 10 11

3

( ) 1.16 0.3717 0.00931 0.484 0.01343 1,

( ) 0.261 0.0159 0.188 0.019 0.0144

           0.0008757 0.080405 0.00139 0.00001575 0.32,

( ) 0.214
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g x x x x x x x x x
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x x x x x x x
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( ) 46.36 9.

x

g x x x x x x x x

x x x x
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

    

  

    

   

 
2 1 8 3 10

2

8 4 2 3 4 10 6 10 11

9 1 2 2 8 3 10

4 10 6 10

10 3 7

9 12.9 0.1107 32,

( ) 4.72 0.5 0.19 0.0122 0.009325 0.000191 4,

( ) 10.58 0.674 1.95 0.02054

            0.0198 0.028 9.9,

( ) 16.45 0.489

x x x x x

g x x x x x x x x x

g x x x x x x x

x x x x

g x x x

  

      

   

  

 
5 6 9 10 9 11

2

11

0.843 0.0432 0.0556

            0.000786 15.7,

x x x x x x

x

  
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   (16) 

where 0.5 ≤ x1-x7 ≤ 1.5, x8, x9(0.192,0.345) and -30 ≤ x10, x11 ≤ 30. 
The VC-SSA is utilized to address this challenging problem, and compared with eight well 

performed algorithms, namely, GA 66, PSO 2, FA 9, ABC 6, GWO 13, WCA 67, SAFA 68, and SSA 
24. The optimal results achieved by the approaches for the problem are reported in Table 12. 

From Table 12, VC-SSA obtains the best value among the methods. This indicates that the total 
weight of the vehicle can be 22.8412 when the eleven parameters are set as 0.5017, 1.1172, 0.5000, 
1.2959, 0.5001, 1.5000, 0.5035, 0.3450, 0.1920, -18.6991, and 0.0379. Therefore, VC-SSA can be 
used as an effective tool for solving the optimal vehicle crash design problem. 

 

Figure 9. Model of the CSID. 
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Table 12. Results of VC-SSA versus other works for CSID. 

Algorithm VC-SSA WCA SAFA GWO ABC PSO FA GA SSA 

x1 0.5017 0.5000 0.5000 0.5000 0.5000 0.5003 0.5000 0.5000 0.5000 

x2 1.1172 1.1156 1.1196 1.1153 1.1216 1.1211 1.1157 1.2802 1.1093 

x3 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5004 0.5000 0.5000 

x4 1.2959 1.3034 1.2971 1.3043 1.2942 1.2952 1.3051 1.0330 1.3148 

x5 0.5001 0.5000 0.5000 0.5000 0.5000 0.5003 0.5002 0.5000 0.5000 

x6 1.5000 1.5000 1.5000 1.5000 1.4999 1.4998 1.4993 0.5000 1.5000 

x7 0.5035 0.5000 0.5000 0.5000 0.5003 0.5002 0.5006 0.5000 0.5000 

x8 0.3450 0.3450 0.3450 0.3450 0.3450 0.3450 0.3450 0.3450 0.3450 

x9 0.1920 0.1920 0.1920 0.3450 0.3450 0.3450 0.1920 0.1920 0.1920 

x10 -18.6991 -19.6996 -18.9941 -19.7485 -18.6349 -18.725 -19.6744 10.3119 -20.8217 

x11 0.0379 -0.0239 0.1949 0.7174 -0.3053 0.3862 -1.4541 0.0017 0.4413 

Optimal 

weight 

22.8412 22.8436 22.8438 22.8448 22.8463 22.849 22.8542 22.8565 23.0422 

5.2. PVD problem 

The second engineering design problem that we study in this work is PVD. The goal of this case 
is to minimize the overall cost, which is strictly correlated with material, forming and welding, as 
illustrated in Figure 10. In the PVD project, there are four decision variables to be authorized, including 
the thickness of the shell (Ts), the thickness of the head (Th), the inner radius (R), and the cylinder 
section length (L). The mathematical expression can be formulated as shown below: 

Consider: 

� = (��, ��, ��, ��) = (��, ��, �, �)                         (17) 

Objective function: 

�(�) = 0.6224������ + 1.7781����
� + 19.84��

��� + 3.1661��
���        (18) 

Subject to: 

1 3 1

2 3 2

2 3

3 3 4 3

4 4

( ) 0.0193 0,

( ) 0.00954 0,

4
( ) 1296000 0,

3

( ) 240 0.

