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Abstract: People’s attitudes and behaviors are partially shaped by the socioeconomic class to which
they belong. In this work, a model of scale-free graph is proposed to represent the daily personal
contacts in a society with three social classes. In the model, the probability of having a connection
between two individuals depends on their social classes and on their physical distance. Numerical
simulations are performed by considering sociodemographic data from France, Peru, and Zimbabwe.
For the complex networks built for these three countries, average values of node degree, shortest-path
length, clustering coefficient, closeness centrality, betweenness centrality, and eigenvector centrality
are computed. These numerical results are discussed by taking into account the propagation of infor-
mation about COVID-19.
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1. Introduction

A social class can be simplistically defined as a group of individuals with similar socioeconomic
status [1–4]. People’s social class affects their habits, opportunities, relationships, traditions, values.
In addition, the features of the socioeconomic stratification of a society is relevant for governments
implementing policies related to education, labor market, public health, public safety [1–4]. These
features also influence, for instance, the propagation of a contagious disease like COVID-19 [5–8].
Usually, from an economic perspective, societies are stratified into lower class, middle class, and upper
class [1–4]. In this manuscript, these three classes are taken into consideration in a model of scale-free
network proposed for representing daily personal contacts.

People primarily interact with family, friends, and neighbors, which usually belong to the same
social class; however, face-to-face encounters among individuals belonging to different classes do
occur, for instance, in the workplace, in a subway, in a shopping mall, in a park. Interactions among
distinct social classes can also occur in virtual environments [9].
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Social contacts have been theoretically modeled by complex networks [10–15]. Two classic exam-
ples are the scale-free graphs representing exchanged e-mails [16] and human sexual contacts [17].
Recent applications deal with scheduling problem [18] and rumor propagation [19]. Usually, theoreti-
cal studies on social connectivity are based on the three main models of complex networks found in the
literature. These well-known models were conceived by Erdös and Rényi, Watts and Strogatz, Barabási
and Albert [10–15]. Unfortunately, these models are not suitable for representing social interactions:
the Erdös-Rényi network leads to Poissonian degree distribution and low average clustering coeffi-
cient; the Watts-Strogatz network leads to Poissonian degree distribution; the Barabási-Albert network
leads to low average clustering coefficient [11, 12, 15]. An appropriate network model should present
scale-free degree distribution and high average clustering coefficient [11, 12, 15]. The model proposed
here presents these features. Notice that a suitable model of social connectivity could be employed
in studies on homophily. This sociological concept states that similarities among people facilitate the
formation of social bonds [20]. Homophily has been investigated by analyzing, for instance, data from
mobile phones in Singapore [21], the ethnoracial residential segregation in Detroit [22], friendship
patterns in American high schools [23, 24], the sociocultural dimension in Dutch urban areas [25]. In
these analyzes, however, basic statistical measures commonly used to identify the network structure
were not computed. For the model proposed here, these measures are computed for three countries
and compared. There are also studies on homophily that incorporate game theory [26] and degree
heterogeneity [27]; however, their theoretical predictions were not tested in real-world scenarios.

The aim of this work is to introduce a complex network model to represent the social connectivity
of a community with socioeconomic classes. This model is inspired by the coupling pattern originally
developed for studying the neurophysiological phenomenon called spreading depression [28] and also
used in investigations on the spread of contagious diseases in a host population [29–31].

This manuscript is organized as follows. In Section 2, a new model of complex network is proposed.
In Section 3, the topological structures of the networks built with sociodemographic data from France,
Peru, and Zimbabwe are characterized by computing average values of node degree, shortest-path
length, clustering coefficient, closeness centrality, betweenness centrality, and eigenvector centrality.
In Section 4, the numerical results obtained in these computer simulations are discussed from a public
health perspective, by taking into account the COVID-19 pandemic.

2. The model of complex network

Let a square lattice be composed of η × η cells, in which each cell corresponds to an individual.
Thus, there are N = η2 individuals in this society. In order to avoid edge effects, the top and bottom
edges are connected and the left and right edges are also connected. Therefore, all individuals living
in this lattice are equivalent from a geographical standpoint; that is, their spatial coordinates can be
neglected. Consider that the index α = 1, 2, ...,N labels an individual belonging to the social class
x ∈ {l,m, u}, in which l denotes lower class, m middle class, and u upper class. Undirected connections
between individuals are created by a random process, in which the α-th individual is connected to kα
others placed within the square matrix of size 2r + 1 centered in such an individual (self-connections
and multiple connections are not allowed). Here, for the α-th individual, a number σα is randomly
picked from the standard uniform distribution. Then, the value of kα is obtained from ρ(kα) = σα, in
which ρ(θ) is a power law given by ρ(θ) ∝ θ−δ with δ = 2.5 (because the degree distribution for most
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social networks has 2 ≤ δ ≤ 3 [11, 12, 15]). The value of δ remains fixed and it is equal for the three
countries. Also, the minimum and maximum degrees of the degree distribution must be conveniently
chosen in order to adjust the average degree of the model to the average degree found in the real-world
populations.

