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Abstract: This paper develops the ELiminating Et Choice Translating REality (ELECTRE) method
under the generalized environment of complex spherical fuzzy N-soft sets (CS FNS f S s) that have dis-
tinctive and empirical edge of non-binary parametrization and also indeed overcome the limitations
and flaws of existing ELECTRE I methods. We propose an innovatory decision-making technique,
namely, CS FNS f -ELECTRE I method where the data and information are in modern modes. The
proposed CS FNS f -ELECTRE I method enjoys all the distinct and modern attributes of uncertain in-
formation which mainly comprises of parameterizations, neutral perspective, multi-valuation and two-
dimensional representations. We support the proposed work by a flowchart along with an algorithm
and then utilize it to solve the MAGDM problem under CS FNS f environment. This novel technique
employs the principles of CS FNS f concordance and CS FNS f discordance sets which are established
on score and accuracy functions and engrossed to enjoin the most superior alternative. Ultimately, the
decision graph and aggregated outranking Boolean matrix are formulated by merging the outcomes of
CS FNS f concordance and CS FNS f discordance indices which are evaluated through score function
and distance measures, respectively. Moreover, linear-ranking order is evaluated which provides linear
ordering of decision alternatives. A prime MAGDM problem of poverty alleviation is addressed from
socio-economic field that approve the flexibility of the intended approach. We perform a sustaining
comparison with another approach (CSF-ELECTRE I approach) to assure the productivity and po-
tency of the proposed methodology. We also provide an allegorical line graph of this comparison that
demonstrate the admissibility of the resulting outcomes.
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N-soft concordance (discordance) sets; linear-ranking order; poverty alleviation problem

1. Introduction

Multi-attribute group decision-making (MAGDM) [1–3] is an artifice that investigates and resolves
decision problems by integrating three basic modules of MAGDM; at least two decision-makers, two
decision alternatives and two conflicting attributes. The elementary phenomena of MAGDM is to
analyze the problem by combining the valuation of each decision alternative that are assessed by the
decision-experts according to incompatible attributes and then results into a pertinent choice. The
significant and associated MAGDM techniques are established to help the decision panel in order to
solve MAGDM problems. These are frequently employed in various types of factual problems where
collection of feasible alternatives are contemplated against some related parameters. The application of
MAGDM techniques in poverty and poverty alleviation project has perpetually raised in the literature,
readers are referred to [4].

1.1. Related works

Outranking-based techniques [5], as an important classification of MAGDM, can be exploited to
choose which decision alternative is more suitable, unexceptional or incomparable by comparing the al-
ternatives with each other pursuant to each attribute. In the family of outranking techniques, ELECTRE
method [6] plays an influential role as it has ability to take incomparable and appropriate thresholds
into account and purely ordinal scales can be considered when imitating the imperfect information. The
ELECTRE approach, also addressed as ELECTRE I technique is further improved as the ELECTRE-
II, ELECTRE-III and ELECTRE-IV techniques efficient at tackling with choice problems and as in
the case of ELECTRE-TRI and ELECTRE-A techniques, designed to deal with ranking problems. A
detailed analysis was conducted by Figueria et al. [7] about the ELECTRE family that inclusively
provide ranking of the alternatives by managing the attributes of quantitative nature. The diversity of
ELECTRE techniques have been comprehensively utilized to different fields like environmental health,
waterwaste management, forest management, energy and supplier selection.

Recently, the ELECTRE approach is applied to pursue the situation in which the assessed informa-
tion of the MAGDM problems may be ambiguous and hazy, which is due to the limited awareness of
decision-experts and also caused by the indistinct situations of real-life. For addressing the haziness
contained in MAGDM problems fuzzy set (FS) theory, introduced by Zadeh [8], is absolutely suited.
Indeed, extensive research has been performed on the expanded ELECTRE techniques in a fuzzy frame
of reference, for example, Vahdani et al. [9] provided a neoteric ELECTRE approach together with the
conception of interval weights and fuzzy information. Kabak et al. [10] presented a MADM technique
for the selection of a snipper by associating the fuzzy ELECTRE method together with Fuzzy ANP
and Fuzzy TOPSIS technique. Alghamdi et al. [11], Akram et al. [12] and Chen et al. [13] expanded
ELECTRE I technique under fuzzy, bipolar neutrosophic and hesitant fuzzy context, respectively.

Atanassov [14], later added a new component to the description of FSs with the aim to handle the
negative response ν of a member along with the positive response α. The abstraction that manifested
is named as intuitionistic fuzzy sets (IFSs). Though FSs illustrate the level of positive response α
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of a person to the set under discussion, IFSs concede to assign level of truthiness α and falsity ν,

which are interrelated by a marginal condition that α + ν ≤ 1 entirely. It has even been extensively
implemented in MAGDM and other sectors, like, Chen et al. [15] and Rouyendegh [16] extended
ELECTRE I technique within the domain of IFSs for solving the project manager and site selection
problem, respectively.

Pythagorean fuzzy sets (PY FS s) were presented by Yager [17] to suppress the confines of the IFSs
by the condition α2 + ν2 ≤ 1. Akram et al. [18] utilized PY FS s for the development of ELECTRE I
method in the context of multi-criteria decision-making, respectively. Furthermore, Akram et al. [19]
presented the hesitant Pythagorean fuzzy ELECTRE II method and applied it to various case studies
within the network of many criteria. In 2013, a neoteric concept of picture fuzzy sets (PFSs) was
established by Cuong and Kreinovich [20] that demonstrates the level of truthiness α, neutrality δ and
falsity ν of a person to the set under discussion along with a restriction α + δ + ν ≤ 1. Later on,
picture fuzzy EDAS-ELECTRE approach was presented by Liang et al. [21] to appraise the level of
environmental friendly production in gold mines.

Subsequently, Gundogdu and Kahraman [22] and Mahmood et al. [23] argued that the restriction
of PFSs can be suppress by the condition α2 + δ2 + ν2 ≤ 1 in conjunction to capture three responses
(yes, neutral, no) of human nature. The cogitation that emerged is known as spherical fuzzy sets
(SFSs). Many valuable and beneficial advancements have been illustrated to enhance the decision-
making techniques under spherical fuzzy environment [24, 25].

In 2002, Ramot et al. [26] was first who revised the idea of fuzzy set theory and introduced an
innovative concept of complex fuzzy sets (CFSs) to confront the periodic phenomena as the traditional
models of fuzzy set theory are limited to handle the data of non-periodic nature. In CFS, the range of
membership function is extended from the unit closed interval [0, 1] to the complex unit disc {u|u ∈
C, |u| ≤ 1}. Moreover, the complex intuitionistic fuzzy sets (CIFSs) were purposed by Alkouri and
Salleh [27] in order to capture the complex-valued non-membership degree of alternatives. Ullah et
al. [28] introduced the novel concept of complex Pythagorean fuzzy sets (CPY FS s). Akram et al. [29]
developed theory for complex Pythagorean fuzzy-ELECTRE I technique to solve MAGDM problems.
One of the modern representations is complex spherical fuzzy sets CS FS s proposed by Akram et
al. [29]. Furthermore, CS FS s can capture the abstinence data of periodic nature supplementary to
constrained conditions on amplitude terms and phase terms. Akram et al. [30] worked on the expansion
of ELECTRE I approach which is adequate enough to manage CS F information. The CS F-ELECTRE
I strategy nimbly integrates alternatives but ineffectual to measure MAGDM problems that contain
information along the lines of multi-valuation and parameterizations. These infirmities of the figurative
CS F-ELECTRE I method resolutely stimulate us to broaden ELECTRE I technique in terms of some
comprehensive environment.

It is manifested that the vast majority of the research is based on the theories of fuzzy sets [8]
and soft sets [31]. Meanwhile, many problems of real-world are provided with knowledge having a
non-binary parameterized structure. Therefore, Fatimah et al. [32] introduced the novel theory of N-
soft set (NS f S ) and constructed some algorithms for real-life decision-making problems. In recent
time, the NS f S is broadened under the productive fuzzy context, like fuzzy N-soft set (FNS f S ) [33],
hesitant fuzzy N-soft sets (HFNS f S ) [34], Pythagorean fuzzy N-soft set (PY FNS f S ) [35], complex
Pythagorean fuzzy N-soft set (CPY FNS f S ) [36] and so on. Particularly to our concerns, Akram et
al. [37] investigated the magnificent theory of complex spherical fuzzy N-soft set (CS FNS f S ) as
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well as studied some comprehensive MAGDM techniques under the receptive discipline of complex
spherical fuzzy N-soft sets.

1.2. Significance of complex spherical fuzzy N-soft sets

The CS FNS f S , as modern extension, overwhelm the inadequacies of the above-mentioned tradi-
tional models, including CS FS and CPY FNS f S . The splendid theory of CS FNS f S comprises of two-
dimensional vagueness, parameterizations and multi-nary ranking system. Research articles [37, 38]
briefly describe the significance and prominence of the dazzling CS FNS f S s real-life examples and
applications by exploiting some fundamental tools and operations. Moreover, the characteristic com-
parison of the model of our purposes (CS FNS f S ) with some existing models is given in Table 1 that
ensured the superiority of the mainstream CS FNS f model.

1.3. Motivation of presented manuscript

The motivation and importance of the presented theory is described by the following arguments:

1) The existing models from the family of FNS f S including IFNS f S , PY FNS f S and CPY FNS f S
are insufficient to interpret the neutral response of individual nature. Therefore, the CS FNS f S is
preferred as the most convenient domain for the proposed method.

2) The ELECTRE I approach is broadly applied on top of group decision-making approach that
eliminates the less favorable alternative and designate the outranked results by implementing the
pairwise comparison of conceivable choices in terms of concordance and discordance sets.

3) The existing methodologies of decision-making, in particular, fuzzy-ELECTRE I, IF-ELECTRE
I, PY F-ELECTRE I, CPY F-ELECTRE I and the latest expansion of ELECTRE I method under
CSF environment (CSF-ELECTRE I method) are, however, competent to beneficially manage the
ambiguous knowledge but they are unable to handle multi-valuation along with parameterizations.
As there are several real-world applications in which relevant data is entailing multi-valuation
along with parameterizations. These impotencies of the traditional techniques persistently per-
suade us to extend ELECTRE I approach in the context of well versed CS FNS f S s.

4) The additional complications in real-life problems implies that MAGDM can grant most trust-
worthy and accurate results. As it successfully applies the valuation from decision-makers who
have appropriate data about the conflicting components of the crucial problem.

5) Foregoing rationale shifted our interest towards the proposed generalization, whereupon the ob-
jective is to take advantage of the neoteric CS FNS f S within the coherent approach of ELECTRE
I in respect of problem-solving strategies.

1.4. Contribution of presented manuscript

The foremost contributions of this manuscript can be epitomized as follows:

1) This manuscript effectuate an experimental MAGDM strategy, known as CS FNS f -ELECTRE I
method, to manage the CS FNS f information that secures four opinions (Yes, abstinence, No and
refusal) of human nature in two-dimensional setting along with multi-valuation parametrization.
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2) The proposed CS FNS f -ELECTRE I method deals with distinguishing ideas of concordance
(discordance) sets which are modernly determined through the medium of score and accuracy
degrees of complex spherical fuzzy N-soft numbers. The proposed scheme operates to suggests
the supreme alternative by applying the outranking graphs and relations.

3) The practicality and amenability of the presented method are approved through a vigorous nu-
merical example of poverty alleviation from the discipline of social economy.

4) We accomplish our established MAGDM technique by virtue of comparative study with tradi-
tional CS F-ELECTRE I method. The eventual results from both rationale techniques demon-
strate the accountability of the developed strategy.

5) Eventually, the primary insights of the proposed MAGDM approach illustrate it’s versatility, pro-
ficiency, and distinction over the high-tech group decision-making methodologies.

1.5. Outline of presented manuscript

Rest of the manuscript is systematized as follows: Section 2 recalls some groundwork of
CS FNS f S . Section 3 invokes a meticulous algorithm of proposed CS FNS f - ELECTRE I method,
with a comprehensive overview of all phases, under the settings of complex spherical fuzzy N-soft
sets. It also illustrates a graphical model of our complex spherical fuzzy N-soft concurrent decision
supporting system. Section 4 explicates the proposed CS FNS f -ELECTRE I method through an ap-
plication from the socio-economic field. Section 5 describes the comparative analysis of our proposed
strategy with existing CSF-ELECTRE I method. Section 6 comprises the concluding remarks along
with some major insights and boundaries of the provided scheme and contains some forthcoming re-
search challenges.

2. Preliminaries

Definition 2.1. [37] Let U be a non-empty set and A ⊆ E, whereas E be a set of parameters (or
attributes), and M = {0, 1, 2, . . . ,N − 1} be a set of grades level with N ∈ {2, 3, . . .}. Then a complex
spherical fuzzy N-soft set (CS FNS f S ) on U is denoted by a triplet (zτ,A,N), defined as

zτ(as) = {〈(z(as), τ(as))〉 : ur ∈ U, as ∈ A},

= {〈((ur,mr
s), (αrs, δrs, νrs))〉},

= {〈((ur,mr
s), (grsei2πφrs , qrsei2πηrs , hrsei2πγrs))〉},

along with the assumption of z : A→ 2U×M, where NS f S be defined on U, and τ is a function from A
to CSFN. The notation CSFN denotes the collection of all complex spherical fuzzy numbers on U, and
grs, qrs, hrs, indicating the amplitude terms, φrs, ηrs and γrs, indicating the phase terms, be well taken
from unit closed interval within the constraint conditions

0 ≤ g2
rs + qrs2 + h2

rs ≤ 1,

0 ≤ φ2
rs + η2

rs + γ2
rs ≤ 1,

∀ur ∈ U and as ∈ A. The term mr
s denotes the ranking of the parameter as for the alternative ur.
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Definition 2.2. [37] Let zτ(as) = (mr
s, grsei2πφrs , qrsei2πηrs , hrsei2πγrs) be a CS FNS f S . Then complex

spherical fuzzy N-soft number (CS FNS f N) is defined as:

κrs = (mr
s, grsei2πφrs , qrsei2πηrs , hrsei2πγrs),

and the degree of refusal is defined as:

Ωκrs =

√
1 − (grs

2 + qrs
2

+ hrs
2)ei2π

√
1−(φrs

2+ηrs2+γrs2)

Definition 2.3. [37] Let κrs = (mr
s, grsei2πφrs , qrsei2πηrs , hrsei2πγrs) be CS FNS f N. The score function

Sc(κrs) of CS FNS f N is:

Sc(κrs) = (
mr

s

N − 1
)2 + (grs

2 − qrs
2 − hrs

2) + [φrs
2 − ηrs

2 − γrs
2], (2.1)

where Sc(κrs) ∈ [−2, 3]. The accuracy function Ac(κrs) is:

Ac(κrs) = (
mr

s

N − 1
)2 + (grs

2 + qba
2 + hrs

2) + [φrs
2 + ηrs

2 + γrs
2], (2.2)

where Ac(κrs) ∈ [0, 3], respectively.

