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Abstract: Personalized heart models are widely used to study the mechanisms of cardiac arrhythmias 

and have been used to guide clinical ablation of different types of arrhythmias in recent years. MRI 

images are now mostly used for model building. In cardiac modeling studies, the degree of 

segmentation of the heart image determines the success of subsequent 3D reconstructions. Therefore, a 

fully automated segmentation is needed. In this paper, we combine U-Net and Transformer as an 

alternative approach to perform powerful and fully automated segmentation of medical images. On the 

one hand, we use convolutional neural networks for feature extraction and spatial encoding of inputs to 

fully exploit the advantages of convolution in detail grasping; on the other hand, we use Transformer to 

add remote dependencies to high-level features and model features at different scales to fully exploit 

the advantages of Transformer. The results show that, the average dice coefficients for ACDC and 

Synapse datasets are 91.72 and 85.46%, respectively, and compared with Swin-Unet, the segmentation 

accuracy are improved by 1.72% for ACDC dataset and 6.33% for Synapse dataset. 
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1. Introduction  

Cardiac personalized modelling has been used for the non-invasive diagnosis and treatment of 

heart rhythm disorders, including risk classification of patients with heart attacks [1–3], prediction of 

the location of re-entry [4], and guidance for clinical ablation [5]. The key to the clinical application 

of heart models is the accurate creation of the personalized model, which is currently mostly 

segmented by experienced experts. Manual segmentation is subjective, irreproducible and time 

consuming, while model simulation takes a great deal of time and is time-critical in clinical practice, 

so how to minimize heart modeling time makes an automated segmentation method extremely 

important for the clinical application of personalized heart modelling. 

Before the rise of deep learning, classical medical image segmentation algorithms such as 

region-based, grayscale-based, and edge-based algorithms were well established for medical 

images [6–9], while traditional machine learning techniques such as model-based methods (e.g., 

active contour and deformable models) and atlas-based methods (e.g., single-atlas and multi-atlas) 

have achieved good performance [10–13]. Nevertheless, both classical image segmentation 

algorithms and machine learning techniques usually require some prior knowledge or feature 

annotation processing to achieve better results. In contrast, deep learning-based algorithms do not 

rely on these operations; it automatically discovers and learns complex features from the data for 

target segmentation and detection. These features are often learned directly from the data through 

generic learning procedures and end-to-end methods. This allows deep learning-based algorithms to 

be easily applied to other domains. Deep learning-based segmentation algorithms are gradually 

surpassing previously advanced traditional methods and are gaining popularity in research, not only 

because of developments and advances in computer hardware such as graphics processing units 

(GPU) and tensor processing units (TPU), but also because of the increase in publicly available 

datasets and open source code. This trend can be observed in Figure 1, where the number of deep 

learning-based cardiac image segmentation papers has grown considerably in the last few years, 

especially after year 2018. We searched the web of science database for the keywords cardiac image 

segmentation and deep learning, and all types of articles were counted. 

 

Figure 1. Overview of the number of papers published between 01 January 2016 and 01 

December 2021 on deep learning-based methods for cardiac image segmentation. 
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Accurate localization and segmentation of medical images is a necessary prerequisite for 

diagnosis and treatment planning of cardiac diseases [14]. With the development of deep learning 

technology, various deep learning algorithms have been introduced into medical image processing 

and analysis with good results [15,16]. Convolutional neural networks (CNN) are one of the most 

common neural networks in medical image analysis, which are computationally fast and simple, and 

requiring no major adjustments to the network architecture [17]. CNN have been used with great 

success for medical image classification and segmentation, but a major drawback of this patch-based 

approach is that a separate network must be deployed for each patch at the time of inference, due to 

multiple overlapping in the image patches, which results in a large amount of redundancy and wasted 

resources. To solve this problem, fully convolutional networks [18] were created, which were 

designed to have an encoding-decoding structure that allows them to receive inputs of arbitrary size 

and produce outputs with the same size. However, this encoder-decoder structure also poses some 

limitations, such as the loss of some features, so there are many variants based on FCNs, but the 

most famous one is U-Net [19], which uses hopping connections to recover feature information in 

the down-sample paths to reduce the loss of spatial context information and thus obtain more 

accurate results. Subsequently U-Net gradually dominated in medical image processing, but it and its 

variants [20–22] also faced the lack of ability to build remotely correlated models. This is mainly due 

to the inherent limitations of the convolution operation [23]. 