In the proposed model, the probability of linking two individuals depends on the distance between
them and on their social classes as follows. The distance between the individuals is taken into account
in the term qi

α, which is the probability of creating a connection between the α-th individual and any
individual at the i-th layer of the square matrix of size 2r + 1 centered in this α-th individual. Here, qi

α

is obtained from:

qi
α =

2(r + 1 − i)
r(r + 1)

(2.1)

with i = 1, 2, ..., r and
∑r

i=1 qi
α = 1. The i-th layer is formed by individuals with Moore radius equal to

i [32]. For instance, for r = 2, the square matrix centered in the α-th individual is 5 × 5. Therefore,
there are 8 individuals in the layer i = 1 and 16 individuals in the layer i = 2 (8 + 16 plus the central
α-th individual is equal to 5 × 5 = 25 individuals). For r = 2, Eq. (2.1) gives q1

α = 2/3 and q2
α = 1/3;

thus, the chance of connecting the α-th individual to any of the 8 individuals forming the layer i = 1
is 2/3 and to any of the 16 individuals forming the layer i = 2 is 1/3. Table 1 illustrates an individual
with six neighbors in a lattice with r = 2.

Table 1. A block 5 × 5 of a lattice with r = 2 showing the neighborhood of a single cell. In
this example, the central cell (white) has four neighbors in the layer i = 1 (light gray) and two
neighbors in the layer i = 2 (dark gray). Recall that m denotes middle class and l denotes low
class. The empty cells are occupied by individuals that are not neighbors of the central cell;
hence, their social classes are omitted. In this model, the probability of two cells become
connected (neighbors) is given by Eq. (2.3), which depends on their distance according to
Eq. (2.1) and on their social classes according to Eq. (2.2).

m
l
m l

m m
m

Let ny
α be the number of neighbors of the α-th individual belonging to the social class y ∈ {l,m, u};

thus, nl
α is the number of lower-class neighbors, nm

α the number of middle-class neighbors, and nu
α the

number of upper-class neighbors. Evidently, nl
α+nm

α +nu
α = kα. In the creation of the complex network,

the social classes of the individuals are taken into account in the term sxy
α defined as:

sxy
α =

wxyn
y
α∑

z={l,m,u} wxznz
α

(2.2)

in which wxy is a weighting factor which depends on the country where these people live. The higher
the value of wxy, the higher the probability of two individuals of the classes x and y being socially
connected. Recall that the α-th individual belongs to the social class x. Obviously,

∑
y={l,m,u} sxy

α = 1.
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For instance, assume that the α-th individual belongs to the middle class (that is, x = m) and nl
α = 2,

nm
α = 4, and nu

α = 0 (that is, this individual has two lower-class neighbors and four middle-class
neighbors), as in the example shown in Table 1. Also, assume that in the region where they live,
wml = 4, wmm = 8, and wmu = 1. For this α-th individual, then sml

α = 1/5, smm
α = 4/5, and smu

α = 0.
In the proposed model, the probability Q j

α of the α-th individual of the class x being connected to
an individual of the class y in the layer i is given by:

Q j
α = sxy

α qi
α (2.3)

with
∑r

i=1
∑

y={l,m,u} Q
j
α = 1. Notice that the number of social classes considered in the model can be

easily changed. This network model with sxy
α = 1 (that is, a single social class) and by taking kα as

a constant (instead of taking kα from a power law ρ(θ) as done here) was already employed in other
works [28–31].

In short, the model parameters are: η (the lattice size), ρ(θ) (the power law used to determine the
degree kα of the α-th individual), r (the Moore radius of the area where the connections can be made),
W (the matrix 3×3 formed by the weights wxy, with {x, y} ∈ {l,m, u}), and the percentage of individuals
in each social class.

3. Numerical results

Here, the topological structure of each graph is characterized by computing P(k), 〈k〉, 〈kl〉, 〈km〉,
〈ku〉, 〈`〉, 〈c〉, 〈Cc〉, 〈Cb〉, and 〈Ce〉. These symbols and the corresponding measures are defined below.

