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Abstract: Background: Cutaneous squamous cell carcinoma (cSCC) is one of the most frequent
types of cutaneous cancer. The composition and heterogeneity of the tumor microenvironment
significantly impact patient prognosis and the ability to practice precision therapy. However, no
research has been conducted to examine the design of the tumor microenvironment and its
interactions with cSCC. Material and Methods: We retrieved the datasets GSE42677 and GSE45164
from the GEO public database, integrated them, and analyzed them using the SVA method. We then
screened the core genes using the WGCNA network and LASSO regression and checked the model’s
stability using the ROC curve. Finally, we performed enrichment and correlation analyses on the core
genes. Results: We identified four genes as core cSCC genes: DTYMK, CDCA8, PTTG1 and
MAD2L1, and discovered that RORA, RORB and RORC were the primary regulators in the gene set.
The GO semantic similarity analysis results indicated that CDCA8 and PTTG1 were the two most
essential genes among the four core genes. The results of correlation analysis demonstrated that
PTTG1 and HLA-DMA, CDCA8 and HLA-DQB2 were significantly correlated. Conclusions:
Examining the expression levels of four primary genes in cSCC aids in our understanding of the
disease’s pathophysiology. Additionally, the core genes were found to be highly related with immune
regulatory genes, suggesting novel avenues for cSCC prevention and treatment.

Keywords: cutaneous squamous carcinoma; tumor microenvironment; tumor infiltrating
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5906

Mathematical Biosciences and Engineering Volume 19, Issue 6, 5905–5924.

1. Introduction

As a non-melanoma skin cancer, cutaneous squamous cell carcinoma(cSCC) has a considerable
influence on worldwide health systems. According to linked studies, non-melanoma skin cancer
was the most frequent malignancy in men and women in 2017, with up to 7.7 million instances, of
which 5.9 million cases were basal cell carcinoma and 1.8 million cases were cSCC [1]. In 2020, 1.2
million people develop cSCC, according to a recent study [2]. Even though cSCC has a low risk of
lymphatic metastasis and a favorable prognosis, 2.1 to 5% of skin cancers advance to a metastatic
state [3,4]. As the most frequent type of metastatic skin cancer, cSCC has a terrible prognosis at the
late stage [5], accounting for 20% of cutaneous carcinoma-related deaths [4]. CSCC is a type of
keratin-forming cell tumor that accounts for around 20% of all keratin-forming cell malignancies [6].
Long-term exposure to ultraviolet radiation, irregular circadian rhythms, smoking and alcohol misuse,
and being overweight are frequent risk factors for skin cancer [7,8]. Additionally, it may develop due
to various skin conditions such as scars, burn wounds, discoid erythema, or hypertrophic lichen
planus [9–12]. Excision surgery is an excellent therapeutic option for extensive squamous skin
cancers [13]. Due to its propensity for metastasis and poor prognosis in its advanced stages, we must
continue investigating its pathophysiology and developing more effective treatments.

Further research revealed that squamous cell carcinomas, such as those found in the esophagus,
the lung, the head and neck, and other locations, are complex tissue composed of various distinct
cells [14–16]. We believe that cSCC is similar in tissue complexity to other types of squamous cell
carcinoma. That is, squamous tumor tissue contains cancer cells and a diverse array of other cellular
components involved in inflammation, angiogenesis, and the immune response, forming a complex
network of cellular regulation [17].

The tumor microenvironment is constituted of tumor cells, resident and recruited host cells
(cancer-associated stromal cells and immune cells), as well as the secretory products of the
corresponding cells (e.g., cytokines and chemokines) and extracellular matrix components (ECM).
The tumor microenvironment serves as the “soil” for tumor survival, and tumor growth and
metastasis are highly dependent on the surrounding environment, analogous to the “seed-soil”
relationship [18]. Angiogenesis is required for cancer cells to grow and metastasize in the tumor
microenvironment [19,20]. The tumor microenvironment contains a diverse array of immune cells,
which play a critical role in anticancer immunotherapy. In-depth examination of tumor-infiltrating
immune cells can generate novel therapeutic avenues and concepts and produce particular
anti-tumor immune responses in specific patient populations [21,22]. Thus, tumor cells and the
tumor microenvironment complement one another, and the heterogeneity of the tumor
microenvironment and the variable response rates of tumor patients to immunotherapy are
inextricably linked. We can improve clinical treatment and achieve precision medicine by typing
the tumor immune microenvironment.