On the other hand, the success of Transformer, which captures remote dependencies, has made 

possible the solution of the above problem in recent years. Transformer was designed for sequence 

modeling and transformation tasks, and it is known for its focus on modeling remote dependencies in 

data. Its great success in the language domain has motivated researchers to investigate its 

adaptability to computer vision, especially since it has achieved good results on some recent image 

classification and segmentation tasks [24–26]. ViT [25] first introduced transformer to computer 

vision tasks by segmenting an image into 16 non-overlapping patches, feeding them into standard 

transformer with positional embedding and comparing it with the CNN-based approach, ViT 

achieved a fairly good performance, which broke the monopoly of U-Net in computer vision. With 

the advent of VIT, more and more transformer-based image processing became popular, such as 

Swin-transformer [24] proposed a hierarchical transformer and a sliding window attention-based 

transformer, while the pyramidal visual transformer (PVT) [26] proposed a gradual shrinkage 

strategy to control the scale of feature maps and proposed a spatially reduced attention (SRA) layer 

to replace the traditional multiple head attention (MHA) layer in encoders, which were designed 

mainly to reduce the computational complexity. But these transformer-based networks have a 

limitation of unable extracting low-level features like convolutional operations [27], so some detailed 

features will be ignored. 

To solve the above problem, we propose TF-Unet, a medical image segmentation framework 

that combines Transformer and U-Net. To fully utilize the advantages of both, we use two 

convolutional layers to learn high-resolution features and spatial location information in the learning 

feature phase, and use Transformer blocks to establish remote dependencies in the decoding phase. In 

terms of structure, inspired by the U-Net network structure, we divide the network into 

encoder-decoder blocks, and the self-attentive features of the coding blocks are combined with 

different high-resolution decoding features through hopping connections to reduce information loss. 

The results show that such a design allows our framework to maintain the advantages of both 

Convolution and Transformer, while facilitating the segmentation of medical images. Experimental 
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results show that our proposed hybrid network has better performance and robustness compared to 

previous methods based on pure convolution and pure transformer.  

2. Materials and methods 

2.1. Data description 

The ACDC dataset: (1) Raw Nifti images of 100 patients were used as the training set, and 

clinical experts used the corresponding manual reference analysis of ED and ES time phases as 

segmentation criteria, where trabecular and papillary muscles were included in the ventricular blood 

pool; (2) raw Nifti images of another 50 patients were used as the test set, providing only basic 

patient information: height and weight, and ED and ES time phases. ACDC data were acquired 

using 1.5 T and 3.0 T MRI scanners with retrospective or prospective balanced steady-state 

free-feed sequences. The scan parameters were as follows: layer thickness of 5–8 mm, layer spacing 

of 5 mm, layer thickness and layer spacing combined were typically 5–10 mm, matrix size was 256 × 

256, FOV was 300 × 330 mm2, and one complete cardiac cycle consisted of 28–40 time phases. 

The Synapse dataset: (1) Raw Nifti images of 30 patients were used as training set; (2) Raw Nifti 

images of another 20 patients were used as test set, these 50 scans were taken at the portal 

venography stage with different volumes (512 × 512 × 85–512 × 512 × 198) and fields of view 

(approximately 280 × 280 × 280–500 × 500 × 650 mm3). The planar resolution varied from 0.54 × 0.54 

to 0.98 × 0.98 mm2, while the slice thickness ranged from 2.5 to 5.0 mm. 

2.2. Methodology overview 

The general architecture of TF-Unet is shown in Figure 2, which maintains a U-shape similar to 

that of U-net [11] and consists of two main branches, i.e., encoder and decoder. Specifically, the 

encoder includes the feature extraction block, the transformer block, and the down-sampling block. 

