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Abstract: A significant amount of clinical research is observational by nature and derived from med-
ical records, clinical trials, and large-scale registries. While there is no substitute for randomized, con-
trolled experimentation, such experiments or trials are often costly, time consuming, and even ethically
or practically impossible to execute. Combining classical regression and structural equation model-
ing with matching techniques can leverage the value of observational data. Nevertheless, identifying
variables of greatest interest in high-dimensional data is frequently challenging, even with application
of classical dimensionality reduction and/or propensity scoring techniques. Here, we demonstrate that
projecting high-dimensional medical data onto a lower-dimensional manifold using deep autoencoders
and post-hoc generation of treatment/control cohorts based on proximity in the lower-dimensional
space results in better matching of confounding variables compared to classical propensity score match-
ing (PSM) in the original high-dimensional space (P < 0.0001) and performs similarly to PSM models
constructed by experts with prior knowledge of the underlying pathology when evaluated on predicting
risk ratios from real-world clinical data. Thus, in cases when the underlying problem is poorly under-
stood and the data is high-dimensional in nature, matching in the autoencoder latent space might be of
particular benefit.
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1. Introduction

Controlled experimentation is one of two fundamental methods of scientific inquiry due to its ability
to identify causal mechanisms and to reduce the impact of confounding factors on the final outcome.
For these reasons, randomized controlled trials (RCTs) are widely regarded as the gold standard for
inquiry in the medical sciences [1]. However, the majority of medical research is observational since
this is the most accessible, and often only, means of gathering information. Some studies cannot
be randomized for either ethical or pragmatic considerations, which encourages further reliance on
observational data for medical decision-making. In other scenarios involving environmental exposures
or trauma, the data is necessarily retrospective and often riddled with confounding factors [2].

Some research suggests that observational studies could achieve outcomes nearly equivalent to con-
trolled experimentation if analyzed in a way which accounts for confounders and mitigates their impact
(causal inference) [3, 4]. The most common techniques for controlling for confounding factors include
multivariable regression analyses and post-hoc matching of treated and control groups, which are often
combined in the form of matching propensity scores and performing multivariable regression to esti-
mate average treatment effect on the treated (ATT) [4]. Methodological choices are often made based
on the dimensionality of the data and the scientific question. Notably, techniques like stratification,
direct matching, and propensity scoring become intractable with increasing dimensionality. Despite
this limitation, the ease of implementation has lead to propensity score matching (PSM) becoming one
of the most popular methods for analyzing observational data across a range of fields [5, 6].

We hypothesized that embedding high-dimensional input into a lower-dimensional space using deep
autoencoders and matching cohorts based on proximity in the lower-dimensional space would result in
better matching of confounding variables compared to PSM, which matches cohorts based on propen-
sity scores in the high-dimensional space.

Autoencoders (AEs) are a type of unsupervised machine learning model designed to reconstruct
their inputs from a reduced representation and, in doing so, learn a lower dimensional manifold of the
data [7]. This technique has become increasingly useful with the advent of deep neural networks and
deep AEs that are capable of capturing complex, nonlinear relationships [8]. The basic architecture
of an AE consists of: 1) an encoder, which learns relevant features of the input data, 2) a bottleneck,
which embeds the features into a compressed (“latent”) representation, and 3) a decoder, which re-
constructs the original input based on the compressed representation. Key considerations in designing
deep AE architectures include setting the capacity of the encoder and decoder, and setting the degree
of compression enforced by the bottleneck.

We utilized a deep autoencoder of fixed depth and dimension across all our experiments in order to
maintain consistency (see Figure S1). Additionally, to address the issue of model interpretability and
to identify whether or not the autoencoder learned semantically meaningful information, we visualized
the latent space, using Uniform Manifold Approximation and Projection (UMAP) and t-Distributed
Stochastic Neighbor Embedding (t-SNE) to create nonlinear projections onto a 2D manifold [9, 7].
UMAP is an algorithm for dimensionality reduction based on principles in topological data analysis
and Riemannian geometry that works by generating a fuzzy topological representation of the data in
a high dimensional space and finding a lower dimensional one that matches that as best as possible.
t-SNE is a similarly nonlinear dimensionality reduction technique that maintains data similarity in
the higher dimensional space when mapping to the lower dimensional manifold by minimizing the
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Kullback-Leibler divergence between the higher and lower dimensional distributions.
More broadly, there is increasing interest in developing deep learning techniques for causal infer-

ence [10, 11, 12, 13]. In a related work, Johansson et al. introduced a novel balancing neural network,
and demonstrated an improved performance on subsequent regression with weighted features [12].
Other deep learning methods generally rely on a combination of representation learning, feature bal-
ancing, and in some cases directly optimizing for average treatment effect estimation [10, 12, 13].