We now have a better grasp of the molecular mechanisms and expression of oncogenes in the
tumor microenvironment because of advances in research methodologies in recent years. Yan’s study,
for example, used single-cell RNA-sequencing technology(scRNA-seq) to investigate cSCC at the
transcriptome level, collecting 350 single-cell transcriptome profiles from skin squamous cancer
cells and normal tissue cells to investigate the fundamental biological pathways at play. Members of
the S100 gene family, SPRR gene family, and FABP5 gene family are upregulated in cSCC cells,
suggesting that S100A9 and FABP5 could be potential therapeutic targets for cSCC [23]. Andrew’s
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research is the first to combine geographic mapping of spatial transcriptomics (ST) and multiplexed
ion beam imaging (MIBI) with scRNA-seq to create the most comprehensive single-cell
transcriptional atlas of cell subpopulations inside cSCC to date, and to analyze the ecological niche
in which these cells live. Patients with high expression of tumor-specific keratinocyte (TSK) markers
ITGB1 and PLAU had significantly poorer progression-free survival after PD-1 inhibitor treatment,
according to this study [24].

Given the importance of the immune microenvironment in carcinogenesis and the lack of
information about cSCC-associated immune microenvironment, we investigated the interactions
between the two and the mechanisms involved. We first investigated the molecular network
mechanisms underlying the tumor microenvironment of cSCC using multiple datasets, performing
immune cell infiltration analysis, WGCNA analysis, GO and KEGG functional analysis, and
developing predictive models for the tumor microenvironment using lasso regression. We used
GSEA analysis to compare the route differences between the high and low expression groups. Then
we used enrichment analysis and Motif-TF annotation to identify transcription factors that can alter
core gene regulation. Additionally, we screened essential genes based on their GO semantic similarity,
did a differential analysis on immune-regulated genes, and investigated the relationship between core
genes and immune regulation.

2. Material and methods

2.1. Data download

We retrieved the GSE42677 Series Matrix File data file from the NCBI GEO public database,
along with the annotated file GPL571, and included the expression profile data for 20 patient groups,
including the regular group (n = 10) and the tumor group (n = 10). Additionally, we obtained the
GSE45164 Series Matrix File data file, annotated with GPL571, which contained the expression
profiles of 13 patient groups, comprising normal (n = 3) and tumor (n = 10) groups. To adjust the
microarray, we employed the SVA method. Then, we obtained the GSE53462 dataset, which was
annotated using the platform GPL10558 and had ten distinct groups of transcriptome data,
comprising a regular group (n = 5) and a tumor group (n = 5). We retrieved the GSE45216 dataset for
subsequent validation, annotated on GPL570, containing 40 sets of transcriptome data, including AK
group (n = 10) and SCC group (n = 30).

2.2. Immune cell infiltration analysis

The CIBERSORT method is a well-established technique for determining the immune cell types
present in the microenvironment. The method is based on support vector regression, and
deconvolution is used to assess the expression matrix of immune cell subtypes. It contains 547
biomarkers that distinguish 22 distinct subpopulations of human immune cells, including T-cell,
B-cell, plasma cell, and myeloid cell. The CIBERSORT method was used to infer the 22 immune
infiltrating cells’ relative proportions and perform spearman correlation analysis on gene expression
and resistant cell content in this study [25].
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2.3. WGCNA analysis

By developing weighted gene co-expression networks, we identified co-expressed gene modules.
We investigated the relationship between gene networks and phenotypes, as well as the core genes in
the networks. We constructed a co-expression network for all genes in the GSE131761 dataset using
the WGCNA-R package and selected genes with the top 5000 variances for further analysis using
this technique, with the soft threshold set to 11. To evaluate network connectedness, we turned the
weighted adjacency matrix into a topological overlap matrix (TOM) and used hierarchical clustering
to generate the TOM matrix of the clustering tree structure. The different branches of the clustering
tree correspond to distinct gene modules, and the various colors correspond to specific modules. We
identify genes based on their weighted correlation coefficients and put genes with similar expression
patterns into a module, splitting tens of thousands of genes into many modules based on their gene
expression patterns.