The decoder branch includes the transformer block, the up-sampling block and the deconvolution 

block that finally maps the output. And, to recover the image details in the prediction, we add 

residual connections [28] between the corresponding feature pyramids of the encoder and decoder in 

a symmetric manner.  

2.2.1 Feature extraction block 

The feature extraction block is mainly responsible for converting each input image I into a 

high-dimensional tensor 𝐼 ∈ 𝑅
𝐻

4
×

𝑊

4
×𝐶，where H, W, C record the height, width, and sequence length 

of each input patch, respectively. Unlike Jieneng Chen et al. [24], who first flattened the input image 

directly and then preprocessed it in one dimension, we use a feature extraction layer which extracts 

low-level but high-resolution 3D features directly from the image and has more accurate spatial 

information at the pixel level. 

We use two consecutive convolutional layers with a kernel size of 3 and step sizes of 2 and 1 

and use LeakyReLU nonlinear activation functions and LayerNorm for each layer, which not only 

allows us to encode spatial information more accurately than the faceted position encoding used in 

the transformer, but also helps to reduce computational complexity while providing equally sized 

perceptual fields. 
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Figure 2. The overall architecture of TF-Unet, which is composed of encoder, decoder 

and skip connections. H, W, C represent the height, width and sequence length of each 

input patch, respectively. 
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Figure 3. Two consecutive transformer blocks, the left is a fixed window, the right is a 

sliding window. Each transformer block is composed of LayerNorm layer, multi-head 

self-attention module and 2-layer MLP with LeakyReLU non-linearity. 

2.2.2 Transformer block 

After the feature extraction block, we pass the high-dimensional tensor I to the Transformer 

block in two consecutive layers. The ability of the transformer to establish remote dependencies is 

fully exploited to establish the connection between the high-resolution features extracted in the upper 

layer and the multi-scale features obtained by convolutional downsampling in the next layer. Unlike 

the traditional multi-headed self-attentive module, this paper uses the Swin-Transformer module [24], 

who is constructed based on a sliding window. Since the window-based self-attentive module lacks 

cross-window connections, this limits its modeling capabilities. In order to introduce cross-window 

connectivity while maintaining efficient computation of non-overlapping windows, Ze Liu et al. [24] 

proposed a sliding window partitioning approach. In Figure 3, two consecutive transformer modules 

are given. Each Swin-Transformer block consists of a LayerNorm (LN) layer, a multi-headed 

self-attentive module, a skip connection, and an MLP (Multilayer Perceptron) with a LeakyReLU 

nonlinearity. The window-based multi-headed self-attention (W-MSA) module and the sliding 

window-based multi-headed self-attention (SW-MSA) module are applied in the two consecutive 

Transformer blocks, respectively. Based on this window division mechanism, the consecutive sliding 

Transformer blocks can be represented as Eqs (1)–(4). 

𝑦′𝑙 = 𝑊 − 𝑀𝑆𝐴 (𝐿𝑁(𝑦𝑙−1)) + 𝑦𝑙−1                                     (1) 

𝑦𝑙 = 𝑀𝐿𝑃 (𝐿𝑁(𝑦′𝑙)) + 𝑦′𝑙                                          (2) 

𝑦′𝑙+1 = 𝑆𝑊 − 𝑀𝑆𝐴 (𝐿𝑁(𝑦𝑙)) + 𝑦𝑙                                     (3) 

𝑦𝑙+1 = 𝑀𝐿𝑃 (𝐿𝑁(𝑦′𝑙+1)) + 𝑦′𝑙+1                                      (4) 



5213 

Mathematical Biosciences and Engineering  Volume 19, Issue 5, 5207–5222. 

where l is the index of the layer. W-MSA and SW-MSA denote the volume-based multi-headed 

self-attentive and its transfer version. where 𝑦′𝑙  and 𝑦𝑙 denotes the output of the W-MSA module 

and the MLP module of layer l, respectively. The computational complexity of SW-MSA on a 

volume of H × W × D patches is 4HWDC2 + 2SHSWSDHWDC, however, the computational 

complexity of naïve multi-headed self-attention (MSA) is 4HWDC2 + 2(HWD)2C. SH, SW, SD 

represent the height, width and depth of the sliding window respectively. SW-MSA greatly reduces 

the computational complexity of MSA, so our proposed algorithm is more efficient. The sliding 

window segmentation approach introduces connections between adjacent non-overlapping windows 

in the previous layer and has been found to be effective in image classification, object detection and 

semantic segmentation [23]. 

