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Abstract: Interactions between species are essential in ecosystems, but sometimes competition
dominates over mutualism. The transition between mutualism-competition can have several
implications and consequences, and it has hardly been studied in experimental settings. This work
studies the mutualism between cross-feeding bacteria in strains that supply an essential amino acid
for their mutualistic partner when both strains are exposed to antimicrobials. When the strains are
free of antimicrobials, we found that, depending on the amount of amino acids freely available in
the environment, the strains can exhibit extinction, mutualism, or competition. The availability of
resources modulates the behavior of both species. When the strains are exposed to antimicrobials,
the population dynamics depend on the proportion of bacteria resistant to the antimicrobial, finding
that the extinction of both strains is eminent for low levels of the resource. In contrast, competition
between both strains continues for high levels of the resource. An optimal control problem was then
formulated to reduce the proportion of resistant bacteria, which showed that under cooperation, both
strains (sensitive and resistant) are immediately controlled, while under competition, only the density
of one of the strains is decreased. In contrast, its mutualist partner with control is increased. Finally,
using our experimental data, we did parameters estimation in order to fit our mathematical model to
the experimental data.
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1. Introduction

The rapid surge of resistant strains and the void in discovering of new antimicrobials has made
antimicrobial resistance one of the most critical problems in public health nowadays. There has been
a great effort from the scientific community to understand the basic mechanisms by which bacteria
become resistant to several antibiotics; almost all efforts have focused on the study of a single strain,
and it is just in recent times that we have been looking at how the interaction between members of
complex communities are shaping the susceptibility profile.

In nature, microbes co-exist in multi-species communities with ecological dynamics driven by the
complex interaction between individual strains and the environment. Syntrophic interactions, whereby
bacterial cells exchange costly metabolites for the benefit of both interacting partners, are pervasive in
bacterial communities as they enhance bacterial survival in hostile environments.

Availability of resources affects the nature of the interactions between members of a microbial
consortium [1]. These interactions can be determinants of the stability of the consortia. Based on
two-pair interactions, there are typically three outcomes; cooperation where both members of the
community are beneficial to the other one; competition where the presence of one member is
detrimental to the other one and neutral interaction; where the members of the community have no
interaction.

Typically competitive interactions end up in competitive exclusion, decreasing the diversity of the
consortia. For syntrophic interactions, if the competition for resources is very strong, one community
member’s collapse could collapse the total population.

The effect of changes in interactions have on the control of antibiotic resistance is unknown. There
are some examples where cooperation can help a community to survive in stressful environments [2].
We model a synthetic community composed of two different strains; both are auxotrophic to an amino
acid, an essential metabolite. This condition makes them incapable of growing on their own in an
environment without amino acids. In contrast, they can grow in a minimal media when they are
together due to the leak of all the other amino acids from their partner [3]. Auxotroph cells are
essential for natural communities [4], they shape the composition and can be determinant of the
stability of a microbial community. For instance, they have been found in aquatic communities [5],
microbial soil communities [6] and the human microbiome [7, 8]. Although auxotrophies could
increase the dependence of individuals in the communities, they could also increase fitness by
reducing the nutrient requirements of an environment, which means that a community could support
growth in a poorer context.

In the past years, auxotrophic strains have been used to study metabolic cross-feeding interactions
in particular environmental context [1,9,10]. Pair-wise interactions are useful to determine changes in
the interaction and to study division of labor inside the community, such as public goods. A relevant
example of public goods is the production of enzymes able to degrade antibiotics.

Cross-feeding interactions in natural environments are important to increase diversity in the
population by decreasing the fitness of the individual and increasing the fitness of the
community [11]. It has been shown that these interactions are dynamic and can change with respect to
the environment. Auxotrophies are a particular example of this. It has also been shown that
auxotrophic phenotypes appear very fast in a population growing in a rich nutrient environment [10].
This feature can be crucial in diverse communities, like the microbiota, particularly when an
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antimicrobial is present, which disrupts the community members [4]. If auxotrophic phenotypes
appear, having functional redundancies could help preserve general function in a community. For this
reason, understanding what is the effect of an antimicrobial in a syntrophic consortium could be of
great value.

This paper explores a population-based model and control theory to understand the effect of
antimicrobials in microbial communities with syntrophic interactions and how the environment
minimizes resistant bacteria in the system.

We first propose an optimal control problem based on Hoek et al. in [1] of an auxotrophic
consortium of two bacteria competing for the same resources in the presence of a gradient of
antibiotic. Then we described our experimental data and performed numerical experiments. Finally,
using Bayesian Inference, we estimate some interesting mathematical model parameters using our
experimental data. Numerical experiments validate all theoretical results.

