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Abstract: In the traditional particle swarm optimization algorithm, the particles always choose to
learn from the well-behaved particles in the population during the population iteration. Nevertheless,
according to the principles of particle swarm optimization, we know that the motion of each particle has
an impact on other individuals, and even poorly behaved particles can provide valuable information.
Based on this consideration, we propose Lévy flight-based inverse adaptive comprehensive learning
particle swarm optimization, called LFIACL-PSO. In the LFIACL-PSO algorithm, First, when the
particle is trapped in the local optimum and cannot jump out, inverse learning is used, and the learning
step size is obtained through the Lévy flight. Second, to increase the diversity of the algorithm and
prevent it from prematurely converging, a comprehensive learning strategy and Ring-type topology are
used as part of the learning paradigm. In addition, use the adaptive update to update the acceleration
coefficients for each learning paradigm. Finally, the comprehensive performance of LFIACL-PSO is
measured using 16 benchmark functions and a real engineering application problem and compared with
seven other classical particle swarm optimization algorithms. Experimental comparison results show
that the comprehensive performance of the LFIACL-PSO outperforms comparative PSO variants.
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1. Introduction

As many real-world optimization problems become more complex, there is always a need for
better optimization algorithms. By observing flying dragonflies, humans found the key to unlocking
the mystery of helicopters. By following the light trail of fireflies, the cold light mining lamps have
been illuminated. Researchers once again turned their attention to nature to explore intelligent
optimization algorithms to solve the optimization problem. An algorithm inspired by natural
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biological phenomena or developed by exploiting the intelligent behavior of a group of organisms is
called a swarm intelligence algorithm. Commonly used swarm intelligence optimization algorithms
mainly include particle swarm optimization algorithm (PSO) [1], whale optimization algorithm
(WOA) [2], firefly algorithm (FA) [3], ant lion algorithm (ALA) [4], cuckoo algorithm (CA) [5],
genetic algorithm (GA) [6], monarch butterfly optimization [7], earthworm optimization algorithm
(EWA) [8], elephant herding optimization (EHO) [9] moth search (MS) algorithm [10], and other
optimization algorithms. Among the algorithms mentioned above, particle swarm optimization
algorithms are popular because of their fast convergence, few parameters, and easy programming
implementation.

Particle swarm optimization (PSO) is a population-based metaheuristic algorithm that was
proposed by Eberhart et al. [11] together with Kennedy et al. [1] in 1995. The particle swarm
algorithm originated from the research on the feeding behavior of bird flocks. Its core idea is to use
the information sharing among the individuals in the population so that the motion of the whole
population produces an evolutionary process from disorder to order in the solution space of the
problem to obtain the optimal solution.

A large number of intelligent algorithms based on social intelligent behavior have been extensively
researched in the past few decades, through the study of natural creatures, and applied to various
optimization fields [12]. However, the conventional optimization methods sometimes cannot get a
satisfactory solution at a reasonable time. Consequently, a large number of nature-inspired
metaheuristics algorithms have been introduced to tackle various complicated problems [13]. For
example, for the disadvantage that PSO tends to converge prematurely, Zhou et al. [14] proposes a
multi-sample particle swarm optimization algorithm based on electric field force. Feng et al. [15]
presents a novel binary monarch butterfly optimization (BMBO) method intended for addressing the
0–1 knapsack problem (0–1 KP). Feng et al. [16] presents generalized opposition-based learning
(OBL) monarch butterfly optimization with Gaussian perturbation (OMBO), in which OBL strategy is
used on half individuals of the population in the late stage of evolution, and Gaussian perturbation
acts on the part of the individuals with poor fitness in each evolution. Liu et al. [17] proposes an
artificial bee colony algorithm based on dynamic penalty function and Lévy flight (DPLABC) for
COPs, Lévy flight with the logistic map is applied in the employed bee phase in this paper. Guo et
al. [18] presents an improved krill herd (IKH) approach to solve global optimization problems. The
method uses a new Lévy flight distribution and elitism scheme to update the KH motion calculation.
Hanafi et al. [19] proposed a new PSO, called hierarchical PSO, which uses a dynamic tree hierarchy
based on the performance of each particle in the population to define the neighborhood structure. Lu
et al. [20] proposed a novel multi-group particle swarm optimizer driven by delayed activation (DA)
strategy and exclusion mechanism, called enhanced multi-group collaborative particle swarm
optimizer (EMCPSO). The EMCPSO aims to take advantage of multi-group technology to overcome
the problem of premature convergence of standard PSO. Zhang et al. [21] proposed a novel particle
swarm optimization based on the prey-predator relationship to reduce the probability of the algorithm
falling into local optimum by introducing the old deletion mechanism. Liang et al. [22] developed a
novel PSO named comprehensive learning PSO, which utilizes a new learning strategy to maintain the
swarm diversity and thereby prevent premature convergence in solving multi-modal problems. In the
comprehensive learning particle swarm optimization (CLPSO), each dimension of a particle
determines the learning object according to the learning probability. Xia et al. [23] proposed an
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extended particle swarm optimization with multiple paradigms and forgetting capability, which
increases the diversity of particles by introducing forgetting capability. Lynn et al. [24] proposed a
new comprehensive learning-based particle swarm optimization algorithm called heterogeneous
integrated learning particle swarm optimization (HCLPSO). Zhang et al. [25] proposed a
comprehensive learning particle swarm optimization algorithm based on Bayesian iterative methods,
which is called Bayesian comprehensive learning particle swarm optimization (BCLPSO). The
posterior probabilities obtained using Bayesian public iteration can inherit the historical information
of the particles that may be utilized, thus maintaining the diversity of the population to prevent
premature convergence. Shi et al. [26] introduced the concept of inertia weights (ω) to balance the
global search and local search capabilities, which significantly improved the performance of PSO.
Clerc et al. [1] also proposed another related parameter, called the shrinkage factor (χ), to prevent
premature convergence. Xia et al. [27] proposed an extended particle swarm optimization with
multiple examples and a forgetting ability to increase the diversity of particles by introducing the
forgetting ability. Wang et al. [28] proposes a novel and robust hybrid metaheuristic optimization
method to solve numerical optimization problems by adding differential evolution (DE) mutation
operators to the accelerated particle swarm optimization (APSO) algorithm. Mirjalili et al. [29]
combines the strengths of both particle swarm optimization (PSO) and gravitational search algorithm
(GSA) to propose a novel hybrid optimization algorithm PSOGSA. The PSOGSA is a novel hybrid
optimization algorithm, and it outperforms both PSO and GSA in terms of improved exploration and
exploitation. Kahouli et al. [30] coupled genetic algorithm and particle swarm algorithm to optimize
network reconfiguration in the distribution system to improve reliability and reduce power loss. Lin et
al. [31] proposed the global genetic learning particle swarm optimization with diversity enhancement
by ring topology (GGL-PSOD) to improve the GL-PSO’s performance. Naderi et al. [32] developed a
new hybrid algorithm to solve the transmission expansion planning problem in the grid, which is
combined with shuffled frog leaping algorithm, particle swarm optimization, and teaching
learning-based optimization. James et al. [33] proposed an efficient stock market forecasting model
combining artificial intelligence networks and particle swarm optimization. Mohammadi et al. [34]
proposed a hybrid particle swarm optimization-differential evolution algorithm combined with a
multilayer perceptron for suspended sediment load estimation.

However, the drawback of the PSO algorithm is that when the particles search for the optimal
solution, they may ignore the potential optimal solution region due to the influence of the learning
paradigm, which leads them to fall into local optimum and difficult to jump out. And with the
development of artificial intelligence techniques, the classical PSO variants provide a wide range of
intelligence and convenience for humans and lead to many complex optimization problems. These
optimization problems tend to be high-dimensional, multi-constrained, multimodal, and other trends.
Therefore, we should study and improve global search performance when applying particle swarm
algorithms to solve these complex optimization problems.

To improve the performance of particle swarm algorithms in solving complex optimization
problems and better balance exploration and exploitation, this paper proposes a Lévy flight-based
inverse adaptive comprehensive learning particle swarm optimization (LFIACL-PSO). In the
LFIACL-PSO algorithm, we introduce an inverse learning mechanism, which allows particles to
change their search direction and learn from the worst position in their history when they fall into
local optimum and cannot jump out, learning steps obtained through random variables with Lévy
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distribution. Secondly, to prevent the algorithm from converging prematurely and the particle
diversity from decreasing, the comprehensive learning strategy and Ring-type topology are introduced
more particle learning paradigm. Finally, we combine Lévy flight and inverse learning mechanism for
updating the velocity of particles, which can effectively prevent its disadvantage of easily falling into
the local optimum.

The rest of this paper is organized as follows: Section 2 mainly briefly introduces classic PSO and
Ring-type topology. The implementation of LFIACL-PSO is described in detail in Section 3. Section
4 is the experimental part of this paper; we choose 16 benchmark functions and seven well-known
comparison algorithms for experimental verification and analysis. Finally, relevant conclusions are
outlined in section Section 5.

2. Related work

In this part, we mainly introduce the classic PSO algorithm and Ring-type topology and set the
stage for subsequent content.

2.1. Classic PSO

In a D-dimensional scale-search space with a population of m birds, each bird is seen as a particle,
and each particle can be viewed as a point in the space. The state attributes of the ith, i = (1, 2, 3, . . . ,m)
particle in the ith iteration is described by a velocity vector Vi and a position vector Xi. During the
iteration of the population, the PSO will continuously generate and update the best historical position of
the ith particle, i.e., PBi = (PBi,1, PBi,2, . . . , PBi,D) as well as the best position of the whole population,
i.e., GB = (GB1,GB2, . . . ,GBD). The rules of position updating in the traditional PSO algorithm are
given as Eqs (2.1) and (2.2).

Vk
i,d = Vk−1

i,d + uPBi · rPBi.d ·
(
PBk−1

i,d − Xk−1
i,d

)
+ uGBi · rGBd ·

(
GBk−1

d − Xk−1
i,d

)
, (2.1)

Xk
i,d = Xk−1

i,d + Vk
i,d. (2.2)

The speed update Eq (2.1) includes three parts: Vk−1
i,d is the speed of the previous iteration of the

particle; uPBi · rPBi,d · (PBi,d − Xk−1
i,d ) is the cognitive part, which represents the particle’s thinking;

uGBi · rGBd · (GBd − Xk−1
i,d ) is the social part, which represents the information sharing and cooperation

between particles. Where Vi = (Vi,1,Vi,2, . . . ,Vi,D) and Xi = (Xi,1, Xi,2, . . . , Xi,D) represent the speed
and position of the ith particle in the population, respectively; uPBi and uGBi denote the acceleration
coefficients, adjust the maximum step length of learning ; rPBi,d and rGBd are the random number in the
range [0,1]. Generally, the speed change range of the dth dimension is limited to [−Vmin,d,Vmax,d], and
the position change range is [Xmin,d, Xmax,d], that is, if the speed and position exceed the boundary value
during iteration, then the particle velocity is Vk

i,d = Vmax,d, position is Xk
i,d = Xmax,d.

