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Abstract: In order to have the highest efficiency in real-life photovoltaic power generation systems, 
how to model, optimize and control photovoltaic systems has become a challenge. The photovoltaic 
power generation systems are dominated by photovoltaic models, and its performance depends on its 
unknown parameters. However, the modeling equation of the photovoltaic model is nonlinear, leading 
to the difficulty in parameter extraction. To extract the parameters of the photovoltaic model more 
accurately and efficiently, a chaotic self-adaptive JAYA algorithm, called AHJAYA, was proposed, 
where various improvement strategies are introduced. First, self-adaptive coefficients are introduced 
to change the priority of information from the best search agent and the worst search agent. Second, 
by combining the linear population reduction strategy with the chaotic opposition-based learning 
strategy, the convergence speed of the algorithm is improved as well as avoid falling into local 
optimum. To verify the performance of the AHJAYA, four photovoltaic models are selected. The 
experimental results prove that the proposed AHJAYA has superior performance and strong 
competitiveness. 

Keywords: photovoltaic model; parameter extraction; AHJAYA; self-adaptive; Linear population 
reduction; chaotic opposition-based learning 
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1. Introduction  

As resources continue to be depleted, finding high-quality renewable energy is a very important 
task. Among the many renewable energy sources, photovoltaic energy [1] is called the most potential 
renewable energy. It has a series of advantages that traditional energy cannot compare with, such as clean, 
pollution-free, renewable, and daily usable. However, the performance of a photovoltaic system depends 
on the chosen photovoltaic model and unknown parameters [2] in the model. At present, a variety of 
photovoltaic models have been developed, including single-diode model [3] (SDM), double-diode 
model [4] (DDM), three-diode model [5] (TDM), etc., but the most widely and most commonly [6] used 
are still the SDM and DDM. However, various uncertain factors will directly affect the changes of 
parameters, thereby reducing the performance of photovoltaic systems. Therefore, it is necessary to 
extract unknown parameters from the photovoltaic model before the photovoltaic system is used. 

To accurately extract these unknown parameters, many methods have been proposed. These 
methods can be roughly divided into three categories, including analytical methods, deterministic 
methods, and meta-heuristic methods. Analytical methods and deterministic methods rely on the initial 
values of the model and the necessary assumptions, so it is easy to lead to a decrease in the accuracy 
of the solution, and even the latter is easy to fall into the local optimum. Therefore, in order to address 
these difficulties, many meta-heuristic methods are used for parameter extraction of photovoltaic 
models, due to its simple structure, clear concept, few parameters and high efficiency. For example, 
Whale Optimization Algorithm [7] (WOA), Differential Evolution Algorithm [8] (DE), Harmony 
Search Algorithm [9] (HS), Cuckoo Search Algorithm [10] (CS), Genetic Algorithm [11] (GA), 
Artificial Bee Colony Algorithm [12] (ABC), Simulated Annealing Algorithm [13] (SA), Teaching-
Learning-Based Optimization Algorithm [14] (TLBO), Ant Lion Optimizer [15] (ALO), Arithmetic 
Optimization Algorithm [16] (AOA), Bonobo Optimizer [17] (BO), Sine Cosine Algorithm [18] (SCA), 
Rao-1 Algorithm [19], Empire Competition Algorithm [20] (ICA), Marine predators algorithm [21] 
(MPA), Harris Hawk optimization algorithm [22] (HHO), etc. Yu et al. [23] proposed a new variant 
of differential evolution (PDcDE) to extract the parameters of several solar photovoltaic models. Gao 
et al. [24] proposed a directed permutation differential evolution algorithm (DPDE) to solve the 
parameter estimation problem of several solar photovoltaic models. Although these algorithms have 
obtained satisfactory results in the extraction of photovoltaic parameters, in order to further reduce the 
complexity of the algorithm and improve the efficiency of the algorithm, it is still necessary to find 
better algorithm for further reducing the complexity of the algorithm and improving the efficiency of 
the algorithm. 

The JAYA algorithm [25] is a very potential swarm-based optimization algorithm. Compared 
with the traditional swarm optimization algorithm, the JAYA algorithm has two advantages. First, the 
JAYA algorithm has no additional control parameters, only a common parameter, the initial population 
size. This means that the algorithm runs faster. Second, the algorithm has only one evolutionary 
strategy. This shows that the structure of the algorithm becomes very simple, on the other hand, the 
resources used for computation are reduced. Because of these advantages, many improved JAYA 
algorithms are used to solve various high-dimensional complex problems [26–30]. Tefek et al. [31] 
proposed Jaya Linear (Jaya-L) and Jaya Quadratic (Jaya-Q) models for estimating the future number 
of road accidents in Turkey. Gholami et al. [32] proposed a Powerful Enhanced Jaya (PEJAYA) to 
solve numerical and engineering problems, and the experimental results show that the improvement is 
very effective. Jian et al. [33] proposed a chaotic second order oscillation JAYA algorithm 
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(CSOOJAYA) for parameter extraction of photovoltaic models. The experimental results show that 
CSOOJAYA performs well in all aspects. Belagoune et al. [34] proposed a discrete chaotic Jaya 
optimization (DCJO) algorithm to perform preventive maintenance scheduling of power system 
generators. The experimental results show that the proposed DCJO is more effective than other 
optimization algorithms to solve the GMS problem. 

In this paper, a chaotic self-adaptive JAYA algorithm, called AHJAYA, is proposed. In the 
AHJAYA algorithm, various improvement strategies are introduced. A self-adaptive coefficient 
strategy is introduced with the aim of changing the priority of utilizing the best search agent and the 
worst search agent in the update formula. This means that the overall evolution is biased towards the 
optimal search agent. The exploration ability of the algorithm is improved. On the other hand, the 
linear population reduction strategy and the chaotic opposition-based learning strategy are introduced 
by the proposed AHJAYA, the convergence speed of the algorithm is further improved and the local 
optimum can be avoided. It should be noted that there are already many efficient self-adaptive 
coefficient strategies [35,36], and corresponding adaptive strategies need to be selected for different 
problems. On the other hand, linear population reduction strategy is also often used to improve the 
performance of the algorithm [37,38]. To verify the performance of the AHJAYA, several different 
photovoltaic models are chosen, including the single-diode model, the double-diode model, the 
STM6-40/36 model, and the STP6-120/36 model. Finally, the AHJAYA is compared with other mature 
algorithms. The experimental results show that the proposed AHJAYA has superior performance and is 
in a leading position among the algorithms used for photovoltaic parameter extraction. 

The main contributions of this paper are as follows: 
1)ꞏIn order to extract the parameters of the photovoltaic model more accurately and efficiently, 

an improved AHJAYA is proposed. 
2)ꞏThe self-adaptive coefficient strategy is introduced to change the priority of the optimal search 

agent and the worst search agent in the evolution strategy. 
3)ꞏThe chaotic opposition-based learning strategy is proposed to prevent the AHJAYA from 

falling into local optimum. 
4)ꞏThe linear population reduction strategy is introduced so that the algorithm converges faster 

and uses less computational resources. 
The rest of this paper is arranged as follows: In Section 2, the definition of photovoltaic (PV) 

model and objective function is introduced. In Section 3, the original JAYA algorithm is introduced. 
In Section 4, the improved AHJAYA algorithm is introduced in detail. In Section 5, simulation 
experiments and result analysis are carried out by the AHJAYA and the comparison algorithms. In 
Section 6, summarized the article and looked forward to future work. 

2. Definition of photovoltaic (PV) model 

In this section, three photovoltaic models (single-diode model, double-diode model, PV module 
model) are introduced and their objective functions are defined. 

2.1. Single-diode model 

The characteristics of solar cells can be accurately described by SDM, which can be expressed by 
the following formula. 
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𝐼௅ ൌ 𝐼௣௩ െ 𝐼ௗ െ 𝐼௣ (1)

𝐼ௗ ൌ 𝐼௦ௗ ൤expሺ
ሺ𝑉௅ ൅ 𝐼௅𝑅௦ሻ ൈ 𝑞

𝑛𝑘𝑇
ሻ െ 1൨ (2)

𝐼௣ ൌ
𝑉௅ ൅ 𝐼௅𝑅௦

𝑅௉
 (3)

where, 𝐼௣ is the shunt resistor current, 𝐼ௗ is the diode current, 𝐼௣௩ is the current generated by solar 
irradiation, 𝐼௦ௗ is the diode saturation current, 𝑉௅ is the output voltage, 𝑅௦ and 𝑅௉ are the series 
and shunt resistances respectively, 𝑛 is the diode characteristic factor, 𝑘 ൌ 1.3806503 ൈ 10ିଶଷ𝐽/𝐾 
and 𝑞 ൌ 1.60217646 ൈ 10ିଵଽ𝐶 are both constants. 

Therefore, the output current of the SDM can be expressed by the following formula. 

𝐼௅ ൌ 𝐼௣௩ െ 𝐼௦ௗ ൤expሺ
ሺ𝑉௅ ൅ 𝐼௅𝑅௦ሻ ൈ 𝑞

𝑛𝑘𝑇
ሻ െ 1൨ െ

𝑉௅ ൅ 𝐼௅𝑅௦

𝑅௉
 (4)

It can be seen from the formula that this model needs to extract five unknown parameters including 
𝐼௣௩, 𝐼௦ௗ, 𝑅௦, 𝑅௉ and 𝑛. 

2.2. Double-diode model 

DDM adds a diode on the basis of SDM, so the effect of loss of recombination current is 
considered. This model can be expressed by the following formula. 