1.1. Contribution

We present a novel deep learning approach for cohort matching, latent space cohort matching,
which matches patients based on feature vector similarity in the low-dimensional latent space learned
by deep autoencoders. In contrast to the current standard of propensity score matching, latent space co-
hort matching is computationally tractable in the high-dimensional setting and is less easily distracted
by uninformative features. Our approach using machine learning to construct the latent space has the
advantage over classical dimensionality reduction techniques in being able to capture complex, nonlin-
ear relationships in high-dimensional data. While other deep learning approaches for causal inference
yield encouraging results [10, 11, 12, 13], they tend to be complicated and are neither practically im-
plemented nor empirically validated on real world data. In contrast, we present a straightforward au-
toencoder implementation and empirically validate our latent-space matching algorithm on synthetic
and real-world clinical datasets. We thus contribute a practical tool for estimating the causal effect
of treatment in real-world high-dimensional observational data. Indeed, our results show that the non-
isometric, non-linear embedding generated by the straightforward application of AEs—without the use
of novel neural network architectures, loss functions, or regularization strategies—is in itself a good
starting point for cohort matching, which we attribute to the fact that AEs learn a representation of the
underlying datasets’ density, helping to make latent space matching on a lower dimensional manifold
a successful technique [14].

2. Materials and methods

2.1. Overview

Algorithm performance was benchmarked on 48 synthetically generated high-dimensional datasets
with a known mixture of informative/redundant/random features. Performance was assessed by com-
paring the number of relevant input features that were matched between the algorithm-derived treat-
ment/control cohorts. While our DeepMatch algorithm (DM) does not require pre-selection of features
because it reduces input dimensionality by design, PSM becomes computationally intractable in high-
dimensional settings and thus requires pre-selection of features in order to perform well. Consequently,
we include in our analysis PSM performance when the dimension of the input data is reduced, either by
randomly selecting a limited number of features or by selecting subsets of “expertly-chosen” features
(informative only, informative + redundant).

Each experiment was composed of the following elements: cohort generation (with and without
intervention), matching with random sampling 500 times as a control, matching with a series of PSM
experiments with a variable number of features used for propensity-score generation (repeated 500
times to adequately sample the feature space), and matching based on features in the autoencoder
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latent space (DeepMatch).
Features were considered to have matched if the differences between treatment/control cohorts were

not statistically significant (P >0.05) by either a t-test for ordinal data or chi-square test for categorical
data.

Additionally, we leveraged publicly available data in order to extract three suitable observational
datasets for assessing algorithm performance on real-world clinical data (Figure 1A,B). Algorithm
performance was assessed by comparing the algorithm-derived risk ratios to the ground truth ATT.
When available (2/3 datasets), the ground truth estimate of ATT was derived from RCTs conducted
on similar populations; in the dataset with no available RCTs, the ground truth estimate of ATT was
derived from the odds ratios reported by multiple large registry studies. For each real-world clinical
dataset, we compared DM to 1) PSM with pre-selected, expert-driven features and 2) to PSM with a
curated set of features including confounder variables that PSM needed to account for when matching
treatment/control cohorts (Table S4).

2.2. Synthetic datasets

We generated 48 unique synthetic datasets to benchmark DM and PSM performance. Given that
features in medical datasets can have variable range in values and be either categorical (e.g., presence
or stage of hypertension) or continuous (e.g., blood pressure reading), half of these datasets treated
features as inherently categorical and the other half of the datasets used ordinal features. Each of
the 24 datasets in each arm was different in the maximum range of values each feature could take,
which ranged from 2 (i.e., binary) to 25 (i.e., 25 classes). Varying the range was particularly useful for
assessing the impact that the number of classes of a feature can have on matching performance, which
can be a limiting factor for PSM.

