
http://www.aimspress.com/journal/mbe

MBE, 19(5): 4458–4480.
DOI: 10.3934/mbe.2022206
Received: 13 October 2021
Revised: 08 January 2022
Accepted: 14 February 2022
Published: 02 March 2022

Research article

Circular Jaccard distance based multi-solution optimization for traveling
salesman problems

Hui Li∗, Mengyao Zhang and Chenbo Zeng

Department of Computer Science and Technology, Beijing University of Chemical Technology,
Beijing 100029, China

* Correspondence: Email: ray@mail.buct.edu.cn.

Abstract: Traveling salesman problem is a widely studied NP-hard problem in the field of
combinatorial optimization. Many and various heuristics and approximation algorithms have been
developed to address the problem. However, few studies were conducted on the multi-solution
optimization for traveling salesman problem so far. In this article, we propose a circular Jaccard
distance based multi-solution optimization (CJD-MSO) algorithm based on ant colony optimization
to find multiple solutions for the traveling salesman problem. The CJD-MSO algorithm incorporates
“distancing” niching technique with circular Jaccard distance metric which are both proposed in
this paper for the first time. Experimental results verify that the proposed algorithm achieves good
performance on both quality and diversity of the optimal solutions.

Keywords: traveling salesman problem; multimodal optimization; multi-solution optimization;
Jaccard distance; metaheuristics

1. Introduction

The traveling salesman problem (TSP) is one of the most intensively studied combinatorial
optimization problems in the field of graph theory and operations research. It is believed that the TSP
was first studied by Hamilton and Kirkman [1]. Since then, many and various algorithms and
approximation algorithms have been proposed.

Given a set of nodes (cities) and the pairwise cost (or travel distance), the TSP is to find the best
possible cycle of visiting all the cities and returning to the starting point that minimize the total travel
cost. The general solution algorithm that guarantees the shortest path has exponential complexity, and
no known efficient algorithm exists to date, since TSP is also an NP-hard problem.

The TSP naturally finds many applications in the field of transportation and logistics, such as
arranging school bus routes to pick up the children [2], scheduling stacker cranes in warehouses [3],

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2022206

4459

and delivering ordered meals to the customers [4]. Slightly modified, TSP can be applied to some
problems which are unlike the path finding problems at first sight. For example, in the DNA
sequencing problem [5], the node represents DNA fragments, and distance cost is defined as the
similarity measure between DNA fragments.

Various methods have been proposed to solve TSP, such as violence enumeration, dynamic
programming (DP) [6], and Hopfield neural network (HNN) [7]. Violence enumeration, as the
simplest method, has the time complexity O(n!). DP decomposes the problem into couples of
sub-problems which has much smaller time complexity as O(n22n) [6]. As an intelligent method,
Hopfield neural network algorithm(HNN) [7] handles the permutation matrix which is mapped to the
legal solution of TSP, and minimizes the energy function intelligently. The drawback of this method is
that it may suffer from slow convergence and low accuracy when used to solve the TSP [8].

Using swarm intelligence [9,10] to address TSP has become a new trend in the past decades. Many
metaheuristics has been reported excelling in solving TSP, such as genetic algorithm (GA) [11, 12],
particle swarm optimization (PSO) [13, 14], and ant colony optimization (ACO) [15]. Ant colony
optimization (ACO) is proposed by Marco Dorigo in 1992, which is inspired by the ant colony behavior
of searching food.

ACO is one of the most frequently studied algorithm for solving TSP. Fevrier Valdez et al. [16]
implemented the algorithms elitist ant system (EAS) and rank based ant system (ASrank); Gao
Shupeng et al. [17] proposed a pheromone initialization strategy; Zhang Yuru et al. [18] developed an
improved 2-opt and hybrid algorithm based on ACO; Dewantoro et al. [19] used tabu search
algorithm as the local search in ACO.

In recent years, as researchers made slow progress in developing better methods for TSP, some
researchers shifted their interests to some promoted problems, such as vehicle routing problem (VRP)
and multiple traveling salesman problem (MTSP). MTSP means that multiple salesmen only visit a
certain number of cities once and only once, and then return to their original cities with the smallest
total cost. MTSP is closely related to some optimization problems such as task assignment [20].

Optimization problems with multiple solutions widely exist in the real world, and TSP is no
exception. In the TSP, the salesman prefers couples of optimal solutions at hands in case that some
solutions become unavailable for some reasons. Ting Huang et al. [21] proposed a benchmark to
study the performance of algorithms for the multi-solution TSP (MSTSP), though few algorithms had
been proposed at that time. NMA [22] integrates niche strategies with the memetic algorithm to
address the MSTSP. NGA [21] groups related individuals and performs the GA operations including
crossover and mutation in each group. NACS [23] is based on the ACO, in which ants are guided to
search for different areas through multiple pheromone matrices.