𝐼௅ ൌ 𝐼௣௩ െ 𝐼ௗଵ െ 𝐼ௗଶ െ 𝐼௣ (5)

𝐼ௗభ
ൌ 𝐼௦ௗభ

൤expሺ
ሺ𝑉௅ ൅ 𝐼௅𝑅௦ሻ ൈ 𝑞

𝑛ଵ𝑘𝑇
ሻ െ 1൨ (6)

𝐼ௗమ
ൌ 𝐼௦ௗమ

൤expሺ
ሺ𝑉௅ ൅ 𝐼௅𝑅௦ሻ ൈ 𝑞

𝑛ଶ𝑘𝑇
ሻ െ 1൨ (7)

where, 𝐼௦ௗభ
 and 𝐼௦ௗమ

 are the diffusion current and saturation current, and 𝑛ଵ and 𝑛ଶ are the ideality 
factors of the two diodes, respectively. 

Therefore, the output current of the DDM can be expressed by the following formula. 

𝐼௅ ൌ 𝐼௣௩ െ 𝐼௦ௗభ
൤expሺ

ሺ𝑉௅ ൅ 𝐼௅𝑅௦ሻ ൈ 𝑞
𝑛ଵ𝑘𝑇

ሻ െ 1൨ െ 𝐼௦ௗమ
൤expሺ

ሺ𝑉௅ ൅ 𝐼௅𝑅௦ሻ ൈ 𝑞
𝑛ଶ𝑘𝑇

ሻ െ 1൨ െ
𝑉௅ ൅ 𝐼௅𝑅௦

𝑅௉
(8)

It can be seen from the formula that this model needs to extract seven unknown parameters including 
𝐼௣௩, 𝐼௦ௗభ

, 𝐼௦ௗమ
, 𝑅௦, 𝑅௉, 𝑛ଵ and 𝑛ଶ. 

2.3. PV module model 

The PV module model is built on multiple PV cells connected in parallel and in series. Therefore, 
it can be expressed by the following formula. 



5642 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 5638–5670. 

𝐼௅ ൌ 𝐼௣௩𝑁௣ െ 𝐼௦ௗ𝑁௣ ቈexpሺ
ሺ𝑉௅𝑁௣ ൅ 𝐼௅𝑅௦𝑁௦ሻ ൈ 𝑞

𝑛𝑁௦𝑁௣𝑘𝑇
ሻ െ 1቉ െ

𝑉௅𝑁௣ ൅ 𝐼௅𝑅௦𝑁௦

𝑅௉𝑁௦
 (9)

where, 𝑁௦ represents the number of photovoltaic cells in series, and 𝑁௣ represents the number of 
photovoltaic cells in parallel. 

It can be seen from the formula that this model needs to extract five unknown parameters. 

2.4. Objective function of PV model 

The parameters of the above models are estimated when using data provided by the supplier. 
Usually, an objective function is needed to estimate the error of the experiment. In this paper, the root 
mean square error (RMSE) is adopted as the objective function for optimization. Because it can reflect 
the degree of error between the measured data and the real data. 

𝑚𝑖𝑛    𝑅𝑀𝑆𝐸ሺ𝑥ሻ ൌ ඨ
∑ ሺ𝐼௜ െ 𝐼௅ሻଶே

௜ୀଵ

𝑁
 (10)

where, 𝑁 is the number of datasets, 𝐼௅ is the calculated current, and 𝐼௜ is the data provided by the 
supplier. 

It can be seen from formula (10) that when the value of RMSE is smaller, the extracted parameters 
are more accurate. 

3. JAYA algorithm 

The JAYA algorithm is based on the idea of approaching the best solution and moving away from 
the worst solution in the process of computation. Different from the traditional differential evolution 
(DE) algorithm, the JAYA algorithm has only one common parameter, which is the population size. 
In addition, there is only one evolution strategy in the algorithm. All individuals evolve through this 
strategy, which can be expressed by the following formula. 

𝑌௜,௝ ൌ 𝑋௜,௝ ൅ 𝑟𝑎𝑛𝑑ଵ ൈ ൫𝑋௕௘௦௧,௝ െ ห𝑋௜,௝ห൯ െ 𝑟𝑎𝑛𝑑ଶ ൈ ൫𝑋௪௢௥௦௧,௝ െ ห𝑋ூ,௝ห൯ (11)

where, 𝑋௕௘௦௧,௝ represents the best solution, 𝑋௪௢௥௦௧,௝ represents the worst solution, and 𝑟𝑎𝑛𝑑ଵ and 
𝑟𝑎𝑛𝑑ଶ are random numbers between 0 and 1. 

If the fitness value of the updated solution is better than the previous solution, then the updated 
solution can be accepted, otherwise, the previous solution is kept. 

𝑋௜ ൌ ൜
𝑌௜, 𝑖𝑓 𝑓ሺ𝑌௜ሻ ൏ ሺ𝑋௜ሻ

𝑋௜, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (12)

4. The proposed AHJAYA algorithm 

For the JAYA algorithm, its main no-parameter feature is the most attractive. The best and worst 
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individuals in the population are used by the JAYA algorithm to exploration in the global scope. 
However, the single exploration strategy can easily lead to incomplete exploration or even local 
optimum. To improve these shortcomings, some improvement strategies are introduced. 

4.1. Self-adaptive coefficient strategy 

In the process of exploration, the best and worst individuals with the same priority are selected 
by the original JAYA algorithm, but this approach cannot have efficient exploration ability. Therefore, 
the priority of individual assignment needs to be changed, so that all search agents are searched in the 
direction of the optimal individual, and self-adaptive coefficient strategy [39] is introduced. 

𝐴ଵ ൌ ቐ
𝑚𝑒𝑎𝑛ሺ𝑓ሺ𝑋ሻሻ

𝑓ሺ𝑋௕௘௦௧ሻ
, 𝑓ሺ𝑋௕௘௦௧ሻ ് 0

1, 𝑓ሺ𝑋௕௘௦௧ሻ ൌ 0
 (13)

𝐴ଶ ൌ ቐ
𝑚𝑒𝑎𝑛ሺ𝑓ሺ𝑋ሻሻ

𝑓ሺ𝑋௪௢௥௦௧ሻ
, 𝑓ሺ𝑋௪௢௥௦௧ሻ ് 0

1, 𝑓ሺ𝑋௪௢௥௦௧ሻ ൌ 0
 (14)

where, 𝑋௕௘௦௧  and 𝑋௪௢௥௦௧  are the global best solution and the worst solution, respectively. In the 
process of optimization, the value of 𝐴ଵ is greater than 1, and the value of 𝐴ଶ is less than 1. As the 
iteration continues to increase, they eventually approach 1. 

These two coefficients are introduced into the update formula. It can be expressed by the 
following formula. 

𝑌௜,௝ ൌ 𝑋௜,௝ ൅ 𝐴ଵ ൈ 𝑟𝑎𝑛𝑑ଵ ൈ ൫𝑋௕௘௦௧,௝ െ ห𝑋௜,௝ห൯ െ 𝐴ଶ ൈ 𝑟𝑎𝑛𝑑ଶ ൈ ൫𝑋௪௢௥௦௧,௝ െ ห𝑋ூ,௝ห൯ (15)

At the beginning of the iteration, the difference between the two coefficients is large, so all search 
agents are moved to the position of the global optimum, which improves the performance of the 
exploration. In late iterations, two coefficients approach 1 and local exploration is implemented, 
improving exploitation performance. 

4.2. Linear population reduction strategy 

The performance of the JAYA algorithm is directly affected by the population size. In order to 
improve the optimization efficiency of the algorithm, a linear population reduction strategy is adopted, 
therefore, the convergence speed is further improved. It can be expressed by the following formula. 

𝑁𝑃 ାଵ ൌ 𝑟𝑜𝑢𝑛𝑑 ൤ሺ
𝑁𝑃௠௜௡ െ 𝑁𝑃௜௡௜௧

𝑀𝑎𝑥𝑁𝐹𝐸𝑆
ሻ ൈ 𝑁𝐹𝐸𝑆 ൅ 𝑁𝑃௜௡௜௧൨ (16)

where 𝑁𝑃௠௜௡ is the population size at the end of the algorithm iteration, which is set to 3, 𝑁𝑃௜௡௜௧ is 
the initial population size, 𝑁𝐹𝐸𝑆 is the current number of evaluations, 𝑀𝑎𝑥𝑁𝐹𝐸𝑆 is the maximum 
number of evaluations, 𝑁𝑃  is the population size of the current generation, and 𝑁𝑃 ାଵ is the 
population size of the next generation. On the other hand, as the population continues to decrease, 
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the algorithm is gradually biased towards exploitation, so there is good transition between 
exploration and exploitation. 

4.3. The chaotic opposition-based learning strategy 

In the original JAYA algorithm, the case for local optimum cannot be handled. Therefore, a 
chaotic map is introduced, which is used to jump out of local optimum in the algorithm. The specific 
discussion of the chaotic map is placed in Section 5.2, and this chaotic map is tentatively used here. It 
can be expressed by the following formula. 

𝑍௜,௝ ൌ ቀ൫𝑈𝐵௝ ൅ 𝐿𝐵௝൯ െ 𝑋௜,௝ቁ ൈ |𝑃௞| (17)

𝑃௞ାଵ

ൌ ൜
𝜗 ൈ ሺ1 െ 𝜏ଵ ൈ 𝑃௞

ଶሻ 𝑃௞ ൏ 0
1 െ 𝜏ଶ ൈ 𝑃௞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(18)

where, 𝜗 ൌ 0.85, 𝜏ଵ ൌ 1.8, 𝜏ଶ ൌ 2.0, 𝑈𝐵௝ and 𝐿𝐵௝ represent the maximum and minimum values 
in the current population in the jth dimension, respectively. The initial value of 𝑃௞ is 0.7. 