Each synthetic dataset consisted of 100 k samples. Assignment to the intervention or control group
(a binary event) was predicated on a set of 500 features. In order to emulate how an instrumental
variable may appear relative to its causal and confounding factors in real-world medical data, we
designed three categories of features: informative (50 features), redundant (250 features), and random
(200 features). In causal inference terms, informative features serve as instrumental variables or direct
causal associations with the outcome of interest, whereas redundant features serve as confounders and
random features as noise.

Each intervention is assigned a cluster of points generated by sampling a Gaussian distribution
placed on an n-dimensional hypercube, where n is the number of informative features in the dataset.
Once sampled, these informative features are then randomly linearly combined with one another in
each cluster in order to add intracluster covariance and are placed on the vertices of the hypercube to
increase their separation. Redundant features were generated as linear combinations of informative
features, and random features were generated by sampling from a uniform distribution. Datasets were
generated using the make classification function in scikit-learn [15]. Details on the hyperparameters
for dataset generation are provided in Table S1.

2.3. Clinical datasets

In order to validate the ability of our algorithm to derive risk ratios from real-world observational
data, we utilized the patient data in the Nationwide/National Inpatient Sample (NIS) calendar years
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Figure 1a. Summary of the basic concept of “deep matching”—matching patients on the
lower dimensional manifold generated by an autoencoder (AE) as compared to propensity
score matching (PSM). PSM matches samples with similar probabilities of being assigned to
the intervention group, conditioned on the baseline characteristics. It is typically modeled as
a linear equation. AE, however, compresses samples into more compact representations, and
matches samples based on their similarity in the compact representation.
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Assessed for eligibility 
from 2012 - 2014
(n = 21,438,293)

Excluded (n = 4,156,872)
- Age ≤ 18
- Unknown elective status
- Unknown gender
- Unknown transfer status
- Unknown zipcode income quartile
- Unknown provision of ED care

Eligible Patients
(n = 17,281,421)

Atrial Fibrillation
ICD-9 Diagnosis: 427.31

(n = 3,060)

No Atrial Fibrillation
(n = 551,526)

CDT
ICD-9 Procedure: 99.10

(n = 3,678)

No CDT
(n = 145,260)

Endarterectomy
ICD-9 Procedure: 

38.120
(n = 39,604)

Stenting
ICD-9 Procedure: 

00.61, 00.63
(n = 11,524)

Matching Experiments

Random Matching
Propensity Score Matching (random)
Propensity Score Matching (expert)
DeepMatch

60:20:20 Split for
Training:Validation:Test 

for AE development 

n
train

 = 10,368,853
n

validation
 = 3,456,284

n
test

 = 3,456,285

Eff ect of Atrial Fibrillation on 
Outcomes after Stroke

Eff ect of Adjuvant 
Catheter-Directed Thrombolysis 
(CDT) for DVT Management

Comparison of 
Carotid Endarterectomy (CEA) 

with Carotid Artery Stenting (CAS)

Patients with DVT
ICD-9 Diagnosis: 

453.41, 453.42, 453.20
(n = 148,938)

Stroke Patients
CCS: 109 or 112
(n = 554,586)

Figure 1b. Summary of our overall approach to selecting medical studies based on existing
RCTs and cohorts sampled from the Nationwide Inpatient Sample (NIS) of 2012-2014.
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2012–2014. The NIS database contains de-identified information on a sample of all inpatient hospital
admissions across the United States from 1988 to 2017; it is maintained by the Agency for Health-
care Research and Quality (AHRQ) under the Healthcare Cost and Utilization Project (HCUP) for the
intended use of analyzing hospital utilization, charges, quality, and outcomes [16, 17].

NIS is designed through a systematic sampling procedure to represent all inpatient admissions in
the US, and the chosen years included 21,438,293 weighted inpatient admissions representing over 100
million admissions. While data elements contained in the NIS have changed over time, they generally
include patient demographics (e.g., age, ethnicity, income quartile by patient zip code), hospital ad-
mission (e.g., elective or emergency admission, route of admission, type of hospital being admitted to),
pre-existing and in-hospital diagnoses (as defined by the International Classification of Diseases (ICD)
system), and outcomes (e.g., patient death during hospital admission, total charge of hospitalization).

We used data from the NIS database from the start of 2012 to the third quarter of 2015 because of
the homogeneity in reporting elements during that time period. We excluded data from patients who
were pediatric (age < 18) or had missing values for the following variables: gender, zip code, income
quartile, transfer status, elective admission, admission month, whether the admission took place on a
weekend or not, and urban/rural classification scheme.