Since ACO is the most successful metaheuristics reported to solve TSP, we also use the ACO in
this paper as the base optimization method to address the MSTSP. We use 2-opt strategy to improve
the local search ability. The 2-opt strategy provides an effective search operation, while requires less
computation than 3-opt or more. We propose a new distance metric named “circular Jaccard distance”
instead of other frequently used distance metrics, which brings a considerable improvement in the
optimization performance. The circular Jaccard distance is defined as the minimal distances between
two paths in various transformation modes such as flip and circular shift. We test the proposed method
on the benchmark problems of 25 MSTSP instances, with two evaluation criteria designed for MSTSP.
Experimental results indicate that the proposed method substantially improves the performance of

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4458–4480.

4460

multi-solution optimization.
The rest of the article is organized as follows. Section 2 introduces TSP, ACO, and how to solve TSP

using ACO. In Section 3, we propose a novel niching strategy, and introduce the 2-opt algorithm and
circular Jaccard distance to it, thus proposing the CJD-MSO algorithm. Section 4 describes MSTSP
benchmarks, and evaluates the CJD-MSO with experiments. Section 5 concludes the paper finally.

2. Related work

In this section, we first introduce TSP and the ACO algorithm. Then we introduce how to solve the
TSP using ACO algorithm. Finally, we introduce the basic multi-solution optimization algorithm for
MSTSP.

2.1. Traveling salesman problem

Let G = (V, E) be a graph with set of vertexes V and set of edges E = {(x, y)|x, y ∈ V}. Each edge
e ∈ E is assigned a cost ce. If the graph is directed, then the cost of (x, y) is equal to the cost of (y, x)
for all (x, y) ∈ E. The equality does not hold for undirected graph.

Without loss of generality, we suppose graph G is a complete graph. Let the set of vertices be
V = {v1, v2, ..., vn}. The cost matrix is given by C = (ci j)n×n, where the cost of the edge from vi to v j is
denoted ci j.

In the context of the traveling salesman problem, the vertexes correspond to cities and the edges
correspond to the path between those cities. Let H be the set of all Hamiltonian cycles which visit each
vertex exactly once except for the starting point, in G. The traveling salesman problem (TSP) is to find
a Hamiltonian cycle h ∈H such that the total costs in the cycle is minimized.

The TSP may be formulated as an integer linear programming (ILP) problem [24]. Let

xi j =

1 the path goes from city i to city j

0 otherwise.

For i = 0, 1, · · · , n, define ui as an artificial variable. Then TSP can be rewritten as the following
ILP problem:

min
∑n

i=0
∑n

j,i, j=0 ci jxi j

0 ≤ xi j ≤ 1 i, j = 0, · · · , n
ui ∈ Z i = 0, · · · , n∑n

i=0,i, j xi j = 1 j = 0, · · · , n∑n
j=0, j,i xi j = 1 i = 0, · · · , n

ui − u j + nxi j ≤ n − 1 1 ≤ i , j ≤ n

(2.1)

The first set of equalities requires each city to be arrived from exact one other city. The second set
of equalities requires each city to be a departure to exact one other city. The last constraints with the
artificial variable ui ensure that it is a Hamiltonian cycle. The ILP can be relaxed and solved as a linear
programming (LP) using the simplex method. Other exact solution methods include the cutting plane
method [25] and branch-and-cut [26].

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4458–4480.

4461

2.2. Ant colony optimization for traveling salesman problem

The exact solution methods suffer from high computational complexity. Therefore, some
metaheuristics such as ACO and GA were suggested for addressing the TSP. Ant colony optimization
algorithm (ACO) is a swarm intelligence optimization algorithm, which is inspired by the foraging
behavior of ants [15].

When the ants search for food, they wander around the nest randomly. If some ant finds food, it
carries the food back to the nest and lays down pheromones along the road. Other ants nearby can
perceive the pheromone and follow the path, and thus increasing the pheromone density. At the same
time, the pheromone always evaporates. The more time it takes for an ant to travel along the path, the
more time the pheromone evaporates. Hence the pheromone density becomes higher on the shorter path
than the longer one. Other ants tend to take the short path and lay down new pheromones. Pheromones
attracts more and more ants move on the shorter paths, and finally find the shortest path.

(a) (b)

Figure 1. Path choosing behavior of the ant colony.

Figure 1 illustrates two scenarios about how the ants choose path through pheromones. Figure 1(a)
contains two paths with the same length, it can be observed that most ants chose the upper path. The
main reason is that once the upper path is first taken by some ant, it deposits pheromone on the path,
which attracts other ants to choose the upper path. As the number of ants that choose the upper path
increase, resulting in a higher pheromone density on the path than the lower one, more other ants tend
to choose the upper path.

Figure 1(b) shows that most ants prefer the shorter path. Since the accumulation rate of pheromone
on the short path is relatively high, the higher density of pheromone on the short path encourages more
ants to choose the short path between the nest and the food.