Definition 2.4. [37] Let κrs = (mr
s, grsei2πφrs , qrsei2πηrs , hrsei2πγrs) and κyx =

(my
x, gyxei2πφyx , qyxei2πηyx , hyxei2πγyx) be two CS FNS f Ns

1. If Sc(κrs) < Sc(κyx), then κrs ≺ κyx (κrs is inferior to κyx),
2. If Sc(κrs) > Sc(κyx), then κrs � κyx (κrs is superior to κyx),
3. If Sc(κrs) = Sc(κyx), then

i Ac(κrs) < Ac(κyx), then κrs ≺ κyx (κrs is inferior to κyx),

ii Ac(κrs) > Ac(κyx), then κrs � κyx (κrs is superior to κyx),

iii Ac(κrs) = Ac(κyx), then κrs ∼ κyx (κrs is equivalent to κyx).

Definition 2.5. The normalized Euclidean distance between two CS FNS f Ns κrs =

(mr
s, grsei2πφrs , qrsei2πηrs ,

hrsei2πγrs) and κxs = (mx
v , gxsei2πφxs , qxsei2πηxs , hxsei2πγxs) are calculated as follow:

d(κrs, κxv) =

(
1
4

[
((

mr
s

N − 1
)2 − (

mx
s

N − 1
)2)2 + (g2

rs − g2
xs)

2 + (q2
rs − q2

xs)
2 + (h2

rs − h2
xs)

2 + (φ2
rs − φ

2
xs)

2

+(η2
rs − η

2
xs)

2 + (γ2
rs − γ

2
xs)

2
]) 1

2

. (2.3)

Definition 2.6. [37] Let κrs = (mr
s, grsei2πφrs , qrsei2πηrs , hrsei2πγrs) and κxs =

(mx
s , gxsei2πφxs , qxsei2πηxs , hxsei2πγxs) be two CS FNS f Ns and ε > 0. The operations related with

CS FNS f Ns are:

κrs

⊕
κxs =

(
max(mr

s,m
x
v),

√
g2

rs + g2
xs − g2

rsg2
xse

i2π
√
φrs

2+φxs
2−φrs

2φxs
2
,
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qrsqxsei2πηrsηxs , hrshxsei2πγrsγxs

)
,

κrs

⊗
κxs =

(
min(mr

s,m
x
s), grsgxsei2πφrsφxs ,

√
q2

rs + q2
xs − q2

rsq2
xse

i2π
√
ηrs2+ηxs2−ηrs2ηrs2

,
√

h2
rs + h2

xs − h2
rsh2

xse
i2π
√
γrs2+γxs2−γrs2γxs2

)
,

εκrs =

(
mr

s,
√

[1 − (1 − g2
rs)ε]e

i2π
√

[1−(1−φrs
2)ε], qεrse

i2πηrs
ε

, hεrse
i2πγrs

ε

)
,

κεrs =

(
mr

s, g
ε
rse

i2πφεrs ,
√

[1 − (1 − q2
rs)ε]e

i2π
√

[1−(1−ηrs2)ε]

,
√

[1 − (1 − h2
rs)ε]e

i2π
√

[1−(1−γrs2)ε]
)
.

Definition 2.7. [37] Let κrs = (mr
s, grsei2πφrs , qrsei2πηrs , hrsei2πγrs) be a family of CS FNS f Ns and ε =

(ε1, ε2, . . . εw)T be the weight vector of κrs with εs > 0 and
w∑

s=1

εs = 1. The complex spherical fuzzy N

soft weighted average (CS FNS f WA) operator is defined as:

CS FNS f WA(κr1, κr2, . . . , κrw) = ε1κr1 ⊕ ε2κr2 ⊕ . . . ⊕ εwκrw

=

(
w

max
s=1

mr
s,
(√√

1 −
w∏

s=1

(1 − g2
rs)

εs

)
e

i2π

√√√√√√√√
1−

w∏
s=1

(1 − φrs
2)εs

,

( w∏
s=1

qεs
rs

)
e

i2π

w∏
s=1

ηεs
rs

,
( w∏

s=1

hεs
rs

)
e

i2π

w∏
s=1

γεs
rs)
.

3. Algorithm of complex spherical fuzzy N-soft ELECTRE I method

In this section, complex spherical fuzzy N-soft ELECTRE I (CS FNS f -ELECTRE I) method is
introduced to support the multi-attribute group decision making (MAGDM) problems under CS FNS f

environment. In CS FNS f -ELECTRE I method, CS FNS f Ns are basically assigned to the alternatives
according to the conflicting parameters as well as with respect to the weights of the parameters. The
CS FNS f -ELECTRE I method pursue the following procedure:
Consider a MAGDM problem with

− U = {U1, U2, U3, . . . , Uv} be a discrete set of v alternatives,

− As =A1,A2,A3, . . . ,Aw be a set of decision attributes,

− Qp = Q1, Q2, Q3, . . . , Qb be a group of decision experts.
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Phase I: Assemblage of Group Evaluation

Step 1: The decision-makers Qp specify CS FNS f N to each ordered grade of the NS f S that are
initially submitted by the decision-making panel. So that the complex spherical fuzzy N-Soft
performance matrices (CS FNS f PMs) Y (p) with the entities D(p)

rs = (mr
s
(p), α

(p)
rs , δ

(p)
rs , ν

(p)
rs ) =

(mr
s
(p), g(p)

rs ei2πφ(p)
rs , q(p)

rs ei2πη(p)
rs , h(p)

rs ei2πγ(p)
rs ) are pursuant to each decision-expert Qp. The MAGDM

problem can be expressed as in Table 2 where, r ∈ {1, 2, . . . , v}, s ∈ {1, 2, . . . ,w} and p ∈
{1, 2, . . . , b}.

Table 2. Complex spherical fuzzy N-soft performance matrix of expert Qp.

Y (p) A1 A2 . . . Aw

U1 (m1
1

(p)
, α

(p)
11 , δ

(p)
11 , ν

(p)
11 ) (m1

2
(p)
, α

(p)
12 , δ

(p)
12 , ν

(p)
12 ) . . . (m1

w
(p)
, α

(p)
1w , δ

(p)
1w , ν

(p)
1w)

U2 (m2
1

(p)
, α

(p)
21 , δ

(w)
21 , ν

(p)
21 ) (m2

2
(p)
, α

(p)
22 , δ

(p)
22 , ν

(p)
22 ) . . . (m2

w
(p)
, α

(p)
2w , δ

(p)
2w , ν

(p)
2w)

...
...

...
. . .

...

Uv (mv
1

(p), α
(p)
v1 , δ

(p)
v1 , ν

(p)
v1 ) (mv

2
(p), α

(p)
v2 , δ

(p)
v2 , ν

(p)
v2 ) . . . (mv

w
(p), α

(p)
vw , δ

(p)
vw , ν

(p)
vw )

Step 2: Construct the aggregated complex spherical fuzzy N-soft performance matrix
(ACS FNS f PM) as in Table 3. The intellectual perspectives of decision-experts are re-
quired to be summarized in one performance matrix by using the experts opinions along with
normalized weight vector a = (a1, a2, . . . ab)T of the experts. For this purpose, a CS FNS f WA
operator is employed in the following way:

Yrs = CS FNS f WAa(D
(1)
rs ,D

(2)
rs , . . . ,D

(b)
rs )

= a1D(1)
rs ⊕ a2D(2)

rs ⊕ . . . ⊕ abD(b)
rs

=

(
b

max
p=1

((mr
s)

(p)),

√√√
1 −

b∏
p=1

(1 − (g(p)
rs )2)ape

i2π

√√√√√√√√√
1−

b∏
p=1

(1 − (φ(p)
rs )2)ap

,

b∏
p=1

[q(p)
rs ]ape

i2π

b∏
p=1

[η(p)
rs ]ap

,

b∏
p=1

[h(p)
rs ]ape

i2π

b∏
p=1

[γ(p)
rs ]ap )

= (mr
s, grsei2πφrs , qrsei2πηrs , hrsei2πγrs).

Table 3. Aggregated complex spherical fuzzy N-soft performance matrix.

Y A1 A2 . . . Aw

U1 (m1
1, α11, δ11, ν11) (m1

2, α12, δ12, ν12) . . . (m1
w, α1w, δ1w, ν1w)

U2 (m2
1, α21, δ21, ν21) (m2

2, α22, δ22, ν22) . . . (m2
w, α2w, δ2w, ν2w)

...
...

...
. . .

...

Uv (mv
1, αv1, δv1, νv1) (mv

2, αv2, δv2, νv2) . . . (mv
w, αvw, δvw, νvw)
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Step 3: Evaluate the weight matrix for selected attributes as the preference perception of possible
choices varies in accordance with the rank of the attributes. The non-binary ranks of the attributes
are further developed by decision-experts into CS FNS f -weights
t(p)
s = ((mr

s)
(p), g(p)

s ei2πφ(p)
s , q(p)

s ei2πδ(p)
s , h(p)

s ei2πγ(p)
s ) that are aggregated by the CS FNS f WA operator in

the following manner:

ts = CS FNS f WAa(t(1)
s , t

(2)
s , . . . , t

(b)
s )

= a1t(1)
s ⊕ a2t(2)

s ⊕ . . . ⊕ abt(b)
s

=

(
b

max
p=1

((mr
s)

(p)),

√√√
1 −

b∏
p=1

(1 − (g(p)
s )2)ape

i2π

√√√√√√√√√
1−

b∏
p=1

(1 − (φ(p)
s )2)ap

b∏
p=1

[q(p)
s ]ape

i2π

b∏
p=1

[δ(p)
s ]ap

,

b∏
p=1

[h(p)
s ]ape

i2π

b∏
p=1

[γ(p)
s ]ap )

= (ms, gsei2πφs , qsei2πδs , hsei2πγs).

Step 4: Establish the aggregated weighted complex spherical fuzzy N-soft performance matrix
(AWCS FNS f PM) Y = (Yrs)v×w = (mr

s, grse
i2πφrs , qrse

i2πδrs , hrsei2πγrs), as in Table 4, with the help
of ACS FNS f PM along with the weights of attributes ts. Compute each entity of Y by using Eq
(3.1).

Yrs = Yrs ⊗ ts

=

(
min((mr

s),ms), grsgsei2πφrsφs ,
√

q2
rs + q2

s − q2
rsq2

se
i2π
√
η2

rs+η
2
s−η

2
rsη

2
s

,
√

h2
rs + h2

s − h2
rsh2

se
i2π
√
γ2

rs+γ
2
s−γ

2
rsγ

2
s

)
(3.1)

= (mr
s, αrs, δrs, νrs).

Table 4. Aggregated weighted complex spherical fuzzy N-soft performance matrix.

Y A1 A2 . . . Aw

U1 (m1
1, α11, δ11, ν11) (m1

12, α12, δ12, ν12) . . . (m1
w, α1w, δ1w, ν1w)

U2 (m2
1, α21, δ21, ν21) (m2

2, α22, δ22, ν22) . . . (m2
w, α2w, δ2w, ν2w)

...
...

...
. . .

...

Uv (mv
1, αv1, δv1, νv1) (mv

2, αv2, δv2, νv2) . . . (mv
w, αvw, δvw, νvw)
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Phase II: Complex spherical fuzzy N-soft ELECTRE I ranking phase

Subsequent to the secured computations from the first phase of the complex spherical fuzzy N-
soft decision endorse technique, the second phase applies the method of CS FNS f -ELECTRE I,
to conclude the ranking order of decision alternatives.

Step 5: Compute score and accuracy values ofYrs as in Table 5, using Eqs (2.1) and (2.2), respectively.
The pair wise comparison of possible choices corresponding to some competent attributes is a
central analysis of CS FNS f -ELECTRE I method. The score degree Sc(Yrs) and the accuracy
degree Ac(Yrs) are employed to compare the entities of AWCS FNS f PM Y. It is suggested that
an adequate alternative likely to have higher Sc(Yrs) or lower Sc(Yrs) as well as may possess
higher Ac(Yrs) or lower Ac(Yrs). The alternative with higher score value implies higher ordered
grade along with higher satisfaction degree, whereas the higher score value not always implies
higher accuracy value.

Table 5. Score and accuracy degrees of AWCS FNS f PM.

A1 A2 . . . Aw

U1 (Sc(Y11),Ac(Y11)) (Sc(Y12),Ac(Y12)) . . . (Sc(Y1w),Ac(Y1w))
U2 (Sc(Y21),Ac(Y21)) (Sc(Y22),Ac(Y22)) . . . (Sc(Y2w),Ac(Y2w))
...

...
...

. . .
...