It is worth noting that this chaotic mapping fluctuates between -1 and 1, so the absolute function 
must be added before it can be used, as shown in Figure 1. 

 

Figure 1. The chaotic mapping fluctuations. 
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4.4. Overview of the proposed AHJAYA algorithm 

After the original JAYA algorithm is introduced by the above three improvement strategies, both 
the exploration and exploitation capabilities of the algorithm have been greatly improved. In the 
exploration phase, the exploration capability is enhanced by two coefficients, because the optimal 
search agent is assigned a higher priority by the two coefficients, and therefore, the overall evolution 
towards the optimal search agent. In the exploitation phase, the population gradually decreases, on the 
other hand, the two coefficients approach 1, so the exploitation capacity is greatly improved. Finally, 
the chaotic opposition-based learning strategy is introduced, which avoids the algorithm from falling 
into local optimum. The overall algorithm structure has not changed and still has a simple structure. 

In the proposed AHJAYA, since the evolutionary strategy is not changed, the increased 
complexity comes from sorting after removing individuals from the population and the chaotic 
opposition-based learning strategy. The complexity of sorting is O(𝑁𝑃 ൈ 𝑙𝑜𝑔ሺ𝑁𝑃), and the complexity 
of chaotic opposition-based learning is O(𝑁𝑃 ൈ 𝐷𝑖𝑚). Therefore, the complexity of the proposed 
JAYA algorithm is O(𝐺௠௔௫ ൈ 𝑁𝑃 ൈ ሺ𝑙𝑜𝑔ሺ𝑁𝑃ሻ ൅ 𝐷𝑖𝑚ሻ. Where, 𝐺௠௔௫ is the maximum number of 
iterations, and 𝐷𝑖𝑚 is the population dimension. The pseudo code of the proposed AHJAYA is shown 
in Algorithm 1. It can be seen from Algorithm 1 that two coefficients are updated before each iteration, 
and linear population reduction strategy will be used after the population is updated through the evolution 
strategy. In addition, for the chaotic opposition-based learning strategy, when the random number is less 
than 0.3, it means that the new position needs to be updated through the strategy at this time. 

Algorithm 1: The pseudo-code of the proposed AHJAYA 
Set population size 𝑁𝑃, the maximum number of evaluations 𝑀𝑎𝑥𝑁𝐹𝐸𝑆, dimension 𝐷𝑖𝑚 
Initialize the positions of Individuals 𝑋௜ሺ𝑖 ൌ 1,2, … , 𝑁𝑃ሻ 
Set 𝑁𝐹𝐸𝑆 ൌ 0, 𝑁𝑃 ൌ 𝑁𝑃௠௔௫ ൌ 50, 𝑁𝑃௠௜௡ ൌ 3. 
Set 𝑁𝐹𝐸𝑆 ൌ 𝑁𝑃. 
While (𝑁𝐹𝐸𝑆 ൑ 𝑀𝑎𝑥𝑁𝐹𝐸𝑆ሻ 

Calculate coefficients 𝐴ଵ and 𝐴ଶ using Eqs (13) and (14) 
For 𝑖 ൌ 1 ∶  𝑁P 

Update the new position 𝑋ᇱ using Eq (15) 
If 𝑓ሺ𝑋ᇱሻ ൏ 𝑓ሺ𝑋ሻ then 
  𝑋=𝑋ᇱ 
End if 

End For 
Calculate the new population 𝑁𝑃 ାଵ using Eq (16) 
If 𝑟𝑎𝑛𝑑 ൏ 𝑄 then  

Calculate the new position 𝑋஼ை஻௅ using Eq (17). 
End If 

    Memory saving 
End While 
Return 𝑋௕௘௦௧ 

It should be noted that the threshold setting of 𝑄 also affects the overall performance of the 
algorithm, so the specific discussion is set in Section 5.1. 
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5. Experiments and results 

5.1. Analysis of the threshold value of parameter Q 

The threshold of parameter 𝑄 affects the overall performance of the algorithm, so it is necessary 
to analyze this threshold. It is worth noting that the algorithm as a whole is only affected by this factor, 
so it is only necessary to set different 𝑄 values, and then statistically analyze the relevant values to 
draw conclusions. For the convenience of the experiment, the CEC2020 competition is selected, 
because this competition has a large number of complex functions to test the performance of the 
algorithm, so slight changes in the performance of the algorithm can be reflected numerically. In order 
to facilitate the experiment, the values of 𝑄  are 0.1, 0.3, 0.5, 0.7 and 0.9, respectively. The 
experimental results are shown in Table 1. All experiments were run 30 times, and the maximum 
number of evaluations is set to 15,000 times. 

It can be seen from Table 1 that when 𝑄 = 3, AHJAYA performs the best, accounting for 9 of 
the 20 best values. Therefore, the threshold of the most suitable Q is set to 0.3. 

Table 1. Results of the CEC2020 competition with different values of 𝑄. 

F Item 
AHJAYA  

(Q = 0.1) 

AHJAYA  

(Q = 0.3) 

AHJAYA  

(Q = 0.5) 

AHJAYA  

(Q = 0.7) 

AHJAYA  

(Q = 0.9) 

CEC2020F1 
Mean 7.163 × 106 7.482 × 107 2.775 × 108 2.048 × 108 7.859 × 108 

Std 1.019 × 107 1.016 × 108 4.013 × 108 2.357 × 108 7.927 × 108 

CEC2020F2 
Mean 1.982 × 103 1.830 × 103 1.913 × 103 1.884 × 103 2.020 × 103 

Std 2.790 × 102 2.867 × 102 3.297 × 102 3.036 × 102 3.783 × 102 

CEC2020F3 
Mean 7.396 × 102 7.391 × 102 7.433 × 102 7.430 × 102 7.457 × 102 

Std 9.554 9.474 10.53 10.02 9.154 

CEC2020F4 
Mean 1.903 × 103 1.901 × 103 2.405 × 103 3.067 × 103 4.221 × 103 

Std 1.764 16.16 1.305 × 103 3.327 × 103 7.701 × 103 

CEC2020F5 
Mean 1.091 × 104 6.713 × 103 7.471 × 103 1.818 × 104 2.847× 104 

Std 6.329 × 103 4.880 × 103 3.707 × 103 3.799 × 104 6.844 × 104 

CEC2020F6 
Mean 1.602 × 103 1.601 × 103 1.602 × 103 1.601 × 103 1.603 × 103 

Std 3.301 0.1688 3.471 0.2548 4.793 

CEC2020F7 
Mean 4.017 × 103 3.288 × 103 4.196 × 103 4.598 × 103 4.783 × 103 

Std 1.129 × 103 7.755 × 102 1.420 × 103 1.787 × 103 1.876 × 103 

CEC2020F8 
Mean 2.304 × 103 2.310 × 103 2.317 × 103 2.325 × 103 2.342 × 103 

Std 17.73 21.07 29.60 28.66 50.97 

CEC2020F9 
Mean 2.727 × 103 2.710 × 103 2.674 × 103 2.722 × 103 2.711 × 103 

Std 76.83 89.78 1.101 × 102 75.50 85.39 

CEC2020F10 
Mean 2.924 × 103 2.938 × 103 2.935× 103 2.950 × 103 2.941 × 103 

Std 20.93 23.32 25.92 30.74 21.81 

5.2. Analysis of chaotic map 

Many chaotic maps have been proven to be effective in improving the performance of algorithms. 
Therefore, comparative analysis is required when choosing a chaotic map. Three effective chaotic 
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maps are selected in this paper, including Hybrid map, Piecewise linear map [40] and Chebyshev 
map [41]. The formula for piecewise linear map can be expressed as follows. 

 𝑥ሺ𝑛 ൅ 1ሻ ൌ ቐ
    ௫೙

ଵିఒ
           0 ൏ 𝑥௡ ൏ 1 െ 𝜆

    ௫೙ିሺଵିఒሻ

ఒ
         1 െ 𝜆 ൏ 𝑥௡ ൏ 1

 (19) 

where, the value of 𝜆 is 0.6. The formula for Chebyshev map can be expressed as follows. 

 𝑥ሺ𝑛 ൅ 1ሻ ൌ 𝑐𝑜𝑠ሺ ௜

௖௢௦ሺ௑೙ሻ
ሻ (20) 

where, 𝑖 is the population number. It should be noted that the initial value of both chaotic maps is 0.7. 
The algorithms corresponding to the piecewise linear map and the Chebyshev map are named 

AHJAYA-P and AHJAYA-C, respectively. Similarly, the three algorithms are still experimented in 
the CEC2020 competition, the experiment is carried out 30 times, and the maximum number of 
evaluations is 15,000 times. The experimental results are shown in Table 2. 

From the experimental results in the table, the AHJAYA algorithm with Hybrid map performs 
the best, accounting for 10 of the 20 best values. It should be noted that AHJAYA-P also showed 
strong competitiveness. Therefore, Hybrid map is chosen in this paper. 

Table 2. Results of different chaotic maps at the CEC2020 competition. 