ACO is a popular metaheuristic for addressing the TSP [27]. Next, we show how to use ACO to
solve the TSP. At the beginning, m ants are randomly placed in n cities. The pheromone initial value
on all paths between city and city are equal. The ant k (k = 1, 2, · · · ,m) calculates the transition
probability according to Eq (2.2), before choosing the next city.

Pk(i, j) =

[τ(i, j)]α[η(i, j)]β∑

u∈Jk (i)
[τ(i,u)]α[η(i,u]β j ∈ Jk(i)

0 otherwise,
(2.2)

where Pk(i, j) is the transition possibility that ant k moving from city i to city j; α is used to control the
concentration of pheromone; β is used to control the role of heuristic information; τ(i, j) is pheromones
on edges (i, j); η(i, j) is the heuristic factor for moving from city i to city j; Jk(i) is a collection of
candidate cities which ant k is allowed to visit next.

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4458–4480.

4462

The Rk is used to record the vertexes which the ant k has visited. When m ants have completed the
tour and go back to the departure vertex, the total cost of the n edges traveled by each ant is calculated.
Then, the minimum cost is saved, and the pheromone on each edge is updated. During the iteration,
the amount of pheromone remaining on the path after evaporating is calculated as follows:

τ(i, j) = (1 − ρ) · τ(i, j) +

m∑
k=1

∆τk(i, j), (2.3)

where ρ, between 0 and 1, is pheromone volatilization coefficient. ∆τk(i, j) is the pheromones released
by the k ant during this tour, which is defined as:

∆τk(i, j) =

(Ck)−1 (i, j) ∈ Rk

0 otherwise
(2.4)

where Ck represents the path length of the ant k.
Algorithm1 presents the pseudocode.

Algorithm 1 Solving TSP using the ACO algorithm
Input: Number of ants m, pheromone factor α, heuristic function factor β, pheromone volatilization

coefficient ρ, and maximum number of iterations
Output: An optimal solution

1: Initialize ant colony parameters and pheromone matrix
2: while not meet the stopping criteria do
3: Randomly place each ant at a different starting point
4: For each ant k (k = 1, 2, · · · ,m), calculate the next vertex to be visited using the transition

probability formula, until all ants have visited all the vertexes
5: Calculate the path length L passed by each ant, and save the optimal solution (shortest path)
6: Update the pheromone concentration on all paths
7: end while

2.3. Multi-Solution optimization

Most swarm intelligence optimization algorithms are developed to solve the single-solution
optimization problems. It is necessary to introduce some strategies to make these algorithms suitable
for solving multi-solution optimization problems.

Niching method is one of the most widely used strategies. Niching method is a category of
techniques to prevent population convergence to a single optimum by maintaining multiple niches. It
should be mentioned that some improved ACO versions and various other metaheuristics may have
good mechanism for exploration. Although good exploration ability promotes diversity of the
solution, it is preferable to use the niching method for maintaining multiple niches.

The classic niching methods were developed in the early 70s such as crowding method [28]. After
that, various niching methods were developed including fitness sharing [29], clearing [30], RTS [31],
speciation [32] and clustering [33, 34] .

Fitness sharing [29] is inspired by the sharing phenomenon in nature. The resource in a niching is
limited, so individuals have to share their resources with other individuals occupying the same niching.

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4458–4480.

4463

When there are too many individuals in a niche, the fitness of the individual will be reduced, thus
leading to reduce the number of individuals. Or, conversely, a small number of individuals in a niche
may increase the population size. Fitness is adjusted by the population size in a niche, thus facilitating
finding multiple optimal solutions.

Crowding [28] is a technique to maintain diversity during the course of iteration through careful
population replacement. First, a number of individuals are selected from the parent generation. The
number of individuals are determined by a crowding factor (CF). Then, the new individuals most
similar to parent individuals are selected to replace parent individuals. Since the population is
initialized with evenly distribution, the evenly distribution can be maintained during the course of
iteration. Algorithm 2 depicts the procedure of crowding.

Algorithm 2 Crowding
Input: Population NP
Output: A set of optimal solutions

1: Randomly generate individuals of NP and a set of CF values
2: while not meet the stopping criteria do
3: Calculate the fitness of each individual
4: Generate candidate individuals through the basic operation of the algorithm
5: Randomly select CF individuals from the parents
6: Compare the candidate individual with the closest individual among CF individuals, and

replace the closest individual if the candidate individual has better fitness
7: end while

Clearing [30] is a strategy easy to implement. In each iteration, the current optimal individual in the
population is selected as the center. Then, all the individuals within the specified clearance radius are
removed from the population. The procedure repeats until the original population has no individual,
thus obtaining a set of optimal solutions finally.

The principle of speciation is to divide the population into several niches, and the populations in
each niche evolve parallelly. Algorithm 3 presents the pseudocode of speciation.

