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Abstract: With the recent development of non-contact physiological signal detection methods based 
on videos, it is possible to obtain the physiological parameters through the ordinary video only, such 
as heart rate and its variability of an individual. Therefore, personal physiological information may 
be leaked unknowingly with the spread of videos, which may cause privacy or security problems. In 
this paper a new method is proposed, which can shield physiological information in the video 
without reducing the video quality significantly. Firstly, the principle of the most widely used 
physiological signal detection algorithm: remote photoplethysmography (rPPG) was analyzed. Then 
the region of interest (ROI) of face contain physiological information with high signal to noise ratio 
was selected. Two physiological information forgery operation: single-channel periodic noise 
addition with blur filtering and brightness fine-tuning are conducted on the ROIs. Finally, the 
processed ROI images are merged into video frames to obtain the processed video. Experiments 
were performed on the VIPL-HR video dataset. The interference efficiencies of the proposed method 
on two mainly used rPPG methods: Independent Component Analysis (ICA) and Chrominance-based 
Method (CHROM) are 82.9 % and 84.6 % respectively, which demonstrated the effectiveness of the 
proposed method. 

Keywords: face video; non-contact physiological signal detection; physiological information 
shielding; forgery 
 

1. Introduction 

Face video contains abundant basic personal information, such as identity information, 
emotional information and physiological information, as shown in Figure 1. With the spread of video, 
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the personal privacy information is easy to leak. 
In order to protect identity information, a large number of face forgery methods have been 

proposed. There are two main fields in forging face videos, namely, forgery based on graphics and 
forgery based on learning. In the first field, forgery based on graphics, Garrido utilized 3D method to 
replace the actor's face in the target video [1], while retaining the original expression. In the second 
field, Shan developed Fawkes [2], which can change the feature space representation of an image by 
perturbation, so as to protect our personal identity and other information effectively. Nirkin proposed 
an independent face replacement and reconstruction method based on GAN technology [3]. Antipov 
used conditional-GAN technology to change people's ages [4]. Huang generated different facial 
views by means of GAN while global structure and local details were preserved [5]. In the aspect of 
face video forgery detection, people often ignore the real physiological characteristics of human 
beings in the forged video, and it cannot be consistent with real people in general. And some 
researchers begin to study the methods based on physiological signal characteristics. Ciftci et al. 
extracted three regions from the face to measure the pulse wave signal [6], and converted the signal 
into consistent and coherent features. Fernandes et al. utilized heart rate biological signals to 
distinguish forged videos [7]. Most of the previous face video forgery methods concentrates on the 
forgery of identity information, emotion, and age. However, according to our knowledge, the forgery 
of physiological parameters is still an untouched research field, leaving the personal physiological 
privacy unprotected. 

 

Figure 1. Personal information contained in face video. 

With the rapid development of remote health monitoring [8,9] and telemedicine technology, the 
advantages of remote photoplethysmography (rPPG) has been proved in the detection of 
physiological parameters from video. In 2010, Poh proposed blind source separation (BSS) to reduce 
the errors caused by motions [10]. It has been improved that the cleaner PPG signals can be obtained 
by adding several time filters before and after ICA [11]. De Haan analyzed the limitations of blind 
source separation to solve motion problems, and proposed a chrominance-based method [12]. 
Although rPPG technology could achieve remote heart rate measurement quickly, the personal 
physiological information may be leaked, analyzed and utilized with the spread of video. At present, 
independent component analysis (ICA) and chrominance-based method (CHROM) are mainly 
utilized to measure physiological parameters at home and abroad. The physiological parameters can 
be obtained accurately by analyzing the common face video through the two methods, such as heart 
rate and heart rate variability. Prakash proposed a bounded Kalman filter for motion estimation and 
feature tracking to reduce the influence of motion artifacts [13], which a mean error of ± 3 bpm was 
attained. Yang proposed a framework based on patch fusion for face motion [14], which can estimate 
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the accurate heart rate from face video. The RMSE of this method is only 2.91 bpm on motion 
videos. Qiu combined spatiotemporal filtering with convolutional neural network to realize 
remote measurement of heart rate in practical situations [15]. 69 % of the HR changes are 
predicted correctly. Niu proposed an end-to-end RhythmNet for remote estimation of HR from 
the face [16], with RMSE below 8.14 bpm. Zheng proposed a symmetrical substitution method in 
the case of partial facial missing [17], with RMSE below 7.64 bpm. Based on the traditional 
methods, combined with skin segmentation and face detection, the measurement error of heart 
rate can be controlled within 10 bpm [17]. Face detection based on deep learning [18] has better 
effect and can provide support for more accurate heart rate detection. In good conditions, the 
measurement error can be even controlled within 0.4 bpm [12]. Therefore, it is a challenging task to 
protect the facial physiological information without largely alternating the video quality.  