F Item AHJAYA AHJAYA-P AHJAYA-C 

CEC2020F1 
Mean 7.482 × 107 9.973 × 105 8.764 × 107 

Std 1.016 × 108 2.484 × 106 1.349 × 108 

CEC2020F2 
Mean 1.830 × 103 1.899 × 103 1.894 × 103 

Std 2.867 × 102 3.352 × 102 2.600 × 102 

CEC2020F3 
Mean 7.391 × 102 7.358 × 102 7.433 × 102 

Std 9.474 8.745 14.17 

CEC2020F4 
Mean 1.901 × 103 1.903 × 103 1.912 × 103 

Std 16.16 0.9553 31.71 

CEC2020F5 
Mean 6.713 × 103 1.023 × 104 1.193 × 104 

Std 4.880 × 103 8.561 × 103 1.691 × 104 

CEC2020F6 
Mean 1.601 × 103 1.601 × 103 1.601 × 103 

Std 0.1688 0.2774 0.2487 

CEC2020F7 
Mean 3.288 × 103 3.338 × 103 3.295 × 103 

Std 7.755 × 102 9.050 × 102 9.513 × 102 

CEC2020F8 
Mean 2.310 × 102 2.318 × 103 2.312 × 103 

Std 21.07 6.422 34.50 

CEC2020F9 
Mean 2.710 × 103 2.728 × 103 2.712 × 103 

Std 89.78 65.79 90.08 

CEC2020F10 
Mean 2.938 × 103 2.934 × 103 2.932 × 103 

Std 23.32 20.03 23.08 
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5.3. Parameter settings 

In order to verify the performance of the proposed AHJAYA, JAYA, PGJAYA [42] and 
EJAYA [27] are selected as comparison algorithms. The setting of specific parameters is shown in 
Table 3. The maximum number of evaluations is set to 15,000 for single diodes, double diodes, 
STM6-40/36 and STP6-120/36. All experiments are run 30 times. All of the simulation experiments 
would be carried out with HP DL380 Gen 10 server with 32GB RAM and Intel Xeon Bronze 3106 × 2 
cores, and MATLAB 2017b software. 

Table 3. Parameter settings of algorithms. 

Algorithm Parameter 

JAYA 𝑁𝑃 ൌ 50 

PGJAYA 𝑁𝑃 ൌ 50 

EJAYA 𝑁𝑃 ൌ 50 

AHJAYA 𝑁𝑃 ൌ 50, Q = 0.3 

5.4. PV model selection and parameter setting 

Three different PV models were chosen to test the performance of the AHJAYA on four PV 
datasets. For the single-diode and double-diode model, R.T.C. France solar cell of the 57 mm diameter 
commercial is selected. For the PV module model, monocrystalline STM6-40/36 and polycrystalline 
STP6-120/36 is selected. The setting of specific relevant parameters is shown in Tables 4 and 5. 

Table 4. Correlation data of three PV models. 

Parameter 
The single-diode/ double-

diode model 
STM6-40/36 STP6-120/36 

NP 1 1 1 

NS 1 36 36 

Data Volume 26 20 24 

temperature 25 ℃ 51 ℃ 55 ℃ 

Radiance 1000 W/m² 1000 W/m² 1000 W/m² 

Table 5. Parameter settings of three PV models. 

Parameter R.T.C. France solar cell STM6-40/36 STP6-120/36 

LB UB LB UB LB UB 

𝑰𝒑𝒗(A) 0 1 0 2 0 8 

𝑰𝒔𝒅𝟏
, 𝑰𝒔𝒅𝟐

, 𝑰𝒔𝒅(𝝁A) 0 1 0 50 0 50 

𝑹𝑷(Ω) 0 100 0 1000 0 1500 

𝑹𝑺(Ω) 0 0.5 0 0.36 0 0.36 

𝒏𝟏, 𝒏𝟐, 𝒏 1 2 1 60 1 50 
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5.5. Experimental results of the single-diode model 

For the single-diode model, the RMSE results obtained by the four algorithms are shown in 
Table 6, including the best value, the worst value, the mean, and the standard deviation. It can be seen 
from the results that the three algorithms (including AHJAYA, PGJAYA, JAYA) can obtain the best 
RMSE value, but only the AHJAYA has the best performance in the worst value, average value and 
standard deviation. On the other hand, the standard deviation of the AHJAYA is smaller than other 
algorithms, which means that the AHJAYA is more stable. In addition, the Wilcoxon Signed Ranks 
test visually shows the direct difference of the algorithm. In the data in Table 6, the proposed AHJAYA 
algorithm has obvious advantages among the four algorithms and ranks first. 

The best RMSE values and the corresponding extracted five parameters are shown in Table 7. 
The accuracy of these parameters cannot be determined from a numerical point of view alone. 
Therefore, these values are reintroduced into the function and used to calculate the simulated current 
values. Figure 2(a),(b) show the fitting curves of measured current and simulated current, and 
measured power and simulated power, respectively. From Figure 2, it can be clearly seen that the five 
parameters extracted by the AHJAYA are very accurate, because the simulated data can match the real 
data well. 

The accuracy of these algorithms is analyzed by the above experiments, and the convergence also 
needs to be analyzed. Therefore, the convergence curves of these algorithms on the single-diode model 
are shown in Figure 3. It can be seen from Figure 3 that the proposed AHJAYA converges faster than 
the other three algorithms. 

Table 6. Results of the single-diode model. 

Algorithm 
RMSE Wilcoxon Signed Ranks test 

Best Worst Mean Std R+ R- P-value Ranking Sig

AHJAYA 
9.86021878 

× 10−4 

9.86021938 

× 10−4 

9.86021880 

× 10−4 

1.10061104 

× 10−11 
− − − 1.65 − 

PGJAYA 
9.86021878 

× 10−4 

2.14258455 

× 10−3 

1.06065486 

× 10−3 

2.17305257 

× 10−4 
396.0 39.0 

2.88 × 

10−6 
2.6667 + 

JAYA 
9.86021878 

× 10−4 

9.86912488 

× 10−4 

9.86059764 

× 10−4 

1.65198791 

× 10−7 
289.5 175.5 0.017518 1.8167 + 

EJAYA 
9.91219258 

× 10−4 

1.29548522 

× 10−3 

1.10739632 

× 10−3 

8.21122196 

× 10−5 
465.0 0.0 

1.73 × 

10−6 
3.8667 + 

Table 7. Extracted parametric results on the single-diode model. 

Algorithm 𝑰𝒑𝒗(A) 𝑰𝒔𝒅(𝝁A) 𝑹𝑺(Ω) 𝑹𝑷(Ω) 𝒏 RMSE 

AHJAYA 0.760775530 0.32302081 0.036377093 53.71852177 1.481183591 9.86021878 × 10−4

PGJAYA 0.760775519 0.32302066 0.036377098 53.71864070 1.481183543 9.86021878 × 10−4

JAYA 0.760775530 0.32302083 0.036377092 53.71852852 1.481183598 9.86021878 × 10−4

EJAYA 0.7603639579 0.36597422 0.035795327 58.53225747 1.493883074 9.91219258 × 10−4
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(a) Fitting curve of measured current and simulated 

current obtained by AHJAYA 

(b) Fitting curve of measured power and simulated 

power obtained by AHJAYA 

Figure 2. The Fitting curve between the measured data and the simulated data is obtained 
by the AHJAYA on the single-diode model. 

 

Figure 3. Comparison of the four algorithms on the convergence curve on the single-diode 
model. 

5.6. Experimental results of the double-diode model 

Different from the single-diode model, the double-diode model has two more unknown 
parameters that need to be extracted, which undoubtedly increases the complexity of the problem. The 
RMSE obtained by these algorithms on the double-diode model are shown in Table 8. From the data 
in this table, the proposed AHJAYA achieves optimal values in all four aspects. On the other hand, the 
experimental results of the Wilcoxon Signed Ranks test also prove that the AHJAYA algorithm is 
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superior to other algorithms, ranking first overall. In addition, the best RMSE and the corresponding 
extracted parameters obtained by the four algorithms are shown in Table 9. To verify the accuracy of 
the proposed AHJAYA, the extracted 7 parameters are substituted into the function to calculate the 
simulated current and power. On the double-diode model, the fitting curve between the measured data 
and the simulated data calculated by the AHJAYA is shown in Figure 4. It can be seen from Figure 4 
that the simulated calculated data fit the measured data. Therefore, the AHJAYA exhibits superior 
performance on the double-diode model. 

On the other hand, Figure 5 shows the convergence curves of the four algorithms on the two-
diode model. There is no doubt that the proposed AHJAYA converges faster after less evaluation times, 
and its performance is very superior. 

Table 8. Results of the double-diode model. 

Algorithm 
RMSE Wilcoxon Signed Ranks test 

Best Worst Mean Std R+ R- P-value Ranking Sig

AHJAYA 
9.82487154 

× 10−4 

9.90382279

× 10−4 

9.85493674

× 10−4 

1.86113881 

× 10−6 
− − − 1.6 − 

PGJAYA 
9.83949066 

× 10−4 

2.78220880

× 10−3 

1.23245866

× 10−3 

4.61314505 

× 10−4 
446.0 19.0 

1.13 × 

10−5 
2.7 + 

JAYA 
9.82612337 

× 10−4 

1.45994353

× 10−3 

1.04945516

× 10−3 

1.22731480 

× 10−4 
331.0 134.0 0.042767 1.9667 + 

EJAYA 
9.91361757 

× 10−4 

2.44975182

× 10−3 

1.56518485

× 10−3 

4.02468734 

× 10−4 
465.0 0.0 

1.73 × 

10−6 
3.7333 + 

Table 9. Extracted parametric results on the double-diode model. 