Uv (Sc(Yv1),Ac(Yv1)) (Sc(Yv2),Ac(Yv2)) . . . (Sc(Yvw),Ac(Yvw))

Step 6: For a random pair of choices (Uρ,Uψ), (ρ, ψ = 1, 2, 3, . . . , v, ρ , ψ), the CS FNS f concor-
dance sets comprehend all the indices of the attributes for which the alternative Uρ is preferable
than the alternative Uψ, that is, the alternative Uρ has higher ordered grade along with higher
satisfaction value as compared to the alternative Uψ. In accordance with the stances of accuracy
and score functions defined for CS FNS f Ns, the CS FNS f concordance sets can be classified as
the CS FNS f strong, mid range and weak concordance sets. The CS FNS f concordance sets are
established in the following manner:

(i) The complex spherical fuzzy N-soft strong concordance set Cρψ is calculated as:

Cρψ = {s : Sc(Yρs) > Sc(Yψs), Ac(Yρs) ≥ Ac(Yψs)}. (3.2)

The greater value of score function and accuracy function of the entity Yρs corresponds to
the greater ordered grade and greater satisfaction value of the alternative Uρ as compared to
the alternativeUψ. Therefore, the alternative Uρ is strongly concordant from the alternative
Uψ.

(ii) The complex spherical fuzzy N-soft mid range concordance set C
′

ρψ is calculated as:

C
′

ρψ = {s : Sc(Yρs) > Sc(Yψs), Ac(Yρs) < Ac(Yψs)}. (3.3)

The alternatives Uρ and Uψ are mid range concordant to each other due to the higher accuracy
value of the entity Yψs from the entity Yρs.
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(iii) The complex spherical fuzzy N-soft weak concordance set C
′′

ρψ can be determined as:

C
′′

ρψ = {s : Sc(Yρs) = Sc(Yψs), Ac(Yρs) ≥ Ac(Yψs)}. (3.4)

The equal value of score function indicates that the alternatives are equivalently significant
with respect to the ordered grades and the membership degrees. Whereas the larger value of
accuracy function of Yρs implies the preference of the alternative Uρ over the alternative Uψ.

Step 7: For a random pair of choices (Uρ,Uψ), (ρ, ψ = 1, 2, 3, . . . , v, ρ , ψ), the CS FNS f discordance
sets encompass all the indices of the attributes for which the alternative Uρ is not appropriate as
compared to the alternative Uψ. In accordance with the stances of accuracy and score functions
defined for CS FNS f Ns, the CS FNS f discordance sets can be classified as the CS FNS f strong,
mid range and weak discordance sets. The CS FNS f discordance sets are established in the
following manner:

(i) The complex spherical fuzzy N-soft strong discordance set Dρψ can be determined as:

Dρψ = {s : Sc(Yρs) < Sc(Yψs),Ac(Yρs) < Ac(Yψs)}. (3.5)

The lesser value of score function and accuracy function of Yρs corresponds to the mini-
mum grade and lesser truth membership degree of the alternative Uρ from the alternative Uψ.

Therefore, the alternative Uρ is strongly discordant from the alternative Uψ.

(ii) The complex spherical fuzzy N-soft mid range discordance set D
′

ρψ can be determined as:

D
′

ρψ = {s : Sc(Yρs) < Sc(Yψs),Ac(Yρs) ≥ Ac(Yψv)}. (3.6)

The alternatives Uρ and Uψ are mid range discordant to each other due to the lower accuracy
value of the entity Yψs from the entity Yρs.

(iii) The complex spherical fuzzy N-soft weak discordance set D
′′

ρψ can be determined as:

D
′′

ρψ = {s : Sc(Yρs) = Sc(Yψs),Ac(Yρs) < Ac(Yψs)}. (3.7)

The lesser value of accuracy function of Yρs implies the preference of the alternative Uρ as
weakly discordant over the alternative Uψ. Whereas the equal value of score function indi-
cates that the alternatives are equally important with respect to the grades and the membership
degrees.

Step 8: The exclusive CS FNS f concordance matrix is determined by the CS FNS f concordance
indices Rρψ (ρ, ψ = 1, 2, 3, . . . , v, ρ , ψ). The CS FNS f concordance index is proportional
to the sum of the CS FNS f weights ts (s = 1, 2, 3, . . . ,w) of the attributes whose indices are
confined in the Cρψ, C

′

ρψ and C
′′

ρψ. In CS FNS f -ELECTRE I method the concordance indices

Rρψ = (m(s)
Rρψ
, α(s)
Rρψ
, δ(s)
Rρψ
, ν(s)
Rρψ

) = (m(s)
Rρψ
, g(s)
Rρψ

e
i2πφ(s)

Rρψ , q(s)
Rρψ

e
i2πη(s)

Rρψ , h(s)
Rρψ

e
i2πγ(s)

Rρψ ) of Uρ and Uψ, is mea-
sured as:

Rρψ =

[
ECρψ
⊗

∑
s∈Cρψ

ts

]
⊕

[
EC′ρψ
⊗

∑
s∈C′ρψ

ts

]
⊕

[
EC′′ρψ
⊗

∑
s∈C′′ρψ

ts

]
. (3.8)
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where, the ECρψ
, EC′ρψ

and EC′′ρψ
are respectively the weights of CS FNS f strong concordance set,

CS FNS f mid range concordance set and CS FNS f weak concordance set relying on the view-
points of the decision-experts.
The CS FNS f concordance matrix XRρψ is estimated as follows:

XRρψ =


− (m(s)

R12
, α(s)
R12
, δ(s)
R12
, ν(s)
R12

) . . . (m(s)
R1(v−1)

, α(s)
R1(v−1)

, δ(s)
R1(v−1)

, ν(s)
R1(v−1)

) (m(s)
R1v
, α(s)
R1v
, δ(s)
R1v
, ν(s)
R1v

)
(m(s)
R21
, α(s)
R21
, δ(s)
R21
, ν(s)
R21

) − . . . (m(s)
R2(v−1)

, α(s)
R2(v−1)

, δ(s)
R2(v−1)

, ν(s)
R2(v−1)

) (m(s)
R2v
, α(s)
R2v
, δ(s)
R2v
, ν(s)
R2v

)
...

...
. . .

...
...

(m(s)
Rv1
, α(s)
Rv1
, δ(s)
Rv1
, ν(s)
Rv1

) (m(s)
Rv2
, α(s)
Rv2
, δ(s)
Rv2
, ν(s)
Rv2

) . . . (m(s)
Rv(v−1)

, α(s)
Rv(v−1)

, δ(s)
Rv(v−1)

, ν(s)
Rv(v−1)

) −

 .

Step 9: The CS FNS f discordance matrix is determined by the CS FNS f discordance indices Kρψ
(ρ, ψ = 1, 2, 3, . . . , v, ρ , ψ). The CS FNS f discordance index is reflective of significant dif-
ference of Uρ with reference to Uψ from the perspective of discordance attributes whose indices
are confined in the Dρψ, D

′

ρψ and D
′′

ρψ. In CS FNS f -ELECTRE I method the discordance index

Kρψ = (m(s)
Kρψ
, α(s)
Kρψ
, δ(s)
Kρψ
, ν(s)
Kρψ

) = (m(s)
Kρψ
, g(s)
Kρψ

e
i2πφ(s)

Kρψ , q(s)
Kρψ

e
i2πδ(s)

Kρψ , h(s)
Kρψ

e
i2πγ(s)

Kρψ ) is defined as:

Kρψ =

max
s∈(Dρψ∪D′ρψ∪D′′ρψ)

{EDρψ
⊗ d(Yρs,Yψs),ED′ρψ

⊗ d(Yρs,Yψs),ED′′ρψ
⊗ d(Yρs,Yψs)}

max
s

d(Yρs,Yψs)
, (3.9)

where, EDρψ
, ED′ρψ

and ED′′ρψ
are respectively the weights of CS FNS f strong discordance set,

CS FNS f mid range discordance set and CS FNS f weak discordance set relying on the stances of
the decision-experts and d(Yρs,Yψs) denotes the CS FNS f normalized Euclidean distance. The
CS FNS f normalized Euclidean distance d(Yρs,Yψs) between Yρs and Yψs is calculated as:

d(Yρs,Yψs) =

(
1
4
(
((

mr
s

N − 1
)2 − (

mx
s

N − 1
)2)2 + (g2

ρs − g2
ψs)

2 + (q2
ρs − q2

ψs)
2 + (h

2
ρs − h

2
ψs)

2 + (φ
2
ρs − φ

2
ψs)

2 +

(η2
ρs − η

2
ψs)

2 + (γ2
ρs − γ

2
ψs)

2)) 1
2

.

The CS FNS f discordance matrix XKρψ is defined as:

XDρψ =


− K12 . . . K1(v−1) K1v

K21 − . . . K2(v−1) K2v
...

...
. . .

...
...

Kv1 Kv2 . . . Kv(v−1) −

 .
Step 10: The CS FNS f dominance concordance matrix = is established according to the threshold

value ς of CS FNS f concordance indices. The dominance degree of the alternative Uρ increases if
the score value of CS FNS f concordance index Rρψ of Uρ with respect to Uψ is over the threshold
value ς can be determined as:

ς =
1

v(v − 1)
max
ρψ

[
Sc(Rρψ)

]
, (3.10)
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(ρ, ψ = 1, 2, 3, . . . , v, ρ , ψ).
The CS FNS f concordance dominance matrix = = (=ρψ)v×v can be determined as:

= =


− =12 . . . =1(v−1) =1v

=21 − . . . =2(v−1) =2v
...

...
. . .

...
...

=v1 =v2 . . . =v(v−1) −

 ,
whose entities satisfy

=ρψ =

{
1, if Sc(Rρψ) ≥ ς,
0 if Sc(Rρψ) < ς.

(3.11)

Step 11: Similarly, the CS FNS f discordant dominant matrix are also evaluated by the discordant level
τ, which is basically the average of all the entities in the CS FNS f discordance matrix and can be
defined as:

τ =
1

v(v − 1)

∑
ρ,ρ,ψ

∑
ψ,ψ,ρ

Kρψ. (3.12)

The dominance discordance matrix Υ = (Υρψ)b×b can be compiled as:

Υ =


− Υ12 . . . Υ1(v−1) Υ1v

Υ21 − . . . Υ2(v−1) Υ2v
...

...
. . .

...
...

Υv1 Υv2 . . . Υv(v−1) −

 ,
whose entities satisfy

Υρψ =

{
1, if Kρψ ≤ τ,
0 if Kρψ > τ.

(3.13)

The entities of the dominance discordance matrix Υ indicates the intensity of the discordance. For
an instance, the discordant argument would no more valid if τ < Kρψ, however the matrix entity
with value 1 indicates the dominant relation together with other alternatives.

Step 12: The aggregated dominance matrix is obtained by unifying the CS FNS f dominance concor-
dance and discordance matrices in the following manner:

$ = = ⊗ Υ. (3.14)

So that aggregated dominance matrix $ is constructed as:

$ =


− $12 . . . $1(v−1) $1v

$21 − . . . $2(v−1) $2v
...

...
. . .

...
...

$v1 $v2 . . . $v(v−1) −

 .
where, $ρψ = =ρψ × Υρψ. The aggregated dominance matrix provided supreme resistance to
alternative Uρ if $ρψ = 1.
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Step 13: In the final round of the CS FNS f -ELECTRE I method, a directed graph is composed to
secure the supreme alternative among the probable choices. To construct directed graph specific
details are depicted by Figure 1 and also elaborated by the following cases:

1. If $ρψ = 1, then Uρ is strictly superior from Uψ or Uψ is strictly inferior from Uρ, i.e.,
(Uρ � Uψ).

2. If $ρψ = 1 and $ψρ = 1, then Uρ and Uψ depicted indifferent association, i.e., (Uρ ≈ Uψ).
3. If $ρψ = 0, then Uρ is not comparable to Uψ.

Figure 1. Graphical depiction of outranking decision graph.

Step 14: The linear ranking order of the alternatives can be evaluated using the net outranking index
to strengthen the proposed ELECTRE I method. The net outranking index is calculated as follow:

<r = Jr − Jr. (3.15)

where, Jr represents the concordant outranking index and Jr indicates the discordant outrank-
ing index. The concordant outranking index Jr and the discordant outranking index Jr can be
computed by the Eqs (3.16) and (3.17), respectively.

Jr =

v∑
ρ=1,ρ,r

Sc(XRrρ) −
v∑

ψ=1,ψ,r

Sc(XRψr ). (3.16)

Jr =

v∑
ρ=1,ρ,r

XKrρ −

v∑
ψ=1,ψ,r

XKψr . (3.17)
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The values of<r are arranged in descending order and the alternative with largest net outranking
index stated as more adequate alternative from the probable choices.

The CS FNS f -ELECTRE I algorithm is graphically visualized through a flow diagram presented in
Figure 2.

Figure 2. Flow chart of CS FNS f -ELECTRE I method.
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4. Application

In this section, we describe a case study from socio-economic field related to the “Poverty allevia-
tion” that illustrate the applicability of proposed CS FNS f -ELECTRE I method.

4.1. Case study: Best poverty alleviation program

4.1.1. Problem prominence

Currently, an estimation reveals that COVID-19 caused the biggest rise in global poverty since
1998 and this can be observes through Figure 3 in which poverty rates are compared before and after
this pandemic disease, (https://en.wikipedia.org/wiki/Brookings Institution). This worldwide disease
impelled 49 million population into utmost poverty due to the sudden lock downs in major cities.
Unfortunately, India, Nigeria, Central African Republic, Bangladesh etc., are among the countries
whose poverty level is highly increased by COVID-19 as this pandemic dragged millions of people
of these countries into poverty. This international issue of poverty badly influence the economy of
the developing countries. However, the poorest people are predominantly at substantial risk from
polluted environmental, climate crisis and struggle for resources. As reported by UNICEF, about
22,000 children pass away daily due to poverty, therefore, it is necessary to counter the poverty problem
before massive losses in the world.

Figure 3. Countries with largest increase in extreme poverty before and after COVID-19.