This paper provides a method for shielding facial physiological information (SFPI) without 
changing the visual effect significantly, whose key steps is shown in Figure 2. On the basis of 
fully considering the principle and detection process of rPPG, the non-contact physiological signal 
detection is interfered by using single channel periodic blur filtering and single channel periodic 
noise addition combined with brightness fine-tuning method. It can resist wildly used 
physiological signal detection methods efficiently such as ICA and CHROM, and protect personal 
physiological privacy. 

 

Figure 2. The method for shielding facial physiological information. 

2. Methods 

The flow chart of the method proposed in this paper is shown in Figure 3. This algorithm can 
shield the facial physiological information and doesn’t change the video effect. 

2.1. Video frame processing 

Firstly, face detection is performed on the selected video frame by frame. Secondly, the feature 
face key points detection based on the Gradient Boosting Decision Tree [19] is used to realize the 68 
face feature points marking, which can automatically seek the landmark feature positions of eyes, 
nose, mouth and face contour on the basis of the detected face. 
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Figure 3. The flow chart for shielding facial physiological information. 

2.2. ROI determination 

The selection of reliable ROI is the key to extract physiological parameters based on rPPG 
method, and blood volume pulse (BVP) signal of pulse wave related to physiological signal needs to 
be extracted by physiological parameter detection from ROI. Therefore, after video capture, face 
detection and feature point marking, it is necessary to select ROI of each face frame for processing. 
In the process of extracting physiological parameters based on rPPG method, due to the existence of 
non-rigid motion of human face, such as blinking, expression changes and speech, noise is inevitably 
added to the face. Therefore, it is necessary to select the face region which does not contains these 
places as many as possible to reduce the interference of noise on useful signals. It is shown that the 
smaller ROI determined from the left and right cheek and forehead regions has a higher 
signal-to-noise ratio [13]. Therefore, the left cheek, right cheek and forehead were selected as 
regions of interest, and the final position was determined by referring to 68 feature points. Three 
ROIs are selected for subsequent processing. 

2.3. Brightness fine-tuning 

Adjusting the brightness or contrast of local areas of video images before outputting video will 
change the original pixel value of the skin area and have a significant impact on the measurement of 
physiological indexes. Therefore, brightness fine-tuning is applied by the proposed method for 
shielding facial physiological information. 

To select the optimum interframe space (IFS) period, we conducted an experiment to adjust the 
brightness or add noise to the same video with different IFS periods. Figure 4 shows the interference 
rate of physiological parameter detection caused by different IFS. If the difference between the 
measured heart rate and the original video heart rate is greater than 10, it has played an effective 
interference. It is found that the effective rate of interference to physiological parameter detection is 
78.2 % when the video is processed once every 12 frames, the highest interference efficiency is 
obtained. Therefore, in this study 12 is selected as the IFS period for processing, which not only 
obtain the best interference effect, but also greatly improve the efficiency of video processing. 
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Figure 4. Interference rate of different IFS on physiological parameter detection. 