From the NIS database, we collected 3 clinical datasets suitable for investigating:

1) the effect of adjuvant catheter-directed thrombolysis (CDT) versus medical management on devel-
oping post-thrombotic syndrome for patients with deep vein thrombosis (DVT),

2) the effect of carotid endarterectomy (CEA) versus carotid artery stenting (CAS) on mortality, and

3) the effect of having atrial fibrillation as a co-morbidity on patient outcomes after ischemic stroke.

NIS Dataset #1:

Deep vein thrombosis (DVT) is a common medical condition affecting 1–2 per 1000 Americans
per year [18]. This dataset included all patients from NIS with a DVT (ICD-9 diagnosis codes 453.41,
453.42, 453.20; n = 148,938). Those who underwent catheter-directed thrombolysis (treatment group,
n = 3678) were seperated from those who did not (control group, n = 145,260) based on the pres-
ence of the ICD-9 procedure code, “99.10”. A recent RCT consisting of 700 patients with DVTs
demonstrated a relative risk of 0.89 (p = 0.83) associated with the use of CDT as compared to medical
management [18], which we take to be our “ground truth” ATT benchmark. The expert-driven PSM
model generates propensity scores based on age, sex, history of obesity (‘CM OBESE’ NIS data el-
ement), peripheral vascular disease, smoking, coagulopathy, whether it was a proximal DVT (ICD-9
diagnosis code “453.41”), a patient history of DVT (ICD-9 diagnosis code “V12.51”), and history of
anticoagulant use (ICD-9 diagnosis code “V58.61”) [18, 19].

NIS Dataset #2:

This dataset included all patients from NIS with a procedure code for carotid endarterectomy (ICD-
9 procedure code “38.120”) and carotid artery stenting (ICD-9 procedure codes “00.61” and “00.63”).
We thus obtained two cohorts of size 39,604 (CEA) and size 11,524 (CAS). Treatment results of carotid
arterial stenting have been compared to carotid endarterectomy for carotid atherosclerotic disease in
multiple studies [20], with no statistically significant difference found. The expert-driven PSM model
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generates propensity scores based on age, sex, obesity (‘CM OBESE’ NIS data element), and a history
of any of the following: hypertension, dyslipidemia, coronary artery disease, myocardial infarction,
coronary artery bypass grafting, congestive heart failure, atrial fibrillation, arrhythmia (“cardiac con-
duction disorders”), stroke, peripheral vascular disease, diabetes, and smoking [20, 21, 22].

NIS Dataset #3:

This dataset included 554,586 patients admitted with ischemic stroke (CCS code 109 or 112). Those
who had atrial fibrillation (n = 3060) were separated from those who did not (n = 551,526) based
on the presence of the diagnosis code, “427.31”. While there are no underlying RCTs, several large
registry studies have estimated ORs from 1.7–3.3 [20, 23, 24]. The expert-driven PSM model generates
propensity scores based on age, sex, history of obesity (‘CM OBESE’ NIS data element), chronic
kidney disease, coagulopathy, and CHADS-VASC score [23, 24, 25].

2.4. DeepMatch algorithm

For each dataset, a separate AE was trained using the fixed architecture discussed below and shown
in Figure S2. For training, we used a 60: 20: 20 train/valid/test dataset split in order to prevent model
overfitting.

To match patients, the newly trained AE model embeds the treatment/control cohorts into the latent
space, from which an approximate nearest neighbor tree (Annoy library [26]) on the larger cohort with
the Euclidean norm to represent the distance between neighbors is generated. The matching process,
which is inspired by the Gale-Shapley algorithm, attempts to iteratively match each point in the smaller
cohort by querying the index tree for 64 closest neighbors for each point and matching the smallest
pairwise relationships. While this algorithm fails to account for the net pairwise distance between
matched points, its current structure is more computationally tractable and ensures that the result of
this paper’s experiments are a lower bound on the potential benefits of DeepMatch.

2.5. Autoencoder implementation

We utilized a deep autoencoder of fixed depth and dimension for all experiments. The encoder
block is composed of two dense blocks, each containing a linear, fully-connected layer (256, 64), a
leaky ReLU activation layer, and a batch normalization layer. The decoder block is equivalent to the
encoder block, but in reverse. Fully-connected layers with a sigmoid activation were placed in parallel
after the decoder output to reconstruct the one-hot encoded form of each category of features (e.g.,
procedure codes, gender). See Figure S1.