2. Optimal control formulation

In order to better understand the different types of interaction between cross-feeding bacteria, we
formulate a similar mathematical model to the proposed by Hoek et al. In [1], two strains of yeast, one
auxotrophic to tryptophan (trp-) and the other auxotrophic to leucine (leu-) interact in an environment
with different resource availability. In this formulation, we assume that strain trp- (X) and strain leu-
(Y) are divided into susceptible and resistant bacteria (Xs, Xr and Ys, Yr, respectively). We assume
both strains interact with a bacterial infection in an individual’s body. We are interested in modeling
the dynamics of bacterial resistance acquisition through antimicrobial resistance induced by antibiotic-
mediated selection. Thus, the following hypothesis is considered for the strain X (similar assumptions
can be considered for the strain Y): sensitive bacteria grows at a rate proportional to resistant bacteria (if
a is the growth rate of sensitive bacteria, then aγ̄x is the growth rate of resistant bacteria) following the
logistic equation with a carrying capacity K. F̄ is the amount of supplemented amino acids, κ̄ represents
an effective Monod constant, and β is a parameter that quantifies the asymmetry of benefit that each
bacteria receives from its partner. The density of sensitive bacteria become resistant by antibiotic-
mediated selection is given through the term ϵqλXs, where ϵ is the efficacy of the antimicrobial, λ is
the antimicrobial supply rate, q is the proportion of mutation (therefore (1−q) represents the proportion
of elimination). Both population turnover at a constant dilution rate δ̄. Thus, the per capita growth rate
of both bacteria is adjusted by the mutualistic partner as well as the supplemented amino acids:

Ẋs =γ̄x(Xs + Xr)
(

Ys + Yr + F̄
Ys + Yr + F̄ + κ̄

) (
1 −

Xs + Xr + Ys + Yr

K

)
− ϵqλXs − ϵ(1 − q)λXs − δ̄Xs

Ẋr =aγ̄x(Xs + Xr)
(

Ys + Yr + F̄
Ys + Yr + F̄ + κ̄

) (
1 −

Xs + Xr + Ys + Yr

K

)
+ ϵqλXs − δ̄Xr

Ẏs =γ̄y(Ys + Yr)
(
β(Xs + Xr) + F̄
β(Xs + Xr) + F̄ + κ̄

) (
1 −

Xs + Xr + Ys + Yr

K

)
− ϵqλYs − ϵ(1 − q)λYs − δ̄Ys

Ẏr =aγ̄y(Ys + Yr)
(
β(Xs + Xr) + F̄
β(Xs + Xr) + F̄ + κ̄

) (
1 −

Xs + Xr + Ys + Yr

K

)
+ ϵqλYs − δ̄Yr. (2.1)

A complete description of the parameters involved in Model (2.1) can be found on Table 1.

Mathematical Biosciences and Engineering Volume 19, Issue 7, 6860–6882.



6863

Table 1. Definition and dimension of the parameters involved in Model (2.1).

Parameter Definition Unit
a Cost of the resistance Dimensionless
γ̄x Growth rate of strain X 1/time
γ̄y Growth rate of strain Y 1/time
β Asymmetry constant Dimensionless
F̄ Amount of supplementary amino acid Population
κ̄ Monod constant Population
ϵ Antimicrobial efficacy 1/time
λ Supply concentration of the antimicrobial Dimensionless
q Mutation proportion Dimensionless
δ̄ Dilution rate 1/time
K Carry capacity Dimensionless

Now, we define µµµ = (µ1(t), µ2(t)) as a control variable associated with the mutations. Thus, both
strains of susceptible bacteria mutate at a rate (1−µ1(t))ϵqλXs and (1−µ2(t))ϵqλYs, respectively, where
for i = 1, 2, µi(t) ∈ [0, 1] (µi = 0 represents no efficacy of the control, while µi = 1 indicates that the
use of the control is completely effective). Thus, we have that each control variable µi(t) provides
information about the amount of bacteria that must not mutate at time t. To minimize the number of
resistant bacteria, we define the cost function:

J[µµµ] =
∫ T

0

(
c̄1Xr + c̄2Yr +

1
2
µ1(t)2 + d2

1
2
µ2(t)2

)
dt,

where the parameters c1 and c2 represent social cost and the parameters d1 and d2 represent relative
weights associated to the controls. Additionally, we define the boundary conditions:

X(0) = (Xs0 , Xr0 ,Ys0 ,Yr0) = X0

X(T ) = (Xs f , Xr f ,Ys f ,Yy f ) = X f ,

and we assume that the final time T is a fixed implementation time of the control strategies, the final
state X f is variable, and the initial state X0 is a coexistence equilibrium of System (2.1). We suppose
that each control is in the set of Lebesgue measurable functions with 0 ≤ µ(t) ≤ 1, t ∈ [0,T ] (U called
the set of admissible controls).