To improve the ability of the particle to jump out of the local optimum, Shi et al. [26] introduced
the inertia weight ω by introducing it into Eq (2.1), as shown in Eq (2.3).

Vk
i,d = ωVk−1

i,d + uPBi · rPBi,d ·
(
PBk−1

i,d − Xk−1
i,d

)
+ uGBi · rGBd ·

(
GBk−1

d − Xk−1
i,d

)
, (2.3)
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in addition, Clerc et al. [35] added a constraint factor α to Eq (2.2) to control the velocity, as shown in
Eq (2.4).

Xk
i,d = Xk−1

i,d + αVk
i,d. (2.4)

2.2. Ring-type topology

In the canonical PSO, each particle has only one learning paradigm in each learning section.
However, in real life, people choose to obtain information from more than one person. Furthermore,
many studies have shown that children with multiple learning samples have better word learning
abilities compared to those who learn from only one sample [36–38]. For this reason, we choose GB
and RBi as the two examples of the ith particle social learning part in this study. Specifically, select
the Ring-type topology to update the particles at the RBi. Updating the learning paradigm with
Ring-type topology allows the algorithm to reduce the probability of entering a premature trap after
being seduced by the local optimal point when performing local development tasks. When the
number of times the particle fitness value is not updated is greater than the set maximum number of
times, it is not updated for the particle to reselect neighbor particles. Update Velocity by Eq (2.5).

Vk
i,d = ωVk−1

i,d + uPBi · rPB1,d ·
(
PBk−1

i,d − xk−1
i,d

)
+

uRBi · rRB2,d ·
(
RBk−1

i,d − xk−1
i,d

)
+ uGBi · rGB3,d ·

(
GBk−1

d − xt−1
i,d

)
.

(2.5)

3. The proposed LFIACL-PSO algorithm

Although the particle algorithm converges quickly and is prone to implementation, it also suffers
from premature convergence and loss of particle diversity. To address the shortcomings of particle
swarm algorithms, this paper proposes a Lévy flight-based inverse adaptive comprehensive learning
particle swarm optimization (LFIACL-PSO).

3.1. Comprehensive learning strategy

Unlike the standard particle swarm update rule, the comprehensive learning strategy improves the
learning pattern of the particles themselves in the PSO algorithm by using the historical best
information of all other particles to update the velocity of the particles. This strategy allows the
diversity of the population to be preserved to prevent premature convergence. The comprehensive
learning strategy speed update formula is shown in Eq (3.1).

Vk
i,d = ωVk−1

i,d + uPBi · rPB1,d ·
(
PBk−1

fi(d) − xk−1
i,d

)
, (3.1)

where fi(d) = [ fi(1), fi(2), . . . , fi(D−1), fi(D)] determines which particle’s Pbesti,d should follow the ith
particle for each dimension (d), can be the corresponding dimension of any particle’s including its own,
and the decision depends on the probability Pci, referred to as the learning probability, which can take
different values for different particles. For each dimension of particle i, we generate a random number.
If the random number is greater than Pci, the corresponding dimension will learn from the dimension
of its pbest. Otherwise, it will learn from another particle pbest [22]. The learning probability Pci of
this particle is defined as shown in Eq (3.2).
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Pci = α + β ∗
(exp(10(i − 1)/(PS − 1)) − 1)(

exp(10) − 1
) , (3.2)

where α = 0.05, β = 0.45, PS denotes the size of the population. The search range of the particles is
affected by the boundary [Xmin, Xmax]. When the boundary is exceeded, the fitness value and position
of the particle are not updated. In addition, to improve the best position of the particle itself when it is
updated, define the refresh gap m. If the particle iterates m times and the fitness value does not change,
update Pci.

In this paper, when we use the comprehensive learning strategy as an updated paradigm for the self-
awareness part of the particle, then the speed update equation is shown in Eq (3.3), which is obtained
by transforming Eqs (2.5) and (3.1).

Vk
i,d = ωVk−1

i,d +uPBi ·rPBi,d ·
(
PBk−1

fi(d) − xk−1
i,d

)
+uRBi ·rRB2,d ·

(
RBk−1

i,d − xk−1
i,d

)
+uGBi ·rGB3,d ·

(
GBk−1

d − xt−1
i,d

)
. (3.3)

3.2. CLPSO based on Lévy flight inverse adaptive method

3.2.1. Inverse learning

The classic particle swarm algorithm has all particles moving towards their optimal historical
position and the population optimal historical position throughout the iterative process of finding the
optimal place. However, in searching for food, every once in a while, birds share information about
their distance from food. Therefore, it can be judged that each bird in the population affects the other
individuals. The information about each generation of the particles is recorded, and by making full
use of this information, it is possible to improve the algorithm’s ability to find the best. When a
particle gets trapped in a local optimum and stalls, let that particle learn toward its individual
historical worst position to quickly guide these particles to escape from the optimum and improve the
search capability of the algorithm.

In the process of algorithm iteration, if it is detected that the individual optimal position of the
particle is not updated within the set number of iterations, it can be judged that the particle is caught
in a local optimum. At this time, inverse learning is used for it, and the learning method of other
particles remains unchanged. The worst position of the individual history of the ith particle is denoted
as Worsti =

(
wi,1,wi,2, . . . ,wi j, . . . ,wi,D

)
. Then the velocity update equation of the particle in inverse

learning is Eq (3.4).

Vk
i,d = ωVk−1

i,d + uPBi · rPBi,d · (PBk−1
fi(d) − Xk−1

i,d) ) + uRBi · rRB2,d · (RBk−1
i,d − xk−1

i,d ) + uGBi · rGB3,d · (GBk−1
d − Xk−1

i,d )

+ I · rW4,d · (xk−1
i,d −Worstk−1

i,d ),
(3.4)

where I denotes the inverse learning factor, Worsti,d denotes the value of the ith particle at that moment,
the worst position of the individual history in the dth dimension.

3.2.2. Lévy flight

Lévy Flight, named after the French mathematician Paul Lévy refers to a random walk where the
probability distribution of the step size is heavy-tailed. It means that particles moving according to
Lévy flight occasionally perform big steps, interspersed with frequent small steps. Many biological
phenomena are characterized by a Lévy distribution, such as the flight path of flies. In recent years,
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the Lévy distribution has been applied to the field of optimization, such as the cuckoo algorithm [39].
The use of Lévy flight can improve the global search ability of the algorithm and prevent the reduction
of population diversity, so the use of Lévy flight in combination with particle swarm algorithm can
effectively avoid its shortcomings of prone falling into local optimum. Enhancement of the global
optimization-seeking capability of algorithms.

Because of the complexity of the Lévy distribution, the Mantegna algorithm is commonly used for
simulation. The equation for the step size Flightsize of the simulated Lévy flight is shown in Eq (3.5).

Flight size =
µ

|v|1/γ
, (3.5)

where γ = 1.5 is the parameter of the Lévy distribution, µ and v are random numbers obeying a normal
distribution as shown in Eq (3.6).  µ ∼ N

(
0, τ2

µ

)
v ∼ N

(
0, τ2

v

)
,

(3.6)

where  τu =
{
Γ(1+γ) sin(πγ/2)
Γ(1+γ/2)γ2(γ−1)/2

}1/γ

τv = 1,
(3.7)

so, the particle motion step PS stepsize is shown by the Eq (3.8),

PS stepsize = ρ × Flightsize , (3.8)

where ρ is an adjustment factor, which adjusts the step size according to different specific problems so
that the step size of the flight is not too large or too small and thus stays in the proper range. Figure 1
shows the image of the Lévy flight of 1000 steps simulated by Mantegna’s algorithm in MATLAB.

Figure 1. Lévy flight image.
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Finally, combining the Lévy flight with the inverse learning mechanism and using the Lévy
distribution to obtain the step size of the inverse learning, the velocity update equation for
LFIACL-PSO is obtained as Eq (3.9).

Vk
i,d = ωVk−1

i,d + uPBi · rPBi,d ·
(
PBk−1

fi(d) − xk−1
i,d

)
+ uRBi · rRB2,d ·

(
RBk−1

i,d − xk−1
i,d

)
+ uGBi · rGB3,d(

GBk−1
d − xt−1

i,d

)
+ I · rP4,d ·

(
xk−1

i,d − Worst k−1
i,d

)
× PS size ,

(3.9)

where Worstk−1
i,d is the value of the dth dimension of the historical worst position of the ith particle.

3.2.3. Adaptive acceleration factor

Use the acceleration coefficients to regulate the maximum step size of particle learning. In typical
particle swarm optimization algorithms, when the two acceleration coefficients are not equal, the
algorithm is more likely to maintain the speed of convergence and the effectiveness of the search
effect. Therefore, the value of the acceleration coefficients is also one of the main focuses of research
in particle swarm optimization algorithms. The existing research on the acceleration coefficient
mainly has two aspects: the setting based on the empirical value, and the other is the adaptive
adjustment through the update iteration of the particle. For instance, the classified state by HMM is
used to adapt PSO with both acceleration parameters, and population size [40]. Kiani et al. [41] used
a tangential chaos strategy to bootstrap the acceleration coefficients to find the optimal solution.
Inspired by the idea of adaptive regulation, in this paper, each particle acceleration coefficient is
adaptively adjusted according to the historical information of elite particles in the population. Set the
number of elite particles be 0.5 times the total number of particles. When the ith particle adjusts its
acceleration coefficient, we use the three values generated by the normal distribution functions
N(δ1, θ

2
1),N(δ2, θ

2
2) and N(δ3, θ

2
3) assigned to uPBi , uRBi and uGBi respectively. The values of δ1, δ2 and

δ3 are updated by updating the ones shown in Eq (3.10).

δi = (1 − λ) × δi + λ × ψ, 1 ≤ i ≤ 3, (3.10)

where λ denotes a learning weight for knowledge from elite particles; ψ = average(δelite
i ), δelite

i
represents a set of δi of the elites; average(δelite

i ) is the average value of δelite
i . In addition, from Eq

(3.10), the value of λ indicates the degree of influence of the elite particle’s experience δi on the next
generation. When λ = 0, the information of the elite particle has no effect on the adjustment of δi, and
when λ = 1, the new δi will rely only on the historical knowledge of the elite particle.