In the process of extracting physiological parameters based on rPPG method, it is necessary to 
separate the RGB channels of the three ROI regions in each frame, and calculate the spatial average 
values of the three channels to ri, gi, bi respectively. Then the whole video sequence is converted into 
three one-dimensional signals. The gray mean value will be changed by slight modification of the 
image brightness, the original signal will be affected and the detection of physiological parameters 
will be interfered. Therefore, the contrast and brightness of the image is changed pixel by pixel firstly, 
the formula is as follows: 

G (x, y) = αf (x, y) + β                           (1) 

where f (x, y) represents the value of channel c of the pixels in x rows and y columns of the source 
image, g (x, y) represents the value of channel c of pixels in x rows and y columns of the target image, 
α is the value of contrast, β is the value of the brightness modification. The brightness of the image 
can be modified by adding β to all channels of each pixel. In this paper, the value of β is 1. When β = 
1, this step has the least impact on the video visual effect. The mathematical expression of periodic 
brightness adjustment for video is as follows: 

Brightness (Frame12n) = Brightness + β                  (2) 

where β = 1 is the value of the brightness modification. n = 0, 1, 2, 3, 4, 5…… Frame12n represents the 
first image selected every 12 frames, Brightness represents the brightness of the source image, 
Brightness (Frame12n) represents the brightness of the first frame selected every 12 frames after 
fine-tuning. Bri (Frame12n) is the first frame of every 12 frames after brightness adjustment. After this 
processing, the brightness of the image frame can be changed periodically. 

Natural Image Quality Evaluator (NIQE) [22] is utilized to evaluate the video quality after 
brightness change. As shown in Figure 5, the blue dot represents the NIQE value of the original 
video, and the red dot represents the NIQE value of the video after brightness fine-tuning. The 
coincidence degree of the two parts is high, therefore the objective quality of the video processed has 
not been changed greatly in this step. 

2.4. Single channel periodic blur filtering 

The blur filtering of image frame can change some image features and their gray mean value, 
which can also affect the original signal. However, if the image is blur filtered directly, it will have a 
serious impact on the visual effect of the image. In this paper, firstly, we segment the image channel. 
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Secondly, the segmented B-channel is blur filtered. Finally, the RGB channels are merged. It has no 
change in the visual effect, and it can effectively interfere with the accuracy of physiological 
parameter detection. 

 

Figure 5 . NIQE mean. The blue dot represents the NIQE value of the original video, and 
the red dot represents the NIQE value of the video after brightness fine-tuning. 

2.5. Single channel periodic noise addition 

If the noise is added to the image directly, every frame after processing will produce obvious 
noise stains. After a lot of experiments, it is found that if the noise is added to the single channel of 
the image, the visual effect of the processed image has no obvious change. Among them, if the R 
channel or G channel is added with noise in a single channel, the video modification traces after 
processing are more obvious, while the video effect of B channel is almost unchanged, and it can 
effectively interfere with the physiological parameter detection system. 

The result of the experiment is illustrated that Gaussian noise with expected value of 0 and 
variance of 0.01 and Poisson noise with expected value of 1 have the most obvious disturbance on 
the method of extracting physiological parameters based on rPPG, and have little influence on the 
video effect. Therefore, Gaussian noise and Poisson noise are added to the selected video frame. 

To sum up, the single channel noise adding method is as follows: 
Firstly, the image is segmented to prepare for single channel processing. Secondly, the 

B-channel of the first frame of every 12 frames is extracted and Gaussian noise and Poisson noise are 
added. Finally, the RGB channels are merged. 

The mathematical expression of single channel periodic noise adding for video is as follows: 

Noise (Frame12n) = Noisegaussian + Noisepoisson                           (3) 

where n = 0, 1, 2, 3, 4, 5…… Noisegaussian represents the added Gaussian noise, Noisepoisson represents 
the added Poisson noise, Noise (Frame12n) represents the first frame of video after adding Gaussian 
noise and Poisson noise every 12 frames. 