Let us define ω as a rescaling parameter with dimension 1/population × time. To obtain a
dimensionless formulation of System (2.1), the state variables have been divided by the carrying
capacity of the environment, the parameters and the time have also been adjusted to be dimensionless
as follows

S x =
Xs

K
, Rx =

Xr

K
, S y =

Ys

K
, Ry =

Yr

K
and τ = ωKt,

and

c1 =
c̄1

K
, c2 =

c̄2

K
, F =

F̄
K
, κ =

κ̄

K
, γx =

γ̄x

ωK
, γy =

γ̄y

ωK
c =
ϵλ

ωK
and δ =

δ̄

ωK
.
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Thus, our optimal control problem can be written in the following dimensionless form



min J[µµµ] =
∫ T

0

(
c1Rx + c2Ry + d1

1
2µ1(t)2 + d2

1
2µ2(t)2

)
dt

dS x

dτ
= γx(S x + Rx)

(
S y + Ry + F

S y + Ry + F + κ

) [
1 − (S x + Rx + S y + Ry)

]
− (1 − µ1(t))qcS x − (1 − q)cS x − δS x

dRx

dτ
= aγx(S x + Rx)

(
S y + Ry + F

S y + Ry + F + κ

) [
1 − (S x + Rx + S y + Ry)

]
+ (1 − µ1(t))qcS x − δRx

dS y

dτ
= γy(S y + Ry)

(
β(S x + Rx) + F
β(S x + Rx) + F + κ

) [
1 − (S x + Rx + S y + Ry)

]
− (1 − µ2(t))qcS y − (1 − q)cS y − δS y

dRy

dτ
= aγy(S y + Ry)

(
β(S x + Rx) + F
β(S x + Rx) + F + κ

) [
1 − (S x + Rx + S y + Ry)

]
+ (1 − µ2(t))qcS y − δRy

X(0) = (S x0 ,Rx0 .S y0 .Ry0) = X0

X(T ) = (S x f ,Rx f .S y f .Ry f ) = X f .
(2.2)

2.1. Theoretical results

Let us set as X = (S x,Rx, S y,Ry) the vector of states, Z = (z1, z2, z3, z4) the vector of adjoint variables
and f0(t,X, µµµ) the integrand of the cost function. We will use the Pontryagin principle for bounded
controls to compute the optimal control of Problem (2.2). First of all, following the classical results
given in the references [12,13] it is easy to verify the existence of optimal controls (it is enough to check
that the properties (i)–(iii) of Section 3.4 from reference [14] are fulfilled). Now, the Hamiltonian H
associated with the Problem (2.2) is defined by H(t,X(t), µ(t),Z(t)) = f0(t,X, µ) + Z(t) · f (X, t, µ), that
is

H = c1Rx + c2Ry + d1
1
2
µ2

1 + d2
1
2
µ2

2+

z1

[
γx(S x + Rx)

(
S y + Ry + F

S y + Ry + F + κ

) [
1 − (S x + Rx + S y + Ry)

]
− (1 − µ1)qcS x − (1 − q)cS x − δS x

]
+

z2

[
aγx(S x + Rx)

(
S y + Ry + F

S y + Ry + F + κ

) [
1 − (S x + Rx + S y + Ry)

]
+ (1 − µ1)qcS x − δRx

]
+

z3

[
γy(S y + Ry)

(
β(S x + Rx) + F
β(S x + Rx) + F + κ

) [
1 − (S x + Rx + S y + Ry)

]
− (1 − µ2)qcS y − (1 − q)cS y − δS y

]
+

z4

[
aγy(S y + Ry)

(
β(S x + Rx) + F
β(S x + Rx) + F + κ

) [
1 − (S x + Rx + S y + Ry)

]
+ (1 − µ2)qcS y − δRy

]
. (2.3)

The adjoint system and state equations define the optimal system. The following theorem summarizes
the main result of this section.
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Theorem 2.1. There is an optimal solution X∗(t) that minimize J[µµµ] in [0,T ]. Moreover, there exits a
vector of adjoint variables Z such that

ż1 =γx

(
(S y + Ry + F)(−1 + 2S x + S y + 2Rx + Ry)

(S y + Ry + F + κ)

)
(z1 + az2)c

+ γy

(
F2 + Fκ − βκ + β(βR2

x + κRy + 2Rx(F + κ + βS x)
(β(S x + Rx) + F + κ)2

)
(z3 + az4)

+ γy

(
S x(2(F + κ) + βS x) + κS y)(S y + Ry)

(β(S x + Rx) + F + κ)2

)
(z3 + az4)

+ cqµ1(z2 − z1) − c(qz2 − z1) + δz1

ż2 =γx

(
(S y + Ry + F)(−1 + 2S x + S y + 2Rx + Ry)

(S y + Ry + F + κ)

)
(z1 + az2)

+ γy

(
F2 + Fκ − βκ + β(βR2

x + κRy + 2Rx(F + κ + βS x)
(β(S x + Rx) + F + κ)2

)
(z3 + az4)

+ γy

(
S x(2(F + κ) + βS x) + κS y)(S y + Ry)

(β(S x + Rx) + F + κ)2

)
(z3 + az4)

− c1 + δz2

ż3 =γy

(
(β(S x + Rx) + F)(−1 + S x + 2S y + Rx + 2Ry)

(β(S x + Rx) + F + κ)

)
(z3 + az4)