In calculating the self-attention, we refer to Han Hu et al. [29,30] and add the relative position 

bias, and the specific formula for calculating the self-attention is as follows: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
+ 𝐵) 𝑉                                 (5) 

where Q, K, V represent the query matrix, key matrix and value matrix, respectively. d is generally 

taken as the dimension of Q or K. 𝐵 ∈ 𝑅(2𝐻−1)×(2𝑊−1) is the relative position encoding. 

2.2.3 Convolutional down-sampling 

Instead of completing the cascaded feature operations by using linear layers as in Swin-Unet [23], 

we directly use the convolution operation with stride size of 2. The reason for this is that the layered 

features generated by convolutional down-sampling help to model the target object at multiple scales. 

After such processing, the feature resolution is down-sampled by a factor of 2 and the feature 

dimension is increased to twice the original dimension. 

2.2.4 Convolutional up-sampling 

Corresponding to the Convolutional down-sampling, we also make changes in the up-sampling 

layer. We use stepwise deconvolution to up-sample the low-resolution feature map into a 

high-resolution feature map, i.e., by reconstructing the adjacent dimensional feature map into a 

higher-resolution feature map (2x up-sampling) and correspondingly reducing the feature dimension to 

half of the original dimension, and then by skip connecting, the features extracted from the encoder's 

down-sampling are combined with the decoder up-sampled features are merged. A deconvolution 

operation is also performed in the last patch extension block to produce the final result. 

2.2.5 Skip connection 

Similar to U-Net [19], skip connections are used to fuse multiscale features from the encoder 

with up-sample features from the decoder. We splice shallow and deep features together to reduce the 

loss of spatial information due to down-sample. 

3. Results 

To fairly compare the experimental results, we test three times on the ACDC dataset to take the 

average, and to verify the robustness of our algorithm, we do the same test on the Synapse dataset. 
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3.1. Experimental details 

We ran all experiments based on Python 3.6, pytorch 1.8.1 and Ubutun 20.04. All training 

programs were executed on an NVIDIA 2080 GPU with 11 GB of RAM. The initial learning rate 

was set to 0.01, and we used the “poly” decay strategy [31] by default. As described in Eq (6): 

𝑙𝑟 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑙𝑟 × (1 −
𝑡𝑒𝑚_𝑒𝑝𝑜𝑐ℎ

𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ
)𝛾                                      (6) 

where 𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ represents the total number of training generations, default 1000, 𝑡𝑒𝑚_𝑒𝑝𝑜𝑐ℎ 

represents the current training generations, γ is the hyperparameter, default take 0.9. 

The default optimizer is stochastic gradient descent (SGD) and we set the momentum to 0.99. 

The weight decay is set to 3e-5. We use the weighted sum of the cross-entropy loss and the dice loss 

as the loss function. The training epochs is 1000 and each epoch contains 250 iterations. 

3.2. Data pre-processing and data enhancement  

All images in the same dataset are firstly resampled to the same target spacing and then cropped 

to the same size. Since there are not enough training samples, some data enhancement operations, 

such as rotation, scaling, Gaussian blur, Gaussian noise, brightness and contrast adjustment, are 

performed during the training process 

3.3. Experimental result at ACDC 

 

Figure 4. The patient’s consecutive nine-layer cardiac MRI results, the first and third 

columns are the original images, sequentially from the base to the apex of the heart, and the 

second and fourth columns correspond to the segmentation results on the left, respectively. 
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In conducting experiments on the ACDC dataset, we designed two experimental scenarios; one 

is to make full use of the dataset, we use all 100 training data as the training set and 50 test data as 

the test set. The other is to quantitatively evaluate our results, we divide the 100 labeled training data 

into 70 training sets, 10 validation sets and 20 test sets. The real labels of the 20 cases used for 

testing were not put into the training. 