Algorithm 𝑰𝒑𝒗(A) 𝑰𝒔𝒅𝟏
(𝝁A) 𝑹𝑺(Ω) 𝑹𝑷(Ω) 𝒏𝟏 𝑰𝒔𝒅𝟐

(𝝁A) 𝒏𝟐 RMSE 

AHJAYA 0.76076993

7 

0.24275673 0.03665999

4 

55.2787952

1 

1.45703977

1 

0.61290764 1.99999989

4 

9.82487154 

× 10−4 

PGJAYA 0.76078001

5 

0.21712876 0.03670010

5 

55.0764683

7 

1.44921838

7 

0.48025473 1.86743680

0 

9.83949066 

× 10−4 

JAYA 0.76078000

1 

0.61575991 0.03667044

9 

55.1499238

6 

1.99999554

3 

0.24182516 1.45668539

3 

9.82612337 

× 10−4 

EJAYA 0.76075313

9 

0.27549484 0.03588545

3 

57.0233836

5 

1.49841203

8 

9.11113904 1.48185346

9 

9.91361757 

× 10−4 

5.7. Experimental results of the STM6-40/36 

The statistical results obtained by the four algorithms are shown in Table 10. From the data in the 
table, whether it is the optimal value, the worst value, the average value, and the standard deviation, 
the proposed AHJAYA shows excellent performance. The results of the Wilcoxon Signed Ranks test 
also prove the superiority of the AHJAYA algorithm compared to other algorithms, and it still ranks 
first. The optimal RMSE and the corresponding extracted parameters obtained by the four algorithms 
are shown in Table 11. The parameters extracted by the AHJAYA in Table 11 are brought into the 
function to recalculate the simulated current and power. Figure 6 shows the fitting curve of the 
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measured data and the simulated data. It can be seen from the Figure 6 that the simulated data agrees 
with the measured data. This also proves the superior performance of the AHJAYA on the PV 
module model. 

The convergence curves of the four algorithms on STM6-40/36 are drawn in Figure 7. It can be 
seen intuitively from the Figure 7 that the proposed AHJAYA has faster convergence speed and 
better performance. 

 

(a) Fitting curve of measured current and simulated 

current obtained by AHJAYA. 

(b) Fitting curve of measured power and simulated 

power obtained by AHJAYA. 

Figure 4. The Fitting curve between the measured data and the simulated data is obtained 
by the AHJAYA on the double-diode model. 

 

Figure 5. Comparison of the four algorithms on the convergence curve on the double-
diode model. 
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(a) Fitting curve of measured current and simulated 

current obtained by AHJAYA. 

(b) Fitting curve of measured power and simulated 

power obtained by AHJAYA. 

Figure 6. The Fitting curve between the measured data and the simulated data is obtained 
by the AHJAYA on the STM6-40/36. 

 

Figure 7. Comparison of the four algorithms on the convergence curve on the STM6-40/36. 

5.8. Experimental results of the STP6-120/36 

For the polycrystalline STP6-120/36 PV module model, Table 10 presents the statistical results 
obtained by the four algorithms. The best RMSE is obtained by AHJAYA and JAYA algorithm within 
30 times. On the other hand, only the proposed AHJAYA exhibits superior performance in the worst 
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value, the mean value, and the standard deviation. This also proves that the AHJAYA is more accurate 
and has less error than other algorithms. Similarly, from the results of the Wilcoxon Signed Ranks test, 
the superiority of AHJAYA has been proved again, and the overall ranking is still the first. The fitting 
curve of the measured data and the simulated data obtained by the AHJAYA is shown in Figure 8. It 
can be seen from the Figure 8 that the degree of curve fitting is very ideal. This further proves the 
accuracy of the AHJAYA. 

Figure 9 shows the convergence curves of the four algorithms on the polycrystalline STP6-
120/36 model. Compared with other algorithms, the AHJAYA converges faster and has less error. It 
is worth noting that the PGJAYA can also converge quickly, but the performance is slightly weaker 
than the AHJAYA. 

Table 10. Results of the STM6-40/36. 

Algorithm 
RMSE Wilcoxon Signed Ranks test 

Best Worst Mean Std R+ R- P-value Ranking Sig

AHJAYA 
1.72981371 

× 10−3 

1.73632117 × 

10−3 

1.73016570 

× 10−3 

1.27864305 

× 10−6 
− − − 1.0333 − 

PGJAYA 
1.73260649 

× 10−3 

8.80770029 × 

10−2 

7.65418704 

× 10−3 

1.73520638 

× 10−2 
458.0 7.0 3.52 × 10−6 2.2667 + 

JAYA 
1.77421268 

× 10−3 
0.310756394 

6.09604410 

× 10−2 

7.00785933 

× 10−2 
465.0 0.0 1.73 × 10−6 3.3 + 

EJAYA 
2.91991914 

× 10−3 
1.26039985 

2.70636929 

× 10−2 

2.73980326 

× 10−2 
465.0 0.0 1.73 × 10−6 3.4 + 

Table 11. Extracted parametric results on the STM6-40/36. 

Algorithm 𝑰𝒑𝒗(A) 𝑰𝒔𝒅(𝝁A) 𝑹𝑺(Ω) 𝑹𝑷(Ω) 𝒏 RMSE 

AHJAYA 1.663904777 1.73865693 0.004273771 15.92829412 1.520302923 1.72981371 × 10−3 

PGJAYA 1.664361048 1.52929620 0.004695732 15.26160020 1.506340859 1.73260649 × 10−3

JAYA 1.663533208 2.05368089 0.003749887 16.82518075 1.538826938 1.77421268 × 10−3

EJAYA 1.682022065 2.55648595 0.001631409 9.240291210 1.564878675 2.91991914 × 10−3

Table 12. Results of the STP6-120/36. 

Algorithm 

RMSE Wilcoxon Signed Ranks test 

Best Worst Mean Std R+ R- 
P-

value 
Ranking Sig

AHJAYA 
1.66006031 

× 10−2 

1.66579770 × 

10−2 

1.66043640 × 

10−2 

1.13952391 × 

10−5 
− − − 1.05 − 

PGJAYA 
1.66007020 

× 10−2 
0.955660164 

9.13108271 × 

10−2 
0.216928478 462.0 3.0 

2.35 × 

10−6 
2.4667 + 

JAYA 
1.66006031 

× 10−2 
0.948928454 0.292906570 0.351482388 465.0 0.0 

1.92 × 

10−6 
3.05 + 

EJAYA 
3.22271816 

× 10−2 
0.883508238 0.175116862 0.216340554 465.0 0.0 

1.73 × 

10−6 
3.4333 + 
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Table 13. Extracted parametric results on the STP6-120/36. 

Algorithm 𝑰𝒑𝒗(A) 𝑰𝒔𝒅(𝝁A) 𝑹𝑺(Ω) 𝑹𝑷(Ω) 𝒏 RMSE 

AHJAYA 7.472529926 2.33499493 0.004594634 22.21989296 1.260103473 1.66006031 × 10−2 

PGJAYA 7.461290096 2.47641968 0.004578694 142.7790881 1.264984632 1.66007020 × 10−2 

JAYA 7.472529833 2.33499581 0.004594634 22.21998258 1.260103505 1.66006031 × 10−2 

EJAYA 7.390327287 0.01786976 0.003455219 1354.451365 1.457573218 3.22271816 × 10−2 

  

(a) Fitting curve of measured current and simulated 

current obtained by AHJAYA. 

(b) Fitting curve of measured power and simulated 

power obtained by AHJAYA. 

Figure 8. The Fitting curve between the measured data and the simulated data is obtained 
by the AHJAYA on the STP6-120/36. 

 

Figure 9. Comparison of the four algorithms on the convergence curve on the STP6-
120/36. 
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5.9. Discussions of different components 

Since three different improvement components are introduced, including a self-adaptive 
coefficient strategy, linear population reduction strategy, and chaotic opposition-based learning 
strategy. Therefore, it is necessary to analyze the effectiveness of different strategies by ablation study. 

Because of there are three improvement components, six variants are developed, including 
AHJAYA-2 with only self-adaptive coefficient strategy, AHJAYA-3 with only linear population 
reduction strategy, AHJAYA-4 with only chaotic opposition-based learning strategy, AHJAYA-5 with 
self-adaptive coefficient strategy and linear population reduction strategy, AHJAYA-6 with self-
adaptive coefficient strategy and chaotic opposition-based learning strategy and AHJAYA-7 with 
chaotic opposition-based learning strategy and linear population reduction strategy. The statistical 
experimental results and convergence curves are shown in Table 14 and Figure 10, respectively. 

 

(a) (b) 

(c) (d) 

Figure 10. Convergence curves of different components in AHAJYA on PV models: (a) 
SDM, (b) DDM, (c) STM6-40/36, (d) STP6-120/36. 
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Table 14. Analysis of different components in AHJAYA for different PV models. 