Algorithm 3 Speciation
Input: Population and niching radius σ
Output: A set of optimal solutions

1: Initialize population
2: Calculate the fitness of the population and sort them according to the fitness value
3: while population is not empty do
4: Find the best individual seed in the population
5: Find all individuals whose distance to seed is less than σ, and form a subpopulation with seed
6: Remove the subpopulation from the population
7: end while

The goal of clustering [33] is to group individuals into clusters such that individuals in each cluster
have greater similarity than inter-clusters. K-means algorithm is a typical clustering algorithm used in

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4458–4480.

4464

niching method, where K represents the number of clusters [34]. Algorithm 4 is the pseudocode of
K-means algorithm for niching.

Algorithm 4 K-means algorithm for niching
Input: Population NP and clustering number K
Output: K species

1: Initialize population
2: Randomly select K individuals from the population as the centers
3: while not meet the stopping criteria do
4: Calculate the distance between other individuals in the population and these K centers
5: Assign other individuals to the nearest cluster according to distance
6: Recalculate and update the centers in the population
7: end while

2.4. Similarity metrics

The similarity metric plays an essential role in multi-solution optimization. As shown in Algorithm
5, whether the new individual is discarded or not is up to the similarity between the new path and the
old one. Next, we introduce couples of similarity metrics which may be used in the multi-solution
optimization.

2.4.1. Pearson correlation coefficient

Pearson correlation coefficient (PCC) [35], or the bivariate correlation, is a widely used measure of
the similarity between vectors. If there are two variables: X and Y , PCC can be formulated as follows:

ρ(X,Y) =
E[(X − µX)(Y − µY)]√∑n

i=1 (Xi − µX)2
√∑n

i=1 (Yi − µY)2
(2.5)

where E is the mathematical expectation; µX is the expectation of the n-dimensional vector X; µY is the
expectation of Y .

The greater the absolute value of the correlation coefficient is, the stronger correlation they have.
The correlation with PCC 0 is the weakest correlation.

2.4.2. Distance correlation coefficient

Distance correlation coefficient (DCC) [36] , or distance covariance, is a measure of dependence
between two arbitrary vectors, not necessarily equal in dimension. The DCC is zero if and only if the
vectors are independent. The formula for DCC is as follows:

ρXY =
E[(X − E(X))(Y − E(Y))]

√
D(X)

√
D(Y)

, (2.6)

where E is the mathematical expectation, D is the variance. The similarity between X and Y is closer
if the DCC is greater.

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4458–4480.

4465

Distance correlation (DC) defined in [36] is the complement set of DCC. It can be formulated as
follows:

DXY = 1 − ρXY (2.7)

Therefore, the similarity between X and Y is closer if their DC is smaller.

2.4.3. Common edge similarity

Two vectors with more common edges should have stronger similarity. Suppose P1 and P2 represent
two vectors, the common edge similarity(CES) is defined as follows:

similarity(P1, P2) =
shared edges

number o f cities
(2.8)

The CES similarity is between 0 and 1. Only when the similarity equals to 1, does it mean that the
two vectors are identical.

2.4.4. Jaccard distance

The Jaccard index [37], or the Jaccard similarity coefficient, is widely used for comparing the
similarity or difference between limited sample sets. Given two sets A and B, the Jaccard coefficient is
defined as the ratio of the intersection to the union of A and B, namely,

J(A, B) =
|A ∩ B|
|A ∪ B|

=
|A ∩ B|

|A| + |B| + |A ∩ B|
. (2.9)

The Jaccard index has value between 0 and 1. Specifically, when both A and B are empty sets, their
Jaccard index is defined as 1.

Jaccard distance [38] is also a metric used to measure the difference between two sets. It is the
complement index of Jaccard similarity coefficient. The formula of the Jaccard distance is as follows:

d j(A + B) = 1 − J(A, B) =
A∆B
|A ∪ B|

, (2.10)

where the symmetric difference A∆B = |A ∪ B| − |A ∩ B|.
When the Jaccard distance is used to measure the similarity, the result of the completely identical

calculation equals to 0, and the result of the completely different calculation equals to 1.

3. Circular Jaccard distance based multi-solution ant colony optimization

In this section, we first propose a novel niching strategy for multi-solution optimization. Next,
we propose a circular Jaccard distance as the similarity metric which plays an important role in our
algorithm. Then, we introduce the 2-opt strategy which is used as the local search method. Finally, we
summarize the whole multi-solution optimization algorithm.

3.1. Distancing

We develop a novel niching method based on the “radius” strategy which is used in the clearing
strategy. After initializing a population of path randomly, we select a set of paths from the population

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4458–4480.