4.1.2. Problem description

It is necessary for poor countries to make some poverty alleviation policies that might enhance the
socio-economic growth of the countries. Since the poverty alleviation is perceived by the worldwide
community as a substantial part of the socio-economic legislative framework for all the countries. The
selection of strategy for poverty alleviation is the most complex and difficult task. For the compila-
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tion of best poverty alleviation strategy, K1, K2 and K3 are the decision-experts from socio-economic
field. In the global campaign against poverty, there have been numerous strategies that are successfully
rationalize the widespread problem. The five topmost poverty alleviation strategies, selected by the
decision-experts from the source, https://www.borgenproject.org, are given as:

Brazil’s poverty alleviation program (U1): During the time period of COVID-19, a poverty index
decrease in Brazil demonstrates Brazil’s victorious attempts with its corona voucher program.

United states poverty alleviation program (U2): The government policies of United states were still
retained as of successfully which have reduced poverty on Native American.

China’s poverty alleviation program (U3): China’s poverty elimination campaign amid this unpre-
dictable pandemic are commendable. The poverty reduction efforts indeed enhanced the living
standard of many poor families in rural China.

Canada’s poverty alleviation program (U4): Canada has applied poverty alleviation programs like
the Guaranteed Income Supplement and the National Housing Strategy and consistently reduced
poverty with these poverty elimination campaign.

Denmark’s poverty alleviation program (U5): The social welfare system of Denmark provides sup-
ports to the unwaged, the disabled and the aged among others, therefore, the people in Denmark
have good health, low child death rates and have approach to free education.

4.1.3. Attribute selection

This section re-considers the attributes discussed by Meng et al. [4] for poverty alleviation, which
helps to determine appropriate program to reduce poverty. The selection of prime poverty alleviation
program is based on a number of factors like: micro-financing, local benefits, social security, flexibility,
personnel demands, good governance, society benefit, economic benefit, etc. However, Meng et al. [4]
allocated a poverty alleviation project based on eight conflicting attributes. But according to the socio-
economic conditions of countries, four significant and preferable attributes are:

Flexibility(A1 :) It would require to insure that the program can be flexibly funded and pursued to
such extent that it does not jeopardize socio-economic stability of a country. The most flexible
poverty alleviation program is favored.

Operability (A2 :) In the context of poverty alleviation strategy, operatability is a measure of how
well a poverty reduction program minimizes the energy and time required for unexpected
interventions. A highly operable poverty alleviation and socio-economic strategy is preferable.

Society benefit(A3 :) The poverty alleviation strategy also comprehends some priority measures
like society benefits which further include personnel demands, local benefits and social security.
Therefore, experts integrate poverty reduction programs into a uniform framework.

Economic growth(A4 :) Economic growth is an effective factor for poverty eradication and enhancing
the standard of living in poor countries. It is required to see that the selected strategy implemented
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in such a way that it does not put growth objectives in danger. A successful poverty eradication
program certainly have at its focus to boost swift and robust economic growth.

The non-binary evaluation are kept in Table 7 that are applied by the decision-experts to analyze
the importance of the alternatives along with related attributes. Decision-experts associated a complex
spherical fuzzy number with each ordered grade, however, initially data is collected by the socio-
economic researchers.

4.1.4. Evaluation process

The sequential procedure to identify the best poverty alleviation program for the country of Mada-
gascar by CS FNS f -ELECTRE I method contains the following steps:

Step 1: Acknowledging the behavior of attributes in the concerned problem, experts framed 6-soft set
that is organized in Table 7, where

Rank ‘5’ indicates Remarkably Good (RG),

Rank ‘4’ indicates Very Good (VG) ,

Rank ‘3’ indicates Fairly Good (FG) ,

Rank ‘2’ indicates Fairly Bad (FB),

Rank ‘1’ indicates Very Bad (VB),

Rank ‘0’ indicates Remarkably Bad (RB).

Likewise, the experts provided grading criteria, arranged in Table 6, for expressing the non-binary
assessments in the form of CSFNS f PMs Y1, Y2 and Y3 that are organized in Tables 8–10,
respectively. Table 6 impersonate as descriptor which is thereby given a clear guidance about the
rationing of CS F6S f Ns that what CS F6S f Ns must be assigned to the initial grades (given in
Table 7).

Table 6. Grading criteria for CS F6S f PMs.

mr
s/U Satisfaction degree Neutral membership dissatisfaction degree

grades grs 2πφrs qrs 2πηrs hrs 2πγrs

mr
s = 0 [0, 0.15) [0, 0.30π) [0, 0.0170) [0, 0.0340π) (0.90, 1.00] [1.80π, 2.00π]

mr
s = 1 [0.15, 0.30) [0.30π, 0.60π) [0.0170, 0.0819) [0.0340π, 0.1638π) (0.75, 0.90] [1.50π, 1.80π)

mr
s = 2 [0.30, 0.50) [0.60π, 1.00π) [0, 0.0170) [0, 0.0340π) (0.50, 0.75] [1.00π, 1.50π)

mr
s = 3 [0.50, 0.75) [1.00π, 1.50π) [0.0170, 0.0819) [0.0340π, 0.1638π) (0.30, 0.50] [0.60π, 1.00π)

mr
s = 4 [0.75, 0.90) [1.50π, 1.80π) [0, 0.0170) [0, 0.0340π) (0.15, 0.30] [0.30π, 0.60π)

mr
s = 5 [0.90, 1.00] [1.80π, 2.00π] [0.0170, 0.0819) [0.0340π, 0.1638π) [0, 0.15] [0, 0.30π)
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Table 7. Decision-makers opinions regarding to attributes.

Attributes Alternatives Q1 Q2 Q3

A1 U1 3 3 4
U2 2 1 3
U3 5 4 4
U4 2 3 3
U5 1 2 2

A2 U1 2 2 3
U2 1 3 2
U3 4 4 3
U4 1 2 1
U5 0 1 1

A3 U1 4 4 3
U2 3 2 2
U3 4 3 4
U4 4 3 3
U5 3 2 3

A4 U1 3 3 3
U2 2 2 1
U3 4 3 4
U4 3 2 2
U5 1 1 2

Table 8. CS FNS f PMs of decision-maker Q1.

A1 A2

U1 (3, (0.510ei2π(0.520), 0.028ei2π(0.029), 0.450ei2π(0.460))) (2, (0.350ei2π(0.340), 0.014ei2π(0.015), 0.780ei2π(0.790)))
U2 (2, (0.350ei2π(0.360), 0.016ei2π(0.017), 0.820ei2π(0.810))) (1, (0.200ei2π(0.210), 0.026ei2π(0.027), 0.960ei2π(0.970)))
U3 (5, (0.980ei2π(0.970), 0.020ei2π(0.030), 0.010ei2π(0.020))) (4, (0.820ei2π(0.830), 0.009ei2π(0.008), 0.210ei2π(0.220)))
U4 (2, (0.480ei2π(0.470), 0.011ei2π(0.012), 0.800ei2π(0.790))) (1, (0.240ei2π(0.250), 0.020ei2π(0.019), 0.930ei2π(0.940)))
U5 (1, (0.190ei2π(0.200), 0.025ei2π(0.026), 0.950ei2π(0.960))) (0, (0.010ei2π(0.200), 0.012ei2π(0.013), 0.989ei2π(0.988)))

A3 A4

U1 (4, (0.780ei2π(0.790), 0.012ei2π(0.013), 0.210ei2π(0.220))) (3, (0.560ei2π(0.550), 0.034ei2π(0.033), 0.500ei2π(0.490)))
U2 (3, (0.550ei2π(0.540), 0.033ei2π(0.032), 0.490ei2π(0.480))) (2, (0.350ei2π(0.340), 0.016ei2π(0.015), 0.800ei2π(0.790)))
U3 (4, (0.770ei2π(0.780), 0.011ei2π(0.012), 0.220ei2π(0.230))) (4, (0.840ei2π(0.830), 0.007ei2π(0.009), 0.200ei2π(0.210)))
U4 (4, (0.780ei2π(0.790), 0.012ei2π(0.013), 0.210ei2π(0.220))) (3, (0.520ei2π(0.530), 0.029ei2π(0.030), 0.460ei2π(0.470)))
U5 (3, (0.540ei2π(0.530), 0.032ei2π(0.031), 0.480ei2π(0.490))) (1, (0.160ei2π(0.170), 0.021ei2π(0.022), 0.960ei2π(0.970)))

Step 2: The CS FNS f AW operator and the experts weight vector a = [0.3595, 0.3512, 0.2893]T are
used for the development of ACS FNS f PM Y = (Yrs)v×v, given in Table 11.

Step 3: The CS FNS f -weights of attributes are evaluated by employing the non-binary assessment
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Table 9. CS FNS f PMs of decision-maker Q2.

A1 A2

U1 (3, (0.670ei2π(0.680), 0.042ei2π(0.041), 0.570ei2π(0.560))) (2, (0.440ei2π(0.430), 0.016ei2π(0.017), 0.880ei2π(0.870)))
U2 (1, (0.280ei2π(0.290), 0.037ei2π(0.038), 0.950ei2π(0.940))) (3, (0.570ei2π(0.580), 0.037ei2π(0.036), 0.520ei2π(0.530)))
U3 (4, (0.830ei2π(0.820), 0.016ei2π(0.017), 0.260ei2π(0.250))) (4, (0.840ei2π(0.830), 0.015ei2π(0.016), 0.270ei2π(0.260)))
U4 (3, (0.620ei2π(0.630), 0.042ei2π(0.041), 0.550ei2π(0.560))) (2, (0.430ei2π(0.420), 0.014ei2π(0.016), 0.870ei2π(0.860)))
U5 (2, (0.310ei2π(0.320), 0.012ei2π(0.011), 0.077ei2π(0.076))) (1, (0.230ei2π(0.220), 0.029ei2π(0.028), 0.950ei2π(0.960)))

A3 A4

U1 (4, (0.800ei2π(0.790), 0.014ei2π(0.013), 0.210ei2π(0.220))) (3, (0.650ei2π(0.660), 0.044ei2π(0.043), 0.590ei2π(0.580)))
U2 (2, (0.390ei2π(0.380), 0.012ei2π(0.013), 0.840ei2π(0.830))) (2, (0.400ei2π(0.390), 0.013ei2π(0.014), 0.850ei2π(0.840)))
U3 (3, (0.710ei2π(0.720), 0.020ei2π(0.030), 0.450ei2π(0.460))) (3, (0.720ei2π(0.730), 0.019ei2π(0.020), 0.470ei2π(0.450)))
U4 (3, (0.600ei2π(0.610), 0.039ei2π(0.041), 0.540ei2π(0.550))) (2, (0.420ei2π(0.410), 0.014ei2π(0.015), 0.860ei2π(0.850)))
U5 (2, (0.370ei2π(0.360), 0.011ei2π(0.010), 0.820ei2π(0.830))) (1, (0.240ei2π(0.230), 0.031ei2π(0.030), 0.940ei2π(0.950)))

Table 10. CS FNS f PMs of decision-maker Q3.

A1 A2

U1 (4, (0.800ei2π(0.810), 0.013ei2π(0.014), 0.280ei2π(0.270))) (3, (0.650ei2π(0.640), 0.043ei2π(0.041), 0.580ei2π(0.590)))
U2 (3, (0.580ei2π(0.570), 0.048ei2π(0.049), 0.690ei2π(0.680))) (2, (0.480ei2π(0.470), 0.012ei2π(0.013), 0.790ei2π(0.800)))
U3 (4, (0.890ei2π(0.880), 0.013ei2π(0.014), 0.320ei2π(0.310))) (3, (0.690ei2π(0.680), 0.044ei2π(0.040), 0.570ei2π(0.560)))
U4 (3, (0.650ei2π(0.630), 0.045ei2π(0.046), 0.610ei2π(0.620))) (1, (0.280ei2π(0.290), 0.039ei2π(0.038), 0.930ei2π(0.940)))
U5 (2, (0.490ei2π(0.480), 0.011ei2π(0.012), 0.850ei2π(0.860))) (1, (0.260ei2π(0.270), 0.042ei2π(0.041), 0.950ei2π(0.960)))

A3 A4

U1 (3, (0.640ei2π(0.630), 0.038ei2π(0.037), 0.530ei2π(0.520))) (3, (0.660ei2π(0.640), 0.041ei2π(0.042), 0.600ei2π(0.590)))
U2 (2, (0.470ei2π(0.490), 0.010ei2π(0.011), 0.810ei2π(0.820))) (1, (0.270ei2π(0.280), 0.040ei2π(0.039), 0.940ei2π(0.950)))
U3 (4, (0.880ei2π(0.870), 0.013ei2π(0.013), 0.310ei2π(0.300))) (4, (0.860ei2π(0.850), 0.012ei2π(0.013), 0.290ei2π(0.280)))
U4 (3, (0.640ei2π(0.620), 0.046ei2π(0.047), 0.620ei2π(0.630))) (2, (0.480ei2π(0.490), 0.010ei2π(0.011), 0.760ei2π(0.770)))
U5 (3, (0.520ei2π(0.530), 0.052ei2π(0.053), 0.720ei2π(0.730))) (2, (0.470ei2π(0.460), 0.013ei2π(0.014), 0.870ei2π(0.880)))

of experts about attributes that are pinned up in Table 12. The weight vectors of attributes are
aggregated by CS FNS f AW operator is given as:

χ =


(5, (0.92ei2π(0.93), 0.021ei2π(0.022), 0.03ei2π(0.04)))
(4, (0.85ei2π(0.88), 0.012ei2π(0.013), 0.24ei2π(0.25)))
(4, (0.85ei2π(0.87), 0.013ei2π(0.014), 0.24ei2π(0.25)))
(3, (0.70ei2π(0.69), 0.018ei2π(0.019), 0.46ei2π(0.47)))

 .

Step 4: The AWCS FNS f PM Y = (Yrs)v×w is figured out in Table 13 and aggregated by Eq (3.1).

Step 5: The score and accuracy values ofYrs are organized in Table 14. The score and accuracy values
of AWCS FNS f PM are exploited for CS FNS f concordance and discordance sets.
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Table 11. Aggregated complex spherical fuzzy N-Soft performance matrix.