g x x x

g x x x

g x x x x

g x x

 

  

  

    

  

                 (19) 

where 0 ≤ x1 ≤99, 0 ≤x2 ≤99, 10 ≤x3 ≤200, 10 ≤x4 ≤200. 
This task has been addressed by the advocated VC-SSA approach, and compared with nine 

classical methods, namely, GSA 69, ABC 6, BA [70], MFO 8, HHO 15, GWO 13, WOA 11, AOS 71, 
and SSA 24. The best-obtained solutions from all involved optimizers are reported in Table 13. From 
Table 13, VC-SSA can get design a pressure vessel with the optimal total cost, i.e., 5886.9631. In 
addition, MBA and ASO can provide competitive results, which are 5889.3216 and 5888.4579, 
respectively. 
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Figure 10. PVD problem. 

Table 13. Results of VC-SSA versus other works for PVD. 

Algorithm Optimal values for variables Optimal cost 
 Ts Th R L  

VC-SSA 0.7812 0.3848 40.4734 197.8583 5886.9631 
ASO 0.7786744 0.3853217 40.3408906 199.7215178 5888.4579 
HHO 0.8175838 0.4072927 42.09174576 176.7196352 6000.4625 
SSA 0.790678 0.390834 40.96773875 195.91822 6012.1885 
GWO 0.8125 0.4345 42.098181 176.75873 6051.5639 
BA 0.8125 0.4375 42.0984456 176.6365958 6059.7143 
MFO 0.8125 0.4375 42.098445 176.636596 6059.7143 
ABC 0.8125 0.4375 42.098446 176.636576 6059.7143 
WOA 0.812500 0.437500 42.0982699 176.638998 6059.7410 
GSA 1.125 0.625 55.9886598 84.4542025 8538.8359 

5.3. CBD problem 

The third real-world engineering problem that we investigate is CBD. In this problem, the 
objective function is to minimize the weight of the cantilever beam. As illustrated in Figure 11, this 
issue has five structure parameters. There is one more vertical displacement constraint that requires be 
considered. The CBD problem can be modelled as follows: 

Objective function: 

�(�) = 0.0624 × (�� + �� + �� + �� + ��)                          (20) 

Subject to: 

�(�) =
��

��
� +

��

��
� +

��

��
� +

�

��
� +

�

��
� − 1 ≤ 0                    (21) 

where 0.01 ≤ x1, x2, x3, x4, x5 ≤ 100. 
This problem has been tackled by MFO 8, MVO 72, SOS 73, CS 12, ALO 74, MMA 75, and SSA 

24. The optimal results obtained by VC-SSA and other algorithms on this issue are presented in Table 
14. From Table 14, VC-SSA outperforms all competitors. Therefore, the developed algorithm can 
provide strong aid for the CBD problem. 
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Figure 11. CBD problem. 

Table 14. Results of VC-SSA versus other works for CBD problem. 

Algorithm Optimal value for variables Optimal cost 
 x1 x2 x3 x4 x5  

VC-SSA 6.5612 5.4789 4.1526 3.1172 2.0084 1.32685 
ALO 6.01812 5.31142 4.48836 3.49751 2.158329 1.33995 
SSA 6.0151345 5.3093046 4.4950067 3.5014262 2.1527879 1.33995639 
MVO 6.0239402 5.30601123 4.49501132 3.49602232 2.15272617 1.3399595 
SOS 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996 
MFO 5.9848717 5.3167269 4.4973325 3.5136164 2.1616202 1.339988085 
CS 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999 
MMA 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 

5.4. SRD problem 

In this subsection, the SRD issue is considered, whose main objective is to devise a speed reducer 
with the minimum weight. Seven structure variables x = (b, m, z, l1, l2, d1, d2) are concluded in this 
problem, where b is the surface width, m is the module of gear teeth, z represents the quantity of teeth 
on pinion, l1 and l2 indicate the lengths of the first and second shafts between bearings, respectively, 
and d1 and d2 denote the diameters of the first and second shafts, respectively. For solving this problem, 
four design constrains needed to be considered. The configuration of this problem is illustrated in 
Figure 12, and the mathematical expression can be expressed as follows: 

Consider: 

� = (��, ��, ��, ��, ��, ��, ��) = (�, �, �, ��, ��, ��, ��)                 (22) 

Objective function: 

2 2 2 2

1 2 3 3 1 6 7

3 3 2 2

6 7 4 6 5 7

( ) 0.7854 (3.3333 14.9334 43.0934) 1.508 ( )

           7.4777( ) 0.7854( )

f x x x x x x x x

x x x x x x

    

   
       (23) 

Subject to: 
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where 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x1 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 3.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 
≤ 5.5. 