2.4. GO and KEGG analysis

We used the Metascape database (www.metascape.org) for annotation and visualization, Gene
Ontology (GO) analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis
for specific genes to determine the biological activities and signaling pathways involved in illness
development. We defined statistical significance as Min overlap ≥ 3.00 or P ≤ 0.01. Both
GO/KEGG and Lasso prediction models used genes from the salmon module for 33 samples.

2.5. Predictive model construction

We picked the WGCNA modular genes most strongly associated with the trait and further
developed prediction models using lasso regression. After combining the expression data for each
gene, a scoring system was developed for each patient and weighted using the predicted regression
coefficients in lasso regression analysis. We utilized the median score value as the cut-off point for
the risk score formula and ROC curves to determine the model’s predictive accuracy. We created a
WGCNA network based on the patients’ T-cell characteristics to investigate the critical regulatory
genes in SCC. The function “sft$powerEstimate” was used to determine the soft threshold, which
was set to 11.

2.6. GSEA analysis

GSEA analysis ranks genes based on their differential expression between two types of samples.
It then determines whether the predetermined genes are enriched at the top or bottom of this ranking
table. In this study, we used GSEA to compare the differential KEGG signaling pathway between the
high and low expression groups to better understand the molecular mechanisms underlying the core
genes in the two groups, with the number of substitutions set to 1000 and the type of substitution set
to phenotype. The software used for GSEA analysis is GSEA4.0, and the background gene set is
KEGG v7.5.symbol.gmt. GSEA analysis used all genes from the expression profile.
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2.7. Regulatory network analysis of essential genes

In eukaryotes, transcription initiation is a highly complex process that frequently involves the
cooperation of numerous protein components. Together, transcription factors and RNA polymerase II
create a transcription initiation complex involved in the transcription initiation process. Transcription
factors are classified into two types based on their mode of action. The first category includes
universal transcription factors, which form a transcription initiation complex with RNA polymerase
II before transcription can begin correctly. Cis-acting elements are sequences found in the flanking
regions of genes that can influence gene expression. Cis-acting elements, which regulate gene
expression, include promoters, enhancers, regulatory sequences, and inducible regions. The
cis-acting element does not encode any protein. It merely supplies an action site for the trans-acting
factor to bind with. The current study used the R package cisTarget, with the following parameters,
rcistarget.hg19. motifdb. cisbpont.500bp, for the Gene-motif ranking database.

2.8. GO semantic similarity

We classified proteins by their functional similarity to their interacting proteins based on the
similarity of GO semantics utilized for gene annotation. Correlation with gene expression profiles
validated GO semantic similarity [26], establishing a basis for functional comparison of gene
products. As a result, GO semantic similarity is widely used in bioinformatics applications such as
protein-protein interaction analysis [27], pathway analysis [28], and gene function prediction [29]. In
this section, we quantify the functional similarity of proteins. The term “functional similarity” refers
to the geometric mean of the semantic similarity of GO terms in terms of cellular components (CC)
and biological pathways (BP). It quantifies the strength of the relationship between each protein and
its interacting proteins by considering both function and path. The GOSemSim software was used to
determine the semantic similarity of interacting histones in CC and BP [30], which assumes the GO
topology to perform more accurately [31]. The geometric mean of semantic similarity in CC and BP
was used to evaluate functional similarity further.

2.9. Immunohistochemistry of key genes

To further validate our findings, we obtained immunohistochemical staining results of four key
genes DTYMK, CDCA8, PTTG1 and MAD2L1 in normal skin tissue and tumor tissue on the
Human Protein Atlas (https://www.proteinatlas.org/) website, enabling our core genes to be validated
again after model validation.

2.10. Statistical analysis

The R programming language was used to conduct all statistical analyses in this study
(version 4.0). All statistical tests were two-sided, and a significance level of P < 0.05 was
considered statistically significant. The present analysis specifically involved two groups of
patients (control and tumor groups) and did not perform multiple comparisons, therefore no
corrected P values were required.
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3. Results