+ γx

F2 + (−1 + F)κ + κRx + R2
y + κS x + 2(F + κ)S y

(S y + Ry + F + κ)2

 (z1 + az2)

+ γx

S 2
y + 2Ry(F + κ + S y)(S y + Ry)

(S y + Ry + F + κ)2

 (z1 + az2)

+ cqµ2(z4 − z3) − c(qz4 − z3) + δz3

ż4 =γy

(
(β(S x + Rx) + F)(−1 + S x + 2S y + Rx + 2Ry)

(β(S x + Rx) + F + κ)

)
(z3 + az4)
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+ γx

F2 + (−1 + F)κ + κRx + R2
y + κS x + 2(F + κ)S y

(S y + Ry + F + κ)2

 (z1 + az2)

+ γx

S 2
y + 2Ry(F + κ + S y)(S y + Ry)

(S y + Ry + F + κ)2

 (z1 + az2)

− c2 + δz4, (2.4)

with transversality condition zi(t) = 0 for i = 1, 2, 3, 4 which satisfies:

µ∗1 =
qcS x(z2 − z1)

d1

µ∗2 =
qcS y(z4 − z3)

d2
.

(2.5)

To see a detailed proof of the previous theorem see Appendix A.

3. Experimental data

We used Escherichia coli strains from the Keio collection containing either ∆ilvA or ∆tyrA
deletions [15], each strain was transformed with the plasmid pBGT-1 [16] carrying blaTEM-1 gene
that confers resistance to ampicillin and a GFP fluorescent marker inducible with arabinose, pBGT-1
is a non-conjugative plasmid with around 20 copies in average per cell. Strains were grown in LB
medium (Lysogeny Broth) with 40 µg/mL of kanamycin and 100 µg/mL of ampicillin (for those with
plasmid) at 30◦C for 16 hours after incubation strains were washed with M9 salts and re-suspended in
M9 minimal medium supplemented with glucose.

To measure susceptibility to the antimicrobial, we performed dose-response experiments in 96-well
plates. The ampicillin concentrations used were 0, 6, 15, 36, 89, 220, 540, 1326, 3257 and 8000 µg/mL,
each well was inoculated with 20 µL of clean cells for a total of 200 µL per well and incubated in an
ELx808 plate reader at 30◦C with continuous shaking, OD630 was measured every 20 minutes for 24
hours, data not shown.

Co-cultures were performed in 96-well plates with 180 µL of LB media with 6 µg/mL of ampicillin,
and 20 µL of cells with 80% of susceptible cells (∆ilvA or ∆tyrA) and 20% of resistant cells (∆tyrA-
pBGT or ∆ilvA-pBGT). Two equal plates were grown in a ELx808 plate reader at 30◦C with eight
replicates for condition in each plate, OD630 was measured every 20 minutes for 24 hours, one plate
was used for growth rate analysis, and the second one was used to measure colony forming units
(CFU), relative abundance and cell viability, every 2 hours we collected one of the replicates of the
second plate and divided the sample, as we had to open the well, this procedure was destructive to the
sample, to have sampled every 2 hours, we completely used one of the plates, the other one was kept
in the plate reader.

For relative abundance and cell viability, one replicate was collected every 2 hours and
supplemented with 20 µL of arabinose (0.5%), incubated at 30◦C for 4 hours, and stored at 4°C for
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one day to induce GFP fluorescence. After storage, 100 µL of each sample was frozen, 5 µL from a
1:1000 dilution were incubated for 2 days at 30◦C in selective agar with M9 minimal media,
supplemented with 10.9 mg/L isoleucine and 7.15 mg/L tyrosine and 0.5% of arabinose for CFU
counting, the rest of the sample was used to measured abundance of resistant cells using a CytoFLEX
S cytometer (20,000 events per sample).

For experimental data, we performed 16 replicas in total, 8 were kept at a plate reader to measure OD
shown in Figure 1A, the other eight replicas were used to measured abundance of cells and viability,
the experimental data measured in the flux cytometer every 2 hours splitting resistance and susceptible
bacteria are shown in Figure 1B.
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Figure 1. Experimental data from co-cultures of cells with 80% of susceptible cells (∆ilvA or
∆tyrA) and 20% of resistant cells (∆tyrA-pBGT or ∆ilvA-pBGT) grown in LB media with 6
µg/ml of ampicillin (low concentration). In A we showed the optical density of eight replicas
of the co-culture in 24 hours, solid line represent the average of the 8 replicas and shadows
showed standard error for each data point, measurements taken every 20 minutes. B shows
the frequency of susceptible and resistant bacteria, dots represents data point every 2 hours
measured in the flux cytometer, all data processed with Matlab.