NIQE is used to evaluate the video quality after adding noise to a single channel. As shown in 
Figure 6, the blue dot represents the NIQE value of the original video, and the red dot represents the 
NIQE value of the video processed in this step. 22.3 % of the dots have a large gap between the 
original video and the processed video. It is shown that the objective quality of video after adding 
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noise to a single channel will be affected. However, conducting single channel filtering before can 
reduce the loss of video quality caused through this step. 

 

Figure 6 . NIQE mean. The blue dot represents the NIQE value of the original video, and 
the red dot represents the NIQE value of the video processed in this step. 

2.6. ROI images merging 

The processed ROI images are merged into video frames, and finally all the image frames 
are combined into face video. To sum up, the complete mathematical expression of this method 
is as follows: 

SFPI(Frame12n) = Bri (Frame12n) + Blur (Frame12n) + Noise (Frame12n)       (4) 

where n = 0, 1, 2, 3, 4, 5…… Then the expression of the first frame of every 12 frames after 
brightness adjustment is Bri (Frame12n). Blur (Frame12n) represents the image frame after blur 
filtering the first frame every 12 frames. Noise (Frame12n) represents the first frame of video after 
adding Gaussian noise and Poisson noise every 12 frames. SFPI (Frame12n) represents the first frame 
of video processed by the method in this paper every 12 frames. 

3. Experiment results 

3.1. Effect on shielding heart rate information 

In order to verify the efficiency of the proposed method, the still video data set of VIPL-HR [16] 
dataset is used. The effective rates of interference against ICA and CHROM are 82.9 % and 84.6 % 
respectively, the detailed results are shown in Figure 7. Using Cohface [20] data set to verify the 
proposed method, the effective rates of interference against ICA and CHROM are 90.3 % and 89.6 % 
respectively, the specific results are shown in Figure 8. As can be illustrated from Figures 7 and 8, 
the method of fine-tuning brightness used only can cause weak interference effect. The interference 
effect of blur filtering used only or adding noise are not obvious enough. However, integrating 
these different video processing methods will cause effective interference to the detection of 
physiological parameters. 
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Figure 7. The interference efficiency of ICA and CHROM using VIPL-HR dataset. 

 

Figure 8. The interference efficiency of ICA and CHROM using Cohface database. 

To evaluate the interference effect of this method on heart rate detection, we use Root Mean 
Square Error (RMSE). A series of analyses are carried out on the heart rate measured by the 
dataset video before and after processing. The measured heart rate RMSE is shown in Figure 9. 
The RMSE results of ICA and CHROM are 60.92 and 52.73 respectively. From the RMSE results, 
it is shown that the heart rate measured by the face video after processing by this method deviates 
greatly from the results before processing. The interference effect of this method on heart rate 
detection is significant. 

Furthermore, Mean Absolute Error (MAE) is utilized to verify the interference effect of this 
method on the detection of heart rate by ICA and CHROM directly. MAE represents the average of 
the absolute error between the heart rate measured in the original video and the video processed by 
this method. For ICA method, the MAE is 47.7. For CHROM method, the MAE is 41.9. In terms of 
heart rate detection, the general allowable error is ± 12, and the MAE measured by this method far 
more than 12. By calculating MAE, it is illustrated intuitively that the heart rate detection is 
obviously disturbed. 



5161 

Mathematical Biosciences and Engineering  Volume 19, Issue 5, 5153–5168. 

 

Figure 9. The heart rate RMSE measured by the VIPL-HR dataset video before and after 
processing. 

To prove the superiority of the combination of the three processing methods in this paper. The 
MAE of heartrate extraction from the video data set processed by three methods are measured, which 
are SFPI without brightness fine tuning, SFPI without blur filtering and SFPI without noise addition 
respectively. The experimental results are shown in Figure 10. The MAE of video processed by SFPI 
is higher than the above three methods, therefore our method has the most obvious interference effect 
on the detection of physiological parameters. 

 

Figure 10. The heart rate MAE measured from the VIPL-HR database video. 