Usually, the sum of two acceleration coefficients in the particle swarm optimization algorithm is
4.0 [42]. Therefore, in the initial evolutionary stage, setting δ1 = δ3 = δ3 = 1.33, θ1 = θ2 = θ3 =

0.1. Finally, the value of uPBi , uRBi and uGBi can be independently obtained by N(δ1, θ
2
1),N(δ2, θ

2
2) and

N(δ3, θ
2
3).

3.3. The general framework of the LFIACL-PSO algorithm

With the combination of the above components, Algorithm 1 shows the pseudo-code for
LFIACL-PSO. Algorithm 1 is first initialized with relevant parameters such as population size PS ,
search space D, maximum number of iterations Iter−Max, velocity Vi and position Xi of particles.
Computer population initial fitness value f it (Xi), with the initial fitness value as the current local
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optimum value P− f it (i) and individual worst value Worst (i) for each particle, and the best initial
fitness value as the current global optimum value G− f it (i).

Algorithm 1 The pseudo-code of the LFIACL-PSO algorithm.

Input: The initial position vector Xi =
[
xi,1xi,2, xi,3, . . . , xi,D

]
, velocity vector Vi =

[
vi,1vi,2, vi,3, . . . , vi,D

]
.

Output: The whole particle’s best position.
1: /*Initialization */
2: Initialization PS , D, Iter−Max, m = 5, flag(i) = 0, δ1 = δ1 = δ3 = 1.33, θ1 = θ2 = θ3 = 0.1;
3: Computer population initial fitness value f it (Xi), with the initial fitness value as the current local

optimum value P− f it (i) and individual worst value Worst (i) for each particle, and the best initial
fitness value as the current global optimum value G− f it (i).

4: /* LOOP */
5: for k = 1 to Iter−Max do
6: for i = 1 to PS do
7: Update Vk

i,d and Xk
i,d by Eqs (3.3) and (2.2)

8: if fit (Xi) < P− fit (i) then
9: P− f it (i) = f it (Xi)

10: flag(i) = 0
11: if f it (Xi) < G− f it (i) then
12: G− f it (i) = f it (Xi)
13: end if
14: else
15: flag(i) = flag(i) + 1
16: if fit (Xi) > Worst (i) then
17: Worst (i) = f it (Xi)
18: end if
19: Gain µ, v
20: Flightsize =

µ

|v|1/γ

21: PS size = ρ × Flightsize

22: if flag(i) > m then
23: Update Vk

i,d and Xk
i,d by Eqs (3.9) and (2.2)

24: Update Pci by Eq (3.2)
25: Update PBk−1

fi(d), uPBi , uRBi , uGBi

26: Reselect a RBk−1
i,d

27: end if
28: end if
29: end for
30: end for

When the current fitness value of the particle is smaller than the local optimum of the particle,
P− f it (i) is updated and flag(i) = 0; similarly, G− f it (i) is updated. If the current fitness value of the
particle is greater than P− f it (i), setting flag(i) = flag(i)+1, as shown in lines 7–14 of the pseudo code.
If the fitness value is greater than the worst fitness value of ith position, Worst(i) is updated, as shown
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in lines 15,16 of the pseudo code. When flag(i) > m, update the velocity and position by Eqs (3.9) and
(2.2), and conversely, update the velocity and position by equations (3.3) and (2.2), as shown in lines 7
and 23 of the pseudo code, update Pci by Eq (3.2) and PBk−1

fi(d) and the associated parameters, as shown
in lines 24–26 of the pseudo code.

4. Experimental studies

This chapter first analyzes the parameter sensitivity of the parameters introduced in the
LFRACL-PSO algorithm. Then, the functional characteristics and roles of LFIACL-PSO analyzed by
population diversity experiments. After that, the performance of the LFRACL-PSO algorithm is
compared with seven typical PSO variants placed on sixteen benchmark functions in terms of solution
accuracy, statistical significance test, CPU time consumption, and convergence speed in turn. Finally,
to verify the practical application capability of the LFRACL-PSO algorithm, a spread spectrum radar
polyphase code design engineering problem is used for testing and verification. The experimental
environment is mainly implemented in windows 10 OS, Intel (R) Core (TM) i5-9600KF@3.70 GHz
processor using python language programming, the python version is 3.6, and NumPy library version
is 1.19.5.

Tables 1 and 2 list the details of the 16 benchmark functions and the seven comparison algorithms.
The 16 functions selected in this paper include 6 unimodal functions ( f1 − f6) and 10 multimodal
functions ( f7 − f16). Among them, ( f10 − f16) are more complex and difficult to handle multimodal
functions.

4.1. Sensitivity of parameters

To analyze how the parameters λ, f lag(i), and I affect the performance of LFIACL-PSO. In this
part, we set a series of experiments to analyze the sensitivity of the parameters.

First of all, initial values are assigned to each parameter separately, such as λ = 0.2, f lag(i) = 10,
and I = 1.4. When a parameter is analyzed, the rest of the parameters are fixed to their initial values.
For example, when testing the efficiency of the parameter λ, the parameter f lag(i) = 10 and I = 1.4.
We selected five benchmark functions for experimental analysis, including two unimodal functions
f1, f6 (Sphere, Rosenbrock) and three multimodal functions f9, f13, f14 (Alpine, Ackley, Griewank). To
make sure the optimal values of parameters λ, f lag(i) and I in the LFIACL-PSO algorithm, the basic
experimental setups are as follows, the search space: D = 30, population size: N = 40, maximum
number of function evaluations: MaxFEs = 500. The result of each experiment is the average of 30
independent runs and takes different values of parameters λ, f lag(i) and I for the experiments. The
results are shown in Tables 3–5, and the best results are bolded. Where Mean, Std, and Min represents
the mean, standard deviation, and minimum values of the calculated 30 times results, respectively.

4.1.1. Sensitivity of λ

The parameter λ determines the degree of influence of the experience-based information of the
elite particles on a particular particle. When the value of λ is small, the particles obtain more
information from the elite particles, which leads to a rapid convergence of the population. When λ is
larger, the particle acquires more information from its own historical experience and enhances the
particle exploration ability. The experimental results are shown in Table 3. From the experimental
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Table 1. Sixteen benchmark functions.

Name Benchmark Functions Search Range fmin

Unimodal S phere( f1) f1(x) =
∑D

i=1 x2
i , [−100, 100]D 0

S chwe f el′sP1.2( f2) f2(x) =
∑D

i=1

(∑i
j=1 x j

)2
[−100, 100]D 0

S chwe f el′sP2.21( f3) f3(x) = max(|xi|), i = 1, 2, ...,D, [−100, 100]D 0
S chwe f el′sP2.22( f4) f4(x) =

∑D
i=1 |xi| +

∏D
i=1 |xi|, [−10, 10]D 0

Bentcigar( f5) f5(x) = x2
1 + 106 ∑D

i=2 x2
i , [−1.28, 1.28]D 0

Rosenbrock( f6) f6(x) =
∑D

i=1 100 ×
(
xi+1 − x2

i

)2
+ (1 − xi)2, [−10, 10]D 0

Multimodal S chwe f el( f7) f7(x) = 418.982887273 × D −
∑D

i=1 xi sin
(√
|xi|

)
, [−500, 500]D 0

Dminima( f8) f8(x) = 78.332331408 +
∑D

i=1

(
x4

i − 16x2
i + 5xi

)
/D, [−5, 5]D 0

Alpine( f9) f9(x) =
∑D

i=1 |xi sin xi + 0.1xi|, [−10, 10]D 0
S chwe f elP2.26( f10) f10(x) =

∑D
i=1 −

(
xi sin

(√
|xi|

))
, [−500, 500]D -12569.5

Rastrigin( f11) f11(x) =
∑D

i=1

[
x2

i − 10 cos (2πxi) + 10
]

[−5.12, 5.12]D 0

NoncontinuousRastrigin( f12)

f12(x) =

 D∑
i=1

y2
i − 100 cos (2πyi) + 10


yi =

Xi , |Xi| < 0.5
round (2Xi)

2 , otherwise

, [−5, 5]D 0

Ackley( f13) f13(x) = −20 exp
(
−0.2

√
1
D

∑D
i=1 x2

i

)
− exp

(∑D
i=1 cos 2πxi

)
+ 20 + e, [−32, 32]D 0

Griewank( f14) f14(x) = 1
4000

∑D
i=1 x2

i −
∏D

i=1
xi√

i
+ 1, [−600, 600]D 0

Penalized1( f15)

f15(x) =
π

D

10 sin2 (πyi) +
D−1∑
i=1

(yi − 1)2
·
[
1 + 10 sin2 (πyi+1)

]
+

(yD − 1)2
}
+

D∑
i=1

u (xi, 10, 100, 4) , where yi = 1 + 0.25 (xi + 1)

u (xi, a, k,m) =


k (xi − a)m , xi > a

0,−a ≤ xi ≤ a
k (−xi − a)m , xi < −a

, [−50, 50]D 0

Penalized2( f16)

f16(x) = 0.1

sin2 π3yi +

D∑
i=1

(yi − 1)2
·
[
1 + sin2 (3πyi+1)

]
+ (xn − 1)2

[
1 + sin2 (2πyD)

]]
+

D∑
i=1

u (xi, 10, 100, 4)

where yi = 1 + 0.25 (xi + 1) , (xi, a, k,m) =


k (xi − a)m , xi > a

0,−a ≤ xi ≤ a
k (−xi − a)m , xi < −a

[−50, 50]D 0

Table 2. Baseline algorithms.