We designed our synthetic datasets so that half of them treated features as inherently categorical,
while the other half treated features as inherently ordinal. Categorical variables in the AE architecture
were represented as one-hot encoded vectors, and the model was trained to minimize the binary cross
entropy loss for each feature being reconstructed. Ordinal features do not require one-hot encoding of
the features prior to model entry, which enables mean-squared error loss to be used instead.

The clinical datasets posed several challenges for the AE architecture. First, to address the spar-
sity present in the features (where patients may have a small but variable number of diagnostic codes
assigned to them), we took inspiration from collaborative filtering and natural language processing to
use embedding layers to reduce the sparse, one-hot encoded form of diagnosis codes, chronic condi-
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tions and associated body systems, procedure codes, and external cause of injury codes into a lower-
dimensional continuous vector representation that improved training efficiency. Features with a low
range of values, such as age binned into deciles, gender, income quartile of patient’s zip code, transfer
status, and elective admission, were one-hot encoded and directly concatenated with the outputs of
these embedded layers. Second, to account for the heterogeneity in data representation, we created
a custom loss function formulated as the sum of the cross-entropy loss for each category of features
except for age with the sum of the mean-square error loss of the reconstructed age: Loss(original
input, reconstructed input) = MSELoss(patient age bucket, reconstructed age bucket) + BCEWithLog-
itsLoss(patient feature value, reconstructed feature value) for feature , to age bucket. MSE loss was
used for age bucket as age decile was treated as an ordinal feature; BCE loss was used for the other
features as they were boolean-valued.

The following list of elements was used for training the autoencoder: age (“AGE”), gender (“FE-
MALE”), evidence of emergency department services on admission (“HCUP ED”), whether the pa-
tient was transferred from another facility (“TRAN IN”), whether the admission was elective or not
(“ELECTIVE”), the income quartile associated with the patient’s zip code (“ZIPINC QRTL”), all
ICD-9 diagnosis codes associated with the patient encounter (“DX1”, . . . , “DX30”), all ICD-9 ex-
ternal causes of injury codes (“ECODE1”, . . . , “ECODE4”), all ICD-9 procedure codes (“PR1”, . . . ,
“PR30”), all ICD-9 codes associated with pre-existing comorbidities (“CHRON1”, . . . , “CHRON30”),
and the body system associated with the ICD-9 code (“CHRONB1”, . . . , “CHRONB30”). All ICD-9
codes (diagnosis, procedure, and external causes of injury) were mapped from their native format (eg
“410.3”) into an ordinal list of unique elements ranging from 1 to Nunique, where Nunique is the number
of unique codes.

Each autoencoder model was trained using minibatches of 512 patients from 80% of the dataset and
allowed to learn for 100 epochs using the Adam optimizer (initial learning rate = 5e-4, ß1 = 0.9, ß2 =

0.999) coupled to a learning rate scheduler that reduced the learning rate by a factor of 10 to no more
than 1e-7 when the model loss was within 1e-3 on successive epochs.

3. Results

3.1. Synthetic datasets

We compared the performance of DM vs. PSM on matching cohorts based on 500 features (50
informative, 250 redundant, 200 random). As PSM performance degrades on high-dimensional data,
we included in our comparison PSM performance on selected subsets of features (informative only,
informative + redundant).

Without prior selection of features, DM outperforms PSM by a statistically significant average
improvement of 62 matched features (P <0.0001). When PSM is applied to the subset of informative
features only, performance is comparable between the two algorithms: DM results in a statistically
insignificant average improvement of 2.4 matched features (P = 0.84, paired sample t-test). These
results were similar both when assessing DM performance on categorical and ordinal features (Figure
2A).

In addition, we assessed the impact that the number of classes a feature can have on matching
performance. While PSM performance declined as the data range increased, we observed that DM
matching on the underlying latent space was effective for both features with smaller numbers of classes
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Figure 2. a: Prototyping of latent space matching on a synthetic dataset. A system of linear
equations was utilized to generate synthetic data consisting of feature dimensions of vary-
ing degrees of informativeness. When we compared different matching approaches without
prior selection of features, there was a difference of 62 successfully matched features when
compared to propensity score matching (P <0.0001). b: Categorical features (top row), con-
tinuous features (bottom row). Matching on the underlying latent space was effective for both
smaller numbers of low dimensional features and was increasingly effective as the number
of classes for each feature increased.
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and was increasingly effective as the range of classes increased for both categorical and continuous
features (Figure 2B).