4466

with a given ratio, which is regarded as the parent population. In each iteration, a batch of new
individual is generated following the rule of the base metaheuristics. For each new individual, if it has
a high similarity to the previous one, then the new individual will be discarded. Otherwise, the new
individual is saved in the population pool as the offspring candidate. We calculate the fitness of the
parent population together with the offspring population, and sort them in ascending order. Then, a
number of good individuals are chosen from the queue head to form a new parent population. The
strategy requires that the individual in the next generation keeps a certain distance from the current
generation. As shown in Figure 2, let 1, 2 and 3 (or 3’ or 3”) be the possible positions of an
individual in the 1st, 2nd and 3rd generation. 2 is a step from 1. And then 3 (or 3’ or 3”) is a step
from 2 · · · · · · . With high probability, the distance from 3 (or 3’ or 3”) to 1 is greater than the distance
between 2 to 1. Hence it maintains diversity during the course of search.

Figure 2. distancing strategy.

The procedure repeats until the stopping criteria are met and the optimal set of individuals is
obtained finally. The proposed niching method is different from any other niching method proposed
previously, such as crowding, fitness sharing, and clearing. And it is easy to implement compared
with clearing. We name it as “distancing”.

Algorithm 5 The multi-solution optimization algorithm with distancing
Input: The number of ants, iteration bound, α, β, and ρ
Output: A set of optimal solutions

1: Initialize population and pheromone matrix
2: Construct a path through pseudo-random selection rules to obtain the first generation parent

population
3: while not meet the stopping criteria do
4: Discard new individual that have a high similarity to the previous one, and form a new offspring

population from the remaining individuals
5: Update the pheromone matrix
6: Calculate the fitness of the parent population together with the offspring population, and sort

them
7: Select a set of good individuals from the queue head to form a new parent population
8: end while

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4458–4480.

4467

Algorithm 5 gives the pseudocode of the distancing method we proposed. In Algorithm 5, ACO is
the base metaheuristics.

3.2. Circular Jaccard distance

The similarity metrics mentioned previously, such as Jaccard distance, are used to promote diversity
of the population during the course of iteration, which is also the key measure of quality of the multiple
solutions. The valid path in the TSP is always a Hamiltonian cycle. If we use the similarity metrics for
vectors in MSTSP, then the property of cycle is not explored and utilized fully.

We take an example to reveal the limitation of Jaccard distance. Suppose there are three paths: “0-
6-5-3-7-8-2-4-1” (path 1), “0-1-4-2-8-7-3-5-6” (path 2) and “2-8-7-3-5-6-0-1-4” (path 3). The Jaccard
distance between path 1 and path 2 equals to 1. The Jaccard distance between path 2 and path 3 also
equals to 1. The Jaccard distance between path 1 and path 3 also equals to 0.889. However, the path
1, 2 and 3 are all the same for the TSP. Therefore, we propose a novel metric named Circular Jaccard
Distance (CJD) in this paper to overcome the limitation.

The CJD respects the invariance of the path, which means the paths transformed by cycling or
flipping are regarded the same as the original path. When calculating the CJD, first, one of the two paths
is transformed by cycling and flipping. Then the Jaccard distance between each pairs are calculated.
Finally, the CJD is obtained by minimizing these JDs.

(a) original path (b) rotated path (c) flipped path

Figure 3. Transformations before calculating the circular Jaccard distance.

For example, suppose the original path is “0-1-4-2-8-7-3-5-6”. The new generated path is the path
“6-5-3-8-2-4-1-0-7”. By transforming the second path, one can obtain “6-5-3-8-2-4-1-0-7”, “5-3-8-2-
4-1-0-7-6”, “3-8-2-4-1-0-7-6-5”, “8-2-4-1-0-7-6-5-3”, “2-4-1-0-7-6-5-3-8”,“4-1-0-7-6-5-3-8-2”, “1-0-
7-6-5-3-8-2-4”, “0-7-6-5-3-8-2-4-1”, “7-6-5-3-8-2-4-1-0”, “6-7-0-1-4-2-8-3-5”, “5-6-7-0-1-4-2-8-3”,
“3-5-6-7-0-1-4-2-8”, “8-3-5-6-7-0-1-4-2”, ”2-8-3-5-6-7-0-1-4”, “4-2-8-3-5-6-7-0-1”, “1-4-2-8-3-5-6-
7-0”, “0-1-4-2-8-3-5-6-7” and “7-0-1-4-2-8-3-5-6”. As shown in Figure 3, Figure 3(a) is the original
path. Figure 3(b) is the path obtained by clockwise or counter-clockwise rotation. Figure 3(c) is the
path obtained by flipping. The CJDs between the converted paths and the original path are 1, 0.78, 1,
0.67, 1, 0.78, 1, 1, 0.89, 1, 1, 1, 1, 0.89, 1, 1, 0.5 and 0.67 respectively.

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4458–4480.

4468

3.3. 2-opt strategy

In optimization, n-opt is a simple local search method for solving combinatorial optimization
problems [39]. The n-opt treatment involves deleting n edges in a tour, reconstructing the path in
some other possible ways.