A1 A2

U1 (4, (0.6770ei2π(0.6876), 0.0258ei2π(0.0265), 0.4262ei2π(0.4224))) (3, (0.4952ei2π(0.4852), 0.0202ei2π(0.0210), 0.7469ei2π(0.7510)))
U2 (3, (0.4202ei2π(0.4203), 0.0295ei2π(0.0306), 0.8214ei2π(0.8113))) (3, (0.4518ei2π(0.4554), 0.02353ei2π(0.0242), 0.7316ei2π(0.7419)))
U3 (5, (0.9316ei2π(0.9171), 0.0170ei2π(0.0162), 0.3062ei2π(0.3056))) (4, (0.7990ei2π(0.7972), 0.044ei2π(0.0400), 0.5700ei2π(0.5600)))
U4 (3, (0.5875ei2π(0.5820), 0.0264ei2π(0.0272), 0.6484ei2π(0.6526))) (2, (0.3319ei2π(0.3320), 0.0214ei2π(0.0218), 0.9084ei2π(0.9110)))
U5 (2, (0.3468ei2π(0.3471), 0.0152ei2π(0.0153), 0.8544ei2π(0.8566))) (1, (0.1964ei2π(0.1967), 0.0235ei2π(0.0237), 0.9638ei2π(0.9700)))

A3 A4

U1 (4, (0.7562ei2π(0.7543), 0.0176ei2π(0.0176), 0.2744ei2π(0.2822))) (3, (0.6241ei2π(0.6188), 0.0392ei2π(0.0388), 0.5586ei2π(0.5486)))
U2 (3, (0.4782ei2π(0.4769), 0.0164ei2π(0.0171), 0.6848ei2π(0.6792))) (2, (0.3492ei2π(0.3437), 0.0194ei2π(0.0193), 0.8562ei2π(0.8514)))
U3 (4, (0.7950ei2π(0.7957), 0.0142ei2π(0.0169), 0.3124ei2π(0.3168))) (4, (0.8138ei2π(0.8080), 0.0116ei2π(0.0132), 0.3006ei2π(0.2982)))
U4 (4, (0.6899ei2π(0.6934), 0.0267ei2π(0.0282), 0.4002ei2π(0.4114))) (3, (0.4762ei2π(0.4806), 0.0165ei2π(0.0176), 0.6626ei2π(0.6675)))
U5 (3, (0.4840ei2π(0.4806), 0.0253ei2π(0.0243), 0.6514ei2π(0.6617))) (2, (0.3119ei2π(0.3061), 0.0210ei2π(0.0215), 0.9262ei2π(0.9362)))

Table 12. Non-binary assessment of attribute.

Attributes Q1 Q2 Q3

A1 5 4 5

A2 4 4 4

A3 4 3 4

A4 3 3 4

Table 13. Aggregated weighted complex spherical fuzzy N-Soft performance matrix.

A1 A2

U1 (4, (0.6228ei2π(0.6394), 0.0333ei2π(0.0246), 0.6604ei2π(0.6624))) (3, (0.4210ei2π(0.4269), 0.0176ei2π(0.0183), 0.7469ei2π(0.7510)))
U2 (3, (0.3866ei2π(0.3909), 0.0263ei2π(0.0274), 0.8068ei2π(0.7921))) (3, (0.3841ei2π(0.4008), 0.0204ei2π(0.0210), 0.6459ei2π(0.6538)))
U3 (5, (0.8572ei2π(0.8529), 0.0190ei2π(0.0209), 0.0752ei2π(0.0939))) (4, (0.6792ei2π(0.7015), 0.0152ei2π(0.0148), 0.2790ei2π(0.2820)))
U4 (3, (0.5405ei2π(0.5412), 0.0242ei2π(0.0250), 0.6340ei2π(0.6336))) (2, (0.2822ei2π0.2921), 0.0185ei2π(0.0190), 0.8154ei2π(0.8154)))
U5 (2, (0.3190ei2π(0.3228), 0.0188ei2π(0.0195), 0.8398ei2π(0.8373))) (1, (0.1670ei2π(0.1731), 0.0204ei2π(0.0206), 0.8690ei2π(0.8722)))

A3 A4

U1 (4, (0.6428ei2π(0.6562), 0.0158ei2π(0.0161), 0.2589ei2π(0.2675))) (3, (0.4369ei2π(0.4270), 0.0340ei2π(0.0336), 0.5164ei2π(0.5138)))
U2 (3, (0.4064ei2π(0.4150), 0.0149ei2π(0.0158), 0.6018ei2π(0.5950))) (2, (0.2445ei2π(0.2372), 0.0187ei2π(0.0192), 0.7422ei2π(0.7387)))
U3 (4, (0.6758ei2π(0.6922), 0.0136ei2π(0.0156), 0.2832ei2π(0.2892))) (3, (0.5696ei2π(0.5575), 0.0158ei2π(0.0168), 0.4046ei2π(0.4119)))
U4 (4, (0.5864ei2π(0.6032), 0.0232ei2π(0.0244), 0.3488ei2π(0.3591))) (3, (0.3334ei2π(0.3316), 0.0178ei2π(0.0183), 0.5881ei2π(0.5940)))
U5 (3, (0.4114ei2π(0.4182), 0.0219ei2π(0.0212), 0.5706ei2π(0.5787))) (2, (0.2184ei2π(0.2112), 0.0196ei2π(0.0203), 0.8020ei2π(0.8108)))

Step 6: The CS FNS f concordance sets Cρψ, C
′

ρψ, and C
′′

ρψ are manifested by employing the Eqs
(3.2)–(3.4). The CS FNS f -strong concordance set Cρψ, CS FNS f -mid range concordance set
C
′

ρψ and CS FNS f -weak concordance set C
′′

ρψ accorded as:
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Table 14. Score and accuracy degrees of AWCS FNS f PM.

A1 A2 A3 A4

U1 (1.1021, 1.7715) (−0.1562, 1.5952) (1.3446, 1.6230) (0.2002, 1.2662)
U2 (−0.6176, 1.9422) (−0.1774, 1.5138) (−0.0193, 1.4142) (−0.8213, 1.3733)
U3 (2.4469, 2.4774) (1.4356, 1.7514) (1.4116, 1.7402) (0.6614, 1.3292)
U4 (0.1405, 1.7498) (−1.0054, 1.6554) (1.0960, 1.5996) (−0.1182, 1.2804)
U5 (−1.0414, 1.7734) (−1.4190, 1.6148) (0.0426, 1.3655) (−1.0492, 1.5538)

Cρψ =


- {2,3} {} {1,3} {3}
{} - {} {} {1}

{1,2,3,4} {1,2,3} - {1,2,3,4} {1,2,3}
{} {3} {} - {2,3}
{} {} {} {} -

 ,

C
′

ρψ =


- {1,4} {} {2,4} {1,2,4}
{} - {2} {2,4} {}

{} {4} - {} {4}
{} {1,4} {} - {1,4}
{} {3} {} {} -

 ,

C
′′

ρψ =


- {} {} {} {}

{} - {} {} {}

{} {} - {} {}

{} {} {} - {}

{} {} {} {} -

 .

Step 7: The CS FNS f discordance sets Dρψ, D
′

ρψ and D
′′

ρψ are calculated using Eqs (3.5)–(3.7).
The CS FNS f -strong discordance set Dρψ, CS FNS f -mid range discordance set D

′

ρψ and
CS FNS f -weak discordance setD

′′

ρψ given as:

Dρψ =


- {} {1,2,3,4} {} {1}
{2,3} - {1,2,3} {3} {}

{} {} - {} {}

{1,3} {} {1,2,3,4} - {}

{3} {1} {1,2,3} {2,3} -

 ,

D
′

ρψ =


- {} {} {} {}

{1,4} - {4} {1,4} {3}
{} {} - {} {}

{2,4} {2} {} - {}

{1,2,4} {2,4} {4} {1,4} -

 ,

D
′′

ρψ =


- {} {} {} {}

{} - {} {} {}

{} {} - {} {}

{} {} {} - {}

{} {} {} {} -

 .
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Step 8: The CS FNS f concordance matrix XRρψ is computed by utilizing the rationed weights
(ECρψ

,EC′ρψ
,EC′′ρψ

) and concordance indices Rρψ that are organized in Eq (4.1) and in Table 15,
respectively. The CS FNS f concordance indices Rρψ are calculated with the help of Eq (3.8).

(ECρψ
,EC′ρψ

,EC′′ρψ
) = (1,

2
3
,

1
3

). (4.1)

The score values of CS FNS f concordance matrix XRρψ are given by:

S c(XRρψ) =


- 2.9735 0 2.9805 2.9628
0 - 0 2.0164 2.9256

2.9900 2.9872 - 2.9900 2.9872
0 2.4793 0 - 2.9735
0 1.9989 0 0 -


. (4.2)

Table 15. CS FNS f concordance matrix.
U1 U2

U1 - (5, (0.9928ei2π(0.9939), 8.15 × 10−7ei2π(1.02×10−6), 0.0033ei2π(0.0044)))
U2 0 -
U3 (5, (0.9969ei2π(0.9980), 5.89 × 10−8ei2π(7.60×10−8), 0.0008ei2π(0.0012))) (5, (0.9962ei2π(0.9974), 2.25 × 10−7ei2π(2.85×10−7), 0.0010ei2π(0.0015)))
U4 0 (5, (0.8501ei2π(0.8701), 6.80 × 10−5ei2π(7.82×10−5), 0.0138ei2π(0.0176)))
U5 0 (4, (0.8500ei2π(0.8700), 0.013ei2π(0.014), 0.2400ei2π(0.2500)))

U3 U4

U1 0 (5, (0.9942ei2π(0.9960), 9.82 × 10−7ei2π(1.21×10−6), 0.0016ei2π(0.0024)))
U2 0 (4, (0.8500ei2π(0.8800), 0.012ei2π(0.013), 0.2400ei2π(0.2500)))
U3 - (5, (0.9969ei2π(0.9980), 5.89 × 10−8ei2π(7.60×10−8), 0.0008ei2π(0.0012)))
U4 0 -
U5 0 0

U5

U1 (5, (0.9891ei2π(0.9922), 3.56 × 10−7ei2π(4.32×10−6), 0.0053ei2π(0.0070)))
U2 (5, (0.9789ei2π(0.9836), 6.08 × 10−5ei2π(7.06×10−5), 0.0044ei2π(0.0062)))
U3 (5, (0.9962ei2π(0.9974), 2.25 × 10−7ei2π(2.85×10−7), 0.0010ei2π(0.0015)))
U4 (5, (0.9928ei2π(0.9939), 8.15 × 10−7ei2π(1.02×10−6), 0.0033ei2π(0.0044)))
U5 -

Step 9: The CS FNS f discordance matrix XKρψ is composed of discordance indices that are computed
by employing the rationed weights (EDρψ

,ED′ρψ
,ED′′ρψ

) and normalized Euclidean distances that are
sorted in Eq (4.3) and in Table 16, respectively, along with Eq (3.9).

(EDρψ
,ED′ρψ

,ED′′ρψ
) = (1,

2
3
,

1
3

). (4.3)
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The CS FNS f discordance matrix XKρψ is constituted as follow:

XKρψ =


- 0 1 0 0
1 - 1 1 0.0925
0 0 - 0 0
1 0.3079 1 - 0

0.9007 0.6666 0.9924 0.9226 -


. (4.4)

Table 16. Normalized Euclidean distances d(Yρv,Yvψ).

Y11 Y21 Y31 Y41 Y51 Y12 Y22 Y32 Y42 Y52

Y11 - 0.4024 0.3170 0.2300 0.4954 Y12 - 0.0214 0.3580 0.2014 0.2972
Y21 - - 0.6858 0.1956 0.1151 Y22 - - 0.3616 0.2048 0.2996
Y31 - - - 0.5257 0.7848 Y32 - - - 0.2048 0.6489
Y41 - - - - 0.2710 Y42 - - - - 0.0968
Y51 - - - - - Y52 - - - - -

Y13 Y23 Y33 Y43 Y53 Y14 R24 Y34 Y44 Y54

Y13 - 0.4507 0.2321 0.1604 0.5882 Y14 - 0.0422 0.0266 0.0454 0.0474
Y23 - - 0.5928 0.4436 0.0415 Y24 - - 0.6604 0.3078 0.1459
Y33 - - - 0.1726 0.5642 Y34 - - - 0.3906 0.7908
Y43 - - - - 0.4121 Y44 - - - - 0.4466
Y53 - - - - - Y54 - - - - -

Step 10: The concordance threshold value (estimated by Eq (3.10)) is 0.1495. The score values
of Rρψ, pinned up in Eq (5.8) are employed for the construction of the CS FNS f dominance
concordance matrix that is as follow:

κ =


- 1 0 1 1
0 - 0 1 1
1 1 - 1 1
0 1 0 - 1
0 1 0 0 -


.

Step 11: The items of the CS FNS f discordance matrix are collated with the discordance threshold
value τ = 0.4941 (evaluated by Eq (3.12)) for the constitution of CS FNS f dominance discor-
dance matrix Υ, given as:
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Υ =


- 1 0 1 1
0 - 0 0 1
1 1 - 1 1
0 1 0 - 1
0 0 0 0 -


,

Step 12: The aggregated outranking Boolean matrix by unifying the entities of CS FNS f Boolean
concordance and discordance matrices. The aggregated outranking Boolean matrix < is given
by:

< =


- 1 0 1 1
0 - 0 0 1
1 1 - 1 1
0 1 0 - 1
0 0 0 0 -


.

Step 13: The outranking graph (shown in Figure 4) depicts the MAGDM problem clearly as well as
stated that U3 outperform from all the other alternatives. A descriptive analysis about alternatives
from Figure 4 is pinned up in Table 17 and indicate that the alternative U3 is best strategy for the
affected countries.

Figure 4. Outranking decision-graph.