This problem has been addressed by several nature-inspired metaheuristics including ABC 6, CS 
15, SCA 45, MBFPA 76, WWO 77, and PVS 78. Table 15 tabulates the generated optimal solution by 
VC-SSA and its peer algorithms. From Table 15, VC-SSA can obtain the best weight, i.e., 
2841.600123. The other compared algorithms achieve similar results. 

 

Figure 12. Construction of a speed reducer. 
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Table 15. Results of VC-SSA versus other works for SRD problem. 

Algorithm Optimal values for variables Optimal cost 

 b m z l1 l2 d1 d2  

VC-SSA 3.60000 0.7000 17 7.3930 7.3617 3.2615 5.0141 2841.600123 

MBFPA 3.5 0.7 17 7.3 7.7153199122 3.35021466 5.28665446 2994.341315 

CS 3.5 0.7 17 7.3 7.715319 3.350214 5.286654 2994.471066 

ABC 3.5 0.7 17 7.3 7.715319 3.350214 5.286654 2994.471066 

WWO 3.5 0.7 17 7.3 7.715319 3.350214 5.286654 2994.471066 

PVS 3.49999 0.6999 17 7.3 7.8 3.3502 5.2866 2996.3481 

SCA 0.350001 0.7 17 7.300156 7.800027 3.350221 5.286685 2996.356689 

5.5. TBTD problem 

The last constrained engineering design problem, named TSTD, has two decision variables with 
the target function of minimize the weight. In this problem, there are three constraints that need to be 
considered. The schematic of this problem is plotted in Figure 13. The corresponding expression of 
this project is as follows: 

Consider: 

� = (��, ��) = (����)                           (25) 

Objective function: 

�(�) = (2√2�� + ��) × �                                (26) 

Subjective to: 

1 2

1 2

1 1 2

2

2 2

1 1 2
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2 1

2
( ) 0,

2 2
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2 2

1
( ) 0.
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x x
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x x x

x
g x P
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x x








  



  


  


                           (27) 

where 0 ≤ x1, x2 ≤1, L = 100cm, P = 2km/cm2,  = 2km/cm2. 
The algorithms HHO 15, MVO 72, GOA 17, MFO 8, SSA 24, ALO 74, CS 12 and WWO 77 are 

respectively employed to solve the TBTD problem. The outcomes gained by these algorithms and VC-
SSA are shown in Table 16. With respect to the comparison results, VC-SSA can offer the optimal 
results, i.e., 263. 89584337713. The outstanding outputs proves that the proposed approach can 
effectively solve the TBTD problem. 
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Figure 13. TBTD problem. 

Table 16. Results of VC-SSA versus other works for TBTD problem. 

Algorithm Optimal values for variables Optimal weight 
 x1 x2  

VC-SSA 0.8958433771383 0.408245590095633 263.895843 
WWO 0.788651 0.408316 263.895843 
HHO 0.788662816 0.408283133832900 263.8958434 
SSA 0.788665414258065 0.408275784444547 263.8958434 
ALO 0.788662816000317 0.408283133832901 263.8958434 
MVO 0.78860276 0.40845307 263.8958499 
GOA 0.788897555578973 0.407619570115153 263.895881496069 
MFO 0.788244770931922 0.409466905784741 263.895979682 

CS 0.78867 0.40902 263.9716 

6. Robot path planning 

Mobile robot path planning (MRPP) is a key problem in the field of robotics, where the main goal 
is to generate a collision-free path from the starting position to the destination for an autonomous 
mobile robot (AMR). Since the inception of mobile robots, researchers have been conducting 
corresponding research with the hope of designing efficient MRPP methods. Topologically, the MRPP 
problem is closely related to the problem of finding the shortest path between two points in the plane 79. 
In recent years, nature-inspired swarm intelligence metaheuristic techniques have become increasingly 
popular in MRPP tasks due to their strong stochasticity, robust search capability, and ease of 
implementation 80. In this section, we propose a VC-SSA-based MRPP approach for AMRs to help 

robots move along the shortest collision-avoiding path from one position to another. 