We retrieved the GEO database’s SCC-related datasets GSE42677 and GSE45164 and
included 33 patients, 13 in the regular group and 20 in the malignant group. We use the SVA
algorithm to fix the chips. The results indicated that the batch effect between chips was abolished
when the SVA algorithm corrected for it (Figure 1A,B). The microenvironment mainly consists of
fibroblasts, immune cells, extracellular matrix, numerous growth factors, inflammatory factors, and
unique physicochemical properties, among others. The microenvironment significantly impacts the
disease’s diagnosis, survival outcome, and clinical treatment sensitivity. The association between
the SCC dataset and immune infiltration was studied to understand better the underlying
mechanisms affecting tumor progression. We depict a bar graph of the various types of immune
cells found in each sample (Figure 2A). We created a heat map of immune cell correlations,
highlighting positive correlations with red and negative correlations with blue, with darker colors
suggesting stronger correlations (Figure 2B). Additionally, we discovered that when we compared
the significance of microenvironment scores between tumor and regular groups, we found that B
cells memory (P = 0.016), T cells regulatory (Tregs) (P = 0.001), Mast cells resting (P = 0.002), Mast
cells activated (P = 0.02), and several other immune microenvironment factors were significantly
different between groups (Figure 2C).

Figure 1. Removing batch effects between chips. (A) pre-corrected box line plots of
GSE42677 and GSE45164; (B) corrected box line plots of GSE42677 and GSE45164.
Blue group representatives GSE42677, red group representatives GSE45164.

We next created a WGCNA network and identified gene modules using the tom matrix,
resulting in the identification of nine gene modules, including black (253), blue (482), greenyellow
(865), grey (304), magenta (208) and purple (865). Modules are available in greenyellow (865),
grey (304), magenta (208), purple (166), red (2502), salmon (102) and tan (118). We discovered the
strongest association between the salmon module and SCC phenotypes by module-trait analysis
(cor = 0.54, P = 0.001) (Figure 3). We performed enrichment analysis using the metascape database.
We discovered that genes mainly involved in the following pathways, including mitotic cell cycle
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process、microtubule cytoskeleton organization involved in mitosis、centrosome、Cell cycle、positive
regulation of cell cycle (the top half of Figure 4A). The bottom half of Figure 4A is a cluster network
of enriched pathways, where nodes sharing the same cluster are usually close to each other. The
interplay of the salmon module’s genes is seen in Figure 4B. The interaction network in Figure 4B
was obtained from the string database to obtain the interactions between proteins and then visualized
by cytoscape.

Figure 2. Microenvironmental immune infiltration analysis. (A) bar graph of different
types of immune cells in each sample; (B) heat map of immune cell correlation; (C)
differential analysis of infiltration of different kinds of immune cells in the tumor and
regular groups.

To further characterize the salmon module gene set’s essential genes, we employed the datasets
GSE42677 and GSE45164 as training sets and GSE53462 and GSE45216 as validation sets. We used
lasso regression to do feature screening. The results indicated that lasso regression revealed four
genes as hallmark genes of SCC for further study. These four genes were DTYMK, CDCA8, PTTG1,
and MAD2L1 (Figure 5A–C). Our study used the lasso algorithm to construct the prediction model.
The results indicated that the model built using the four genes had a high diagnostic efficacy, with an
area under the AUC curve of 0.9846. We subsequently tested the diagnostic model using the
validation set, and the findings indicated that the model was relatively stable, with an area under the
AUC curve of 0.8567 and 1, respectively (Figure 6A–C). Since the area under AUC curve greater than
0.8 can also be considered to have a relatively strong predictive power, our results suggest that the
prediction model can predict not only the difference between normal vs SCC, but alsoAK vs SCC.
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Figure 3. (A) A co-expression matrix was constructed to group genes into different
modules based on their adjacency and similarity, and this was used to obtain a systematic
clustering tree among genes; (B) Based on the tom matrix to detect gene modules, a total
of nine gene modules were detected, namely black, blue, greenyellow, grey, magenta,
purple, red, salmon, and tan. further exploring the correlation analysis between modules
and traits, it was found that the salmon module had the highest correlation with the SCC
phenotype (cor = 0.54, P = 0.001).

We then examined the individual signaling pathways enriched by the four core genes to
determine the molecular mechanisms affecting SCC progression. GSEA analysis revealed
considerable enrichment in some relevant pathways. The pathways with the highest CDCA8
expression levels were FRUCTOSE AND MANNOSE METABOLISM and CITRATE CYCLE TCA
CYCLE. The paths with the highest levels of DTYMK expression were HUNTINGTONS DISEASE
and KEGG PYRIMIDINE METABOLISM. MAD2L1 enrichment pathways include RNA
DEGRADATION and CELL CYCLE. PTTG1 enrichment pathways are highly expressed in
PARKINSONS DISEAS and PATHOGENIC ESCHERICHIA COLI INFECTION (Figure 7).