Step 14: The concordant outranking index Jr, discordant outranking index Jr and net outranking index
<r are in Table 18. Table 18 indicates that U3 is best choice as well as the linear ranking of the
alternatives is given as: U3 � U1 � U4 � U2 � U5.
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Table 17. Prospective of decision graph.

Alternatives Submissive alternatives Incomparable alternatives
U1 U2, U4, U5 -
U2 U5 -
U3 U1, U2, U4, U5 -
U4 U2, U5 -
U5 - -

Table 18. For linear ranking of the alternatives.

Alternatives Jr Jr <r Ranking
U1 5.9268 -1.9007 7.8276 2
U2 -5.4968 2.1179 -7.6148 4
U3 11.9546 -3.9924 15.9471 1
U4 -2.5342 0.3852 -2.9195 3
U5 -9.8504 3.3900 -13.2404 5

5. Comparative study

Here, we demonstrate a detailed comparison of our proposed model with the existing complex
spherical fuzzy ELECTRE I (CS F-ELECTRE I) method, proposed by Akram et al. [30].

5.1. Comparison with CS F-ELECTRE I approach

We accomplish the tremendous CS F-ELECTRE I method to identify the best poverty alleviation
program for the poor countries as well as assimilate the results to endorse the legitimacy and verac-
ity of the contemplated technique. To address the CS F-ELECTRE I methodology for the solution of
considered MAGDM problem, the non-binary evaluation is withdrawn from each CS FNS f N. Conse-
quently, CS FPMs are originated corresponding to each expert Qb along with the normalized weights
a = [0.3595, 0.3512, 0.2893]T of of decision-experts.

Step 1: The non-binary evaluation of the alternatives by the experts are classified in Table 7, in which
each ordered grade represents a linguistic term that is further superseded by the CS FNs. Tables
19–21 indicate the complex spherical fuzzy performance matrix (CSFPM) of the decision-expert
Q1, Q2 and Q3, respectively.

Step 2: The collective measures of all decision-experts is attained by integrating the self-sufficient
judgment of each decision-expert through complex spherical fuzzy weighted average (CS FWA)
operator in the following manner:

Yrs = CS FWAa(D(1)
rs ,D

(2)
rs , . . . ,D

(b)
rs )

=

(√√√
1 −

b∏
p=1

(1 − (g(p)
rs )2)ape

i2π

√√√√√√√√√
1−

b∏
p=1

(1 − (φ(p)
rs )2)ap
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Table 19. CS FPMs of decision-maker Q1.

A1 A2

U1 (0.510ei2π(0.520), 0.028ei2π(0.029), 0.450ei2π(0.460)) (0.350ei2π(0.340), 0.014ei2π(0.015), 0.780ei2π(0.790))
U2 (0.350ei2π(0.360), 0.016ei2π(0.017), 0.820ei2π(0.810)) (0.200ei2π(0.210), 0.026ei2π(0.027), 0.960ei2π(0.970))
U3 (0.980ei2π(0.970), 0.020ei2π(0.030), 0.010ei2π(0.020)) (0.820ei2π(0.830), 0.009ei2π(0.008), 0.210ei2π(0.220))
U4 (0.480ei2π(0.470), 0.011ei2π(0.012), 0.800ei2π(0.790)) (0.240ei2π(0.250), 0.020ei2π(0.019), 0.930ei2π(0.940))
U5 (0.190ei2π(0.200), 0.025ei2π(0.026), 0.950ei2π(0.960)) (0.010ei2π(0.200), 0.012ei2π(0.013), 0.989ei2π(0.988))

A3 A4

U1 (0.780ei2π(0.790), 0.012ei2π(0.013), 0.210ei2π(0.220)) (0.560ei2π(0.550), 0.034ei2π(0.033), 0.500ei2π(0.490))
U2 (0.550ei2π(0.540), 0.033ei2π(0.032), 0.490ei2π(0.480)) (0.350ei2π(0.340), 0.016ei2π(0.015), 0.800ei2π(0.790))
U3 (0.770ei2π(0.780), 0.011ei2π(0.012), 0.220ei2π(0.230)) (0.840ei2π(0.830), 0.007ei2π(0.009), 0.200ei2π(0.210))
U4 (0.780ei2π(0.790), 0.012ei2π(0.013), 0.210ei2π(0.220)) (0.520ei2π(0.530), 0.029ei2π(0.030), 0.460ei2π(0.470))
U5 (0.540ei2π(0.530), 0.032ei2π(0.031), 0.480ei2π(0.490)) (0.160ei2π(0.170), 0.021ei2π(0.022), 0.960ei2π(0.970))

Table 20. CS FPMs of decision-maker Q2.

A1 A2

U1 (0.670ei2π(0.680), 0.042ei2π(0.041), 0.570ei2π(0.560)) (0.440ei2π(0.430), 0.016ei2π(0.017), 0.880ei2π(0.870))
U2 (0.280ei2π(0.290), 0.037ei2π(0.038), 0.950ei2π(0.940)) (0.570ei2π(0.580), 0.037ei2π(0.036), 0.520ei2π(0.530))
U3 (0.830ei2π(0.820), 0.016ei2π(0.017), 0.260ei2π(0.250)) (0.840ei2π(0.830), 0.015ei2π(0.016), 0.270ei2π(0.260))
U4 (0.620ei2π(0.630), 0.042ei2π(0.041), 0.550ei2π(0.560)) (0.430ei2π(0.420), 0.014ei2π(0.016), 0.870ei2π(0.860))
U5 (0.310ei2π(0.320), 0.012ei2π(0.011), 0.077ei2π(0.076)) (0.230ei2π(0.220), 0.029ei2π(0.028), 0.950ei2π(0.960))

A3 A4

U1 (0.800ei2π(0.790), 0.014ei2π(0.013), 0.210ei2π(0.220)) (0.650ei2π(0.660), 0.044ei2π(0.043), 0.590ei2π(0.580))
U2 (0.390ei2π(0.380), 0.012ei2π(0.013), 0.840ei2π(0.830)) (0.400ei2π(0.390), 0.013ei2π(0.014), 0.850ei2π(0.840))
U3 (0.710ei2π(0.720), 0.020ei2π(0.030), 0.450ei2π(0.460)) (0.720ei2π(0.730), 0.019ei2π(0.020), 0.470ei2π(0.450))
U4 (0.600ei2π(0.610), 0.039ei2π(0.041), 0.540ei2π(0.550)) (0.420ei2π(0.410), 0.014ei2π(0.015), 0.860ei2π(0.850))
U5 (0.370ei2π(0.360), 0.011ei2π(0.010), 0.820ei2π(0.830)) (0.240ei2π(0.230), 0.031ei2π(0.030), 0.940ei2π(0.950))

,

b∏
p=1

[q(p)
rs ]ape

i2π

b∏
p=1

[η(p)
rs ]ap

,

b∏
p=1

[h(p)
rs ]ape

i2π

b∏
p=1

[γ(p)
rs ]ap )

. (5.1)

The aggregated complex spherical fuzzy performance matrix (ACSFPM) is accounted via Eq
(5.1) and set out in the Table 22.

Step 3: The CSF-weight vector of attributes is aggregated by CS FWA operator as follow:

ts = CS FWAa(t(1)
s , t

(2)
s , . . . , t

(b)
s )

= a1t(1)
s ⊕ a2t(2)

s ⊕ . . . ⊕ abt(b)
s
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Table 21. CS FPMs of decision-maker Q3.

A1 A2

U1 (0.800ei2π(0.810), 0.013ei2π(0.014), 0.280ei2π(0.270)) (0.650ei2π(0.640), 0.043ei2π(0.041), 0.580ei2π(0.590))
U2 (0.580ei2π(0.570), 0.048ei2π(0.049), 0.690ei2π(0.680)) (0.480ei2π(0.470), 0.012ei2π(0.013), 0.790ei2π(0.800))
U3 (0.890ei2π(0.880), 0.013ei2π(0.014), 0.320ei2π(0.310)) (0.690ei2π(0.680), 0.044ei2π(0.040), 0.570ei2π(0.560))
U4 (0.650ei2π(0.630), 0.045ei2π(0.046), 0.610ei2π(0.620)) (0.280ei2π(0.290), 0.039ei2π(0.038), 0.930ei2π(0.940))
U5 (0.490ei2π(0.480), 0.011ei2π(0.012), 0.850ei2π(0.860)) (0.260ei2π(0.270), 0.042ei2π(0.041), 0.950ei2π(0.960))

A3 A4

U1 (0.640ei2π(0.630), 0.038ei2π(0.037), 0.530ei2π(0.520)) (0.660ei2π(0.640), 0.041ei2π(0.042), 0.600ei2π(0.590))
U2 (0.470ei2π(0.490), 0.010ei2π(0.011), 0.810ei2π(0.820)) (0.270ei2π(0.280), 0.040ei2π(0.039), 0.940ei2π(0.950))
U3 (0.880ei2π(0.870), 0.013ei2π(0.013), 0.310ei2π(0.300)) (0.860ei2π(0.850), 0.012ei2π(0.013), 0.290ei2π(0.280))
U4 (0.640ei2π(0.620), 0.046ei2π(0.047), 0.620ei2π(0.630)) (0.480ei2π(0.490), 0.010ei2π(0.011), 0.760ei2π(0.770))
U5 (0.520ei2π(0.530), 0.052ei2π(0.053), 0.720ei2π(0.730)) (0.470ei2π(0.460), 0.013ei2π(0.014), 0.870ei2π(0.880))

Table 22. Aggregated complex spherical fuzzy performance matrix.

A1 A2

U1 (0.6770ei2π(0.6876), 0.0258ei2π(0.0265), 0.4262ei2π(0.4224)) (0.4952ei2π(0.4852), 0.0202ei2π(0.0210), 0.7469ei2π(0.7510))
U2 (0.4202ei2π(0.4203), 0.0295ei2π(0.0306), 0.8214ei2π(0.8113)) (0.4518ei2π(0.4554), 0.0235ei2π(0.0242), 0.7316ei2π(0.7419))
U3 (0.9316ei2π(0.9171), 0.0170ei2π(0.0162), 0.3062ei2π(0.3056)) (0.7990ei2π(0.7972), 0.0440ei2π(0.0400), 0.5700ei2π(0.5600))
U4 (0.5875ei2π(0.5820), 0.0264ei2π(0.0272), 0.6484ei2π(0.6526)) (0.3319ei2π(0.3320), 0.0214ei2π(0.0218), 0.9084ei2π(0.9110))
U5 (0.3468ei2π(0.3471), 0.0152ei2π(0.0153), 0.8544ei2π(0.8566)) (0.1964ei2π(0.1967), 0.0235ei2π(0.0237), 0.9638ei2π(0.9700))

A3 A4

U1 (0.7562ei2π(0.7543), 0.0176ei2π(0.0176), 0.2744ei2π(0.2822)) (0.6241ei2π(0.6188), 0.0392ei2π(0.0388), 0.5586ei2π(0.5486))
U2 (0.4782ei2π(0.4769), 0.0164ei2π(0.0171), 0.6848ei2π(0.6792)) (0.3492ei2π(0.3437), 0.0194ei2π(0.0193), 0.8562ei2π(0.8514))
U3 (0.7950ei2π(0.7957), 0.0142ei2π(0.0169), 0.3124ei2π(0.3168)) (0.8138ei2π(0.8080), 0.0116ei2π(0.0132), 0.3006ei2π(0.2982))
U4 (0.6899ei2π(0.6934), 0.0267ei2π(0.0282), 0.4002ei2π(0.4114)) (0.4762ei2π(0.4806), 0.0165ei2π(0.0176), 0.6626ei2π(0.6675))
U5 (0.4840ei2π(0.4806), 0.0253ei2π(0.0243), 0.6514ei2π(0.6617)) (0.3119ei2π(0.3061), 0.0210ei2π(0.0215), 0.9262ei2π(0.9362))

=

(√√√
1 −

b∏
p=1

(1 − (g(p)
s )2)ape

i2π

√√√√√√√√√
1−

b∏
p=1

(1 − (φ(p)
s )2)ap

b∏
p=1

[q(p)
s ]ape

i2π

b∏
p=1

[δ(p)
s ]ap

,

b∏
p=1

[h(p)
s ]ape

i2π

b∏
p=1

[γ(p)
s ]ap )

,

where, t(p)
s , (p = 1, 2, 3) is a CSF-weight vector of sth attribute which is assessed by pth decision-

expert using Table 12. Consequently, the CSF-weight vector t = (t1, t2, . . . , tw)T is contoured
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as:

t =


(0.92ei2π(0.93), 0.021ei2π(0.022), 0.03ei2π(0.04))
(0.85ei2π(0.88), 0.012ei2π(0.013), 0.24ei2π(0.25))
(0.85ei2π(0.87), 0.013ei2π(0.014), 0.24ei2π(0.25))
(0.70ei2π(0.69), 0.018ei2π(0.019), 0.46ei2π(0.47))

 .
Step 4: To summarize the ACS FPMs with respect to the CSF-weights ts of the attributes aggregated

weighted complex spherical fuzzy performance matrix (AWCS FPM) is constructed whose enti-
ties are quantified as follow:

Yrs = Yrs ⊗ ts

=

(
grsgsei2πφrsφs ,

√
q2

rs + q2
s − q2

rsq2
se

i2π
√
η2

rs+η
2
s−η

2
rsη

2
s

,
√

h2
rs + h2

s − h2
rsh2

se
i2π
√
γ2

rs+γ
2
s−γ

2
rsγ

2
s

)
.

The AWCS FPM is sorted in Table 23.

Table 23. Aggregated weighted complex spherical fuzzy N-Soft performance matrix.