4. Numerical simulations

In order to performed the optimal control numerical experiments, we used the Backward-Forward
Sweep Method described on Lenhart et al. [13] in Matlab interface, and also we used our experimental
data given in Section 3 and some data collected in the reference [1], from two non-mating budding
yeast strains of Saccharomyces cerevisiae that were designed to be deficient in the biosynthesis of
an essential amino acid and also to overproduce the amino acid required by the ir partner. In such
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laboratory experiments, the auxotrophic strain of leucine (leu-) overproduces tryptophan, while the
auxotrophic strain of tryptophan (trp-) overproduces leucine. According to reference [1], these strains
have previously been shown to form a cross-feeding mutualism when grown on solid agar, with each
strain losing the amino acid needed by its partner. We assume that the carrying capacity K = 0.1 × 106

and the temporal value is ω = 0.3 × 10−5. The values of the other parameters taken in this study are
given in Table 2.

Table 2. Values of the parameters involved in Models (2.1) and (2.2). Some of them were
taken from the reference [1], whereas other from our experimental data.

Parameter Dimensional model Dimensionless model
Growth rate of bacteria X 0.3 1
Growth rate of bacteria Y 0.288 0.96
Asymmetry constant 2 2
Dilution rate 0.15 0.5
Monod constant 12,000 0.12
Cost of resistance 0.01 0.01
Antimicrobial concentration λ = 10

c = 16.67
Antimicrobial efficacy ϵ = 0.5

In these experiments we consider that the amount of supplementary amino acids and the proportion
of mutations are variables. The mutation portion (q) values used were 0.1, 0.5 and 0.9, parameters for
the amount of amino acids used are shown in Table 3.

Table 3. Values for the amount of supplementary amino acids.

Dimensional model (F̄) Dimensionless model (F)
1000 0.01
5000 0.05
150,000 1.5

In Figure 2 we show some numerical experiments of sensitive bacteria (X and Y) of Model (2.2),
when there are no antimicrobials, for different values of F. From this figure, we can see that when
F is small enough (F = 0.01) there is the extinction of both strains. When F grows (F = 0.05)
there is cooperation or mutualism between both strains, whereas, for large values of F (1.5), there
is competition between both strains, being evident in the increase in the strain X and the extinction of
the strain Y .
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Figure 2. Simulations of sensitive strains X and Y of Model (2.2), when there are no
antimicrobials, for different values of supplementary amino acids (F). When F is small,
there is extinction, when F grows, there is mutualism, whereas, for large values of F, there
is competition.

In Figure 3, we supply antimicrobials in our system, we keep fixed the value of F = 0.01 (where the
is the extinction of both bacteria), and vary the values of the mutation proportion q (0.1, 0.5 and 0.9).
In this case, we can see that the sensitive strains tend to zero regardless of the value of q, whereas for
large values of q, the resistant bacteria of both types (X and Y) increase in density at the beginning of
the time.

0 5 10 15 20 25 30 35 40 45 50

0

5

10

S
e
n

s
it

iv
e
 b

a
c
te

r
ia

 X

10
-4

0 5 10 15 20 25 30 35 40 45 50

Time

0

5

10

15

20

R
e
s
is

ta
n

t 
b

a
c
te

r
ia

 X

10
-4

q=0.1

q=0.5

q=0.9

(a) Strain X

0 5 10 15 20 25 30 35 40 45 50

0

5

10

S
e
n

s
it

iv
e
 b

a
c
te

r
ia

 Y

10
-4

0 5 10 15 20 25 30 35 40 45 50

Time

0

5

10

15

20

R
e
s
is

ta
n

t 
b

a
c
te

r
ia

 Y

10
-4

(b) Strain Y

Figure 3. Simulations of the state equations of Model (2.2) for F = 0.01 and different values
of q. Here, the sensitive strains tend to zero regardless of the value of q, whereas for large
values of q, the resistant bacteria of both phenotypes increase in density at the beginning of
the time.

A different scenario occurs for F = 0.05 (where there is cooperation between both strains), which
can be evident in Figure 4. Here we can see that both strains become extinct only for small values of q
(q = 0.5 or less), while if q increases (0.9), they coexist in density over time.

Mathematical Biosciences and Engineering Volume 19, Issue 7, 6860–6882.



6870

0 5 10 15 20 25 30 35 40 45 50
-2

0

2

4

6

8

S
e
n

s
it

iv
e
 b

a
c
te

ri
a
 X

10
-4

0 5 10 15 20 25 30 35 40 45 50

Time

0

0.5

1

1.5

R
e
s
is

ta
n

t 
b

a
c
te

ri
a
 X

10
-3

q=0.1

q=0.5

(a) Strain X for q =0.1, 05

0 5 10 15 20 25 30 35 40 45 50

-2

0

2

4

6

8

S
e
n

s
it

iv
e
 b

a
c
te

r
ia

 Y

10
-4

0 5 10 15 20 25 30 35 40 45 50

Time

0

5

10

15

R
e
s
is

ta
n

t 
b

a
c
te

r
ia

 Y

10
-4

(b) Strain Y for q =0.1, 05

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

S
e
n

s
it

iv
e
 b

a
c
te

ri
a
 X

10
-3

q=09

0 5 10 15 20 25 30 35 40 45 50

Time

0

0.05

0.1

0.15

0.2

0.25

R
e
s
is

ta
n

t 
b

a
c
te

ri
a
 X

(c) Strain X for q =0.9

0 5 10 15 20 25 30 35 40 45 50

0

2

4

6

S
e
n

s
it

iv
e
 b

a
c
te

r
ia

 Y

10
-3

0 5 10 15 20 25 30 35 40 45 50

Time

0

0.1

0.2

0.3

0.4

R
e
s
is

ta
n

t 
b

a
c
te

r
ia

 Y

(d) Strain Y for q =0.9

Figure 4. Simulations of the state equations of Model (2.2) for F = 0.05 and different values
of q. Here, both strains become extinct only for small values of q (q = 0.5 or less), while if q
increases, they coexist in density over time.