We analyzed four essential genes and discovered that they are regulated by various transcription
factors and other standard processes. As a result, we used cumulative recovery curves, Motif-TF
annotation, and a selection of essential genes to do enrichment analysis on these transcription factors.
The research revealed that RORA, RORB, and RORC were the primary regulators of the gene set,
with MOTIF being annotated as cisbp M5032. We identified two model genes with a normalized
enrichment score (NES) of 7.9 enriched in this motif. We display all of the motifs and transcription
factors associated with the model genes (Figure 8). Additionally, we screened essential genes based
on their GO semantic similarity, and the results indicated that CDCA8 and PTTG1 were more critical
across the network (Figure 9).
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Figure 4. (A) the top half of Figure 4A: enrichment analysis by metascape database
showed that genes were mainly enriched in mitotic cell cycle process, microtubule
cytoskeleton organization involved in mitosis, centrosome, cell cycle, positive regulation of
cell cycle, cell cycle G2/M phase transition, mitotic metaphase plate congression, DNA
conformation change, meiotic nuclear division and other pathways; the bottom half of
Figure 4A: cluster network of enriched pathways, where nodes sharing the same cluster are
usually close to each other; (B) the interaction network which was obtained from the string
database to obtain the interactions between proteins and then visualized by cytoscape.

Figure 5. Screening of SCC core genes. (A) Ten-fold cross-validation of tuning
parameter selection in the LASSO model. (B) LASSO coefficient distribution of
differential genes. (C) Coefficients of the four Lasso (core) genes.
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Figure 6. (A) constructing ROC curves of the prediction model using the training set
(GSE42677 and GSE45164), area under the AUC curve is 0.9846; (B) further validating
the ROC curves of the diagnosis model using the validation set GSE45216, area under
the AUC curve is 0.8567; (C) further validating the ROC curves of the diagnosis model
using the validation set GSE53462, area under the AUC curve is 1.

Figure 7. Gene set enrichment analysis of four core genes. (A) highly expressed
CDCA8-enriched pathway (KEGG FRUCTOSE AND MANNOSE METABOLISM) (B)
highly expressed CDCA8-enriched pathway (KEGG CITRATE CYCLE TCA CYCLE);
(C) highly expressed DTYMK-enriched pathway (KEGG HUNTINGTONS DISEASE);
(D) pathway highly enriched in DTYMK (KEGG PYRIMIDINE METABOLISM); (E)
pathway highly enriched in MAD2L1 (KEGG RNA DEGRADATION); (F) pathway
highly enriched in MAD2L1 (KEGG CELL CYCLE); (G) pathway enriched by high
expression of PTTG1 (KEGG PARKINSONS DISEAS); (H) pathway enriched by high
expression of PTTG1 (KEGG PATHOGENIC ESCHERICHIA COLI INFECTION).
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Figure 8. Analysis of Motif transcriptional regulation of core genes. (A,B) the red line is
the mean of the recovery curve of each motif, the green line is the mean ± standard
deviation (sd), and the blue line is the recovery curve of the current motif. The maximum
distance point (mean ± sd) between the current motif and the green curve is the
maximum enrichment level selected; (C) four core genes enriched to motifs. NES:
normalized enrichment score of motifs in the gene set, AUC: area under the curve (used
to calculate NES).

We did a differential study of immune regulatory genes and discovered that HLA-DMA,
HLA-DOA, HLA-DOB, and HLA-DQB2 expression levels were significantly different between the
two patient groups (Figure 10A). To investigate the relationship between essential genes and immune
regulation, we used Pearson correlation analysis. The results indicated that PTTG1 and HLA-DMA
were considerably favorably correlated (Pearson r = 0.62), whereas CDCA8 was strongly negatively
connected with HLA-DQB2 (Pearson r = −0.63) (Figure 10B). We used the Human Protein Atlas
website (https://www.proteinatlas.org/) to download immunohistochemical staining tissue images of
the four core genes in normal skin tissue and tumor tissue, from which we can see the significant
differential expression of the four core genes between normal and tumor tissues, further validating
the accuracy of our model (Figure 11A–D).
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Figure 9. Screening of critical genes by GO semantic similarity showed that CDCA8 and
PTTG1 are critical in the whole network. The upper and lower limits of the boxes show
the 75th and 25th percentiles, and the line in the middle of the box indicates the mean
value of similarity. The top two proteins are considered to be key proteins.