3.2. Real-world clinical datasets

1) Evaluating the DM algorithm on the observational dataset of patient outcomes with and without
catheter directed thrombolysis treatment, we found that the cohort matched on the latent space vari-
ables had a RR of 0.89, which was similar to PSM using expertly chosen features with a RR of 0.87
(see Appendix for a list of features), despite poor performance on matching presumably clinically
relevant features (Figure 3A). Notably, in the absence of an expertly defined feature set, PSM had
increasingly worse results as further features were added to the model (Figure 3B). In addition, we
assessed the performance at 1% of the original dataset size (30 instead of 3000 admissions, ran-
domly sampled) and noted that the DM algorithm results continued to be robust with regards to the
underlying RR estimate (0.67) compared to PSM (1.99), although the underlying matching suffered
(Figure 3D).

2) Although multiple studies found no statistically significant difference between carotid artery stent-
ing and carotid endarterectomy for treating carotid atherosclerotic disease, both the expert-driven
PSM and the latent-space DM matching on our NIS dataset predict the same relative risk of 3.7.
(Figure 3E).

3) Propensity score matching, including the use of expert features, estimated the RR of having atrial
fibrillation as a co-morbidity after ischemic stroke as 0.5–0.6, suggesting a protective effect. On the
other hand, DM matching in the latent space results in a predicted RR of 1.1, which more closely
reflects the results of existing large registry studies with ORs from 1.7–3.3 [20, 23, 24].

3.3. Model interpretability

To address the issue of model interpretability, we used uniform manifold approximation and repre-
sentation (UMAP) to visualize the underlying latent space (manifold) projected against semantically
meaningful features including socioeconomic status, elective medical care, and age. Parameters used
for fitting the data for generating the embedding matrix are shown in Tables S2 and S3. We used GPU-
accelerated implementations of the [27] t-SNE and UMAP [27, 28] for these visualization studies.
Given computational limitations, only 10% of the full dataset (1,736,983 patients) was used for gener-
ating the t-SNE mapping and only 20% of the full dataset (3,410,873 patients) was used for generating
the UMAP mapping.

On visualization, the distinct clusters show that differences in these features are indeed represented
in the latent space (Figure 4). Conceivably, visualizations of this kind could be used not only to check
intuition, but also to give rise to new hypotheses about relationships between features.

4. Discussion

We present the first investigation of observational medical data within the lower dimensional space
of an autoencoder trained on a population scale dataset. This is one of the few empirical studies demon-
strating a novel approach to working with observational data compared to existing statistical techniques
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Figure 3. a: Notably, in the absence of an expertly defined feature set, PSM had increasingly worse results as further features were added to the
model. b: Using the latent space of the autoencoder we visualized the relative differences between case and control cohorts matched by different
algorithms as clinical barcodes. c: Using a cohort of 3678 admissions with DVTs who underwent CDT compared to a control group of 145,260
admissions who underwent best medical management, matching on the latent space (RR = 0.89) was similar to PSM using expertly chosen features
(RR = 0.87). d: Using random sampling, we assessed the performance at 1% of the original dataset size (30 instead of 3000 admissions) and noted
that the results continued to be robust with regards to the underlying RR estimate (0.67) compared to PSM (1.99), although the underlying matching
suffered. We investigated two additional cohorts to further test the robustness of our findings. e: We found that both PSM and latent space matching
achieved the same relative risk of 3.7 for carotid stenting (CAS) vs endarterectomy (CEA). f: Lastly, we compared 3060 admissions with ischemic
stroke to investigate the risk of inpatient stroke with and without comorbid atrial fibrillation. Several large registry studies have estimated ORs from
1.7–3.3. Propensity scores and matching methods including the use of expert features all estimated ORs from 0.5 to 0.6, suggesting a protective
effect, while latent space matching alone estimated an OR of 1.1 which more closely reflects existing observational studies.
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Figure 4. Uniform manifold approximation and representation (UMAP) projection derived
from the Nationwide Inpatient Sample (NIS). A randomly selected subset from the 2012–
2014 NIS consisting of 20% of the 21,438,293 cases was used to learn the matrix for projec-
tion of samples in the latent space into two dimensions using UMAP. All 21,438,293 samples
were then projected into a 2D plane and visualized using features of interest, with distinct
patterns emerging corresponding to several social determinants of care including elective
admission, socioeconomic status, and age.