A1 A2

U1 (0.6228ei2π(0.6394), 0.0333ei2π(0.0246), 0.6604ei2π(0.6624)) (0.4210ei2π(0.4269), 0.0176ei2π(0.0183), 0.7469ei2π(0.7510))
U2 (0.3866ei2π(0.3909), 0.0263ei2π(0.0274), 0.8068ei2π(0.7921)) (0.3841ei2π(0.4008), 0.0204ei2π(0.0210), 0.6459ei2π(0.6538))
U3 (0.8572ei2π(0.8529), 0.0190ei2π(0.0209), 0.0752ei2π(0.0939)) (0.6792ei2π(0.7015), 0.0152ei2π(0.0148), 0.2790ei2π(0.2820))
U4 (0.5405ei2π(0.5412), 0.0242ei2π(0.0250), 0.6340ei2π(0.6336)) (0.2822ei2π(0.2921), 0.0185ei2π(0.0190), 0.8154ei2π(0.8154))
U5 (0.3190ei2π(0.3228), 0.0188ei2π(0.0195), 0.8398ei2π(0.8373)) (0.1670ei2π(0.1731), 0.0204ei2π(0.0206), 0.8690ei2π(0.8722))

A3 A4

U1 (0.6428ei2π(0.6562), 0.0158ei2π(0.0161), 0.2589ei2π(0.2675)) (0.4369ei2π(0.4270), 0.0340ei2π(0.0336), 0.5164ei2π(0.5138))
U2 (0.4064ei2π(0.4150), 0.0149ei2π(0.0158), 0.6018ei2π(0.5950)) (0.2445ei2π(0.2372), 0.0187ei2π(0.0192), 0.7422ei2π(0.7387))
U3 (0.6758ei2π(0.6922), 0.0136ei2π(0.0156), 0.2832ei2π(0.2892)) (0.5696ei2π(0.5575), 0.0158ei2π(0.0168), 0.4046ei2π(0.4119))
U4 (0.5864ei2π(0.6032), 0.0232ei2π(0.0244), 0.3488ei2π(0.3591)) (0.3334ei2π(0.3316), 0.0178ei2π(0.0183), 0.5881ei2π(0.5940))
U5 (0.4114ei2π(0.4182), 0.0219ei2π(0.0212), 0.5706ei2π(0.5787)) (0.2184ei2π(0.2112), 0.0196ei2π(0.0203), 0.8020ei2π(0.8108))

Step 5: The score, accuracy and refusal values of Yrs are organized in Table 24. The score, accuracy
and refusal values of AWCS FPM are applied for CS F strong, mid range and weak concordance
(discordance) sets that can be computed by virtue of Eqs (5.2)–(5.7), respectively.

Cρψ = {s : Sc(Yρs) > Sc(Yψs), Ac(Yρs) ≥ Ac(Yψs),Ω(Yρs) < Ω(Yψs)}. (5.2)

C
′

ρψ = {s : Sc(Yρs) > Sc(Yψs), Ac(Yρs) < Ac(Yψs),Ω(Yρs) ≥ Ω(Yψs)}. (5.3)

C
′′

ρψ = {s : Sc(Yρs) = Sc(Yψs), Ac(Yρs) ≥ Ac(Yψs),Ω(Yρs) ≥ Ω(Yψs)}. (5.4)

Dρψ = {s : Sc(Yρs) < Sc(Yψs),Ac(Yρs) < Ac(Yψs),Ω(Yρs) ≥ Ω(Yψs)}. (5.5)

D
′

ρψ = {s : Sc(Yρs) < Sc(Yψs),Ac(Yρs) ≥ Ac(Yψv),Ω(Yρs) < Ω(Yψs)}. (5.6)
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D
′′

ρψ = {s : Sc(Yρs) = Sc(Yψs),Ac(Yρs) < Ac(Yψs),Ω(Yρs) < Ω(Yψs)}. (5.7)

Table 24. Score and accuracy degrees of AWCS FPM.
A1 A2 A3 A4

U1 (0.4621, 1.1315, 1.3178) (−0.5162, 1.2351, 1.2368) (0.7046, 0.9830, 1.4261) (−0.1598, 0.9062, 1.4790)
U2 (−0.9776, 1.5821, 0.9138) (−0.5374, 1.1537, 1.3008) (−0.3793, 1.0542, 1.3754) (−0.9812, 1.2133, 1.2543)
U3 (1.4469, 1.4774, 1.0222) (0.7956, 1.1114, 1.3329) (0.7716, 1.1002, 1.3412) (0.3014, 0.9692, 1.4358)
U4 (−0.2194, 1.3898, 1.1048) (−1.1654, 1.4954, 1.0046) (0.4560, 0.9596, 1.4423) (−0.4782, 0.9204, 1.4694)
U5 (−1.2014, 1.6134, 0.8793) (−1.4590, 1.5748, 0.9221) (−0.3174, 1.0055, 1.4102) (−1.2092, 1.3938, 1.1010)

Step 6: The CS F-strong concordance set Cρψ, CS F-mid range concordance set C
′

ρψ and CS F-weak
concordance set C

′′

ρψ are computed through the conventions of Eqs (5.2)–(5.4) that are contoured
as follow:

Cρψ =


- {2} {} {3} {}

{} - {} {} {1}
{1,3,4} {3} - {1,3,4} {3}
{} {} {} - {2,3}
{} {} {} {} -

 ,

C
′

ρψ =


- {} {} {} {}

{} - {} {} {}

{} {} - {} {}

{} {} {} - {}

{} {} {} {} -

 ,

C
′′

ρψ =


- {1,3,4} {} {1,2,4} {1,2,3,4}
{} - {2} {1,2,4} {}

{2} {1,2,4} - {2} {1,2,4}
{} {1,3,4} {} - {1,2,3,4}
{} {3} {} {} -

 .

Step 7: The CS F-strong discordance set Dρψ, CS F-mid range discordance set D
′

ρψ and CS F-weak
discordance setD

′′

ρψ are figured out by dint of Eqs (5.5)–(5.7) that are organized as follow:

Dρψ =


- {} {1,2,3,4} {} {1}
{2,3} - {1,2,3} {3} {}

{} {} - {} {}

{1,3} {} {1,2,3,4} - {}

{3} {1} {1,2,3} {2,3} -

 ,

D
′

ρψ =


- {} {} {} {}

{1,4} - {4} {1,4} {3}
{} {} - {} {}

{2,4} {2} {} - {}

{1,2,4} {2,4} {4} {1,4} -

 ,
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D
′′

ρψ =


- {} {} {} {}

{} - {} {} {}

{} {} - {} {}

{} {} {} - {}

{} {} {} {} -

 .

Step 8: The CS F concordance matrix is computed by using the empirical weights of concordance
sets and wit help of CS F concordance indices that are arranged in Eq (4.1) and in Table 25,
respectively. The Rρψ are calculated by virtue of Eq (3.8). The score values of CS F concordance
matrix are as follow:

S c(XRρψ) =


- 1.8612 0 1.8583 1.6411
0 - 0 1.3764 1.4182

1.9753 1.8583 - 1.9753 1.6411
0 1.4118 0 - 2.9735
0 1.3589 0 0 -


. (5.8)

Table 25. CS F concordance matrix.

U1 U2

U1 - (0.9604ei2π(0.9704), 0.0002ei2π(0.0002), 0.0357ei2π(0.0418))
U2 0
U3 (0.9928ei2π(0.9947), 1.12 × 10−6ei2π(1.37×10−6), 0.0020ei2π(0.0029)) (0.9604ei2π(0.9689), 0.0002ei2π(0.0002), 0.0358ei2π(0.0418))
U4 0 (0.8490ei2π(0.8612), 0.0170ei2π(0.0180), 0.1490ei2π(0.1675))
U5 0 (0.8500ei2π(0.8700), 0.0130ei2π(0.0140), 0.2400ei2π(0.2500))

U3 U4

U1 0 (0.9604ei2π(0.9689), 0.0002ei2π(0.0002), 0.0358ei2π(0.0418))
U2 0 (0.8500ei2π(0.8800), 0.0120ei2π(0.0130), 0.2400ei2π(0.2500))
U3 - (0.9928ei2π(0.9947), 1.12 × 10−6ei2π(1.37×10−6), 0.0020ei2π(0.0029))
U4 0 -
U5 0 0

U5

U1 (0.9044ei2π(0.9180), 0.0038ei2π(0.0042), 0.0926ei2π(0.1055))
U2 (0.8490ei2π(0.8650), 0.0165ei2π(0.0175), 0.1490ei2π(0.1675))
U3 (0.9604ei2π(0.9689), 0.0002ei2π(0.0002), 0.0358ei2π(0.0418))
U4 (0.9044ei2π(0.9180), 0.0038ei2π(0.0042), 0.0926ei2π(0.1055))
U5 -

Step 9: The discordance indices are evaluated by employing the Eq (3.9), where the weights of dis-
cordance sets and the normalized Euclidean distances are organized in Eq (4.3) and in Table
26, respectively. The normalized Euclidean distance d(Yρv,Yvψ) is computed by the following
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convention:

d(Yρs,Yψs) =

(
1
3
(
((g2

ρs − g2
ψs)

2 + (q2
ρs − q2

ψs)
2 + (h

2
ρs − h

2
ψs)

2 + (φ
2
ρs − φ

2
ψs)

2 +

(η2
ρs − η

2
ψs)

2 + (γ2
ρs − γ

2
ψs)

2)) 1
2

.

The CS F discordance matrix is arranged as follow:

XKρψ =


- 0 0.7922 0 0

0.3333 - 0.4748 0.3333 0.0274
0.3333 0.3098 - 0.8348 0
0.3333 0.3333 0.4121 - 0.3333
0.9007 0.6666 0.9924 0.9226 -


.

Table 26. Normalized Euclidean Distances d(Yρv,Yvψ).

Y11 Y21 Y31 Y41 Y51 Y12 Y22 Y32 Y42 Y52

Y11 - 0.4357 0.3014 0.2108 0.5004 Y12 - 0.0247 0.3804 0.2019 0.2892
Y21 - - 0.7004 0.2259 0.06594 Y22 - - 0.3850 0.2064 0.2926
Y31 - - - 0.4816 0.7655 Y32 - - - 0.5768 0.6644
Y41 - - - - 0.2908 Y42 - - - - 0.0878
Y51 - - - - - Y52 - - - - -

Y13 Y23 Y33 Y43 Y53 Y14 R24 Y34 Y44 Y54

Y13 - 0.3136 0.0390 0.0623 0.2950 Y14 - 0.2538 0.1340 0.0926 0.3346
Y23 - - 0.3326 0.2430 0.0240 Y24 - - 0.0926 0.1680 0.0842
Y33 - - - 0.0996 0.3155 Y34 - - - 0.2255 0.4529
Y43 - - - - 0.2238 Y44 - - - - 0.2513
Y53 - - - - - Y54 - - - - -

Step 10: The CSF effective concordance matrix is evaluated by comparing the score values of CSF
concordance matrix with the threshold value= 0.0987 that is computed by employing the Eq
(3.10). The CSF effective concordance matrix is as follow:

κ =


- 1 0 1 1
0 - 0 1 1
1 1 - 1 1
0 1 0 - 1
0 1 0 0 -


.
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Step 11: The CSF effective discordance matrix is constituted by means of discordance level 0.2425
and by virtue of CS F discordance matrix, where the discordance level is computed by Eq (3.12).
Consequently, the CSF effective discordance matrix is given as:

Υ =


- 1 0 1 1
0 - 0 0 1
1 1 - 1 1
0 0 0 - 1
0 0 0 0 -


,

Step 12: The ordinary multiplication of the corresponding entities of CSF effective concordance and
discordance matrices are help out for the formation of aggregated outranking Boolean matrix that
is given as:

< =


- 1 0 1 1
0 - 0 0 1
1 1 - 1 1
0 0 0 - 1
0 0 0 0 -


.

Step 13: As it is illustrated in aggregated outranking Boolean matrix U3 outrank from U1, U2, U4 and
U5. A narrative analysis about alternatives are portrayed in Figure 5 and also delineated in Table
27.

Figure 5. Outranking decision-graph.
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Table 27. Prospective of decision graph.

Alternatives Submissive alternatives Incomparable alternatives
U1 U2, U4, U5 -
U2 U5 U4

U3 U1, U2, U4, U5 -
U4 U5 U2

U5 - -

Step 14: Table 27 ensures that the alternatives U2 and U4 are not comparable, therefore, the net out-
ranking index is evaluated for linear ranking order that are sorted in Table 28. In accordance to
Table 28 the linear ranking of the alternatives is as follow: U3 � U1 � U4 � U2 � U5.

Thus, the poverty alleviation strategy U3 is the most appropriate and suitable choice.

Table 28. For linear-ranking of the alternatives.

Alternatives Jr Jr <r Ranking
U1 3.3852 -0.2078 3.5931 2
U2 -3.6956 0.5256 -4.2213 4
U3 7.6672 -2.5140 10.1813 1
U4 -2.1572 0.8114 -2.9686 3
U5 -5.1997 1.3848 -6.5845 5

5.2. Comparative discussion

• We have scrutinized the corrective MAGDM problem through the subsisting CSF-ELECTRE I
method. The inferring assessment of two methodologies, inclusively the linear ranking and best
project, are provided in Table 29.
• The CSF-ELECTRE I [30] technique was expanded by virtue of the innovative idea of (weak,

midrange and strong) concordance and discordance sets which were premised on score, accuracy
and refusal values. In CSF-ELECTRE I method linguistic terms are employed to determine the
comparative strength and eminence ratings of alternatives but capitulates to handel the instances
in which the decision-makers confronted given problem with modern evaluation based on non-
binary parameterized information.
• To subdue this inconvenience, CS FNS f -ELECTRE I method is developed and certificated to

decision-making. In the developed approach, multiple parameters as well as finite ordered grades
are manifested through CS FNS f S s that demonstrates the stimulus generalization of the intended
model.
• The intended model comprises more information by merging the CS FNS f S s and ELECTRE I

method, that is more persuasive in the origination of outranking correlations between the plausible
alternatives. The comparative consequences yielded by invoking the poverty alleviation problem,
the proposed ELECTRE-based outranking method secures more decision endorse information
than does the CSF-ELECTRE I method.
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• The presented visionary model even manage one-dimensional problems under the auspices of
spherical fuzzy and picture fuzzy information by employing the phase terms and multi-valuation
zero and consequently lifts the persuasion and stability of the presented work.