Figure 10. Correlation analysis of core genes and immune-related genes. (A) Differential
analysis of immune regulatory genes showed that HLA-DMA, HLA-DOA, HLA-DOB and
HLA-DQB2 were significantly different in the two groups of patients. * denotes P < 0.05, **
denotes P < 0.01, *** denotes P < 0.001; (B) Correlation analysis of critical genes PTTG1
and CDCA8 showed that PTTG1 and HLA-DMA were significantly positively correlated,
and CDCA8 was significantly negatively correlated with HLA-DQB2.
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Figure 11. Immunohistochemical expression results of 4 core genes from Human Protein
Atlas (https://www.proteinatlas.org/). (A) CDCA8 expression in the normal and tumor
tissue (HPA028058); (B) DTYMK expression in the normal and tumor tissue
(HPA042593); (C) MAD2L1 expression in in the normal and tumor tissue (HPA003348);
(D) PTTG1 expression in the normal and tumor tissue (HPA045034).

4. Discussion

Epithelial tumors account for 90% of human malignancies, and cSCC serves as the prototype of
epithelial tumors due to its basic features of tissue polarity destruction and basement membrane
infiltration. CSCC, the second most common cancer in the United States, affects more than one
million people each year [32]. CSCC has a decent prognosis in its early stages, but about 4% of
patients acquire lymph node metastases, and 1.5 percent of patients with advanced metastases die [3].
Despite the efficacy of chemotherapy, immunotherapy, and surgery in treating cSCC, its prognosis
remains dismal at the moment [33]. Thus, it is critical to understand the tumor microenvironment and
pathophysiology of cSCC to enhance the disease’s prognosis and attain precision medicine.

We used the GEO dataset on cutaneous squamous cell cancer in this investigation. The study
included 13 patients from the control group and 20 patients from the tumor group after batch effects
between datasets were reduced using the Combat algorithm. We used the CIBERSORT method to
measure immune cells in cSCC and built a WGCNA network based on patient T-cell correlations,
and we discovered that the salmon module was the most significantly associated with T cells after
evaluating nine gene modules and features. We developed a prediction model based on these four
core genes shortly after using lasso regression to screen the modules of salmon for traits and
discovered that DTYMK, CDCA8, PTTG1 and MAD2L1 play key roles in cSCC development and
progression. The ROC curves of the training and validation sets showed good model stability. We
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studied the specific signaling pathways enriched in the four core genes using GSEA analysis to infer
illness progression biological processes. RORA, RORB and RORC were identified as significant
transcription factors after enrichment analysis and Motif-TF annotation of transcription factors
regulating the core genes. Following that, we ran a GO semantic similarity screen on them and
discovered that CDCA8 and PTTG1 play important roles. We also looked at the association between
core genes and immunomodulation and discovered that PTTG1 was positively correlated with
HLA-DMA, whereas CDCA8 was dramatically negatively correlated with HLA-DQB2. Finally, we
double-checked our findings using the HPA (Human Protein Atlas) online database.