Mathematical Biosciences and Engineering Volume 19, Issue 7, 6795–6813.
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and the only one using the latest techniques from manifold learning and deep learning. We further show
that simple visual inspection of the underlying latent space can be helpful for hypothesis generation
and understanding basic relationships in the medical data. A key concern in observational data anal-
ysis is controlling for potential confounding variables, as differences in the treatment/control cohorts
could bias the estimate of average treatment effect. We lastly show that balance of confounding vari-
ables between the treatment/control cohorts is enhanced by latent space cohort matching as compared
to propensity score matching. Compared to the conventional technique of PSM, latent space match-
ing is less easily distracted by uninformative features and performs similarly to models constructed
by experts with prior knowledge of the underlying pathology. Given the robust average treatment ef-
fect (i.e., mortality) relative to our ground truth (i.e., RCTs) despite poor matching on expert clinical
features (Figure 3A), our low-dimensional manifold may capture a more global context using nonlin-
ear relationships that may not be apparent when evaluating similarity by feature-by-feature statistical
comparisons. In cases when there is little or poor understanding of the underlying problem and the
data is high dimensional in nature, matching in the latent space might be of particular benefit to re-
searchers looking to optimize their analysis of observational data without having to resort to controlled
experimentation.

This study has several limitations worth mentioning. First, we did not perform an exhaustive search
of AE architectures or training methodologies. We opted for a simple AE architecture and simple
approach to focus attention on our underlying point—that the lower dimensional embedding of the
data contains the information necessary and sufficient for analysis. It is quite possible that a novel
AE variant that preserves the underlying dataset’s topology or distances may yield superior results.
Therefore, our present work with a simple denoising AE may in fact be a lower bound on how well
an AE can perform for the purposes of creating a latent space for subsequent matching. We have also
only assessed our results on a synthetically generated dataset and three clinical datasets. It is quite
possible that edge cases exist where this technique is not of benefit. For example, as with RCTs,
the ability of DM to accurately estimate causal effects requires careful consideration of study design:
the autoencoder should be trained and the DM matching algorithm performed only after the study
population has been well-defined, adequate time for follow-up assessed, and missing data scrutinized.
Furthermore, as treatment/control cohort randomization is simulated based on known features, there
may be unobserved patient characteristics that are not controlled for even with perfect matching of
all features recorded in the dataset. However, we are encouraged that in all of our experiments deep
matching has performed no worse than propensity score matching, and is of particular benefit for high
dimensional data.

Second, using deep learning for causal inference raises the issue of model interpretability. While
visualization techniques are helpful in addressing this issue, we must remain cognizant that projecting
the latent space down to 2D or 3D for visualization introduces warping, so that hypothesis generation
based on cluster size or inter-cluster distances are not necessarily accurate. Additionally, while we
confirmed that our model learned semantically meaningful features by projecting the latent represen-
tation against a priori relevant features, such sanity checks may not be possible when there is a poor
understanding of the relevant features to begin with.

In conclusion, in a world with increasing quantities of observational data, techniques such as latent
space matching may prove useful to scientists seeking to perform causal inference and maximize the
use of their data in cases where controlled experimentation is not possible.

Mathematical Biosciences and Engineering Volume 19, Issue 7, 6795–6813.
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Figure S1. Model architecture used to train the NIS dataset.

Table 1. Synthetic dataset generator parameters.

Parameter Value
Number of samples 100,000
Informative features 50
Redundant features 250
Random features 200
Repeated features 0
Number of classes 2
Number of clusters per class 10
Class assignment weight 0.95
Flip class factor 0.01
Random state 0

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)
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Table 2. t-SNE parameters.

Parameter Value
Perplexity 30
Early Exaggeration 12.0
Number of components 2
Distance metric Euclidean norm
Initialization Random

Table 3. UMAP parameters.