Figures 4 and 5 show the results of the first and second scenario, respectively. We randomly 

selected several patients’ results for visualization [32]. 

The results of the second scenario are as follows, Table 1 shows the quantitative calculations 

and comparisons of RV, MYO and LV using the dice coefficients, and Figure 5 shows the raw plots 

of several randomly selected patient data, ground truth and predicted results. Due to the random 

nature of data partitioning, the results of the other methods in Table I are taken from the results in the 

corresponding papers. 

 

Figure 5. Cardiac MRI results in a patient with ground truth, the first columns are the 

original images, sequentially from the base to the apex of the heart, the second columns 

are the ground truth, and the third column are the segmentation results. 
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Table 1. Comparison on the ACDC MRI dataset (average dice score in %, dice score in % 

for each class). 

Methods DSC(avg) RV MYO LV 

R50-Unet [27] 87.55 87.10 80.36 94.92 

R50-Attn Unet [33] 86.75 87.58 79.20 93.47 

VIT [25] 81.45 81.46 70.71 92.18 

R50-VIT [25] 87.57 86.07 81.88 94.75 

TransUNet [27] 89.71 88.86 84.54 95.73 

Swin-Unet [23] 90.00 88.55 85.62 95.83 

Ours 91.72 90.16 89.40 95.60 

3.4. Experimental result at Synapse 

For Synapse data, we only use the second scenario in ACDC, we chose a part of labeled training 

set for testing, with training sample: validation sample: test sample = 14:7:9. We used the mean dice 

similarity coefficient (DSC) for eight abdominal organs, namely the aorta, gall bladder, spleen, left 

kidney, right kidney, liver, pancreas and stomach, to evaluate the model performance. Figure 6 shows 

the results of the different layers of patients from the Synapse dataset, with different colors 

representing different organs, as shown in the legend in Figure 6.  

 

Figure 6. Results for one patient from the Synapse dataset, the first column is the 

original image, the second column is the ground truth, and the third column is the 

segmentation result. Due to the excessive number of scanned layers, we choose the 

intermediate layers to display, starting from layer 85 and displaying every ten layers at 

intervals until layer 125. 
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Table 2. Comparison on the Synapse multi-organ CT dataset (average dice score in %, 

dice score in % for each class). 

Methods DSC(avg) Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach 

R50-Unet [27] 74.68 87.74 63.66 80.60 78.19 93.74 56.90 85.87 74.16 

DualNorm-UNet [34] 80.37 86.52 55.51 88.64 86.29 95.64 55.91 94.62 79.80 

VIT [25] 67.86 70.19 45.10 74.70 67.40 91.32 42.00 81.75 70.44 

R50-VIT [25] 71.29 73.73 55.13 75.80 72.20 91.51 45.99 81.99 73.95 

SQNet [35] 73.76 83.55 61.17 76.87 69.40 91.53 56.55 85.82 65.24 

TransUNet [27] 77.48 87.23 63.16 81.87 77.02 94.08 55.86 85.08 75.62 

Swin-Unet [23] 79.13 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60 

Ours 85.46 87.45 63.10 92.44 93.05 96.21 79.06 88.80 83.57 

3.5. Ablation study 

In this section, we introduce the importance of learning rate strategies. In order to verify the 

effect of different learning rate strategies on the results, we did controlled experiments with four 

functions, inv, multistep, poly, step, and the results of the four methods are shown in Figure 7. 

 

Figure 7. Results of four different learning rate strategies. 

4. Discussion 

In this section, we discuss in detail the experimental results obtained by our algorithm and 

explore the impact of different factors on the model performance, which we have compared on the 

ACDC and Synapse datasets, respectively. Specifically, we discuss the effects of different learning 



5218 

Mathematical Biosciences and Engineering  Volume 19, Issue 5, 5207–5222. 

rate strategies on network performance. 