Model Algorithm 
RMSE 

Best Worst Mean Std 

SDM 

AHJAYA-2 9.86021878 × 10−4 8.32514744 × 10−3 1.26527138 × 10−3 1.33943233 × 10−3 

AHJAYA-3 9.86021878 × 10−4 1.22051981 1.00262840 × 10−3 4.69406450 × 10−5 

AHJAYA-4 9.86021878 × 10−4 1.36934635 × 10−3 9.98805720 × 10−4 6.99839566 × 10−5 

AHJAYA-5 9.86021878 × 10−4 2.43770117 × 10−3 1.11861029 × 10−3 3.09270611 × 10−4 

AHJAYA-6 9.86021878 × 10−4 5.02575424 × 10−3 1.15966446 × 10−3 7.40695595 × 10−4 

AHJAYA-7 9.86021878 × 10−4 9.86266559 × 10−4 9.86042789 × 10−4 6.31049833 × 10−8 

AHJAYA 9.86021878 × 10−4 9.86021938 × 10−4 9.86021880 × 10−4 1.10061104 × 10−11 

DDM 

AHJAYA-2 9.84892255 × 10−4 2.07867164 × 10−3 1.16744223 × 10−3 2.95964194 × 10−4 

AHJAYA-3 9.82505888 × 10−4 1.97806747 × 10−3 1.11322952 × 10−3 2.12030912 × 10−4 

AHJAYA-4 9.83248764 × 10−4 9.91318178 × 10−4 9.85473135 × 10−4 1.59661583 × 10−6 

AHJAYA-5 9.84788755 × 10−4 2.25301378 × 10−3 1.23099472 × 10−3 3.24447231 × 10−4 

AHJAYA-6 9.82650184 × 10−4 1.27173338 × 10−3 1.01036772 × 10−3 7.38763464 × 10−5 

AHJAYA-7 9.82538855 × 10−4 9.91093795 × 10−4 9.85382667 × 10−4 1.54241939 × 10−6 

AHJAYA 9.82488468 × 10−4 9.86203608 × 10−4 9.84766563 × 10−4 1.38004612 × 10−6 

STM6-

40/36 

AHJAYA-2 1.93984355 × 10−3 0.186748526 4.79984858 × 10−2 4.84300989 × 10−2 

AHJAYA-3 1.73273321 × 10−3 6.95388282 × 10−3 3.33409243 × 10−3 1.12312499 × 10−3 

AHJAYA-4 1.73457370 × 10−3 3.99357393 × 10−3 2.51059137 × 10−3 5.90157813 × 10−4 

AHJAYA-5 2.35383504 × 10−3 5.79530516 × 10−2 9.81840973 × 10−3 1.45183654 × 10−2 

AHJAYA-6 1.72981371 × 10−3 2.52479525 × 10−2 4.38971519 × 10−3 5.35198180 × 10−3 

AHJAYA-7 1.72981391 × 10−3 2.12677114 × 10−3 1.86241971 × 10−3 1.19387377 × 10−4 

AHJAYA 1.72981371 × 10−3 2.12613108 × 10−3 1.77413665 × 10−3 1.18880229 × 10−4 

STP6-

120/36 

AHJAYA-2 1.66122817 × 10−2 0.872035345 0.215236723 0.276920517 

AHJAYA-3 1.66128591 × 10−2 4.82478355 × 10−2 2.61314099 × 10−2 9.23757503 × 10−3 

AHJAYA-4 1.66006056 × 10−2 3.23255844 × 10−2 1.98005470 × 10−2 4.41034383 × 10−3 

AHJAYA-5 1.66342237 × 10−2 0.504667897 6.73033137 × 10−2 0.107342292 

AHJAYA-6 1.66006041 × 10−2 0.334609995 2.88070799 × 10−2 5.77937642 × 10−2 

AHJAYA-7 1.66006031 × 10−2 1.83025327 × 10−2 1.68013974 × 10−2 3.45831872 × 10−4 

AHJAYA 1.66006031 × 10−2 1.68253440 × 10−2 1.66213999 × 10−2 4.94692736 × 10−5 

For the single-diode model, it can be seen from Figure 10(a) that AHJAYA can achieve higher 
accuracy faster than the other six variant algorithms. From the data in Table 14, it can be seen that the 
best value can be taken by seven algorithms, but only the AHJAYA algorithm performs the best in the 
other three aspects (including the worst, mean, and standard deviation). Therefore, in this single diode 
model, the AHJAYA has the best overall performance. 

For the double-diode model, it can be seen from Figure 10(b) that AHJAYA-3, AHJAYA-4, 
AHJAYA-5, AHJAYA-7 and AHJAYA can all show very strong competitiveness. It can be seen from 
the data in Table 14 that only the AHJAYA algorithm performs the best in four aspects. Therefore, on 
the double -diode model, the AHJAYA performs best. 

For STM6-40/36, it can be intuitively seen from Figure 10(c) that AHJAYA performs better than 
the other six algorithms. From the data in Table 14, it can be seen that the best values are obtained by 
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AHJAYA-6 and AHJAYA, in addition, the AHJAYA also performs the best in the other three aspects 
(including the worst, mean, and standard deviation). Overall, AHJAYA performs better on this PV 
model module. 

For STP6-120/36, similarly, from the comprehensive performance in Figure 10(d) and Table 14, 
AHJAYA not only performs the best in convergence, but also in the four aspects of RMSE. Therefore, 
it is still the proposed AHJAYA that performs the best in this PV model module. 

5.10. Comparison of AHJAYA with other mature algorithms 

To further verify the superiority of the AHJAYA, in this section, the proposed AHJAYA is compared 
with other published algorithms. Most of the data in this section are obtained from [43]. The specific details 
are shown in Table 15 to Table 22. Where NA represents that the paper does not give data. 

Table 15. Comparison of the results of the AHJAYA with other mature algorithms on the 
single-diode model. 

Algorithm 
RMSE 

NFES 
Best Worst Mean Std 

GOTLBO (2016) [56] 9.8744 × 10−4 1.9824 × 10−3 1.3349 × 10−3 2.09 × 10−4 10,000 

SATLBO (2017)[57] 9.8602 × 10−4 9.9494 × 10−3 9.8780 × 10−4 2.03 × 10−6 50,000 

IJAYA (2017) [58] 9.8603 × 10−4 1.0622 × 10−3 9.9204 × 10−4 1.40 × 10−5 50,000 

TLABC (2018) [59] 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 1.86 × 10−5 50,000 

MLBSA (2018) [52] 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 9.15 × 10−12 50,000 

DE/WOA (2018) [44] 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 3.55 × 10−17 50,000 

OBWOA (2018) [7] 9.8602 × 10−4 NA 9.8603 × 10−3 1.02 × 10−8 1,500,000 

ITLBO (2019) [45] 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 2.19 × 10−17 50,000 

PGJAVA (2019) [42] 9.8602 × 10−4 9.8603 × 10−4 9.8602 × 10−4 1.45 × 10−9 50,000 

BHCS (2019) [46] 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 2.61 × 10−17 50,000 

FPSO (2019) [60] 9.8602 × 10−4 NA NA NA NA 

ILCOA (2019) [53] 9.8602 × 10−4 NA NA 1.01 × 10−8 10,000 × NP 

BSARDVs (2020) [61] 9.8602 × 10−4 NA NA NA 25,000 

ELBA (2020) [47] 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 1.97 × 10−17 15,000 

EOTLBO (2020) [48] 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 4.13 × 10−17 20,000 

CLJAYA (2020) [62] 9.8602 × 10−4 NA NA NA 20,000 

CBSA (2020) [63] 9.8602 × 10−4 NA NA NA 25,000 

ATLDE (2020) [14] 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 2.44 × 10−17 30,000 

EJAYA (2021) [49] 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 6.80 × 10−17 30,000 

IGSK (2021) [50] 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 3.58 × 10−17 10,000 

EABOA (2021) [54] 9.8602 × 10−4 9.8784 × 10−4 9.8678 × 10−4 9.30 × 10−7 50,000 

SFLBS (2021) [55] 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 1.43 × 10−14 60,000 

RLDE (2021) [51] 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 3.48 × 10−17 30,000 

AHJAYA 9.8602 × 10−4 9.8602 × 10−4 9.8602 × 10−4 2.92 × 10−17 25,000 

For the single-diode model, from the four values of RMSE, only DE/WOA [44], ITLBO [45], 
BHCS [46], ELBA [47], EOTLBO [48], ATLDE [14], EJAYA [49], IGSK [50], RLDE [51] and 
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AHJAYA algorithm perform better. Because their values are smaller and more precise. On the other 
hand, only the IGSK, EOTLBO, and ELBA use fewer evaluation times than the AHJAYA. Fewer 
evaluation times are used, which means less resources are consumed, therefore, the proposed AHJAYA 
is highly competitive in these algorithms. 

For the double-diode model, the algorithms that are superior in the four aspects of RMSE are 
MLBSA [52], DE/WOA, OBWOA [7], PGJAYA [42], BHCS, ILCOA [53], ITBLO, ELBA, ATLDE, 
EJAYA, IGSK, EABOA [54], SFLBS [55], RLDE and AHJAYA algorithm. However, among these 
algorithms, only the IGSK uses less evaluation times than the AHJAYA. Therefore, in this model, the 
AHJAYA is very competitive and has an absolute advantage. 

Table 16. Comparison of the results of the AHJAYA with other mature algorithms on the 
double-diode model. 

Algorithm 
RMSE 

NFES 
Best Worst Mean Std 

GOTLBO (2016) [56] 9.8318 × 10−4 1.7877 × 10−3 1.2436 × 10−3 2.09 × 10−4 20,000 

SATLBO (2017) [57] 9.8280 × 10−4 1.0470 × 10−3 9.9811 × 10−4 1.95 × 10−5 50,000 

IJAYA (2017) [58] 9.8293 × 10−4 1.4055 × 10−3 1.0269 × 10−3 9.83 × 10−5 50,000 

TLABC (2018) [59] 9.8415 × 10−4 1.5048 × 10−3 1.0555 × 10−3 1.55 × 10−5 50,000 

MLBSA (2018) [52] 9.8249 × 10−4 9.8798 × 10−4 9.8518 × 10−4 1.35 × 10−6 50,000 

DE/WOA (2018) [44] 9.8248 × 10−4 9.8603 × 10−4 9.8297 × 10−4 9.15 × 10−7 50,000 

OBWOA (2018) [7] 9.8251 × 10−4 NA 9.8294 × 10−4 1.13 × 10−7 1,500,000 

PGJAYA (2019) [42] 9.8263 × 10−4 9.9499 × 10−4 9.8582 × 10−4 2.54 × 10−6 50,000 

BHCS (2019) [46] 9.8249 × 10−4 9.8687 × 10−4 9.8380 × 10−4 1.54 × 10−6 50,000 

FPSO (2019) [60] 9.8253 × 10−4 NA NA NA NA 

ILCOA (2019) [53] 8.8257 × 10−4 NA NA 6.25 × 10−7 10,000 × NP 

ITLBO (2019) [45] 9.8248 × 10−4 9.8812 × 10−4 9.8497 × 10−4 1.54 × 10−6 50,000 

BSARDVs (2020) 