Finally, for F = 1.5 (see Figure 5), we can see that the strain Y decreases no matter what value of q
is taken. On the other hand, the strain X stabilizes at increasing densities as the value of q changes.
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Figure 5. Simulations of the state equations of Model (2.2) for F = 1.5 and different values
of q. The strain Y decreases no matter what value of q is taken. The strain X stabilizes at
increasing densities as the value of q changes.

To observe the effect of controlling the antimicrobial resistance in the system where the strains X
and Y interact in an environment with antimicrobials, we use the Forward-Backward Sweep Method
proposed by Lenhart and Workman [13]. The values of the parameters associated with Problem (2.2)
are shown in Table 4. We only introduce the control variables for the cases where there is a high
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proportion of mutation (q = 0.9) and for the mutualism (F = 0.05) and competition (F = 1.5). In
Figure 6 we show the results of control when F = 0.05 and q = 0.9 (where there is cooperation). In
this case, with controls, both populations of bacteria are controlled immediately, maintaining the two
controls at their maximum effort during the first 40 days and then rapidly decreasing to zero during
the rest of the control campaign. In Figure 8 we show the results when F = 1.5 and q = 0.9 (when
there is competition). Here, it can be seen that only the strain X is controlled from the first day of the
campaign. But the strain Y increases with the control. The effort is only made for the first control at
100%, while the second control remains at zero throughout the campaign.
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Figure 6. Simulations of the Optimal Control (2.2) under mutualism (F = 0.05 and q = 0.9).
With controls, both bacteria are controlled immediately.

Table 4. Values of the parameters associated with the optimal control problem (2.2).

Parameter Value

Weights
d1

d2

0.0001
0.0001

Social costs
c1

c2

0.001
0.001
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Figure 7. Simulations of the Optimal Control (2.2) under competition (F = 1.5 and q = 0.9).
Only the strain X is controlled from the first day of the campaign. But the strain Y increases
with the control.

0 5 10 15 20 25 30 35 40 45 50
0

0.002

0.004

0.006

0.008

0.01

S
e

n
s

it
iv

e
 b

a
c

te
ri

a
 X 1

=
2
=0

1
, 

2
 0

0 5 10 15 20 25 30 35 40 45 50

Time

0

0.1

0.2

0.3

0.4

0.5

R
e

s
is

ta
n

t 
b

a
c

te
ri

a
 X

(a) Strain X

0 5 10 15 20 25 30 35 40 45 50

0

0.005

0.01

0.015

S
e
n

s
it

iv
e
 b

a
c
t
e
r
ia

 Y

0 5 10 15 20 25 30 35 40 45 50

Time

0

0.2

0.4

0.6

0.8

R
e
s
is

t
a
n

t
 b

a
c
t
e
r
ia

 Y

(b) Strain Y

0 5 10 15 20 25 30 35 40 45 50

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

n
tr

o
ls

 
1
 a

n
d

 
2

1

2

(c) Controls

Figure 8. Simulations of the Optimal Control (2.2) under competition (F = 1.5 and q = 0.9).
Only the strain X is controlled from the first day of the campaign. But the strain Y increases
with the control.
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5. Parameter estimation

For the parameter estimation of Model (2.1) we used the experimental data described in Section 3.
To simplify notation, we will drop the bar symbol on the parameters from here. The experimental data
is shown in Figure 9. Since the data size is very low, i.e., we have just six point for each time series
of type of bacteria, we have implemented a re-sample with an interpolation for the values of odd hours
in order to increase the data size. Specifically, we used a rich media called LB, and low ampicillin
concentration. The values are described in Table 5.
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Figure 9. Experimental data: a rich media (LB) and low ampicillin concentration.