The pictorial representation of comparison of net outranking index between CSF-ELECTRE I
method [30] and our proposed CS FNS f -ELECTRE I method is provided in Figure 6.

Table 29. Comparison with CSF-ELECTRE I method [30].

Methods Ranking Best strategy
CSF-ELECTRE I U3 � U1 � U4 � U2 � U5 U3

method [30]
CS FNS f -ELECTRE I U3 � U1 � U4 � U2 � U5 U3

(Proposed method)

Figure 6. Pictorial view of comparison with CSF-ELECTRE I method [30].

6. Conclusions

The theory of CS FNS f S (proposed by Akram et al. [37]) is emerging as a valuable extension of
N-soft sets which support real-life decision-making problems. In the present study, we have enhanced
the theoretical basis of CS FNS f S in directions that are endorsed by their consequences on specific
context and their capacity in number of opinions. From this perspective, we have established a creative
assorted technique, namely, CS FNS f -ELECTRE I technique. Eventually, this article improves the
ELECTRE-based outranking methods to pursue concerted CS FNS f data. We employed the score and
distance approach to specify the concordance and discordance indices, respectively, for each pair of
plausible choices. With respect to the aggregated outranking Boolean matrix, the decision graph was
applied to illustrate the partial ordering of the plausible choices and the consistencies of the outranked
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results are also clarified through linear-ranking ordering of the feasible alternatives. The presented ap-
proach provides a conventional generalization of several existing techniques. The primary scheme of
CS FNS f -ELECTRE I method is established with a definite stepwise algorithm which has two phases:
(i) accumulation of group valuations, (ii) ranking process. A detailed explanation of the CS FNS f -
ELECTRE I method is elaborated properly and employed in MAGDM. We have performed a numeral
computations for poverty alleviation problem and a comparison with previous techniques, which veri-
fies that the CS FNS f -ELECTRE I method can not only anticipate the compatible outcomes, but also
substantially relieve endeavors for non-binary evaluation. Some significant insights and boundaries of
the proposed CS FNS f -ELECTRE I technique and some future targets can be accounted as:
Advantages

• The CS FNS f -ELECTRE I technique successfully interpret advanced means of non-binary eval-
uation along with multiple parameters and, therefore, competent to decision-making. The pro-
posed method properly figures out the level of feasible choices and then adequately fuses with
a two dimensional paradigm of CS FNS f information in accordance with the relevant MAGDM
problem.
• The CS FNS f -ELECTRE I method provides potent and extensive structures for classifying

prospective alternatives in decision-making problem as it’s working principles based on CS FNS f

concordance and discordance sets in which score and accuracy functions are employed for the
comparative purposes.
• The attributes weights and experts valuations are evaluated by the easiest aggregating valuations

operators.
• The frequent process of investigating the outranking graph in ranking procedure of ELECTRE I

is described in more focused way, which provides a frame of profound knowledge for reader.

Limitations

• The CS FNS f -ELECTRE I method is incompetent to address the problem in which the amplitude
terms and the phase terms are highly ambiguous that their square sum exceeds 1.
• The abundance of alternatives along with attributes complicates the analysis of the given problem

specifically, the calculation becomes more hard and time consuming.

Future targets

• As future research targets, we can apply the presented method for major MAGDM problems of
real-life, like, water waste management, forest management, medical sciences and so forth.
• Furthermore, the presented work can be prolong for the most generalized complex T -spherical

fuzzy N-soft environment as well as, due to the versatility of CS FNS f model, we can introduce
the CS FNS f -ELECTRE II group decision supporting scheme.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid Uni-
versity for funding this work through General Research Project under grant number (R.G.P.1/258/43).

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4991–5030.



5028

Conflict of interest

The authors declare there is no conflict of interest.

References

1. L. G. Fei, Y. Deng, Multi-criteria decision making in Pythagorean fuzzy environment, Appl.
Intell., 50 (2020), 537–561. https://doi.org/10.1007/s10489-019-01532-2

2. J. X. Deng, Y. Deng, Information volume of fuzzy membership function, Int. J. Comput., Comms.
Control, 16 (2021). https://doi.org/10.15837/ijccc.2021.1.4106

3. Q. L. Zhou, Y. Deng, A new divergence measure of pythagorean fuzzy sets based on
belief function and its application in medical diagnosis, Mathematics, 8 (2020), 142.
https://doi.org/10.3390/math8010142

4. Z. Meng, L. Xue, F. Yang, C. Wang, Y. Liu, Application of intuitionistic fuzzy decision-making
theory to the allocation of poverty alleviation project funds, in International Conference on Man-
agement Science and Engineering Management, (2018), 79–86. https://doi.org/10.1007/978-3-
319-93351-1 7

5. B. Roy, The outranking approach and the foundations of ELECTRE methods, Read-
ings in Multiple Criteria Decision Aid, Springer, Berlin, Heidelberg, (1990), 155–183.
https://doi.org/10.1007/978-3-642-75935-2 8

6. R. Benayoun, B. Roy, N. Sussman, Manual de reference du programme electre, Note de Synthese
et Formation, 25 (1966), 79.

7. J. Figueira, V. Mousseau, B. Roy, ELECTRE methods, Multiple Criteria Decision Analysis:
State of the Art Surveys Springer, New York, (2005), 133–153. https://doi.org/10.1007/978-1-
4939-3094-4

8. L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–356. https://doi.org/10.1016/S0019-
9958(65)90241-X

9. B. Vahdani, A. H. K. Jabbari, V. Roshanaei, M. Zandieh, Extension of the ELECTRE method for
decision-making problems with interval weights and data, Int. J. Adv. Manfg. Tech., 50 (2010),
793–800. https://doi.org/10.1007/s00170-010-2537-2

10. M. Kabak, S. Burmaogolu, Y. Kazancogolu, A fuzzy hybrid MCDM approach for professional
selection, Expert Syst. Appl., 39 (2012), 3516–3525. https://doi.org/10.1007/s44196-021-00038-
5

11. M. A. Alghamdi, N. O. Alshehri, M. Akram, Multi-criteria decision-making methods in bipolar
fuzzy environment, Int. J. Fuzzy Syst., 20 (2018), 2057–2064. https://doi.org/10.1007/s40815-
018-0499-y

12. M. Akram, Shumaiza, F. Smarandache, Decision-making with bipolar neutrosophic TOPSIS and
bipolar neutrosophic ELECTRE-I, Axioms, 7 (2018), 33. https://doi.org/10.3390/axioms7020033

13. N. Chen, Z. Xu, M. Xia, The ELECTRE I multi-criteria decision-making method
based on hesitant fuzzy sets, Int. J. Inform. Tech. Decis. Making, 14 (2015), 621–57.
https://doi.org/10.1142/S0219622014500187

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4991–5030.



5029

14. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96.
https://doi.org/10.1007/978-3-7908-1870-3 1

15. M. C. Wu, T. Y. Chen, The ELECTRE multicriteria analysis approach based on Atanassov’s intu-
itionistic fuzzy sets, Expert Syst. Appl., 38 (2011), 12318–12327. 10.1109/FUZZY.2009.5276880

16. B. D. Rouyendegh,The intuitionistic fuzzy ELECTRE model, Int. J. Manage. Sci. Eng. Manage.,
13 (2018), 139–145. https://doi.org/10.1080/17509653.2017.1349625

17. R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans.
Fuzzy Syst., 22 (2013), 958–965.

18. M. Akram, H. Garg, F. Ilyas, Multi-criteria group decision making based on ELECTRE I
method in Pythagorean fuzzy information, Soft Comput., 24 (2020), 3425–3453. https://doi.org/

10.1109/TFUZZ.2013.2278989

19. M. Akram, A. Luqman, C. Kahraman, Hesitant Pythagorean fuzzy ELECTRE-II method
for multi-criteria decision-making problems, Appl. Soft Comput., 108 (2021), 107479.
https://doi.org/10.1016/j.asoc.2021.107479

20. B. C. Cuong, V. Kreinovich, Picture fuzzy sets-a new concept for computational intelligence
problems, in Third World Congress on Information and Communication Technologies (WICT
2013), (2013), 1–6. https://doi.org/10.1109/WICT.2013.7113099

21. W. Z. Liang, G. Y. Zhao, S. Z. Luo, An integrated EDAS-ELECTRE method with picture fuzzy
information for cleaner production evaluation in gold mines, IEEE Access, 6 (2018), 65747–
65759. https://doi.org/ 10.1109/ACCESS.2018.2878747

22. F. K. Gündogdu, C. Kahraman, Spherical fuzzy sets and spherical fuzzy TOPSIS method, J.
Intell. Fuzzy Syst., 36 (2019), 337–352. https://doi.org/10.3233/JIFS-181401

23. T. Mahmood, K. Ullah, Q. Khan, N. Jan, An approach toward decision-making and medical
diagnosis problems using the concept of spherical fuzzy sets, Neural Comput. Appl., 31 (2019),
7041–7053. https://doi.org/10.1007/s00521-018-3521-2

24. C. Kahraman, F. K. Gündogdu, S. C. Onar, B. Oztaysi, Hospital location selection using spherical
fuzzy TOPSIS method, in Conference of the international Fuzzy Systems Association and the
European Society for Fuzzy Logic and Technology (EUSFLAT2019), 2019. https://www.atlantis-
press.com/article/125914782.pdf

25. S. Ashraf, S. Abdullah, M. Aslam, M. Qiyas, M. A. Kutbi, Spherical fuzzy sets and its repre-
sentation of spherical fuzzy t-norms and t-conorms, J. Intell. Fuzzy Syst., 36 (2019), 6089–6102.
https:doi.org/10.3233/JIFS-181941

26. D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE Trans. Fuzzy Syst., 10
(2002), 171–186. https://doi.org/10.1109/91.995119

27. A. Alkouri, A. Salleh, Complex intuitionistic fuzzy sets, in 2nd International Conference on
Fundamental and Applied Sciences, 1482 (2012), 464–470. https://doi.org/10.1063/1.4757515

28. K. Ullah, T. Mahmood, Z. Ali, N. Jan, On some distance measures of complex Pythagorean
fuzzy sets and their applications in pattern recognition, Complex Intell. Syst. 6 (2020), 15–27.
https://doi.org/10.1007/s40747-019-0103-6

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4991–5030.



5030

29. M. Akram, H. Garg, K. Zahid, Extensions of ELECTRE-I and TOPSIS methods for group
decision-making under complex Pythagorean fuzzy environment, Iran. J. Fuzzy Syst., 17 (2020),
147–164. https:doi.org/10.22111/ijfs.2020.5522

30. M. Akram, A. N. Al Kenani, M. Shabir, Enhancing ELECTRE I method with complex spherical
fuzzy information, Int. J. Comput. Intell. Syst., 14 (2021), 1–31. https://doi.org/10.1007/s44196-
021-00038-5

31. D. A. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 (1999), 19–31.
https://doi.org/10.1016/S0898-1221(99)00056-5

32. F. Fatimah, D. Rosadi, R. B. F. Hakim, J. C. R. Alcantud, N-soft sets and their decision making
algorithms, Soft Comput., 22 (2018), 3829–3842. https://doi.org/10.1007/s00500-017-2838-6

33. M. Akram, A. Adeel, J. C. R. Alcantud, Fuzzy N-soft sets: A novel model with applications, J.
Intell. Fuzzy Syst., 35 (2018), 4757–4771. https://doi.org/10.3233/JIFS-18244

34. M. Akram, A. Adeel, J. C. R. Alcantud, Group decision-making methods based on hesitant N-soft
sets, Expert Syst. Appl., 115(2019), 95–105. https://doi.org/10.1016/j.eswa.2018.07.060

35. H. Zhang, D. Jia-Hua, C. Yan, Multi-attribute group decision-making methods based
on Pythagorean fuzzy N-soft sets, IEEE Access, 8 (2020), 62298–62309. https://doi.org/

10.1109/ACCESS.2020.2984583

36. M. Akram, F. Waseem, A. N. Al-Kenan, A hybrid decision-making approach under com-
plex pythagorean fuzzy N-soft sets, Int. J. Comput. Intell. Syst., 14 (2021), 263–1291.
https://doi.org/10.2991/ijcis.d.210331.002

37. M. Akram, M. Shabir, A. N. Al Kenani, J. C. R. Alcantud, Hybrid decision-
making frameworks under complex spherical fuzzy N-soft sets, J. Math., (2021), 1–46.
https://doi.org/10.1155/2021/5563215

38. M. Akram, M. Shabir, A. N. Al Kenani, A multiattribute decision-making frame-
work: VIKOR method with complex spherical fuzzy-soft sets, Math. Probl. Eng., 2021.
https://doi.org/10.1155/2021/1490807

39. M. Akram, C. Kahraman, K. Zahid, Group decision-making based on com-
plex spherical fuzzy VIKOR approach, Knowl.-Based Syst., 216 (2021), 106793.
https://doi.org/10.1016/j.knosys.2021.106793

40. M. Akram, G. Ali, J. C. R. Alcantud, New decision-making hybrid model: Intuitionistic fuzzy N-
soft rough sets, Soft Comput., 23 (2019), 9853–9868. https://doi.org/10.1007/s00500-019-03903-
w

41. M. Akram, C. Kahraman, K. Zahid, Extension of TOPSIS model to the decision-
making under complex spherical fuzzy information, Soft Comput., 25 (2021), 10771–10795.
https://doi.org/10.1007/s00500-021-05945-5

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4991–5030.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Related works
	Significance of complex spherical fuzzy N-soft sets
	Motivation of presented manuscript
	Contribution of presented manuscript
	Outline of presented manuscript

	Preliminaries
	Algorithm of complex spherical fuzzy N-soft ELECTRE I method
	Application
	Case study: Best poverty alleviation program
	Problem prominence
	Problem description
	Attribute selection
	Evaluation process


	Comparative study 
	Comparison with CSF-ELECTRE I approach
	Comparative discussion

	Conclusions