The MAE of heartrate extraction from the video data set processed by SFPI with different types 
of noise is measured as well. The comparative experimental results are shown in Figure 11. It is 
illustrated that the MAE of the salt noise is higher than the MAE of the Gaussian noise and Poisson 
noise selected in this paper. But the salt noise has a significant impact on visual effect, as shown in 
Figure 12(c), while the noise selected in this paper has little impact on visual effect, as shown in 
Figure 12(b). Therefore, considering both interference effect and visual effect, Gaussian noise and 
Poisson noise are selected. 
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Figure 11. The heart rate MAE measured from the VIPL-HR dataset video processed by 
SFPI with different types of noise. 

 

Figure 12. The visual effect of videos. (a) the visual effect of the original video. (b) the 
visual effect of the video processed by SFPI. (c) the visual effect of the video processed 
by SFPI with salt noise. 

To verify the effect of the proposed method, the expected Bland Altman graph is plotted. As 
shown in Figure 13, the blue horizontal solid line in the middle represents the average value of the 
difference. The higher the consistency of the two groups of data, the closer the average value of the 
difference is to 0. The greater the difference between the two figures and the average value, the lower 
the correlation between the two groups of data. In this experiment, it is proved that the difference 
between the heart rate value estimated from the video processed by this method and the real heart 
rate value is great. The obvious difference between Figure 13(a) and (b), as well as between (c) and 
(d), shows that this method can shield heart rate detection effectively. 

We further investigate the sample distribution of the interference effect of our method. The 
number of samples whose measurement error is less than a specific threshold is shown in Figure 14. 
As shown in this figure, the number of samples with ICA and CHROM original measurement errors 
which are less than n (n = 5, 10, 15) is more than the number of samples from the processed video. 
The number of samples whose measurement error is less than each specific threshold significantly 
decreased. This method increases the error of heart rate measurement greatly. After the face video is 
processed by this method, the heart rate measured from the processed video is inaccurate, and only a 
small part of the heart rate error is less than a specific threshold. 
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Figure 13. The Bland-Altman diagram of measured and real values. (a) is the 
Bland-Altman diagram of ICA detecting the heart rate of unprocessed face video, (b) is 
the Bland-Altman diagram of ICA detecting the heart rate of processed face video, (c) is 
the Bland-Altman diagram of CHROM detecting the heart rate of unprocessed face video, 
and (d) is the Bland-Altman diagram of CHROM detecting the heart rate of processed 
face video. 

 

Figure 14. Number of samples with (a) ICA and (b) CHROM measurement errors which 
are less than a specific threshold. 
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3.2. Video quality assessment 

3.2.1 Objective quality assessment 

The goal of this method is to shield facial physiological information, but the premise is not to 
change the visual effect and objective quality of video. Therefore, Structural Similarity (SSIM) [21] 
and Natural Image Quality Evaluator (NIQE) [22] are introduced to evaluate the quality of the video 
processed objectively through this method. 

1) SSIM 
SSIM is an index to measure the similarity of two images. The mean is used as the estimate of 

brightness, the standard deviation as the estimate of contrast, and the covariance as the measure of 
structural similarity. The range of structural similarity is -1 to 1. The higher the similarity of the 
two images, the closer the SSIM value is to 1. When two images are identical, the value of SSIM is 
equal to 1. 

2) NIQE 
In terms of image quality evaluation, some common standards are Peak Signal to Noise Ratio 

(PSNR) and SSIM, but for super score or other low-level visual tasks image evaluation, these 
indicators do not meet our human senses, so NIQE came into being. NIQE index is an objective 
evaluation index, which extracts the features in the natural landscape to test the image. These 
features are fitted into a multivariate Gaussian model. This model is a measure of the difference in 
the multivariate distribution of an image to be tested. This distribution is constructed by these 
features extracted from a series of normal natural images. 

NIQE is used to evaluate and compare the video quality before and after processing. The image 
quality of the video in the dataset is evaluated. The results are shown in Figure 15. The blue dot 
represents the NIQE value of the original video, and the red dot represents the NIQE value of the 
video processed by the method in this paper. The NIQE dot of the unprocessed dataset video 
coincides with the processed. No significant difference is observed between them, which shows that 
the objective quality of the processed video has not changed greatly. 