Algorithm Year Parameter settings

1 PSO [26] 1998 ω = 0.7298, c1 = c2 = 1.49445
2 KPSO [35] 1999 K = 0.7298, c1 = c2 = 1.49445
3 DMSPSO [43] 2005 ω = 0.7298, c1 = c2 = 1.49445,R = 10, L = 100
4 CLPSO [22] 2006 ω = [0.4, 0.9], c = 1.49445,m = 7
5 TSLPSO [44] 2019 ω = 0.4 ∼ 0.9, c1 = c2 = 1.5, c3 = 0.5 ∼ 2.5
6 CLPSO-LOT [45] 2019 ω = [0.4, 0.9], c = 1.49445,m = 7, g = 30
7 XPSO [27] 2020 ω = [0.4, 0.9], c1 = c2 = c3 = 1.35, S tagMax = 5, η = 0.2, p = 0.2
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Table 3. Selection of parameter λ.
λ f1 f6 f9 f13 f14

0.1 Mean 1.99E-10 2.68E+01 1.67E-03 7.55E-01 1.31-02
Std 1.65E-10 1.35E+01 1.77E-03 7.52E-01 1.59E-02
Min 1.67E-11 2.11E+01 1.25E-05 2.05E-06 5.08E-11

0.2 Mean 1.83E-10 2.37E + 01 2.98E-03 7.50E − 01 9.01E − 03
Std 1.12E-10 1.07E + 01 3.78E-03 6.95E − 01 1.32E − 02
Min 5.45E-11 1.04E + 01 4.51E-06 2.02E − 06 8.69E − 11

0.3 Mean 2.01E-10 2.46E+01 1.42E − 03 7.89E-01 1.04E-02
Std 1.88E-10 1.02E+01 1.52E − 03 6.69E-01 1.21E-02
Min 3.41E-11 1.33E+01 6.10E − 06 2.10E-06 4.83E-11

0.4 Mean 1.24E − 10 2.71E+01 1.92E-03 8.74E-01 1.47E-02
Std 6.51E − 11 1.47E+01 2.02E- 03 7.12E-01 1.93E-02
Min 1.30E − 11 1.72E+01 5.52E-05 1.87E-06 1.10E-10

results, we can see that setting λ in the range of [0.2, 0.4] is beneficial to improve the search efficiency
of LFIACL-PSO for all test problems. In this paper, λ = 0.2 was used for all experiments.

4.1.2. Sensitivity of f lag(i)

The value of the parameter f lag(i) determines when the particle updates the new selection speed,
position, and neighbor update method. When the value of f lag(i) is small, the particles will change the
velocity update put direction and neighbor particles frequently, which may disturb the search direction
of the particles. When f lag(i) is larger, it is beneficial to keep the search trail of particles. However, if
the particle falls into an optimal local solution, a larger f lag(i) will prevent the particle from reselecting
the learning paradigm and jumping out of the optimal solution. The comparison results shown in the
Table 4 indicate that the test function values gradually become better when f lag(i) ∈ [2, 4]. However,
the performance decreases when f lag(i) = 6, and the performance of LFIACL-PSO gets better when
f lag(i) ∈ [8, 10]. When f lag(i) becomes too high, the performance deteriorates. Therefore, based on
the above experimental analysis consideration, f lag(i) = 5 is used in this paper.

4.1.3. Sensitivity of I

The value of the parameter I determines how much information the particle obtains from the worst
position in its history. When I is small, the particle receives less information from its worst location,
and inversely, more information is acquired. Determine the optimal value of I by experimenting with
different values of I. The results are shown in Table 5, when I = 1.4, the optimal value of the test
function is obtained. When I ∈ [1.6, 1.8], the performance of LFIACL-PSO decreases. Therefore, set
the parameter I = 1.4 in the following experiments based on the above analysis.

In addition, in this paper, we use the adaptive update method to obtain the values of uPBi , uRBi , and
uGBi , and I adopts a given constant. The main reason is that I is a parameter value newly introduced in
this paper. Therefore, we need to perform experimental analysis on I to obtain its optimal value.
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Table 4. Selection of parameter f lag(i).
f lag(i) f1 f6 f9 f13 f14

2 Mean 2.06E-09 7.05E+02 2.52E-02 1.76E+01 1.16E-02
Std 2.55E-09 2.49E+03 4.90E-02 6.22E+00 1.66E-02
Min 1.81E-10 8.63E+00 6.63E-05 1.16E+00 5.20E-11

4 Mean 1.63E − 10 2.85E+01 1.67E-03 6.64E − 01 1.03E − 02
Std 1.12E − 10 1.51E+01 1.54E-03 7.40E − 01 1.19E − 02
Min 3.71E − 11 1.57E+01 7.98E-06 1.67E − 06 3.35E − 11

6 Mean 1.29E-09 7.46E+02 1.59E-01 3.59E+00 1.26E-02
Min 9.04E-11 1.61E+01 9.72E-05 1.56E-03 9.38E-11

8 Mean 1.96E-10 2.52E+01 2.73E-03 7.38E-01 1.03E-02
Std 1.50E-10 1.06E+01 2.60E-03 6.64E-01 1.15E-02
Min 2.22E-11 1.80E+01 4.10E-05 2.47E-06 1.94E-10

10 Mean 1.56E-10 2.57E+01 1.45E − 03 9.40E-01 1.46E-02
Std 1.86E-10 1.22E+01 1.75E − 03 7.50E-01 1.96E-02
Min 1.75E-11 1.00E+01 4.52E − 06 2.46E-06 2.53E-11

12 Mean 1.91E-10 2.49E + 01 2.55E-03 6.78E-01 1.15E-02
Std 1.32E-10 9.77E + 00 3.77E-03 7.00E-01 1.21E-02
Min 1.98E-11 1.58E + 01 9.09E-06 1.92E-06 1.08E-10

Table 5. Selection of parameter I.
I f1 f6 f9 f13 f14

0.4 Mean 1.55E-10 3.26E+01 2.71E-03 7.14E-01 1.32E-03
Std 1.46E-10 2.10E+01 4.29E-03 7.20E-01 1.73E-03
Min 1.47E-11 1.32E+01 8.06E-06 1.60E-06 5.48E-11

0.6 Mean 1.82E-10 2.54E + 01 2.23E-03 6.04E-01 8.45E-03
Std 1.37E-10 1.01E + 01 2.83E-03 6.27E-01 9.08E-03
Min 3.47E-11 1.80E + 01 4.78E-06 1.97E-06 7.47E-11

0.8 Mean 1.25E-10 3.08E+01 1.80E-03 8.86E-01 9.18E-03
Std 8.32E-11 1.70E+01 1.95E-03 7.29E-01 1.32E-02
Min 3.00E-11 1.34E+01 2.64E-05 1.99E-06 5.19E-11

1.0 Mean 1.36E-10 3.29E+01 4.20E-03 7.74E-01 1.29E-02
Std 9.66E-11 1.99E+01 8.48E-03 7.11E-01 1.41E-02
Min 2.38E-11 2.04E+01 1.77E-05 1.33E-06 4.44E-11

1.2 Mean 2.16E-10 2.75E+01 1.84E-03 7.90E-01 7.96E-03
Std 2.23E-10 1.42E+01 1.73E-03 7.77E-01 1.16E-02
Min 2.04E-11 1.71E+01 2.64E-05 2.63E-06 9.34E-11

1.4 Mean 6.72E − 12 2.66E+01 4.13E − 05 7.29E − 07 8.53E − 03
Std 4.75E − 12 3.31E+01 3.55E − 05 3.94E − 08 9.94E − 03
Min 1.97E − 12 1.55E+01 5.81E − 06 6.90E − 07 1.40E − 10

1.6 Mean 1.94E-10 2.63E+01 1.75E-03 8.04E-01 1.34E-02
Std 1.75E-10 1.30E+01 1.94E-03 6.53E-01 1.66E-02
Min 1.30E-11 1.54E+01 1.32E-05 1.16E-06 9.98E-11
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4.2. Diversity analysis

Swarm diversity is used to determine whether the population is being explored or developed [46].
The diversity of particle swarm optimization algorithms can be simply defined as the degree of
dispersion of particles in the swarm. This dispersion can be defined around a specific center point. It
can also be determined based on the particle’s position or velocity. In the study of this article, the
definition of swarm diversity is as follows Eq (4.1):

Diversity(PS) =
1

PS · |L|
·

PS∑
i=1

√√√ D∑
j=1

(
xi, j − x̄ j

)2
, (4.1)

x̄ j =

∑PS
i=1 xi, j

PS
, (4.2)

where PS is the population size, |L| is the length of the longest diagonal in the searching space, D is
the dimensionality of the problem, xi, j denotes the position of the ith particle on the jth dimension and
x̄ j denotes the average value of x = [x1, x2, . . . , xPS ] on the jth dimension.
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Figure 2. Comparative results of algorithm diversity.

A set of experiments are carried out on the four representative benchmark functions, in which
Schwefel’s P 2.22 and Rosenbrock are unimodal functions, Rastrigin and Ackley are multimodal
functions. The Schwefel’s P 2.22 function with [−10, 10] and global minimum given by
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f (0, 0, . . . , 0) = 0; the Rosenbrock function with [−2.048, 2.048] and global minimum given by
f (0, 0, . . . , 0) = 0; the Rastrigin function with [−5.12, 5.12] and global minimum given by
f (0, 0, . . . , 0) = 0 and the Ackley function with [−30, 30] and global minimum given by
f (0, 0, . . . , 0) = 0. The experimental results are shown in Figure 2, where LFIAPSO-CL and
ACLPSO-LFI respectively represent the algorithms for removing comprehensive learning strategies
and Lévy flight and inverse learning from LFIACL-PSO.

Figure 2 depicts the diversity curves presented by the LFIACL-PSO algorithm on the four
benchmark functions. The population size is 40, the search space is 30 dimensions, and the maximum
number of iterations of the swarm is 500. As can be seen from the figure, the LFIACL-PSO algorithm
maintains good diversity over the entire population space.

4.3. Comparison of solutions accuracy

This part mainly verifies the solution accuracy of the LFIACL-PSO algorithm and the seven
comparison algorithms. To ensure the fairness of the experiments, First, the parameter settings of the
seven comparison algorithms were consistent with those in the reference article. Second, to reduce the
impact caused by the randomness of the algorithm, each algorithm runs 30 times independently.
Third, select the mean (Mean), standard deviation (Std), minimum (Min) values of the fitness function
values as evaluation criteria. Fourth, to verify the performance characteristics of each algorithm in
different dimensions, the search space of particles is set to 20, 30 and 50 dimensions. During the
experiments, the population size and the maximum number of iterations were 40 and 1000,
respectively.

Tables 6–8 lists the statistical results of benchmark functions on different dimensions and includes
the mean CPU time usage of each algorithm.

4.3.1. Unimodal functions

Tables 6–8 details the experimental results obtained for the six unimodal functions ( f1 − f6) for the
LFIACL-PSO algorithm proposed in this paper and the other seven comparison algorithms tested in
different dimensions. The performance of the algorithms is measured by the number of best results
obtained on the mean value. The best results by the different algorithms on the six unimodal functions
are bolded. From the comparison results in Table 6, it is clear that on the six unimodal functions
( f1 − f6). When the particle dimension is 20, the LFIACL-PSO yields the optimal solution on the
benchmark functions f2 − f6, and the PSO obtains the optimal solution on f1. When the particle
dimensions are 30 and 50 dimensions, from Tables 7 and 8, we know that the LFIACL-PSO algorithm
obtains optimal solutions on the unimodal functions f1, f2, f4 − f6, and the XPSO gains the optimal
solution on f3. The experimental comparison results show that LFIACL-PSO outperforms the other
comparison algorithms in the six unimodal functions. The performance of LFIACL-PSO benefits from
the following three advantages. First, compared to legacy PSOs, LFIACL-PSO has four exemplars
which can give a particle more chance to obtain useful information. In addition, the Ring-type neighbor
topology causes the particles to reorient their search at the end, improving the exploration ability of the
population. Finally, the inverse learning mechanism and Lévy flight are applied to the particle swarm
algorithm. When the particles fall into stagnation due to local optimum, the particles are allowed to
learn from the worst position of their individual histories to quickly guide these particles to escape
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from local optimum, enhance the diversity of the population, and improve the search capability of the
algorithm, thus effectively preventing the disadvantage that the particle swarm algorithm easily falls
into local optimum.