[61] 

9.8248 × 10−4 NA NA NA 45,000 

ELBA (2020) [47] 9.8248 × 10−4 9.8615 × 10−4 9.8349 × 10−4 6.25 × 10−7 50,000 

EOTLBO (2020) [48] 9.8248 × 10−4 9.8942 × 10−4 9.8473 × 10−4 1.54 × 10−5 20,000 

CLJAYA (2020) [62] 9.8249 × 10−4 NA NA NA 48,000 

CBSA (2020) [63] 9.8248 × 10−4 NA NA NA 50,000 

ATLDE (2020) [14] 9.8248 × 10−4 9.8603 × 10−4 9.8372 × 10−4 1.37 × 10−6 30,000 

EJAYA (2021) [49] 9.8248 × 10−4 9.8602 × 10−4 9.8448 × 10−4 1.51 × 10−6 30,000 

IGSK (2021) [50] 9.8248 × 10−4 9.8602 × 10−4 9.8273 × 10−4 8.96 × 10−7 20,000 

EABOA (2021) [54] 9.8607 × 10−4 1.0012 × 10−3 9.9190 × 10−4 6.62 × 10−6 50,000 

SFLBS (2021) [55] 9.8249 × 10−4 9.8787 × 10−4 9.8541 × 10−4 1.79 × 10−6 60,000 

RLDE (2021) [51] 9.8248 × 10−4 9.8695 × 10−4 9.8457 × 10−4 1.75 × 10−6 30,000 

AHJAYA 9.8248 × 10−4 9.8919 × 10−4 9.8475 × 10−4 1.64 × 10−6 25,000 

For STM6-40/36, all algorithms except the BHCS can perform well on the four values of RMSE. 
However, only the IGSK has fewer evaluation times than the AHJAYA, which proves that the 
AHJAYA still has advantages over other mature algorithms. 
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For STP6-120/36, similarly, all algorithms except the BHCS can perform very well, and only the 
IGSK has less evaluation times than the AHJAYA. Therefore, the AHJAYA is in a leading position 
among other mature algorithms. 

Table 17. Comparison of the results of the AHJAYA with other mature algorithms on the 
STM6-40/36. 

Algorithm 
RMSE 

NFES 
Best Worst Mean Std 

BHCS (2019) [46] 1.7298 × 10−3 3.3299 × 10−3 1.8365 × 10−3 4.06 × 10−4 50,000 

ITLBO (2019) [45] 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 4.75 × 10−18 50,000 

ELBA (2020) [47] 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 6.16 × 10−18 50,000 

ATLDE (2020) [14] 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 8.22 × 10−18 30,000 

EJAYA (2021) [49] 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 1.47 × 10−17 30,000 

IGSK (2021) [50] 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 7.02 × 10−18 15,000 

RLDE (2021) [51] 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 1.58 × 10−17 30,000 

AHJAYA 1.7298 × 10−3 1.7298 × 10−3 1.7298 × 10−3 2.58 × 10−17 25,000 

Table 18. Comparison of the results of the AHJAYA with other mature algorithms on the 
STP6-120/36. 

Algorithm 
RMSE 

NFES 
Best Worst Mean Std 

BHCS (2019) [46] 1.6601 × 10−2 0.13482 2.4360 × 10−2 2.61 × 10−2 50,000 

ITLBO (2019) [45] 1.6601 × 10−2 1.6601 × 10−2 1.6601 × 10−2 7.22 × 10−17 50,000 

ATLDE (2020) [14] 1.6601 × 10−2 1.6601 × 10−2 1.6601 × 10−2 1.02 × 10−16 30,000 

EJAYA (2021) [49] 1.6601 × 10−2 1.6601 × 10−2 1.6601 × 10−2 2.68 × 10−16 30,000 

IGSK (2021) [50] 1.6601 × 10−2 1.6601 × 10−2 1.6601 × 10−2 1.71 × 10−16 15,000 

RLDE (2021) [51] 1.6601 × 10−2 1.6601 × 10−2 1.6601 × 10−2 1.98 × 10−16 30,000 

AHJAYA 1.6601 × 10−2 1.6601 × 10−2 1.6601 × 10−2 1.24 × 10−16 25,000 

Table 19. Comparison of extracted parameters between the AHJAYA and other mature 
algorithms on the single-diode model. 

Algorithm 𝑰𝒑𝒗(A) 𝑰𝒔𝒅(𝝁A) 𝑹𝑺(Ω) 𝑹𝑷(Ω) n RMSE 

GOTLBO (2016) [56] 0.7608 0.3316 0.0363 54.1154 1.4838 9.8744 × 10−4

IJAYA (2017) [58] 0.7608 0.3228 0.0364 53.7595 1.4811 9.8603 × 10−4

SATLBO (2017) [57] 0.7608 0.3232 0.0363 53.7295 1.4812 9.8602 × 10−4

CWOA (2017) [64] 0.76077 0.3239 0.03636 53.742465 1.4812 9.8602 × 10−4

MSSO (2017) [65] 0.760777 0.323564 0.036370 53.742465 1.481244 9.8607 × 10−4

IWOA (2018) [66] 0.7608 0.3232 0.0364 53.7317 1.4812 9.8602 × 10−4

HFAPS (2018) [67] 0.760777 0.322622 0.0363819 53.6784 1.48106 9.8602 × 10−4

TLABC (2018) [59] 0.76078 0.32302 0.03638 53.71636 1.48118 9.8602 × 10−4

MLBSA (2018) [52] 0.7608 0.32302 0.0364 53.7185 1.4812 9.8602 × 10−4

    Continued on next page
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Algorithm 𝑰𝒑𝒗(A) 𝑰𝒔𝒅(𝝁A) 𝑹𝑺(Ω) 𝑹𝑷(Ω) n RMSE 

DE/WOA (2018) [44] 0.760776 0.323021 0.036377 53.718524 1.481184 9.8602 × 10−4

OBWOA (2018) [7] 0.76077 0.3232 0.0363 53.6836 1.5208 9.8602 × 10−4

PGJAYA (2018) [42] 0.7608 0.3230 0.0364 53.7185 1.4812 9.8602 × 10−4

BHCS (2019) [46] 0.76078 0.32302 0.03638 53.71852 1.48118 9.8602 × 10−4

FPSO (2019) [60] 0.76077552 0.323020 0.036370 53.718520 1.48110817 9.8602 × 10−4

ILCOA (2019) [53] 0.760775 0.323021 0.036377 53.718679 1.481108 9.8602 × 10−4

ITLBO (2019) [45] 0.7608 0.3230 0.0364 53.7185 1.4812 9.8602 × 10−4

BSARDVs (2020) 

[61] 

0.760776 0.323021 0.036377 53.718520 1.481184 9.8602 × 10−4

ELBA (2020) [47] 0.760776 0.323021 0.036377 53.718523 1.481185 9.8602 × 10−4

EOTLBO (2020) [48] 0.76077553 0.32302083 0.03637709 53.7185251

4 

1.48118359 9.8602 × 10−4

SGDE (2020) [8] 0.76078 0.32302 0.036377 53.71853 1.481184 9.8602 × 10−4

CLJAYA (2020) [62] 0.76078 0.3230208 0.0363771 53.718521 1.481184 9.8602 × 10−4

CPMPSO (2020) [68] 0.760776 0.323021 0.036377 53.71852 1.481184 9.8602 × 10−4

NPSOPC (2020) [69] 0.7608 0.3325 0.03639 53.7583 1.4814 9.8856 × 10−4

CBSA (2020) [63] 0.760776 0.323021 0.036377 53.71852 1.481184 9.8602 × 10−4

ATLDE (2020) [14] 0.76077553 0.32302082 0.03637712 53.7185269

9 

1.48118359 9.8602 × 10−4

EJAYA (2021) [49] 0.76078 0.32302 0.03638 53.71852 1.48118 9.8602 × 10−4

IGSK (2021) [50] 0.76077553 0.323 0.03637709

3 

53.7185253

2 

1.48118359

2 

9.8602 × 10−4

EABOA (2021) [54] 0.76077107

7 

0.322929 0.03637959

3 

53.7660014

4 

1.48115345

7 

9.8602 × 10−4

SFLBS (2021) [55] 0.76078 0.323021 0.03638 53.7185 1.481184 9.8602 × 10−4

RLDE (2021) [51] 0.7608 0.3231 0.0364 53.7185 1.4812 9.8602 × 10−4

AHJAYA 0.76077553

0 

0.32302081 0.03637709

3 

53.7185217

7 

1.48118359

1 

9.8602 × 10−4

Table 20. Comparison of extracted parameters between the AHJAYA and other mature 
algorithms on the double-diode model. 