The degree distribution P(k) expresses how the fraction of individuals with degree k varies with k.
The average degree of the whole population 〈k〉 is given by [10–12, 15]:

〈k〉 =

∑N
α=1 kα
N

=

k=kmax∑
k=kmin

kP(k) (3.1)

in which kmin and kmax are the minimum and maximum degrees found in the network, respectively.
Here, the average degree of the lower-class individuals 〈kl〉 is also calculated by considering only

the links in which at least one endpoint is a lower-class individual. Likewise, the average degrees of
middle-class individuals 〈km〉 and of upper-class individuals 〈ku〉 are computed.

The average shortest-path length 〈`〉 is obtained from [10–12, 15]:

〈`〉 =
2
∑N−1
α=1
∑N
β=α+1 `αβ

N(N − 1)
(3.2)

in which `αβ is shortest distance between the individuals α and β.
For the α-th individual, the clustering coefficient cα is defined as [10–12, 15]:

cα =
2eα

kα(kα − 1)
(3.3)

in which eα is the number of connections among its kα neighbors.
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Centrality measures are usually employed to quantify the relevance of the nodes composing the
network. The closeness centrality Cc(α) of the individual α is defined as [15, 33]:

Cc(α) =
N − 1∑N
β=1 `αβ

(3.4)

The betweenness centrality Cb(α) of the individual α is defined as [15, 33]:

Cb(α) =
2

(N − 1)(N − 2)

N−1∑
β=1

N∑
γ=β+1

gβγ(α)
gβγ

(3.5)

in which gβγ is the number of shortest paths between the individuals β and γ and gβγ(α) is the number
of shortest paths between the individuals β and γ passing through the individual α. The eigenvector
centrality of the individual α is determined from [12, 33]:

Ce(α) =
1
λ

N∑
β=1

aαβCe(β) (3.6)

in which λ is the greatest eigenvalue of adjacency matrix A formed by the elements aαβ, so that aαβ = 1
if the individuals α and β are connected, and aαβ = 0 otherwise.

For the whole network, average values of the measures defined by Eqs. (3.3)-(3.6) are obtained
from 〈c〉 =

∑N
α=1 cα/N, 〈Cc〉 =

∑N
α=1 Cc(α)/N, 〈Cb〉 =

∑N
α=1 Cb(α)/N, and 〈Ce〉 =

∑N
α=1 Ce(α)/N.

Undirected graphs were built by using Eq. (2.3) and sociodemographic data from France, Peru,
and Zimbabwe. Table 2 shows the actual percentages of individuals in each social class in these three
countries [34–36]. These percentages determine the numbers of individuals of each class in the graph.

Table 2. Percentages of individuals in the lower, middle, and upper classes in France, Peru,
and Zimbabwe found in real-world databases [34–36].

France Peru Zimbabwe
% lower class 14 54 91.5

% middle class 60 42 8
% upper class 26 4 0.5

In the simulations, η = 100 (thus, N = 10000), r = 10, and the matrix W is written in terms of a
single parameter ω as:

W =


wll wlm wlu

wml wmm wmu

wul wum wuu

 =


ω ω/2 1
ω/2 ω ω/2

1 ω/2 ω

 (3.7)

Thus, wll = wmm = wuu = ω, wlm = wml = wmu = wum = ω/2, and wlu = wul = 1. Assume
that the value of ω decreases with the Human Development Index (HDI) and increases with the Gini
coefficient. Since HDIFrance > HDIPeru > HDIZimbabwe [37] and GiniFrance < GiniPeru < GiniZimbabwe [37],
then ωFrance < ωPeru < ωZimbabwe. The values chosen for the constant ω are ω = 4 for France, ω = 10 for
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Peru, and ω = 40 for Zimbabwe. Thus, the weights wxy are assumed to be more uniform for France and
more heterogeneous for Zimbabwe, which is consistent with the HDI and the Gini coefficient for these
countries. Notice that the weights for connections between individuals of the same class are privileged,
in agreement with results found in studies on homophily [20–25]. Alternatively, the matrix W could
be written in terms of two or more parameters, in order to represent different connectivity patterns.

For the α-th individual (for α = 1, 2, ...,N), kα is obtained from ρ(θ) = Aθ−2.5 for kmin ≤ θ ≤ kmax,
in which A = 1/(

∑kmax
θ=kmin

θ−2.5) is a normalization constant. Suppose that kmin = 11 and kmax = 39 for
France; kmin = 11 and kmax = 36 for Peru; and kmin = 7 and kmax = 31 for Zimbabwe. Let k̄ be the
average number of daily contacts per individual typical of each country found in the literature. For
France, k̄ = 17 [38]; for Peru, k̄ = 16 [39]; and for Zimbabwe, k̄ = 11 [40]. It is assumed that the
complex network created according to Eq. (2.3) is suitable to represent the social contacts in each
country if 〈k〉 ' k̄; that is, if the average degree of the computer-generated network is close to the
average degree found in the real world.