4.3.2. Multimodal functions

In reality, most multimodal functions contain many locally optimal solutions, making the
algorithm prone to fall into the local optimum trap and converge prematurely. Tables 6–8 lists the
experimental results obtained by testing the LFIACL-PSO algorithm with seven comparison
algorithms using multimodal functions ( f7 − f16) in different dimensions. Select the best results
obtained on the mean to measure the algorithm performance. The best results obtained by the different
algorithms on the ten multimodal functions are shown in bold. The comparison results presented in
Tables 6–8 indicate that KPSO, DMPSO, TSLPSO performed much worse than LFIACL-PSO,
mainly because the latter utilized much valuable historical knowledge from different samples, which
facilitated the maintenance of population diversity. From the comparison results in Table 6, it is clear
that the LFIACL-PSO algorithm obtains optimal values for the multimodal functions f9, f11 − f16. The
CLPSO-LOT, CLPSO, and TLPSO algorithms obtain optimal values on the multimodal functions f7,
f8, and f10, respectively. The mean values of f12 in CLPSO and CLPSO-LOT are equal to
LFIACL-PSO, but their standard deviations are large; therefore, the stability of the LFIACL-PSO
algorithm is better than other comparative algorithms. When the search space is 30 dimensions, as can
be seen from the comparison results in Table 7, the LFIACL-PSO algorithm obtains a total of 7 best
performances on ten multimodal functions f7 − f16, and PSO, TLPSO, CLPSO, and XPSO all acquire
one best performance. When the search space is 50 dimensions, as known from the comparison
results in Table 8, the LFIACL-PSO algorithm obtains a total of six optimal solutions on f7 − f16 and
the suboptimal solution is f12. The PSO and DMPSO obtain the optimal solution in function f7. The
TLPSO algorithm and CLPSO and XPSO obtain optimal solutions on functions f10, f12, f15,
respectively. Overall, LFIACL-PSO has the most competitive performance among these classical
comparison algorithms, as it achieves the best average value on 6 of the ten multimodal problems.

4.4. Statistical significance test of experimental results

To further illustrate the comprehensive performance of all comparison algorithms, Friedman’s test
with significance level alpha = 0.05 was performed in this section, the results of which are shown in
Tables 9 and 10. Tables 9 and 10 represent the results of Friedman’s test on unimodal and multimodal
functions for each of the eight algorithms in different dimensions, respectively. From Table 9, we
know that LFIACL-PSO obtained the best overall performance for unimodal functions f1 − f6,
followed by XPSO, PSO, and CPSO-LOT. From Table 10, the LFIACL-PSO acquires the best overall
performance for multimodal functions f7 − f16, followed by CPSO-LOT, XPSO, PSO, and CLPSO.
Finally, regarding the accuracy of the solution, Table 11 shows the final average ranking of all
algorithms on 16 benchmark functions on different dimensions. From Table 11, the overall
performance of LFIACL-PSO is the best, followed by XPSO and PSO.

Furthermore, a graphical approach was used to show the key differences (CDs) in Friedman’s
rankings, and the results are shown in Figure 4. The CD is calculated as in Eq (4.3). Suppose the
difference between the average sequential values of the two algorithms exceeds the critical value
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Table 6. Comparison results of 16 benchmark functions on all algorithms (20D).
PSO KPSO DMSPSO CLPSO TSLPSO CLPSO-LOT XPSO LFIACL-PSO

f1 Mean 4.20E − 28 1.23E-05 2.66E+00 9.48E+00 2.66E+00 1.05E-01 1.30E-03 6.20E-22
Std 8.30E − 28 4.82E-05 1.56E+00 6.05E+00 1.56E+00 5.41E-01 4.50E-03 4.87E-22
Min 1.63E − 30 8.28E-18 6.56E-01 1.36E+00 6.56E-01 3.75E-14 2.29E-07 6.48E-23

Time(s) 0.14 0.16 0.04 16.82 3.92 12.45 2.79 13.65
f2 Mean 1.14E-04 2.50E+01 4.42E+01 2.59E+03 4.14E+03 1.10E+03 9.92E-04 1.20E − 06

Std 1.13E-04 3.32E+01 2.65E+01 7.06E+02 2.01E+04 4.66E+02 3.10E-03 1.21E − 06
Min 5.65E-06 1.98E-01 8.61E+00 1.64E+03 7.32E-02 4.67E+02 1.85E-27 5.80E − 08

Time(s) 1.60 2.62 0.66 16.64 33.28 14.46 4.69 18.35
f3 Mean 9.88E-05 2.54E+00 1.48E+00 3.35E+01 5.44E+01 2.95E+01 1.01E-04 4.94E − 06

Std 1.17E-04 1.66E+00 4.58E-01 6.62E+00 1.82E+01 5.40E+00 1.21E-04 1.41E − 05
Min 7.77E-06 2.73E-01 8.94E-01 1.83E+01 2.59E+01 1.81E+01 5.85E-38 7.47E − 09

Time(s) 0.13 0.19 0.05 12.98 3.78 12.95 2.73 13.86
f4 Mean 7.77E-01 2.25E-01 5.17E-01 1.63E-01 1.31E+01 3.84E-04 1.30E-10 3.81E − 11

Std 3.14E+00 4.92E-01 1.31E-01 8.72E-02 4.20E+01 6.30E-04 3.37E-10 1.26E − 10
Min 1.79E-14 1.29E-03 2.00E-01 3.85E-02 5.17E-02 2.12E-05 1.13E-18 3.03E − 13

Time(s) 0.20 0.23 0.06 12.01 5.00 12.90 2.83 13.91
f5 Mean 6.69E-03 2.46E-02 4.77E-03 9.52E-02 1.51E-02 5.55E-02 1.65E-15 1.54E − 15

Std 3.02E-03 1.85E-02 1.94E-03 3.97E-02 7.98E-03 3.07E-02 4.06E-15 2.27E − 15
Min 1.77E-03 5.81E-03 1.22E-03 2.85E-02 4.24E-03 1.41E-02 7.66E-24 6.11E − 18

Time(s) 0.82 0.41 0.10 12.19 8.76 12.52 4.13 13.87
f6 Mean 1.47E+01 4.01E+01 2.67E+01 2.33E+02 8.21E+01 1.07E+02 1.54E+01 3.20E + 00

Std 2.19E+01 3.49E+01 1.81E+01 1.38E+02 7.57E+01 1.14E+02 2.86E-01 2.72E + 00
Min 1.24E-03 5.82E+00 1.61E+01 6.74E+01 8.08E-01 1.14E+01 1.48E+01 2.45E − 02

Time(s) 1.96 1.54 0.39 13.08 29.12 14.12 5.19 17.02
f7 Mean 4.86E+03 9.03E+03 1.74E+04 4.78E+03 3.29E+06 4.71E+03 4.79E+03 5.18E+03

Std 1.92E+02 2.22E+02 2.33E+02 2.25E+02 2.15E+05 3.30E+02 2.22E+02 2.47E+02
Min 4.40E+03 8.36E+03 1.68E+04 4.13E+03 1.15E+05 3.92E+03 4.34E+03 4.68E+03

Time(s) 2.41 3.41 0.85 14.27 46.59 14.94 6.81 20.01
f8 Mean 1.42E+03 1.42E+03 1.42E+03 1.41E+03 1.43E+03 1.42E+03 1.42E+03 1.42E+03

Std 2.51E+00 3.45E+00 2.32E+00 1.20E+00 1.58E+00 1.27E+00 2.38E+00 2.57E+00
Min 1.42E+03 1.42E+03 1.42E+03 1.41E+03 1.43E+03 1.42E+03 1.42E+03 1.42E+03

Time(s) 3.28 3.65 0.91 14.86 57.69 15.47 9.38 21.56
f9 Mean 4.93E-09 2.65E-02 6.07E-02 3.93E-01 1.73E+01 9.50E-01 1.49E-05 4.14E-09

Std 1.83E-08 3.89E-02 4.40E-02 2.06E-01 1.96E+01 3.46E-01 4.20E-05 2.22E-08
Min 3.84E-14 5.49E-04 1.66E-02 1.09E-01 1.65E-03 3.43E-01 4.06E-10 7.85E-14

Time(s) 0.3 0.3 0.07 11.93 4.92 12.25 6.89 13.78
f10 Mean −4.21E+02 −4.47E+03 −4.97E+03 −5.78E+03 −7.67E+68 −5.76E+03 −4.27E+03 −4.65E+03

Std 4.48E+01 5.27E+02 5.13E+02 2.38E+02 2.99E+69 2.41E+02 8.31E+02 5.82E+02
Min −5.32E+02 −5.54E+03 −6.24E+03 −6.37E+03 −1.48E+70 −6.20E+03 −6.80E+03 −5.77E+03

Time(s) 0.26 0.28 0.07 12.02 7.63 12.27 4.54 13.83
f11 Mean 3.77E+01 2.69E+01 1.09E+01 2.04E+01 8.76E+01 7.09E+00 1.48E-15 0.00E+00

Std 1.27E+01 9.17E+00 2.41E+00 5.76E+00 6.00E+01 3.16E+00 4.79E-15 0.00E+00
Min 1.49E+01 1.19E+01 7.24E+00 1.13E+01 2.49E+01 1.74E+00 0.00E+00 0.00E+00

Time(s) 0.27 0.36 0.09 12.19 5.73 12.01 3.09 13.53
f12 Mean −1.59E+03 −1.72E+03 −1.76E+03 −1.78E+03 −1.22E+03 −1.78E+03 −1.64E+03 −1.78E+03

Std 8.94E+01 2.69E+01 2.61E+01 5.31E+00 3.59E+02 2.26E+00 1.98E+02 1.13E+00
Min −1.76E+03 −1.77E+03 −1.78E+03 −1.79E+03 −1.69E+03 −1.79E+03 −1.80E+03 −1.79E+03