Parameter Value
Number of neighbors 15
Number of components 2
Distance metric Euclidean norm
Minimal distance 0.1
Spread 1.0
Initialization Spectral embedding

of a fuzzy 1D skeleton
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Table 4. Curated features for PSM experiments.
Feature Specification Comment

AGE NIS Data Element Bucketed into deciles.
ELECTIVE NIS Data Element Whether the current admission is elective or not.
FEMALE NIS Data Element Patient sex.
HCUP ED NIS Data Element Evidence of emergency room services provided on this admission.
HOSP DIVISION NIS Data Element Region current hospital falls into.
PAY01 NIS Data Element Expected primary payer
PL NCHS NIS Data Element Patient location by local area population.
TRAN IN NIS Data Element Whether current admission was transferred from another facility.
TRAN OUT NIS Data Element Whether current admission was transferred out to another facility.
ZIPINC QRTL NIS Data Element Income quartile associated with that patient’s zip code.
Essential Hypertension CCS: 98 Boolean
Complicated Hypertension CCS: 99 Boolean
Dyslipidemia CCS: 53 Boolean
Atrial Fibrillation ICD-9: 427.31 Boolean
Coronary Artery Disease CCS: 101 Boolean
Diabetes CCS: 49, 50 Boolean
Smoking ICD-9: 305.10, V15.82 Boolean
Prior MI ICD-9: 412.00 Boolean
Prior PCI ICD-9: V45.82 Boolean
Prior CABG ICD-9: V45.81 Boolean
Family history of Coronary Artery Disease ICD-9: V17.30 Boolean
History of a chronic cardiac illness CCS: 96-97, 100-101, 103-108 Boolean
Long-standing congestive heart failure CCS: 108 Boolean
History of stroke CCS: 109, 112 Boolean
History of arrhythmia CCS: 105-107 Boolean
History of a chronic respiratory illness CCS: 127-128, 131-134 Boolean
Any cancer CCS: 11-47 Boolean
History of fluid or electrolyte disorders CCS: 55 Boolean
History of anemia CCS: 59-61 Boolean
History of coagulopathy CCS: 62 Boolean
History of neurological conditions CCS: 76-84, 93, 95 Boolean
History of GI Illness CCS: 135, 138-148, 152-155 Boolean
History of hepatobiliary disease CCS: 6, 149, 151 Boolean
Chronic kidney disease (any) CCS: 158 Boolean
Immune-mediated rheumatopathies CCS: 202, 210-211 Boolean
Osteoporosis CSC: 206 Boolean
Osteoarthritis CCS: 203 Boolean
History of dermatological illness CCS: 197-200 Boolean
History of genitourinary disorders CCS: 163-172 Boolean

History of peripheral vascular disease
ICD-9: 412.00
CCS: 114-116 Boolean

Liver disease (multi-level)

1: ICD-9 = (70.22, 70.23, 70.32, 70.33, 70.44, 70.54, 70.6, 70.9, 570.00, 571.00, 571.10, 572.20, 573.30, 574.40,
574.41, 574.42, 574.43, 574.44, 573.30, 573.40, 573.80, 573.90)

2: ICD-9 = (456.00, 456.10, 456.20,
456.21, 572.20, 572.30, 572.40, 572.80)

Categorical (0, 1, 2)

Diverticulitis (multi-level)
1: ICD-9 = (562.11, 561.13)

2: ICD-9 = (569.83, 567.22, 569.50, 567.31, 567.38, 614.50, 567.21, 567.29)
Categorical (0, 1, 2)

Chronic kidney disease (multi-level)

1: ICD-9 = 585.10
2: ICD-9 = 585.20
3: ICD-9 = 585.30
4: ICD-9 = 585.40
5: ICD-9 = 585.50
6: ICD-9 = 585.60

Categorical (0, 1, 2, 3, 4, 5, 6)

Complicated vs. Uncomplicated Diabetes
(multi-level)

1: CCS = 49
2: CCS = 50 Categorical (0, 1, 2)

CHADS-VASC

Generated as the sum of the following:
+2 for AGE ≥ 75
+1 for 75 >AGE ≥ 65
+1 for (FEMALE = 1)
+1 for (CM OBESE = 1)
+1 for (‘Long-standing congestive heart failure’ = 1)
+1 for (‘History of stroke’ = 1)
+1 for (‘History of peripheral vascular disease’ = 1)
+1 for (‘Diabetes’ = 1)

Categorical (0, 1, 2, 3, 4, 5, 6, 7)
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