6.1. Robot path planning problem description 

The MRPP problem can be treated as a constrained optimization task, where the trajectory 
between two locations is the objective to be optimized, and the threatening region is the constraint to 
be considered. Nature-inspired swarm intelligence metaheuristic approaches are effective tools for 

solving optimization problems by optimizing the objective function to acquire the feasible solution to 
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the issue. The results obtained using the metaheuristic technique for MRPP tasks are influenced by 
two factors, namely, the performance of the metaheuristic method and the effectiveness of the goal 
function. According to the previous experimental results, the VC-SSA algorithm has outstanding 
optimization performance; therefore, the main factor that affects the effectiveness of the VC-SSA-
based MRPP algorithm is the objective function. We need to establish an efficient objective function 
according to the characteristics of the MRPP problem, and the VC-SSA algorithm completes the path 
planning task by evaluating and optimizing the established objective function. Based on the above 
analysis, an objective function is designed considering the trail length and obstacle-avoiding for 
evaluating the quality of the paths produced by the VC-SSA-based MRPP approach. The proposed 
objective function is as follows: 

� = �(1 + � ⋅ �)                                      (28) 

where  is the scaling factor used to motivate conflict-free paths and prevent routes containing 

threatening regions, and L denotes the route length. To calculate L, the following formula is applied. 

� = ∑ �(���� − ��)
� + (���� − ��)��

���                           (29) 

where (xi, yi) represents the coordinates of the ith interpolation point. 
In Eq (28),  is a marker variable that is used to evaluate the security condition of the current 

route. To calculate it, the following mathematical formula is utilized. 

� = ∑ ∑ ��� �1 −
��,�

�����
, 0��

���
����
���                            (30) 

where nobs is the number of barriers, m represents the quantity of interpolant points in the path, dj,k 
denotes the distance between the interpolant spot j to barrier k, and robsk indicates the radius of the kth 
threatening region. It is clear from Eq (30) that if the current route includes no obstacles, then the 
calculated -value is smaller, and vice versa. 

6.2. Experiment and results 

In this subsection, we implement the VC-SSA-based MRPP algorithm, aiming to plan a globally 
optimal collision-avoiding route with the shortest path length. To validate the feasibility and 
superiority of the developed approach, five maps provided by 81 are adopted. These environmental 
maps have different characteristics, such as different number and size of obstacles and different 
distances between the starting and target points, as detailed in Table 17. After study the feasibility of 
VC-SSA in MRPP problems, the routes planned by this approach were compared with those generated 
by other metaheuristics, namely SSA, GWO, PSO, FA and ABC. For a fair comparison, the general 
parameter settings of the algorithms are identical, while the specific parameter setting of each method 
are taken from the source paper. The path lengths generated by the six methods in different 
environments are presented in Table 18, and the respective trajectories are presented in Figures 14–18. 
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Table 17. Type of environment. 

Terrain No. of 

obstacles 

Initial 

coordinates 

Final 

coordinates 

X axis Y axis Obstacle radius 

Map 1 3 0, 0 4, 6 [1, 1.8, 4.5] [1, 5.0, 0.9] [0.8, 1.5, 1] 

Map 2 6 0, 0 10, 10 [1.5, 8.5, 3.2, 6.0, 

1.2, 7.0] 

[4.5, 6.5, 2.5, 3.5, 

1.5, 8.0] 

[1.5, 0.9, 0.4, 0.6, 0.8, 

0.6] 

Map 3 13 3, 3 14, 14 [1.5, 4.0, 1.2, 5.2, 

9.5, 6.5, 10.8, 5.9, 

3.4, 8.6, 11.6, 3.3, 

11.8] 

[4.5, 3.0, 1.5, 3.7, 

10.3, 7.3, 6.3, 9.9, 

5.6, 8.2, 8.6, 11.5, 

11.5] 

[0.5, 0.4, 0.4, 0.8, 0.7, 0.7, 

0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 

0.7] 

Map 4 30 3, 3 14, 14 [10.1, 10.6, 11.1, 

11.6, 12.1, 11.2, 

11.7, 12.2, 12.7, 

13.2, 11.4, 11.9, 

12.4, 12.9, 13.4, 

8, 8.5, 9, 9.5, 10, 

9.3, 9.8, 10.3, 

10.8, 11.3, 5.9, 

6.4, 6.9, 7.4, 7.9] 