(a) initial solution (b) after one 2-opt operation (c) after two 2-opt operations

Figure 4. The 2-opt strategy. The green dotted edges are replaced by the red dash-dotted
edges.

Take the 2-opt as example, as shown in Figure 4, Figure 4(a) is the original path. In every 2-opt
strategy, two edges of the solution are deleted and two new edges are added to obtain a new path.
If the new path is better, the original path is replaced. Specifically, since d(V1,V3) + d(V2,V4) >

d(V1,V2) + d(V3,V4), the edges (V1,V3) and (V2,V4) are removed, and the edges (V1,V2) and (V3,V4)
are added instead, thus forming a new path, see Figure4(a). Here d represents the distance or similarity.
Again, in Figure 4(c), since d(V1,V7)+d(V4,V5) > d(V1,V5)+d(V4,V7), the edges (V1,V7) and (V4,V5)
are removed, and the edges (V1,V5) and (V4,V7) are added instead, see Figure 4(b).

The 3-opt strategy is able to create more choices of new paths. However, the computational
complexity becomes O(n3) which is not affordable for most applications. Therefore, we use 2-opt as
the main local search method in this paper.

3.4. Circular Jaccard distance based multi-solution optimization algorithm based on ant colony
optimization

In this paper, we propose a circular Jaccard distance based multi-solution optimization (CJD-MSO)
algorithm to improve the performance for solving the traveling salesman problem.

First, we initialize pheromone matrix, randomly place the ants to the initial cities, calculate the next
city according to the transition probabilities, and thus obtain the first generation parent population.
In the iterative process, the 2-opt algorithm is used to improve the quality of the solution and the
distancing strategy is used to maintain diversity. The circular Jaccard distance between each new
individual with the last individual path is calculated. If the similarity value is higher than a preset
value, which means that two paths are significantly different, then it is retained. Otherwise, the new
individual is discarded. The parent population and offspring population are mixed together, and a set
of good individuals with higher fitness is chosen to be the next generation of parent population. Algo.6
shows the entire process of CJD-MSO.

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4458–4480.

4469

Algorithm 6 The CJD-MSO algorithm
Input: The number of ants m, iteration bound, and the parameters of CJD-MSO (α, β and ρ)
Output: A set of optimal solutions

1: Initialize population and pheromone matrix
2: Randomly place each ant at a different starting point
3: For each ant k(k = 1, 2, . . . ,m), calculate the next city to be visited according to the transition

formula obtained by the roulette method, until all ants have visited all the cities
4: Obtain the first generation parent population through the 2-opt strategy
5: while not meet the stopping criteria do
6: Randomly place each ant at a different starting point
7: For each ant k(k = 1, 2, . . . ,m), calculate the next city to be visited according to the transition

probability formula obtained by the roulette method, until all ants have visited all the cities
8: For each new population, 2-opt algorithm is used to improve the quality of solutions
9: Calculating the circular Jaccard distance between the new individual path and latest individual

path
10: if the similarity is higher than a preset value then
11: Save the new individual path
12: else
13: Discard the new individual path
14: end if
15: Obtain the offspring population, and update the pheromone matrix
16: Mix the parent population with the offspring population
17: Sort them and select some good individuals from the queue to form the next parent population
18: Save the optimal paths obtained so far
19: end while

4. Experiments

In this section, first we describe the benchmark TSPs on which we shall test our proposed algorithm.
Next, we introduce the evaluation criteria we shall use. Then, we exhibit our experimental results
including the performance of CJD-MSO and some comparison details.

4.1. Benchmark TSPs

Ting Huang [21] proposed a benchmark set for MSTSPs in 2018, which contains 25 MSTSP
instances, as shown in Table 1. In the benchmark set, MSTSPs are classified into three categories:
simple MSTSPs (from MSTSP1 to MSTSP6), geometry MSTSPs (from MSTSP7 to MSTSP12), and
composite MSTSPs (from MSTSP13 to MSTSP25). The number of cities in the MSTSPs ranges from
9 to 66. And the number of optimal scales ranges from 2 to 196. We test our algorithm on the
benchmark set.

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4458–4480.

4470

Table 1. The benchmark MSTSPs.