Time(s) 4.34 5.25 1.31 16.32 70.6 16.37 3.29 23.67
f13 Mean 1.24E-01 2.30E+00 1.40E+00 2.68E+00 1.53E+01 1.91E+00 4.33E-12 2.33E-12

Std 3.76E-01 9.01E-01 6.54E-01 6.40E-01 7.28E+00 1.26E+00 1.47E-11 1.35E-12
Min 7.11E-15 7.49E-07 2.11E-01 9.23E-01 2.45E+00 8.76E-03 3.55E-15 6.32E-13

Time(s) 0.47 0.55 0.14 12.18 8.27 12.71 3.18 14.16
f14 Mean 2.09E-02 2.72E-02 8.92E-01 1.17E+00 2.76E-01 1.06E-01 6.69E-02 1.56E-02

Std 1.44E-02 2.98E-02 1.36E-01 1.71E-01 7.28E-01 1.63E-01 1.37E-01 1.57E-02
Min 0.00E+00 9.99E-16 5.00E-01 9.33E-01 4.33E-15 3.53E-03 1.11E-16 0.00E+00

Time(s) 1.32 1.4 0.35 13.07 22.8 13.37 3.99 16.18
f15 Mean 5.70E-02 9.07E-01 7.49E-02 4.32E+01 2.53E-01 2.71E+00 6.58E-09 9.16E-25

Std 1.42E-01 1.26E+00 1.03E-01 1.51E+02 3.90E-01 4.88E+00 2.42E-08 1.19E-24
Min 2.38E-31 2.19E-11 3.23E-03 1.98E+00 1.01E-15 3.40E-07 1.17E-15 5.70E-26

Time(s) 1.94 2.09 0.52 13.53 35.79 17.13 4.47 17.65
f16 Mean 1.83E-03 4.92E-02 3.11E-01 1.06E+00 2.30E+01 2.21E-02 7.33E-04 1.04E-23

Std 4.09E-03 6.17E-02 1.56E-01 1.06E+00 1.19E+02 5.19E-02 2.74E-03 2.07E-23
Min 3.25E-31 3.25E-08 8.38E-02 1.38E-01 2.53E-16 2.03E-07 1.74E-13 3.36E-25

Time(s) 4.67 5.23 1.31 16.88 76.02 16.19 6.36 23.37
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Table 7. Comparison results of 16 benchmark functions on all algorithms (30D).
PSO KPSO DMSPSO CLPSO TSLPSO CLPSO-LOT XPSO LFIACL-PSO

f1 Mean 1.90E-16 1.63E+00 2.19E+01 3.77E-01 2.27E+02 1.88E-04 1.71E-15 1.27E-20
Std 9.22E-16 3.63E+00 9.23E+00 4.87E-01 8.28E+02 2.57E-04 4.35E-15 1.31E-20
Min 4.62E-20 3.48E-02 7.91E+00 6.54E-03 1.32E-06 7.16E-06 7.72E-64 2.51E-21

Time(s) 0.17 0.37 3.5 49 6.64 18.4 4.22 19.79
f2 Mean 1.19E+00 6.86E+02 4.27E+02 6.70E+03 4.52E+03 2.70E+03 5.12E+01 2.17E-01

Std 8.65E-01 5.42E+02 1.55E+02 1.23E+03 2.99E+03 5.11E+02 6.62E+01 4.41E-01
Min 1.04E-01 8.00E+01 1.36E+02 4.48E+03 2.85E+02 1.47E+03 4.64E-14 6.04E-03

Time(s) 2.52 5.68 13.38 56.41 81.07 21.64 6.63 26.17
f3 Mean 2.68E-01 1.08E+01 4.25E+00 3.23E+01 7.55E+01 2.63E+01 9.98E-04 3.87E-01

Std 1.37E-01 3.08E+00 1.31E+00 4.84E+00 1.57E+01 5.28E+00 1.77E-03 2.72E-01
Min 5.88E-02 5.91E+00 2.43E+00 2.24E+01 3.60E+01 1.75E+01 1.03E-18 6.94E-02

Time(s) 0.23 0.35 3.48 49.55 6.22 18.75 4.24 19.73
f4 Mean 8.29E+01 2.47E+00 2.19E+00 2.69E-02 7.73E+00 2.15E-03 5.88E-06 8.44E-07

Std 1.10E+02 1.54E+00 5.87E-01 2.12E-02 5.94E+00 2.00E-03 1.45E-05 2.30E-05
Min 1.90E-07 4.96E-01 1.38E+00 5.59E-03 2.76E-01 6.17E-04 5.33E-24 5.74E-11

Time(s) 0.39 0.49 3.75 49.94 8.32 18.67 4.28 19.74
f5 Mean 4.89E-03 1.21E+06 1.92E+07 2.65E+05 5.58E+04 6.37E-02 8.50E-04 5.78E-09

Std 7.04E-03 3.25E+06 7.97E+06 3.69E+05 2.79E+05 2.67E-02 1.86E-03 2.87E-08
Min 1.32E-04 3.78E+03 7.58E+06 8.08E+03 2.78E-02 3.64E-02 5.04E-14 3.94E-15

Time(s) 0.7 1.15 5.08 50.41 19.07 19.72 4.71 20.14
f6 Mean 4.10E+01 1.03E+02 8.44E+01 1.67E+02 4.57E+02 9.18E+01 2.58E+01 1.55E+01

Std 2.97E+01 6.06E+01 3.38E+01 7.11E+01 6.24E+02 3.02E+01 3.97E-01 3.38E+00
Min 6.46E+00 2.32E+01 4.43E+01 4.86E+01 2.87E+01 2.94E+01 2.48E+01 7.94E+00

Time(s) 2.26 5.06 12.54 55.02 70.34 21.66 6.25 24.96
f7 Mean 3.91E+03 8.13E+03 8.12E+03 8.26E+03 3.67E+06 8.25E+03 8.19E+03 8.69E+03

Std 2.38E+0 2.80E+02 3.38E+02 2.55E+02 4.02E+04 2.91E+02 2.98E+02 2.80E+02
Min 3.34E+03 7.37E+03 7.24E+03 7.42E+03 4.02E+04 7.77E+03 7.04E+03 8.02E+03

Time(s) 4.35 9.17 19.28 61.76 119.42 22.78 8.04 29.13
f8 Mean 2.21E+03 2.21E+03 2.21E+03 2.20E+03 2.22E+03 2.20E+03 2.21E+03 2.20E+03

Std 2.13E+00 2.70E+00 2.08E+00 3.66E-01 2.85E+00 1.06E+00 1.61E+00 2.10E+00
Min 2.20E+03 2.20E+03 2.20E+03 2.20E+03 2.21E+03 2.20E+03 2.20E+03 2.20E+03

Time(s) 4.86 10.4 21.79 61.75 138.36 23.82 8.59 31.66
f9 Mean 1.09E-01 7.72E-01 4.23E-01 4.13E-01 2.10E+01 2.64E+00 2.23E-04 2.21E-04

Std 4.08E-01 9.84E-01 3.16E-01 2.01E-01 3.25E+01 9.40E-01 3.82E-04 6.53E-04
Min 3.47E-08 3.53E-02 8.69E-02 8.76E-02 2.19E-02 1.01E+00 4.20E-07 2.87E-10

Time(s) 0.21 0.51 3.8 50.07 8.13 18.24 4.32 19.79
f10 Mean −6.28E+02 −6.47E+03 −6.71E+03 −7.97E+03 −2.53E+67 −7.93E+03 −5.43E+03 −6.42E+03

Std 6.53E+01 8.29E+02 7.22E+02 3.05E+02 1.31E+68 2.76E+02 1.33E+03 9.31E+02
Min −7.33E+02 −8.17E+03 −8.42E+03 −8.78E+03 −7.32E+68 −8.71E+03 −9.31E+03 −8.17E+03

Time(s) 0.21 0.51 3.75 50.11 7.8 18.22 4.51 19.72
f11 Mean 8.34E+01 4.57E+01 2.56E+01 2.95E+01 1.49E+02 6.57E+00 4.36E+00 0.00E+00

Std 2.57E+01 1.51E+01 6.74E+00 6.12E+00 9.19E+01 3.28E+00 2.17E+01 0.00E+00
Min 4.58E+01 2.60E+01 1.41E+01 1.67E+01 6.67E+01 1.67E-01 0.00E+00 0.00E+00

Time(s) 0.25 0.65 4.03 49.73 9.52 17.81 5.17 19.46
f12 Mean −2.03E+03 −2.57E+03 −2.52E+03 −2.66E+03 −1.50E+03 −2.68E+03 −5.00E+00 -2.83E+03

Std 2.70E+02 5.64E+01 1.37E+02 6.13E+00 6.87E+02 2.16E+00 0.00E+00 3.56E+01
Min −2.36E+03 −2.64E+03 −2.66E+03 −2.67E+03 −2.52E+03 −2.68E+03 −5.00E+00 −2.87E+03

Time(s) 5.46 14.95 30.12 70.47 175.21 24.95 5.34 34.02
f13 Mean 1.89E+00 4.17E+00 2.85E+00 1.10E+00 2.00E+01 7.33E-01 1.81E+01 6.22E-01

Std 3.48E+00 1.00E+00 3.53E-01 6.35E-01 1.62E+00 8.23E-01 4.77E+00 7.46E-01
Min 9.28E-10 1.34E+00 2.01E+00 5.50E-02 1.20E+01 2.48E-03 0.00E+00 9.00E-12

Time(s) 0.38 0.96 4.71 50.05 13.85 18.91 4.47 20.15
f14 Mean 8.36E-03 4.23E-01 1.23E+00 4.78E-01 3.20E+00 1.12E-02 1.16E-01 7.34E-03

Std 1.31E-02 3.67E-01 8.24E-02 2.63E-01 5.54E+00 9.71E-03 2.16E-01 1.21E-02
Min 0.00E+00 1.15E-02 1.10E+00 1.28E-01 1.59E-05 1.09E-03 8.34E-04 0.00E+00

Time(s) 1.61 4.22 11 53.67 52.05 19.61 5.86 23.56
f15 Mean 1.00E-01 5.54E+00 5.53E-01 9.96E-01 9.17E+05 1.05E-01 5.95E-06 4.15E-02

Std 1.99E-01 3.82E+00 2.67E-01 9.37E-01 4.24E+06 2.41E-01 2.16E-05 1.02E-01
Min 1.51E-19 8.12E-01 7.05E-02 1.72E-02 7.74E-07 2.37E-06 2.26E-09 1.16E-23