[8.8, 8.8, 8.8, 8.8, 

8.8, 11.7, 11.7, 

11.7, 11.7, 11.7, 

9.3, 9.3, 9.3, 9.3, 

9.3, 5.3, 5.3, 5.3, 

5.3, 5.3, 6.7, 6.7, 

6.7, 6.7, 6.7, 8.4, 

8.4, 8.4, 8.4, 8.4] 

[0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 

0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 

0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 

0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 

0.4, 0.4, 0.4, 0.4, 0.4, 0.4] 

Map 5 45 0, 0 15, 15 [2, 2, 2, 2, 2, 2, 4, 

4, 4, 4, 4, 4, 4, 4, 

4, 6, 6, 6, 8, 8, 8, 

8, 8, 8, 8, 8, 8, 10, 

10, 10, 10, 10, 10, 

10, 10, 10, 12, 12, 

12, 12, 12, 14, 14, 

14, 14] 

[8, 8.5, 9, 9.5, 10, 

10.5, 3, 3.5, 4, 4.5, 

5, 5.5, 6, 6.5, 7, 11, 

11.5, 12, 1, 1.5, 2, 

2.5, 3, 3.4, 4, 4.5, 5, 

6, 6.5, 7, 7.5, 8, 8.5, 

9, 9.5, 10, 10, 10.5, 

11, 11.5, 12, 10, 

10.5, 11, 11.5] 

[0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 

0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 

0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 

0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 

0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 

0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 

0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 

0.4, 0.4, 0.4] 

Table 18. The minimum route length comparison of VC-SSA-based MRPP method and 

comparison approaches under five environmental setups. 

Terrain PSO FA ABC GWO SSA VC-SSA 
 Path length Path length Path length Path length Path length Path length 
Map 1 7.7328 7.5281 7.7527 7.7625 8.6017 7.4796 
Map 2 14.5037 14.4288 14.8418 14.3565 15.2430 14.3144 
Map 3 17.2219 16.1593 17.4818 17.3517 16.9979 15.9858 
Map 4 16.1925 16.3031 16.2919 16.3281 16.8157 15.8511 
Map 5 21.8520 21.9933 21.8792 22.3073 22.1842 21.5750 

From Table 18, the lengths of the paths planned by VC-SSA for all five terrains are the shortest 
compared to the comparison algorithms. This proves that the proposed VC-SSA-based MRPP 
method is an effective path planning tool that can be applied in both simple and complex 
environmental setups. Next, we analyzed the simulation results in detail based on the specific 
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trajectories planned for each type of environment by the six algorithms. 
Optimal paths planned by all approaches for the first environmental setup is exhibited in 

Figure 14(a–f). From the figure, all the algorithms can plan a collision-free path for this map. In terms 
of route length, SSA takes the longest route from the initial point to destination, while VC-SSA follows 
the shortest obstacle-avoiding route. Regarding the generated trajectories, FA and SSA design similar 
paths, while PSO, GWO, ABC and VC-SSA create another type of straightforward paths. Overall, VC-
SSA avoids the local optimum and designs the most reasonable obstacle-free path for the first 
environmental setup. 

Optimal paths designed by all algorithms for the second environmental setup is shown in 
Figure 15(a–f). The comparison results reveal that VC-SSA outperforms the compared approaches 
for this environment setting with the shortest path length of 14.3120, followed by GWO, FA, PSO, 
ABC and SSA. With respect to the trajectory, FA, ABC, GWO, SSA and VC-SSA produce similar 
routes, while PSO provides a different style of route. Based on the above analysis, all algorithms 
generate a path without collisions, while VC-SSA circumvents the local optima and thus 
outperforms its peers. 

A comparison of the best trajectories produced by all approaches for the third environment map 
is displayed in Figure 16(a–f). The figure depicts that all approaches can generate an unobstructed 
route. FA, GWO and SSA fall into the local optimum, which leads to the generated path having 
redundancy. Nevertheless, PSO and VC-SSA provide satisfactory routes for this map. Since VC-SSA 
plans a more sensible trajectory, it provides a shorter collision-avoiding path than PSO. 