Name
City
nums

Optimal
solutions

nums

Shortest
path

length
Name

City
nums

Optimal
solutions

nums

Shortest
path

length
MSTSP1 9 3 680 MSTSP14 34 16 3575
MSTSP2 10 4 1265 MSTSP15 22 72 9455
MSTSP3 10 13 832 MSTSP16 33 64 8761
MSTSP4 11 4 803 MSTSP17 35 10 9061
MSTSP5 12 2 754 MSTSP18 39 20 23763
MSTSP6 12 4 845 MSTSP19 42 20 14408
MSTSP7 10 56 130 MSTSP20 45 20 10973
MSTSP8 12 110 1344 MSTSP21 48 4 6767
MSTSP9 10 4 72 MSTSP22 55 9 10442

MSTSP10 10 4 72 MSTSP23 59 10 24451
MSTSP11 10 14 78 MSTSP24 60 36 9614
MSTSP12 15 196 130 MSTSP25 66 26 9521
MSTSP13 28 70 3055

4.2. Evaluation criteria

We use two evaluation criteria to test our work: Fβ and the diversity indicator (DI) [21].
Fβ is an indicator calculated from the precision value P and the recall value R. The formula is as

follows:

Fβ =
(1 + β)2 · P · R
β2 · P + R

, (4.1)

where P represents the proportion of optimal solutions, and R represents the proportion of the found
optimal solutions to known optimal solutions. When β is set to 1, P and R have the same importance.
We set β as 0.3 to attach more importance to the precision.

The formula of P and R are as follows:

P =
T P

T P + FP
, (4.2)

R =
T P

T P + FN
. (4.3)

The true positive, T P, represents the number of optimal solutions obtained by the algorithm; The
false positive, FP, represents the number of non-optimal solutions obtained by the algorithm; The false
negative, FN, represents the optimal solutions that the algorithm did not find.

The P, R, and Fβ are real values between 0 and 1. If the solutions obtained by the algorithm are all
optimal solutions, then P equals to 1. If the algorithm finds all known optimal solutions, then R equals
to 1. Fβ is 1, if the values of P and R both are 1. Larger Fβ means better performance.

The DI helps to assess the diversity performance of the multiple solutions. DI is defined by the
average maximum similarity between the obtained solutions and the ground-truth solutions. The
formula of DI is as follows:

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4458–4480.

4471

DI(P, S) =

∑|P|
i=1 max j=1,...,|S |S (Pi, S j)

|P|
, (4.4)

where P represents the known optimal solution set; S represents the solution set obtained by the
algorithm; Pi represents the i-th solution in the set P; S jrepresents the j-th solution in the set S ; and
S (Pi, S j) represents the similarity. Larger DI means that more solutions have been found, given the
known optimal solutions.

4.3. Experimental results

In this section, we conduct a series of numerical experiments to evaluate the proposed algorithm.
Firstly, we test the performance of ACO in finding single optimal solution for the MSTSP. Secondly,
we compare the algorithmic performance with various similarity metrics including PCC, DC, CES and
JD. Thirdly, we compare the algorithmic performance with circular Jaccard distance to that with JD.
Finally, we compare CJD-MSO with NACS [23], NGA [21], NMA [22], and give the values of Fβ and
DI.

The parameter settings are as follows: α = 1.0, β = 2.0, ρ = 0.5. The threshold value of the CJD is
set to 0.4. All algorithms are implemented in Python language and run on the Mac OS Catalina system.

We use the MSTSP instances to test the ACO algorithm. Although the MSTSP instances are
designed for testing multi-solution optimization algorithms, it is also eligible for testing the single
solution optimization algorithms.

Figure 5 presents the convergence curves of ACO. For simple and geometry MSTSPs, the ACO
converges to the optimal solution rapidly. The ACO without niching method can find only one optimum
in a single run. For some composite MSTSPs such as Figure 5(c), the ACO cannot find any optimum
within 3000 iterations, which indicates that composite MSTSPs are really hard problems.

(a) MSTSP1 with the optimum 680 (b) MSTSP8 with the optimum 1344 (c) MSTSP13 with the optimum 3055

Figure 5. The convergence curves.

Next, we improve the original ACO by adding “distancing” strategy. This time, we find couples of
different solutions for MSTSPs including the simple MSTSPs, the geometry MSTSPs, and the
composite MSTSPs, as shown in Figure 6.

We compare the performance of Fβ and DI on MSTSP among various similarity metrics including
PCC, DC, CES and JD.

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4458–4480.

4472
Si

m
pl

e
M

ST
SP

1

(a) (b) (c)

G
eo

m
et

ry
M

ST
SP

9

(d) (e) (f)

C
om

po
si

te
M

ST
SP

17

(g) (h) (i)

Figure 6. The real solutions found for various MSTSPs.

As shown in Figure 7 and Table 2, the four similarity metrics work well in the simple MSTSPs. For
geometry MSTSPs and composite MSTSPs, JD considerably outperforms the other three methods.

For MSTSPs with more optimal solutions or more cities, such as MSTSP18 and MSTSP22, since
the Fβs almost drop to 0 for all similarity metrics. We compare their DIs in Figure 8.

From Figure 8, one can observe that JD considerably outperforms PCC and DC, and is slightly
better than CES. So, we believe that JD is a good similarity metric for solving the MSTSPs. Next, we
compare the performance of CJD with that of JD. Table 3 gives Fβ value of the algorithms with CJD
and CD.

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4458–4480.

4473

Table 2. The Fβ values of PCC, DC, CES and JD. (BRPS is the total of bold items.)