Time(s) 2.44 5.91 14.09 56.43 85.28 21.04 6.81 25.96
f16 Mean 8.77E-03 7.12E+00 2.21E+00 9.14E-02 5.10E+01 2.59E-03 2.31E-03 1.93E-03

Std 1.55E-02 6.56E+00 7.88E-01 8.37E-02 8.50E+01 7.10E-03 8.20E-03 4.86E-03
Min 1.91E-19 2.57E-01 9.48E-01 5.37E-03 4.29E-02 3.22E-05 1.58E-07 1.21E-22

Time(s) 5.61 14.14 30.03 66.93 188.98 24.61 10.39 34.77
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Table 8. Comparison results of 16 benchmark functions on all algorithms (50D).
PSO KPSO DMSPSO CLPSO TSLPSO CLPSO-LOT XPSO LFIACL-PSO

f1 Mean 5.82E-05 2.02E+02 2.00E+02 1.27E+01 1.91E+04 1.29E+00 1.14E-07 1.74E-13
Std 1.84E-04 1.04E+02 5.20E+01 7.50E+00 8.73E+03 1.83E+00 5.68E-07 3.39E-13
Min 8.73E-08 1.88E+01 9.22E+01 3.59E+00 6.97E+03 4.47E-02 1.79E-76 6.15E-16

Time(s) 0.18 0.37 3.51 49.61 6.38 18.6 6.01 13.62
f2 Mean 2.41E+02 5.04E+03 2.14E+03 3.23E+04 2.60E+05 1.32E+04 2.30E+03 1.59E+02

Std 2.90E+02 2.11E+03 5.07E+02 3.45E+03 8.86E+04 2.26E+03 1.05E+03 1.17E+02
Min 6.81E+01 1.88E+03 9.31E+02 2.64E+04 1.24E+05 9.71E+03 3.74E+02 2.57E+01

Time(s) 4.11 5.73 13.37 57.02 78.54 22.04 9.56 17.9
f3 Mean 3.96E+00 2.13E+01 9.46E+00 4.86E+01 9.34E+01 3.60E+01 2.65E-03 7.25E+00

Std 8.34E-01 3.37E+00 1.44E+00 3.04E+00 5.41E+00 7.42E+00 4.05E-03 1.75E+00
Min 2.76E+00 1.36E+01 5.67E+00 4.13E+01 7.61E+01 2.01E+01 1.82E-27 3.51E+00

Time(s) 0.17 0.35 3.48 50.12 6.07 18.74 5.99 13.49
f4 Mean 3.82E+02 1.28E+01 9.31E+00 6.89E-01 1.29E+02 2.13E-01 1.53E-02 1.22E-02

Std 1.43E+02 4.21E+00 1.80E+00 1.83E-01 3.52E+01 9.11E-02 4.02E-02 3.61E-02
Min 1.43E+00 5.78E+00 6.59E+00 3.55E-01 5.86E+01 8.53E-02 1.13E-12 8.91E-04

Time(s) 0.24 0.49 3.76 50.23 8.1 19.56 5.95 13.61
f5 Mean 8.34E+01 2.02E+08 1.80E+08 1.15E+07 2.59E+07 1.84E-01 4.62E+01 6.12E-02

Std 4.49E+02 1.18E+08 4.52E+07 7.23E+06 5.35E+07 5.09E-02 3.42E-01 2.28E-01
Min 2.21E-07 5.01E+07 1.12E+08 2.14E+06 1.44E+03 9.23E-02 4.52E+01 5.74E-10

Time(s) 0.83 1.17 5.05 50.75 17.98 18.56 6.67 13.73
f6 Mean 1.29E+02 7.15E+02 4.58E+02 6.75E+02 2.69E+05 2.85E+02 4.63E+01 4.34E+01

Std 8.25E+01 4.28E+02 1.60E+02 1.79E+02 2.31E+05 8.43E+01 4.06E-01 2.37E+01
Min 3.68E+01 2.75E+02 2.09E+02 3.72E+02 2.47E+04 1.74E+02 4.55E+01 3.38E+01

Time(s) 3.8 5.16 12.41 55.57 69.34 20.7 8.92 16.83
f7 Mean 1.52E+04 1.53E+04 1.52E+04 1.74E+04 5.94E+05 1.75E+04 1.53E+04 1.59E+04

Std 3.10E+02 3.06E+02 3.02E+02 2.33E+02 4.07E+05 2.13E+02 3.21E+02 3.68E+02
Min 1.42E+04 1.46E+04 1.46E+04 1.68E+04 1.30E+05 1.67E+04 1.47E+04 1.50E+04

Time(s) 6.04 9.25 19.09 62.09 117.24 22.88 11.61 19.72
f8 Mean 3.77E+03 3.77E+03 3.77E+03 3.76E+03 7.70E+03 3.77E+03 3.77E+03 3.76E+03

Std 1.74E+00 1.89E+00 1.91E+00 6.93E-01 8.15E+00 1.17E+00 1.89E+00 1.69E+00
Min 3.77E+03 3.77E+03 3.77E+03 3.76E+03 7.70E+03 3.77E+03 3.77E+03 3.76E+03

Time(s) 7.37 10.47 21.86 62.1 134.85 23.57 12.56 21.35
f9 Mean 5.94E-01 5.79E+00 2.60E+00 4.32E+00 1.16E+02 6.25E+00 1.03E-02 2.63E-03

Std 5.54E-01 2.89E+00 9.49E-01 1.18E+00 1.31E+02 2.57E+00 1.35E-02 6.72E-03
Min 7.54E-03 8.72E-01 9.80E-01 2.50E+00 1.85E+01 2.78E+00 2.31E-34 1.48E-04

Time(s) 0.23 0.51 3.79 50.26 8.07 18.61 5.95 13.56
f10 Mean −9.97E+02 −1.05E+04 −9.49E+03 −1.20E+04 −6.21E+65 −1.19E+04 −1.14E+04 −1.02E+04

Std 1.19E+02 1.31E+03 1.28E+03 3.56E+02 1.76E+66 3.61E+02 4.02E+03 1.40E+03
Min −1.19E+03 −1.34E+04 −1.17E+04 −1.28E+04 −7.82E+66 −1.27E+04 −2.40E+04 −1.30E+04

Time(s) 0.23 0.51 3.74 50.42 7.82 18.57 6.27 13.56
f11 Mean 2.47E+02 9.38E+01 7.61E+01 1.07E+02 8.90E+02 3.19E+01 4.02E-02 0.00E+00

Std 7.48E+01 1.67E+01 1.65E+01 1.07E+01 3.01E+02 9.15E+00 2.03E-01 0.00E+00
Min 7.48E+01 5.24E+01 4.71E+01 8.68E+01 5.91E+02 1.61E+01 3.55E-15 0.00E+00

Time(s) 0.28 0.66 4.02 49.9 9.53 18.37 6 13.35
f12 Mean −2.49E+03 −4.21E+03 −3.68E+03 −4.35E+03 −1.98E+03 −4.43E+03 −4.33E+03 −4.39E+03

Std 4.78E+02 1.39E+02 3.10E+02 2.12E+01 2.82E+03 7.08E+00 5.97E+02 -4.39E+03
Min -3.21E+03 -4.39E+03 -4.08E+03 -4.39E+03 -7.36E+03 -4.46E+03 -4.50E+03 -4.39E+03

Time(s) 9.4 15.14 29.93 70.59 173.73 25.12 6.21 23.46
f13 Mean 3.23E+00 7.72E+00 4.43E+00 3.13E+00 2.07E+01 3.24E+00 1.98E+01 2.18E+00

Std 8.65E-01 1.40E+00 5.13E-01 4.26E-01 6.79E-01 1.54E+00 4.82E-01 6.61E-01
Min 1.87E+00 5.01E+00 3.57E+00 2.50E+00 1.98E+01 1.89E-01 1.77E+01 1.07E-06

Time(s) 0.43 0.97 4.71 58.41 13.64 18.89 6.12 14.08
f14 Mean 6.98E-03 2.83E+00 2.93E+00 1.27E+00 1.58E+02 5.76E-01 1.02E+00 1.90E-03

Std 8.45E-03 1.15E+00 4.89E-01 1.29E-01 7.34E+01 2.34E-01 2.21E-01 6.71E-03
Min 7.74E-10 1.23E+00 1.78E+00 1.10E+00 6.96E+01 2.37E-01 3.08E-01 7.66E-15

Time(s) 2.63 4.31 10.92 62.59 51.54 19.81 8.21 16.17
f15 Mean 5.97E-01 1.14E+01 3.26E+00 4.06E+00 2.38E+07 5.97E-01 1.68E-02 3.21E-01

Std 8.78E-01 4.13E+00 1.15E+00 2.20E+00 2.54E+07 6.61E-01 5.81E-03 4.46E-01
Min 9.00E-06 5.23E+00 1.46E+00 1.13E+00 2.03E+05 3.95E-03 8.91E-03 2.43E-13

Time(s) 4.05 5.89 14 67.71 83.99 21.58 9.44 17.57
f16 Mean 5.03E-02 1.34E+02 1.98E+01 4.32E+00 1.70E+03 1.53E+00 1.40E+00 5.50E-03

Std 5.03E-02 6.68E+01 4.34E+00 1.83E+00 7.10E+02 1.72E+00 4.16E-01 8.85E-03
Min 1.16E-07 2.28E+01 1.33E+01 1.72E+00 8.78E+02 1.60E-01 7.02E-01 8.85E-03

Time(s) 9.73 14.35 29.92 87.34 184.47 25.22 14.48 23.25
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Table 9. Friedman test of mean values on unimodal functions.

Average Rank Algorithm Ranking
20D 30D 50D

Algorithm Ranking Algorithm Ranking Algorithm Ranking

1 LFIACL-PSO 1.53 LFIACL-PSO 1.92 LFIACL-PSO 1.33 LFIACL-PSO 1.33
2 XPSO 2.31 XPSO 2.42 XPSO 2.17 XPSO 2.33
3 PSO 3.50 PSO 2.83 PSO 4.00 PSO 3.67
4 CLPSO-LOT 4.72 CLPSO-LOT 5.67 CLPSO-LOT 4.33 CLPSO-LOT 4.17
5 DMSPSO 5.00 DMSPSO 4.58 DMSPSO 5.33 DMSPSO 5.08
6 KPSO 5.34 KPSO 4.67 KPSO 5.67 CLPSO 5.67
7 CLPSO 6.42 CLPSO 7.00 CLPSO 6.00 KPSO 6.25
8 TSLPSO 7.20 TSLPSO 6.92 TSLPSO 7.17 TSLPSO 7.50

Table 10. Friedman test of mean values on multimodal functions.