We analyzed immune cell infiltration in the tumor microenvironment of cSCC. We discovered that
there was a significant difference between the tumor and regular groups in B cells memory (P = 0.016),
T cells regulatory (Tregs) (P = 0.001), Mast cells resting (P = 0.002), Mast cells activated (P = 0.02),
and several other immune microenvironment factors. All of these immune cells play a relatively
critical role in the development of cSCC. Most cancers, including cSCC, contain Treg T cells, and
their presence usually indicates a bad prognosis [34,35]. Treg T cells can inhibit cytokine release and
proliferation in effector cells. They can also suppress the activation of effectors by influencing
antigen-presenting cells. Skin infiltration can be induced by UV irradiation, which causes infiltrating
T cells to generate Treg T cells. TGF-β is produced by malignant cells during the carcinogenesis of
cSCC and can cause infiltrating effector T cells to become Treg T cells [36,37]. Treg T cells were
discovered in greater numbers in cSCC than in normal skin, and in moderately as well as poorly
differentiated cSCC than in highly differentiated cSCC [36]. Macrophages are the most common type
of leukocyte found in most cancers. Tumor-associated macrophages (TAMs) are altered by paracrine
signals such as TGF-β and IFN-γ in late stages of cSCC carcinogenesis, resulting in inefficient
phagocytosis and antigen presentation, and hence acquire an immunoregulatory phenotype [38,39].
Around and within the cut margins of surgically excised cSCCs, we discovered a substantial
number of M1 and M2 macrophage phenotypes [40,41]. TAMs directly stimulate tumor growth
by secreting pro-vascular growth factors like vascular endothelial growth factor (VEGF) and
matrix metalloproteases (MMP), which breach the normal tissue barrier, allowing for additional
invasion [40,42]. Because of the ability to create antibodies and effector cytokines, mediate
antigen presentation, and contribute to T cell polarization, B cells perform an anti-tumor role [43,44].
Furthermore, B cells are involved in tumor growth and cancer immunity [45]. B cell depletion causes
oncogenic failure in animal models of cSCC, owing to their synthesis of immunoglobulins with
chemotactic and pro-inflammatory effects, as well as the deposition of stromal immune complexes
early in tumor growth, leading to myeloid activation via Fc receptors [46,47]. TNF-α and IL-10 can
also be used by B cells to inhibit the immunological response to cSCC [48]. Furthermore, it has been
discovered that during chemical carcinogenesis, B cells can block the development of cSCC by
generating IgE [49].

We discovered that DTYMK, CDCA8, PTTG1 and MAD2L1 play critical roles in cSCC
development and progression. DTYMK (deoxythymidylate kinas) may be used to predict the
prognosis of non-small cell lung cancer and hepatocellular carcinoma patients. It is closely
associated with cell cycle and acid metabolism pathways and suppresses the immune
microenvironment during tumorigenesis. Additionally, overexpression of DTYMK in some patients
increases their sensitivity to chemotherapeutic agents, suggesting that it may be a potential
therapeutic target [50,51]. CDCA8 (cell division cycle associated 8) may provide a novel molecular
method for the initial treatment of hepatocellular carcinoma and preventing metastases. CDCA8
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silencing reduces the growth of hepatocellular carcinoma via restoring the ATF3 oncogene and
inactivating oncogenic AKT/β-linked protein signaling, whereas CDCA8 overexpression promotes
tumor cell proliferation. Additionally, CDCA8 is a critical regulator of mitosis and is being
investigated as a possible predictive biomarker for many malignancies, including lung, breast, and
colon [52]. PTTG1 (pituitary tumor-transforming gene-1) is highly expressed in esophageal,
laryngeal, lung, and hepatocellular carcinomas [53,54], and is associated with the degree of
differentiation, invasion, and metastasis of the tumor [55,56]. PTTG1 is a chromosomal stability
regulator that can aggravate tumor development progression, and inhibiting PTTG1 decreases cancer
cell proliferation and promotes apoptosis. Additionally, PTTG1 expression is increased in
hematologic malignant proliferative disorders such as multiple myeloma and is significantly related
to a bad prognosis [57]. MAD2L1 (mitotic arrest deficient 2 like 1) is an emerging target for
anticancer therapy because it plays a critical role in mitosis, the cell cycle checkpoint, and the DNA
damage response [58]. MAD2L1 has been demonstrated to be a novel prognostic factor for lung
adenocarcinoma and squamous cell carcinoma, and it also interacts with CDC20 and BUB1B [59–61].
MAD2L1 and MAD2L2 can result in aberrant salivary ductal cancer formation [62,63].

In summary, our current work elucidates the immune cell types and interactions in the tumor
microenvironment of cSCC, identifies critical components, and identifies enrichment routes via core
genes. Meanwhile, we conducted differential analysis on immune regulatory genes and connected
them with disease-associated genes.

5. Conclusions

In summary, we discovered that DTYMK, CDCA8, PTTG1 and MAD2L1 are the critical genes
in cSCC, with CDCA8 and PTTG1 being particularly important. The primary regulators are RORA,
RORB, and RORC. B cells memory, T cells regulatory, Mast cells resting, and Mast cells activation
were significantly different between the tumor and regular groups. We compared essential genes with
immune regulatory genes and discovered a strong positive correlation between PTTG1 and
HLA-DMA and a significant negative correlation between CDCA8 and HLA-DQB2.
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