Algorithm 𝑰𝒑𝒗(A) 𝑰𝒔𝒅భ
(𝝁A) 𝑹𝑺(Ω) 𝑹𝑷(Ω) n1 𝑰𝒔𝒅మ

(𝝁A) n2 RMSE 

GOTLBO (2016) 

[56] 
0.7608 0.8002 0.0368 56.0753 2 0.2205 1.4490 

9.8318 

× 10−4 

IJAYA (2017) 

[58] 
0.7601 0.0050445 0.0376 77.8519 1.2186 0.75904 1.6247 

9.8293 

× 10−4 

SATLBO (2017) 

[57] 
0.7608 0.2509 0.0366 55.1170 1.4598 0.5454 1.9994 

9.8280 

× 10−4 

CWOA (2017) 

[64] 
0.76077 0.24150 0.03666 55.20160 1.45651 0.60000 1.98990 

9.8272 

× 10−4 

      
Continued on next page
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Algorithm 𝑰𝒑𝒗(A) 𝑰𝒔𝒅భ
(𝝁A) 𝑹𝑺(Ω) 𝑹𝑷(Ω) n1 𝑰𝒔𝒅మ

(𝝁A) n2 RMSE 

MSSO (2017) 

[65] 

0.76074

8 
0.234925 

0.03668

8 
55.714662

1.45425

5 

0.67159

3 

1.99530

5 

9.8281 

× 10−4 

IWOA (2018) 

[66] 
0.7608 0.6771 0.0367 55.4082 2 0.2355 1.4545 

9.8255 

× 10−4 

HFAPS (2018) 

[67] 

0.76078

1 
0.225974 

0.03674

04 
55.4855 1.45101 

0.74935

80 

2.00000

0 

9.8248 

× 10−4 

TLABC (2018) 

[59] 
0.76081 0.42394 0.03667 54.66797 1.90750 0.24011 1.45671 

9.8415 

× 10−4 

MLBSA (2018) 

[52] 
0.7608 0.22728 0.0670 55.4612 1.4515 0.73835 2.0000 

9.8249 

× 10−4 

DE/WOA (2018) 

[44] 

0.76078

1 
0.225974 

0.03674

0 
55.485437

1.45101

7 

0.74934

6 

2.00000

0 

9.8248 

× 10−4 

OBWOA (2018) 

[7] 
0.76076 0.22990 0.03671 55.3990 1.49154 0.61956 

2.00000

0 

9.8251 

× 10−4 

PGJAYA (2018) 

[42] 
0.7608 0.21031 0.0368 55.8135 1.4450 0.88534 2.0000 

9.8263 

× 10−4 

BHCS (2019) 

[46] 
0.76078 0.74935 0.03674 55.48544 2.00000 0.22597 1.45102 

9.8249 

× 10−4 

FPSO (2019) 

[60] 
0.76078 0.22731 

0.03673

7 
55.39230 1.45160 0.72786 1.99969 

9.8253 

× 10−4 

ILCOA (2019) 

[53] 
0.76078 0.22601 

0.03673

9 
55.5320 1.45101 0.74921 2.00000 

9.8257 

× 10−4 

ITLBO (2019) 

[45] 
0.7608 0.2260 0.0367 55.4854 1.4510 0.7493 2.0000 

9.8248 

× 10−4 

SGDE (2020) [8] 
0.76079 0.28070 

0.03648

0 
55.3667 1.46966 0.24996 1.93228 

9.8441 

× 10−4 

BSARDVs 

(2020) [61] 

0.76078

1 
0.225808 

0.03674

1 
55.4874 1.45096 

0.75086

1 
2 

9.8248 

× 10−4 

ELBA (2020) 

[47] 

0.76078

1 
0.749338 0.03674 55.48544 2 

0.22597

5 

1.45101

8 

9.8248 

× 10−4 

EOTLBO (2020) 

[48] 

0.76078

108 

0.2259746

8 

0.03674

043 

55.485435

68 

1.45101

692 

0.74934

431 
2 

9.8248 

× 10−4 

CLJAYA (2020) 

[62] 
0.76078 0.226051 0.03674 55.48599 1.45105 0.74876 1.99999 

9.8249 

× 10−4 

CPMPSO (2020) 

[68] 
0.76078 0.74935 0.3674 55.48544 2 0.22597 1.45102 

9.8248 

× 10−4 

NPSOPC (2020) 

[69] 
0.76078 0.25093 0.3663 55.117 1.45982 

0.54541

8 
1.99941 

9.8208 

× 10−4 

CBSA (2020) 

[63] 
0.76078 0.2259739 0.3674 55.48544 

1.45101

7 
0.74935 2 

9.8248 

× 10−4 

ATLDE (2020) 

[14] 

0.76078

108 

0.2259741

2 

0.03674

043 

55.485447

44 

1.45101

671 

0.74934

885 

2.00000

000 

9.8248 

× 10−4 

      Continued on next page
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Algorithm 𝑰𝒑𝒗(A) 𝑰𝒔𝒅భ
(𝝁A) 𝑹𝑺(Ω) 𝑹𝑷(Ω) n1 𝑰𝒔𝒅మ

(𝝁A) n2 RMSE 

EJAYA (2021) 

[49] 
0.76078 0.22597 0.03674 55.48509 1.45102 0.74934 2 

9.8248 

× 10−4 

IGSK (2021) 

[50] 

0.76078

1079 
0.7493 

0.03674

0429 

55.485434

25 
2 0.226 

1.45101

6893 

9.8248 

× 10−4 

EABOA (2021) 

[54] 

0.76082

865 
0.25072 

0.03662

66 

55.366012

9 

1.45988

481 
0.72069 

1.99997

318 

9.8607 

× 10−4 

RLDE (2021) 

[51] 
0.7608 0.226 0.0367 55.4847 2 0.7492 1.451 

9.8248 

× 10−4 

AHJAYA 
0.76076

4957 

0.3752256

4 

0.03661

8133 

54.832995

15 

1.87233

6230 

0.24007

472 

1.45719

9516 

9.8248 

× 10−4 

Table 21. Comparison of extracted parameters between the AHJAYA and other mature 
algorithms on the STM6-40/36. 

Algorithm 𝑰𝒑𝒗(A) 𝑰𝒔𝒅(𝝁A) 𝑹𝑺(Ω) 𝑹𝑷(Ω) n RMSE 

CWOA 

(2017)[64] 

1.7 1.6338 0.0050 15.4 1.5 1.8000 × 10−3 

HFAPS 

(2018)[67] 

1.6663 1.0703 0.24849 490.03 53.016 1.9700 × 10−3 

OBWOA (2018) 

[7] 

1.6642 1.65025 0.0044 15.5299 1.51424 1.7530 × 10−3 

BHCS (2019) 

[46] 

1.66390 1.73866 0.00427 15.92829 1.52030 1.7298 × 10−3 

FPSO (2019) 

[60] 

1.2323 7.4732 0.0049 9.6889 1.2086 1.3000 × 10−3 

ILCOA (2019) 

[53] 

1.2001 7.4812 0.0049 9.6991 1.2067 1.6932 × 10−2 

ITLBO (2019) 

[45] 

1.6639 1.7387 0.0043 15.9283 1.5203 1.7298 × 10−3 

ELBA (2020) 

[47] 

1.663905 1.738657 0.004274 15.928294 1.520305 1.7298 × 10−3 

ATLDE (2020) 

[14] 

1.66390478 1.73865697 0.00427377 15.92829439 1.52030293 1.7298 × 10−3 

EJAYA (2021) 

[49] 

1.6639 1.73866 0.00427 15.92829 1.5203 1.7298 × 10−3 

IGSK (2021) 

[50] 

1.663904777 1.7387 0.004273771 15.92829435 1.520302921 1.7298 × 10−3 

RLDE (2021) 

[51] 

1.6639 1.7387 0.00427 15.9283 1.5203 1.7298 × 10−3 

AHJAYA 1.663904777 1.73865693 0.004273771 15.92829412 1.520302923 1.7298 × 10−3 
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Table 22. Comparison of extracted parameters between the AHJAYA and other mature 
algorithms on the STP6-120/36. 

Algorithm 𝑰𝒑𝒗(A) 𝑰𝒔𝒅(𝝁A) 𝑹𝑺(Ω) 𝑹𝑷(Ω) n RMSE 

CWOA 

(2017)[64] 

7.4760 1.2 0.00000490 9.7942 1.2069 1.7601 × 10−2

ITLBO 

(2019) [45] 

7.4725 2.335 0.0046 22.2199 1.2601 1.6601 × 10−2

BHCS (2019) 

[46] 

7.47253 2.33499 0.00459 22.21990 1.26010 1.6601 × 10−2

ATLDE 

(2020) [14] 

7.47252992 2.33499485 0.00459463 22.21989607 1.26010347 1.6601 × 10−2

EJAYA 

(2021) [49] 

7.47253 2.33499 0.00459 22.21989 1.2601 1.6601 × 10−2

IGSK (2021) 

[50] 

7.47252992 2.335 0.004594635 22.21989406 1.260103467 1.6601 × 10−2

RLDE (2021) 

[51] 

7.4725 2.335 0.0046 22.2199 1.2601 1.6601 × 10−2

AHJAYA 7.472529926 2.33499493 0.004594634 22.21989296 1.260103473 1.6601 × 10−2

Through the above comparisons, the superior performance of the proposed AHJAYA is further 
proved in terms of photovoltaic model parameters. The AHJAYA is in the leading position among the 
mature algorithms in terms of PV model parameter extraction. It is important to note that there are still 
algorithms that perform well, such as the IGSK. In addition, the best RMSE of many algorithms and 
the corresponding extracted parameters are summarized in Table 19 to Table 22. 

6. Conclusions and future work 

In order to extract the parameters in the photovoltaic model more accurately and efficiently, a 
chaotic self-adaptive JAYA algorithm, called AHJAYA, is proposed in this paper. In the proposed 
AHJAYA, the self-adaptive coefficient strategy is introduced, which changes the priority of the 
optimal search agent and the worst search agent in the evolution strategy, and improves the exploration 
ability of the algorithm. Then combined with the linear population reduction strategy and chaotic 
opposition-based learning, the convergence speed of the algorithm is improved. On the other hand, the 
algorithm is prevented from falling into local optimum. Firstly, the AHJAYA is compared with several 
well-known algorithms, and the performance of the AHJAYA is preliminarily verified. Then, the 
results are further compared with the results of well-established algorithms for PV model parameter 
extraction. The final results show that the AHJAYA has better performance than most of the algorithms 
and is in the leading position. 

In future work, the proposed AHJAYA will likely be used to solve higher-dimensional complex 
problems, and even multi-objective versions will be developed to solve practical problems. 
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