Table 3 presents the values of 〈k〉, 〈kl〉, 〈km〉, 〈ku〉, 〈`〉, 〈c〉, 〈Cc〉, 〈Cb〉, and 〈Ce〉. Table 4 exhibits
the classes of the 100 individuals with the highest values of 〈k〉, 〈c〉, 〈Cc〉, 〈Cb〉, and 〈Ce〉 for the three
countries.

Table 3. The socioeconomic composition of the groups of the 100 individuals with the
highest values of 〈k〉, 〈c〉, 〈Cc〉, 〈Cb〉, and 〈Ce〉 for France, Peru, and Zimbabwe obtained in
three numerical simulations.

France Peru Zimbabwe
% low % mid % up % low % mid % up % low % mid % up

high 〈k〉 0 99.3 0.7 71.3 28.7 0 100 0 0
high 〈c〉 23.7 50 26.3 45 26 29 81.3 15.7 3

high 〈Cc〉 4 79.3 16.7 66 33.7 0.3 99.3 0.7 0
high 〈Cb〉 2.7 86.3 11 72 28 0 99.3 0.7 0
high 〈Ce〉 1.7 78.3 20 69.7 30 0.3 99.7 0.3 0

Table 3 shows that 〈k〉France ' 〈k〉Peru > 〈k〉Zimbabwe. Observe that these numbers are close to the
values of k̄ found in the literature [38–40] and mentioned above. By considering the average degrees
of the social classes given by 〈kl〉, 〈km〉, and 〈ku〉, the middle class is more connected than the other
two classes in France, and the lower class is more connected than the other two classes in Peru and
Zimbabwe.

Table 3 also shows that 〈`〉France ' 〈`〉Peru < 〈`〉Zimbabwe. Since 〈Cc〉 increases by decreasing 〈`〉,
this table consistently shows that 〈Cc〉France ' 〈Cc〉Peru > 〈Cc〉Zimbabwe. These relations suggest that
information travels faster in France and Peru than in Zimbabwe.

Also, 〈c〉France > 〈c〉Peru ' 〈c〉Zimbabwe and 〈Cb〉France ' 〈Cb〉Peru < 〈Cb〉Zimbabwe. Hence, the value of
〈c〉 does not distinguish Peru from Zimbabwe and the value of 〈Cb〉 does not distinguish France from
Peru. These inequalities suggest that the neighbors of an individual are more connected in France and
there are more individuals controlling the flow of information in Zimbabwe. Surprisingly, the values
of 〈Ce〉 were found to be identical for the three countries.

The values of 〈kl〉, 〈km〉, and 〈ku〉 shown in Table 3 and the results presented in Table 4 reveal that
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Table 4. Average degree of the whole population 〈k〉, average degree of the lower class
〈kl〉, average degree of the middle class 〈km〉, average degree of the upper class 〈ku〉, aver-
age shortest-path length 〈`〉, average clustering coefficient 〈c〉, average closeness centrality
〈Cc〉, average betweenness centrality 〈Cb〉, and average eigenvector centrality 〈Ce〉 for France,
Peru, and Zimbabwe obtained in three numerical simulations.

France Peru Zimbabwe
〈k〉 17.0 16.1 11.4
〈kl〉 15.3 16.4 11.6
〈km〉 17.7 16.1 8.86
〈ku〉 16.5 11.6 5.90
〈`〉 5.40 5.48 6.22
〈c〉 0.0493 0.0448 0.0441
〈Cc〉 0.185 0.183 0.161
〈Cb〉 0.000440 0.000448 0.000522
〈Ce〉 0.0001 0.0001 0.0001

the flow of information is mainly controlled by the middle class in France and by the lower class in
Peru and Zimbabwe; however, middle class has a greater influence in Peru than in Zimbabwe. Despite
the predominance of the middle class in France and of the lower class in Peru and Zimbabwe, the
proportions shown in Table 4 for each topological measure are different from the sociodemographic
data shown in Table 2.

This computer experiment was repeated three times for each country. The standard deviations
associated with the values shown in Table 3 were about 1%-3% and about 0% − 10% in Table 4. For
better readability of the results, the deviations were omitted in these tables.