The best performance of all algorithms for the fourth environment map with 30 obstacles of 
different scales are displayed in Figure 17(a–f). From the figure, PSO, ABC, GWO and SSA try to take 
the same trajectory during the maneuver from the starting point to the terminal point to produce a 
collision avoidance optimal path, while FA and VC-SSA take another more subtle trajectory. Compared 
with the trajectories provided by PSO, ABC, GWO and SSA, the curved routes generated by FA and 
VCSSA are smoother. Whereas FA falls into a sub-optimal solution, which affects the quality of the 
generated paths, VC-SSA obtains the optimal path with the length of 15.8750. 

The simulation results of optimal routes produced by all methods for the fifth landscape are shown 
in Figure 18. From the figure, PSO, FA, ABC and SSA attempt to take the same trajectory during the 
maneuver from the initial position to goal to produce an obstacle-free shortest path, while GWO and 
VC-SSA attend to take a more promising path. However, GWO is trapped in a local optimum, while 
VC-SSA avoids the local optimal solution and exhibits better performance than the competitors with 
the path length of 21.5506. 
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(PSO)       (FA)      (ABC) 

 
(GWO)       (SSA)      (VC-SSA) 

Figure 14. Map 1 (a) PSO, (b) FA, (c) ABC, (d) GWO, (e) SSA and (f) VC-SSA. 

 
(PSO)      (FA)      (ABC) 

 
(GWO)        (SSA)      (VC-SSA) 

Figure 15. Map 2 (a) PSO, (b) FA, (c) ABC, (d) GWO, (e) SSA and (f) VC-SSA. 
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(PSO)      (FA)      (ABC) 

 
(GWO)      (SSA)      (VC-SSA) 

Figure 16. Map 3 (a) PSO, (b) FA, (c) ABC, (d) GWO, (e) SSA and (f) VC-SSA. 
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(GWO)      (SSA)                     (VC-SSA) 

Figure 17. Map 4 (a) PSO, (b) FA, (c) ABC, (d) GWO, (e) SSA and (f) VC-SSA. 
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(PSO)      (FA)                      (ABC) 

 
(GWO)      (SSA)                   (VC-SSA) 

Figure 18. Map 5 (a) PSO, (b) FA, (c) ABC, (d) GWO, (e) SSA and (f) VC-SSA. 

7. Conclusions and scope for future work 

In this work, a novel SSA variant, called the VC-SSA approach, has been proposed with the hope 
of enhancing the solution quality and convergence rate of the standard salp swarm optimizer. We first 
introduce the velocity clamping strategy to boost the exploitation ability and the solution precious. 
Reduction factor mechanism is designed to expedite the convergence of the basic SSA. Finally, a novel 
position update equation is introduced by injecting an inertia weight to establish a counterbalance 

between exploration and exploitation, thus effectively expanding the landscape of global exploration 
during the early search, and refining the rough region of the global optima with the hope of advancing 
the solution accuracy after the lapse of iterations. According to the experimental results implemented 
in this paper, each of the introduced modifications can improve the performance of the basic SSA. 
More importantly, the components are novel, easy to accomplish, and do not destroy the minimalist 
style of the standard SSA. To evaluate the effectiveness and applicability of VC-SSA, we tested it on 
four classes of problems including 23 widely used benchmark functions, 30 latest benchmark problems 
from CEC 2017, five real-life engineering design problems, and a mobile robot path planning problem, 
and thoroughly compared it with the basic SSA, the well-performance SSA variants, and the frontier 
metaheuristic techniques. Based on the comparison results and non-parametric test results, our novel 
approach is able to provide superior, or at least competitive, performance on most test cases compared 
to its peer algorithms. 

However, this study still has some limitations. For example, the value of the parameter δ was 
determined through a large number of experiments, and although the algorithm shows superior 
performance for δ = 0.003, this way of taking the value needs to be improved. In future research, the 
optimal value of δ will be trained using reinforcement learning. In addition, this paper proposes a VC-
SSA-based mobile robot path planning approach in autonomous mobile robots, and although the 
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proposed method is able to plan a reasonable optimal path for the robot in different environmental 
settings, it cannot be applied to multi-robot systems. In future work, we will focus on developing this 
path planning approach to multi-robot systems, aiming to plan shortest collision-free paths for multiple 
robots acting in concert. Finally, we expect researchers to use our proposed VC-SSA algorithm to 
tackle optimization problems in different disciplines. 
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