The fitting curve or estimation of the parameters of a model is considered an inverse problem. Some
references of works using Bayesian inference are available in references [17–21]. Let F : Rm → Rs×k,
denoted by F(θ) be the forward problem, where θ are the parameters of Model (2.1) to estimate, m
the number of parameter to estimate, and k the number of state variables. The inverse problem is
formulated as a standard optimization problem

min
θ∈Rm
∥F(θ) − yobs∥

2, (5.1)

with yobs. Given yobs = (Ĩ, Ã), which correspond to strain tyrA- (X) and strain ilvA- (Y) are divided
into susceptible and resistant bacteria (Xs, Xr and Ys, Yr, respectively), the conditional probability
distribution π(θ|yobs), called the posterior distribution of θ is given by the Bayes’ theorem:

π(θ|yobs) ∝ π(yobs|θ)π(θ). (5.2)
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All the available information regarding the unknown parameter θ is codified into the prior
distribution π(θ), which specifies our belief in a parameter before observing the data. All the available
information regarding the way of how was obtained the measured data is codified into the likelihood
distribution π(yobs|θ). This likelihood can be seen as an objective or cost function, as it punishes
deviations of the model from the data. A Poisson distribution, P(y|µ), with respect to the time, is
typically used to account for the discrete nature of these counts, where µ is the mean of the random
variable y, i.e., E[Y] = µ. We assume independent Poisson distributed noise η, i.e., all dependency in
the data is codified into the model (2.1). In other words, the positive definite noise covariance matrix
η is assumed to be diagonal. The posterior distribution π(θ|yobs) given by (5.2) does not have an
analytical closed form since the likelihood function, which depends on the solution of the non-linear
model (2.1), does not have an explicit solution. Then, we explore the posterior distribution using the
Stan Statistics package [22]. We have used the Automatic Differentiation Variational Inference
method (ADVI), which is based on the automatic variational inference algorithm. Specifically, we
have used the Full-Rank submethod of ADVI. We have used the interface in Python (PyStan) [22], for
more details see this Github link. Table 5 shows the posterior mean, quantiles of all estimated
parameters of model (2.1). Table 6 shows the prior distributions summary of the estimated parameters
of Model (2.1) using the experiment data set. Gamma distributions were used for parameters κ, γx, γy

and q. Uniform distribution were used for the initial conditions S x0 ,Rx0 , S y0 ,Ry0 . Figure 11 shows the
joint probability density distributions of the estimated parameters within 95% (HPD) using the
experimental data. The blue lines represent the medians. Figure 12 shows Model fit for sensitive and
resistant bacteria of Model (2.1) using the experiment data. Blue and red dot points represent strain
ilvA (X) data, i.e., the susceptible and resistant bacteria, called S x and Rx, respectively. Orange and
purple solid lines represent the median of posterior distribution of the sensitive and resistant bacteria
(ilvA-pBGT (X), respectively. Shaded area represent the 95% probability bands for the expected value
of sensitive (orange line), resistant bacteria (blue line). Figure 13 shows Model fit for sensitive and
resistant bacteria of the model (2.1) using the experiment data. Blue and red dot points represent
strain tyrA (Y) data, i.e., the susceptible and resistant bacteria, called S y and Ry, respectively. Orange
and purple solid lines represent the median of the posterior distribution of the sensitive and resistant
bacteria strain tyrA-pBGT (Y), respectively. Shaded area represent the 95% probability bands for the
expected value of sensitive (orange line), resistant bacteria (blue line).

Table 5. Posterior mean and quantiles of all the estimated parameters of Model (2.1) using
the experimental data described in Section 3.

Parameter Mean Std Min 25% 50% 75%
κ 6332296.7333 107726.2128 5970880.0000 6257630.0000 6332720.0000 6407300.0000
γx 7.4709 0.0481 7.3150 7.4371 7.4713 7.5055
γx 5.9583 0.0909 5.6493 5.9035 5.9557 6.0205
q 0.0199 0.0008 0.0175 0.0194 0.0199 0.0205
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Table 6. Prior distributions summary of the estimated parameters of model (2.1) using the
experiment data set. Gamma distributions were used for parameters κ, γx, γy and q. Uniform
distribution were used for the initial conditions S x0 ,Rx0 , S y0 ,Ry0 .

Parameter Support Prior distribution
κ [5 × 103, 5 × 107] Gamma, a = 2.5, b = 1
γx [0, 10] Gamma, a = 2.5, b = 1
γy [0, 10] Gamma, a = 2.5, b = 1
q [0, 0.2] Gamma, a = 2.5, b = 1
S x0 [1 × 105, 5 × 107] Uniform
Rx0 [1 × 105, 5 × 107] Uniform
S y0 [1 × 105, 5 × 107] Uniform
Ry0 [1 × 105, 5 × 107] Uniform
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Figure 10. Credible intervals of the parameters of the model (2.1) within 95% Highest-
Posterior Density (HPD).
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(HPD) using the experimental data. The blue lines represent the medians.
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Figure 12. Model fit for sensitive and resistant bacteria of Model (2.1) using the experiment
data. Blue and red dot points represent strain ilvA (X) data, i.e., the susceptible and resistant
bacteria, called S x and Rx, respectively. Orange and purple solid lines represent the median of
the posterior distribution of the sensitive and resistant bacteria (ilvA-pBGT (X), respectively.
Shaded area represent the 95% probability bands for the expected value of sensitive (orange
line), resistant bacteria (blue line).
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Figure 13. Model fit for sensitive and resistant bacteria of the model (2.1) using the
experiment data. Blue and red dot points represent strain tyrA (Y) data, i.e., the susceptible
and resistant bacteria, called S y and Ry, respectively. Orange and purple solid lines represent
the median of the posterior distribution of the sensitive and resistant bacteria strain tyrA-
pBGT (Y), respectively. Shaded area represent the 95% probability bands for the expected
value of sensitive (orange line), resistant bacteria (blue line).
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6. Discussion