Analysis from a quantitative perspective. From Table 1, the best transformer-based model is 

Swin-Unet, which has an average dice coefficient of 90%. The best convolution-based model is 

R50-U-Net whose average dice coefficient is 87.55%, while our proposed TF-Unet is 1.72% higher 

than that of Swin-Unet and 4.17% higher than that of R50-U-Net. Considering that the current 

accuracy of these networks themselves is already very high, our proposed network improvement is 

still very effective, suggesting that our method can achieve better edge prediction. Analysis from a 

qualitative perspective. As can be seen in Figure 5, the middle represents the patient's true value and 

the rightmost represents our predicted value. By comparing layer by layer, the results obtained by our 

method are very close to the true value, and very good results are achieved even for the right 

ventricle, which is difficult to segment. In this work, we demonstrate that by combining Transformer 

with convolutional operations, better global and remote semantic information interactions can be 

learned, resulting in better segmentation results. 

 

Figure 8. (a) The blue solid line represents training loss curves, (b) The red solid line 

represents validation loss curves, (c) The green dotted line represents dice score curves 

during validation. 

It is well known that most of the deep learning networks cannot predict the results well for the 

test set without labeled values, but the network model based on TF-Unet can get good results. 

Observing Figure 4, we can conclude that the results obtained with our method are generally quite 

accurate for the layers other than the root tip layer. However, in the lower right corner of Figure 4, 

i.e., the apical layer, our method does not segment it. On the one hand, the apical layer has less 

segmentation in the training set, which makes it difficult for the network to learn features in this 

region; on the other hand, the true areas of both RV and LV in the apical layer are small and easily 

confused with surrounding vessels or tissues, leading to difficulties in segmentation. 

Figure 8 summarizes the learning process of our proposed network, it was observed that the 

training loss and validation loss decrease with the increase of iterations and reach a stable state at 

about 200 generations without overfitting. And the dice coefficient of the validation set increases 
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with the number of iterations and reaches a steady state at 800 generations. 

Quantitatively, as shown in Table 2, we performed experiments on Synapse and compared our 

TF-Unet with various transformer-based and Unet-based baselines. The main evaluation metric is the 

dice factor. the best performing transformer -based approach is Swin-Unet, which achieves an 

average score of 79.13. In contrast, DualNorm-UNet reports the best CNN-based results with an 

average of 80.37, slightly higher than Swin-Unet. our TF-Unet is able to outperform both Swin-Unet 

and DualNorm-UNet average performance by 6.33% and 5.09%, respectively, which is a 

considerable improvement on Synapse. Qualitatively, as can be seen in Figure 6, the middle column 

indicates the true value, and the rightmost column indicates the prediction result. For the 

segmentation of multiple organs, our proposed TF-Unet network still performs well, but there are 

some shortcomings for the stomach, as shown by the red boxes in the four lower right panels in 

Figure 6, one is that the prediction result is not smooth enough and there are many bursts, and the 

other is that it is difficult to segment to complex boundaries 

Observing Figure 7 we can easily see that the results of all the functions are close except for the 

inv function. Through Figure 9 we speculate that this is because the learning rate of the inv function 

decreases too fast at the beginning of the iteration, and although it can speed up the search for the 

optimal solution, it is also easy to ignore the optimal solution and fall into the local optimal solution, 

leading to relatively poor results. The other three learning rates are all gradually decreasing, and 

although there is a big difference in the intermediate stages, the results do not differ much. These 

experiments show that the learning rate strategy has some influence on the experimental results, but 

it is generally enough to find the learning rate with the appropriate decreasing speed, and the 

different learning rate functions do not differ greatly. 

 

Figure 9. Four different learning rate functions. 

5. Conclusions 

In this paper, we propose a new medical image segmentation network TF-Unet. TF-Unet is built 

on the intertwined backbone of convolution and self-attention, which makes good use of the 

underlying features of CNN to build hierarchical object concepts at multiple scales through U-shaped 
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hybrid architectural design. In addition play Transformer's powerful self-attention mechanism that 

entangles long-term dependencies with convolutionally extracted features to capture the global 

context. Based on this hybrid structure, TF-Unet has made a great progress in previous 

Transformer-based segmentation methods. In the future, we hope that TF-Unet can replace manual 

segmentation operations for cardiac modeling, effectively improve the efficiency of personalized 

modeling, and accelerate the development of personalized cardiac models in clinical applications. 
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