Figure 1 shows the double-logarithmic plot (log base 10) of the degree distribution P(k) (black
dots) and the fitted function P0(k) = B0k−δ0 (red line) for the three countries for kmin ≤ k ≤ 2k̄. Table
5 presents the values of B0, δ0, and the mean square error determined from the least square fitting
method [41]. Notice that, for the three countries, the degree distributions follow a power law with
δ0 ≈ 2.5, as expected. By considering the whole range of k, a better fitting is obtained with the
function P1(k) = B1k−δ110δ2k10

(blue line), as shown in Table 6 and Figure 1. Observe that δ1 ≈ 2.5
for the three countries. The exponential tails exhibited in Figure 1 were already found in other real-
world networks [16,42]. They appear when the highest connected nodes have degrees lower than those
predicted by a pure power law. In our model, this exponential cutoff is affected by η and r.

Table 5. Values of B0 and δ0 for the fitted function P0(k) = B0k−δ0 for kmin ≤ k ≤ 2k̄ obtained
from the graphs built for France, Peru, and Zimbabwe.

France Peru Zimbabwe
B0 0.692 0.676 0.234
δ0 2.54 2.55 2.43

mean square error 0.0063 0.0094 0.0092
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Table 6. Values of B1, δ1, and δ2 for the fitted function P1(k) = B1k−δ110δ2k10
for kmin ≤ k ≤

kmax obtained from the graphs built for France, Peru, and Zimbabwe.

France Peru Zimbabwe
B1 0.631 0.631 0.316
δ1 2.56 2.50 2.50
δ2 −8.7 × 10−17 −4.4 × 10−16 −1.0 × 10−15

mean square error 0.0035 0.0051 0.0076

10 15 20 25 30 35
10-4

10-2

P
(k

)

France

10 15 20 25 30 35
10-4

10-2

P
(k

)

Peru

10 15 20 25 30 35

k

10-4

10-2

P
(k

)

Zimbabwe

Figure 1. Log-log plots (log base 10) of the degree distribution P(k) of the computer-
generated graph (black dots), the fitted function B0k−δ0 (red line) for kmin ≤ k ≤ 2k̄, and
the fitted function B1k−δ110δ2k10

(blue line) for kmin ≤ k ≤ kmax. Tables 5 and 6 present the
values of B0, δ0, B1, δ1, and δ2 for France, Peru, and Zimbabwe.

4. Discussion and conclusion

In this work, scale-free graphs were numerically generated and analyzed. These graphs represent
the daily personal contacts occurring in a society with three social classes. Socioeconomic data from
France, Peru, and Zimbabwe related to the social stratification and the income distribution in these
countries were taken into account. For each country, the power-law exponent of the degree distribution
and the average degree present realistic values. Here, it is assumed that more contacts mean more
information being changed. This assumption concerns the volume of the disseminated information and
not its quality. By taking into account this supposition, the results shown in Tables 3 and 4 can help to
understand, for instance, the propagation of information on COVID-19 in the considered countries.

Information affects the perception of reality and the decision-making process. In fact, information
can become a matter of life and death. Hence, in every country, authorities have been fighting fake news
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and misinformation on COVID-19. For instance, in France, a website was launched to provide reliable
information about the use of drugs during the COVID-19 outbreak [43]. In Peru, creating and spreading
fake news about COVID-19 could be punished with a prison sentence [44]. In Zimbabwe, a social
networking service was used to disseminate trustworthy COVID-19 information [45]. The results
obtained here via computer simulations can help these three countries to realize how the interpersonal
communication is influenced by the social stratification.

The COVID-19 pandemic highlighted economic inequality, since individuals belonging to the lower
class had higher risk of loosing their jobs and their lives [5–8]. Unfortunately, their fear of unemploy-
ment hampered the adherence to movement restriction measures; their low income made it difficult to
improve personal hygiene habits.

During the pandemic, there was an overload of technical information, which might sound seem-
ingly contradictory sometimes. Hence, the scientific findings on COVID-19 should have been sum-
marized and rephrased to facilitate its understanding. In addition, public health interventions (such as
implementing preventive protocols and conducting vaccination campaigns) should have been planned
by taking into account the topological characteristics of the underlying structure of the social contacts.
Personal experiences, unverified information, true news, and fake news related to COVID-19 are spread
through the same network. This work suggests that middle class in France and lower class in Peru and
Zimbabwe primarily affect the volume of information changed in these countries.

In brief, the model of complex network proposed here can stress the influence of each social class
in the propagation of information in every country, which can guide the development of strategies for
disseminating scientifically accurate information.
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