In this work, we attempted to explain the ecological interactions between cross-feeding bacteria in
strains that supply an essential amino acid for their mutualistic partner when they are exposed to
antimicrobials. Although from the ecological point of view, the microbial interaction can occur
between multiple bacteria, for illustration and ease of handling mathematical equations, we
considered the interaction between two bacteria. We formulated a mathematical model using ODEs
assuming that both strains interact in an environment with different resources availability. We
assumed both strains are divided into susceptible and resistant. After that, we estimated the most
important parameters of the ODEs model using Bayesian Inference.

To validate our theoretical results with numerical experiments, we used our experimental data and
other data available in the literature. More specifically, we used Escherichia coli strains from the
Keio collection containing either ∆ilvA or ∆tyrA deletions, where each strain was transformed with a
plasmid that confers resistance to ampicillin. For some parameters, we also used data from Hoek et al.
in [1] of auxotrophic consortia of two microbes competing for the same resources.

The theoretical and numerical results showed that when the strains are free of the antimicrobial,
depending on the amount of amino acids freely available in the environment, the strains can exhibit
extinction, mutualism, or competition, the availability of resources modulates the behavior of both
species. In contrast, if the strains are exposed to antimicrobials, the population dynamics depends on
the proportion of bacteria that presents resistance to the antimicrobial, finding that for low levels of
the resource, the two species become extinct, whereas, for high levels of the resource, competition
between both strains is given.

The optimal control results showed that both strains (sensitive and resistant) are immediately
controlled under cooperation, while under competition, only the density of one of the strains
decreases, whereas its mutualist partner with control increases. Finally, the growth rates of both
strains (γ̄x and γ̄y), the Monod constant (κ̄) the mutation proportion (q) and the initial conditions of
Model (2.1) were estimated using Bayesian Inference and the data set described in Section 3. From
Figures 12 and 13, we could observe that the fitting is not entirely accurate. This could be due to the
lack of data and/or also because Model (2.1) should be adjusted.

The results obtained with this study corroborated that the antimicrobial resistance phenomenon is a
complex problem worldwide that the scientific community has extensively studied. This problem is
not only related to biological aspects of microorganisms but also other aspects, including
socioeconomic and governance factors of countries [23]. Even, some authors claim that a novel
approach to antibiotic discovery would be based on the analysis of microbial consortia in their
ecological context (see [24, 25]). Others discuss the potential of microbial interactions to target and
improve microbial dysbiosis as a strategy for the prevention or treatment of cancer [26]. Additionally,
some of them affirm that exposure to sublethal concentrations of antimicrobials can indeed alter
microbial metabolism and even change the behavior in beneficial ways, triggering reactions such as
fleeing or hiding within the protective environment of a microbial aggregate [27].

Therefore, research questions are left open. A fundamental challenge will be to generate more
laboratory experiments to obtain more data to allow better adjustments to the model, and probably
adjust the model assuming additional hypotheses.
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Appendix A. Proof of Theorem 2.1

By the Pontryagin principle, we can guarantee the existence of adjoint variables zi, i = 1, 2, 3, 4 that
satisfy:

żi =
dzi

dt
= −

∂H
∂xi

zi(T ) = 0, i = 1, 2, 3, 4
H(X(t), µµµ∗(t),Z(t), t) = max

µi∈U
H(X(t), µµµ(t),Z(t), t).

From above, the adjoint system can be written as:

ż1 = −
∂H
∂S x
, z1(T ) = 0 ż3 = −

∂H
∂S y
, z3(T ) = 0

ż2 = −
∂H
∂Rx
, z2(T ) = 0 ż4 = −

∂H
∂Ry
, z4(T ) = 0.

By doing the respective calculations in the previous equations, we obtain System (2.4). Now, the
optimality condition for the Hamiltonian is ∂H/∂µµµ∗, or equivalently:

dH
dµ1
= qcS x(z1 − z2) + d1µ1

dH
dµ2
= qcS y(z3 − z4) + d2µ2.

From the above, we obtain the characterization given on (2.5). In consequence, µ∗1 satisfies:

u∗1 =


1 i f

qcS x(z2 − z1)
d1

> 0
qcS x(z2 − z1)

d1
i f

qcS x(z2 − z1)
d1

≤ 1

0 i f
qcS x(z2 − z1)

d1
< 0,

or equivalently:

µ∗1 = min
{

max
{

0,
qcS x(z2 − z1)

d1

}
, 1

}
.

Similar calculations can be done for µ2, and then we obtain the characterization given on Eq (2.5)
which completes the proof.
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