 

Figure 15. NIQE mean. The blue dot represents the NIQE value of the original video, 
and the red dot represents the NIQE value of the video processed by SFPI. 
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In order to conduct the objective quality evaluation and comparison of the video processed, 
SSIM is also utilized, which is an index to measure the similarity of two images. The video in the 
data set is processed through this method, and SSIM analysis is achieved on the processed video 
frame by frame. Then the SSIM values measured frame by frame for each group of videos is 
averaged to obtain the SSIM values of this group of videos. The SSIM measurement results of the 
whole video dataset are shown in Figure 16. It is illustrated that the SSIM value of each group of 
videos before and after processing is greater than 0.9. Therefore the video processed by this method 
has high similarity with the original video. It is proved that the method in this paper has no great 
impact on the objective quality of video. 

 

Figure 16. The SSIM measurement results between the original video and the processed 
video using VIPL-HR dataset. 

3.2.2. Visual effect evaluation 

We invited 15 colleagues in the laboratory to help us evaluate the subjective quality of video. 
We selected ten groups of videos as the test set, of which nine groups of videos are composed of the 
original video and the video processed by this method, and one group of videos is composed of the 
original video and the video after direct noise processing as the control group. The testers choose a 
group of videos from ten groups of videos that they can distinguish visual differences. In the end, 
fifteen testers could only identify the control group from ten groups of videos. In this experiment, 
100 % of the testers cannot see the difference between the video processed by this method and the 
original video. The experimental results are shown that the visual effect of the video processed by 
this method has not changed obviously. 

3.3. Supplementary experiment 

In order to further verify the interference effect of this method on physiological parameter 
detection, PFF [23] data set is used to verify this method. The effective rates of interference 
against ICA and CHROM are 86.3 % and 82.6 % respectively. The PURE [24] data set is used to 
verify the proposed method. The effective rates of interference against ICA and CHROM are 92.2 % 
and 85.3 % respectively. 
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4. Discussion 

We found that when videos are processed periodically, the original signal will have periodic 
abrupt peaks, which can make the heart rate detection system output numerically controllable heart 
rate values. When IFS period T is within 8 to 19, the heart rate detection result of heart rate detection 
system based on rPPG meets the following formula: 

PR = (F/T) * 60                                (5) 

where PR is the heart rate detection result, F is the frame rate of the input video, and T is the IFS 
period. However, this operation cannot stably output controllable values, and further research is 
still needed. 

Most face videos processed by this method can shield physiological information and interfere 
with the heart rate detection results without affecting the visual effect significantly and reducing the 
video quality. However, for few individual videos, the effect of shielding heart rate by this method is 
not stable. Due to the single channel processing of the image, the correlation analysis in the process 
of heart rate detection is affected. More digital image processing methods can be tried in future 
research and combine with this method to improve the efficiency of shielding physiological 
information. Considerably more work, hopefully, will be done in this area. 

5. Conclusions 

A method of shielding facial physiological information without changing the effect of videos is 
proposed in this paper. Combined with the principle of rPPG, the problem that personal 
physiological information is leaked, analyzed and utilized with the spread of video has been solved 
preliminarily. The method can shield the physiological information without reducing the video 
quality significantly, resist the traditional physiological signal detection methods such as ICA and 
CHROM, and protect the personal physiological privacy information. The main contributions of this 
paper are as follows: firstly, the experiments show that the effect of interfering with heart rate detection 
is the most obvious while the video is processed every 12 frames. Secondly, a B-channel periodic blur 
filtering and noise adding method is proposed to resist the traditional physiological signal detection 
methods such as ICA and CHROM. And they have little impact on the objective quality of video. 
Thirdly, blur filtering is selected for the processing of B-channel, and the interference effect of 
Gaussian and Poisson mixed noise on heart rate detection is the most obvious. 
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