Average Rank Algorithm Ranking
20D 30D 50D

Algorithm Ranking Algorithm Ranking Algorithm Ranking

1 LFIACL-PSO 2.23 LFIACL-PSO 2.15 LFIACL-PSO 2.40 LFIACL-PSO 2.15
2 CLPSO-LOT 3.87 CLPSO-LOT 4.15 CLPSO-LOT 3.50 CLPSO-LOT 3.95
3 XPSO 4.05 XPSO 4.24 XPSO 4.35 XPSO 3.55
5 CLPSO 4.45 CLPSO 4.90 CLPSO 4.30 CLPSO 4.15
4 PSO 4.33 PSO 4.45 PSO 4.25 PSO 4.30
6 DMSPSO 5.03 DMSPSO 5.10 DMSPSO 4.95 DMSPSO 5.05
7 KPSO 5.30 KPSO 4.80 KPSO 5.55 KPSO 5.55
8 TSLPSO 6.97 TSLPSO 6.90 TSLPSO 6.70 TSLPSO 7.30

domain CD. In that case, the hypothesis that the two algorithms perform equally is rejected with the
corresponding confidence level.

Table 11. Friedman test of mean values on different dimensions.
PSO KPSO DMSPSO CLPSO TSLPSO CLPSO-LOT XPSO LFIACL-PSO

20D 3.64 4.74 4.84 5.95 6.91 4.91 3.33 2.04
30D 4.13 5.61 5.14 5.15 6.94 3.92 3.26 1.87
50D 3.99 5.90 5.07 4.91 7.40 4.06 2.94 1.74

Ave rank 3.92 5.42 5.02 5.34 7.08 4.30 3.18 1.77
Final rank 3 7 5 6 8 4 2 1

CD = qα

√
K(K + 1)

6N
, (4.3)

where α = 0.05, qα = 3.031, K = 8 denotes the number of algorithms, N = 16, indicating the data set.
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246810

CD=2.624923

LFIACL-PSO
XPSO
PSO
CLPSO-LOT

TSLPSO
KPSO

CLPSO
DMSPSO

Figure 3. Critical difference with Friedman rankings.

As can be seen from Figure 3, the LFIACL-PSO significantly outperforms the TSLPSO, CLPSO,
CLPSO-LOT, KPSO, and DMSPSO in terms of performance. The result suggests that LFIACL-PSO
does not significantly differ with XPSO, PSO, and CLPSO-LOT, though it offers the best performance
in terms of the Friedman ranking values.

4.5. Comparison of CPU time

Tables 6–8 records the CPU time consumed by each algorithm on 16 test functions ( f1 − f16) in
different dimensions. Table 12 shows the comprehensive ranking results of CPU time. The results
show that the LFIACL-PSO consumes more CPU time compared to the other compared algorithms,
with an average sequential value of 6.40, ranking 6th. Ranking 7th and 8th are the TSLPSO and
CLPSO, whose average ordinal values are 6.46 and 6.70, respectively. There are two main reasons
why the LFIACL-PSO algorithm is more time-consuming. Firstly, the learning paradigm of the particle
changes from one to four. Secondly, adopt a comprehensive learning strategy as the self-learning part
of particles to update the learning paradigm of particles and increase the time of particle search.

Table 12. Friedman test of CPU time on different dimensions.
PSO KPSO DMSPSO CLPSO TSLPSO CLPSO-LOT XPSO LFIACL-PSO

20D 2.22 2.91 1.00 5.88 6.44 6.19 3.94 7.44
30D 1.06 2.19 3.75 7.56 6.44 5.38 3.13 6.50
50D 1.00 2.06 3.81 7.56 6.50 6.38 3.44 5.25

Ave rank 1.43 2.39 2.85 6.70 6.46 5.98 3.50 6.40
Final rank 1 2 3 8 7 5 4 6

Figure 4 shows the combined performance graph of LFIACL-PSO and other comparison algorithms.
It is a combined ranking graph based on the accuracy of the benchmark function and CPU time. It can
be seen from Figure 4 that the closer the circle is to the lower-left corner in the figure, the better the
performance of the algorithm. From Figure 4, we can see that LFIACL-PSO and XPSO have the better
solution accuracy among all algorithms, showing similar performance. While LFIACL-PSO is more
accurate than XPSO, it requires more CPU time. This result indicates that LFIACL-PSO has higher
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solution accuracy and performs well in terms of algorithmic complexity. The PSO and KPSO consume
less CPU time but have lower solution accuracy.

Figure 4. Comprehensive performance of all algorithms.

4.6. Comparison of convergence speed

To test the convergence of the LFIACL-PSO algorithm and the seven comparison algorithms, we
selected eight benchmark functions to do experiments. These 8 benchmark functions include 3
unimodal functions ( f1 − f3) and 5 multimodal functions ( f12 − f16). Population size: PS = 40, search
space: N = 30 dimensions, maximum number of iterations: Iter−Max = 500, and 30 independent
runs of each function. Figure 5 shows the experimental results and zooms in on the dense area in the
figure. From Figure 5, as the number of iterations increases, the LFIACL-PSO algorithm achieves the
best convergence performance overall on the randomly selected benchmark functions f1 − f3,
f13 − f16. On the multimodal function f12, it is slightly lower than the KPSO algorithm. In general, the
LFIACL-PSO algorithm proposed in this paper shows good convergence speed and convergence
accuracy on both unimodal functions and multimodal functions.

4.7. LFIACL-PSO performance for a real-world problem

In this part, we will use a widely used real-world optimization problem to verify the LFIACL-PSO
performance. Dukic et al. [47] proposed a design method of multiphase code for spread spectrum
pulse radar(SSPR) based on the characteristics of the non-periodic autocorrelation function, which is
used in the design of multiphase pulse compression code. It can be modeled as a minimum-maximum
nonlinear optimization problem, defined as follows [48]:

Globalx∈Xmin f (x) = max{ϕ1(x), ..., ϕ2m(x)}, (4.4)

Mathematical Biosciences and Engineering Volume 19, Issue 5, 5241–5268.



5263

(a) f1 (b) f2 (c) f3

(d) f12 (e) f13 (f) f14

(g) f15 (h) f16

Figure 5. The convergence curves under 30 dimensions for 3 unimodal functions and 5
multimodal functions.

X = {(x1, ..., xn)x ∈ Rn|0 ≤ x j ≤ 2π, j = 1, ..., n}, (4.5)

where m = 2n − 1, and

ϕ2i−1(x) =
n∑

j=i

cos
( j∑

k=|2i− j−1|+1

xk

)
, i = 1, ..., n, (4.6)

ϕ2i(x) = 0.5 +
n∑

j=i+1

cos
( j∑

k=|2i− j|+1

xk

)
, i = 1, ..., n − 1, (4.7)

ϕm+1(x) = −ϕi(x), i = 1, ...,m. (4.8)

Table 13 shows in detail the performance of all the algorithms on the spread spectrum radar
polyphase code design problem. It can be seen from Table 14 that LFIACL-PSO is superior to the
other seven algorithms. In summary, the LFIACL-PSO algorithm has outstanding performance
advantages in benchmark functions and a solid ability to solve practical engineering problems, which
has considerable potential application value.
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Table 13. Comparison on the spread spectrum radar poly phase code design problem.

PSO KPSO DMSPSO CLPSO TSLPSO CLPSO-LOT XPSO LFIACL-PSO

20D Mean 1.69E+00 2.00E+00 3.73E+00 4.34E+00 4.21E-02 1.92E+00 2.02E-02 1.01E-02
Std 1.37E+00 1.61E+00 1.47E+00 1.23E+00 8.07E-02 8.58E-01 1.84E-02 8.04E-03
Min 4.12E-03 5.46E-04 6.58E-01 1.12E+00 4.44E-16 9.71E-04 9.77E-05 8.20E-04

30D Mean 3.37+00 4.58E+00 7.29E+00 7.81E+00 2.00E-01 4.56E+00 1.11E-01 9.35E-02
Std 2.12E+00 1.80E+00 1.59E+00 1.53E+00 4.98E-01 9.10E-01 1.66E-01 8.16E-02
Min 3.78E-02 1.78E-01 4.13E+00 4.41E+00 1.89E-15 2.54E+00 1.88E-03 2.06E-03

50D Mean 9.78E+00 9.30E+00 1.47E+01 1.38E+01 3.12E+00 1.01E+01 6.53E-01 9.65E-01
Std 3.72E+00 3.82E+00 2.54E+00 2.70E+00 2.88E+00 1.68E+00 8.49E-01 7.89E-01
Min 1.09E-01 7.93E-02 1.05E+01 5.58E+00 6.11E-16 7.10E+00 2.73E-02 2.12E-02

Table 14. Ranks achieved by the Friedman test of mean values.

PSO KPSO DMSPSO CLPSO TSLPSO CLPSO-LOT XPSO LFIACL-PSO

20D 4 6 7 8 3 5 2 1
30D 4 6 7 8 3 5 2 1
50D 5 4 8 7 3 6 1 2

Ave rank 4.33 5.33 7.33 7.67 3.00 5.33 1.67 1.33
Final Rank 4 5 6 7 3 5 2 1

5. Conclusions

Aiming at the disadvantage that particle swarm optimization easily falls into local optimum, we
propose the LFIACL-PSO algorithm. The implementation of LFIACL-PSO is described in detail in
the paper, and sensitivity analysis of the newly introduced parameters is performed through extensive
experiments. In addition, the comparison of LFIACL-PSO with seven other variants of PSO
algorithms on 16 benchmark functions and a real problem validates the benefits of LFIACL-PSO. The
comparison results show that LFIACL-PSO has the following advantages. Firstly, the use of
comprehensive learning strategies and Ring-type topology as part of the learning paradigm makes the
particles more informative when updating iterations, thus maintaining the diversity of particles.
Secondly, when the particle falls into the local optimum and cannot jump out, let the particle learn
from its own worst position and use the Levy flight to obtain the learning step size to enhance the
global exploration ability of the population. Finally, use the historical information of elite particles in
the population to update the acceleration coefficients to meet the different requirements of different
evolutionary stages.

Although LFIACL-PSO has good performance, there are still some problems in the LFIACL-PSO
algorithm. For example, the LFIACL-PSO algorithm has high solution accuracy but consumes more
CPU time, which needs further research in our future work. What’s more, except the methods used in
the paper, some of the most representative computational intelligence algorithms can be used to solve
the problems, like monarch butterfly optimization (MBO), earthworm optimization algorithm (EWA),
elephant herding optimization (EHO), moth search (MS) algorithm, Slime mould algorithm (SMA),
and Harris hawks optimization (HHO) and so on.
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