NAME PCC DC CES JD NAME PCC DC CES JD
MSTSP1 1.000 1.000 1.000 1.000 MSTSP14 0.813 0.905 0.766 0.905
MSTSP2 1.000 1.000 1.000 1.000 MSTSP15 0.684 0.804 0.679 0.795
MSTSP3 0.835 0.835 0.993 0.835 MSTSP16 0.629 0.748 0.586 0.760
MSTSP4 1.000 1.000 1.000 1.000 MSTSP17 0.325 0.650 0.382 0.650
MSTSP5 1.000 1.000 0.907 1.000 MSTSP18 0.000 0.000 0.224 0.000
MSTSP6 1.000 1.000 1.000 1.000 MSTSP19 0.000 0.700 0.237 0.700
MSTSP7 0.751 0.690 0.879 0.690 MSTSP20 0.160 0.130 0.172 0.520
MSTSP8 0.619 0.520 0.801 0.520 MSTSP21 0.813 0.813 0.120 0.813
MSTSP9 1.000 1.000 1.000 1.000 MSTSP22 0.000 0.000 0.000 0.000

MSTSP10 0.929 1.000 1.000 0.591 MSTSP23 0.000 0.333 0.000 0.000
MSTSP11 0.941 0.982 0.967 0.983 MSTSP24 0.188 0.207 0.118 0.313
MSTSP12 0.291 0.292 0.671 0.315 MSTSP25 0.000 0.069 0.000 0.000
MSTSP13 0.743 0.775 0.743 0.950 BRPS 7 14 9 15

Figure 7. Comparison of Fβ for PCC, DC, CES, and JD.

Figure 8. Comparison of DI for PCC, DC, CES, and JD.

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4458–4480.

4474

Figure 9. Comparison of Fβ (CJD vs JD).

Table 3. The Fβ values of (CJD and JD). The BRPS represents the total of bold items.

NAME JD CJD NAME JD CJD
MSTSP1 1.000 1.000 MSTSP14 0.905 0.942
MSTSP2 1.000 1.000 MSTSP15 0.795 0.823
MSTSP3 0.835 0.875 MSTSP16 0.760 0.760
MSTSP4 1.000 1.000 MSTSP17 0.650 0.710
MSTSP5 1.000 1.000 MSTSP18 0.000 0.000
MSTSP6 1.000 1.000 MSTSP19 0.700 0.642
MSTSP7 0.690 0.782 MSTSP20 0.520 0.349
MSTSP8 0.520 0.752 MSTSP21 0.813 0.813
MSTSP9 1.000 1.000 MSTSP22 0.000 0.000

MSTSP10 0.591 1.000 MSTSP23 0.000 0.175
MSTSP11 0.983 0.988 MSTSP24 0.313 0.299
MSTSP12 0.315 0.547 MSTSP25 0.000 0.062
MSTSP13 0.950 0.940 BRPS 12 19

Figure 10. Pseudo-color plot of 25 MSTSPs in terms of Fβ with three compared algorithms
and the proposed algorithm. Taking Fβ of CJD-MSO as the base algorithm, the algorithm
worse than CJD-MSO is marked as “-”, the algorithm better than CJD-MSO is marked as
“+”, and the algorithm has the same performance is marked as “=”.

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4458–4480.

4475

From Figure 9 and Table 3, we can observe that CJD significantly outperforms JD, indicating that
CJD facilitates maintaining the diversity of the population.

Finally, we perform experiment to compare CJD-MSO with NGA [21], NMA [22] and NACS [23].
Table 4 compares the Fβ value of these algorithms. The best Fβ for each MSTSP instance is marked in
bold. BRPS represents the total of bold items.

Table 4. The Fβ values of the algorithm in 25 instances.

NAME NACS NGA NMA CJD-MSO NAME NACS NGA NMA CJD-MSO
MSTSP1 0.684 0.973 1.000 1.000 MSTSP14 0.087 0.172 0.883 0.942
MSTSP2 0.804 0.959 1.000 1.000 MSTSP15 0.004 0.416 0.732 0.823
MSTSP3 0.497 0.936 1.000 0.875 MSTSP16 0.000 0.054 0.554 0.760
MSTSP4 0.724 0.932 1.000 1.000 MSTSP17 0.000 0.044 0.605 0.710
MSTSP5 0.989 0.846 1.000 1.000 MSTSP18 0.000 0.031 0.571 0.000
MSTSP6 0.643 0.877 1.000 1.000 MSTSP19 0.000 0.007 0.168 0.642
MSTSP7 0.125 0.769 0.923 0.782 MSTSP20 0.000 0.000 0.165 0.349
MSTSP8 0.137 0.578 0.772 0.752 MSTSP21 0.012 0.000 0.023 0.813
MSTSP9 0.768 0.974 1.000 1.000 MSTSP22 0.000 0.000 0.013 0.000
MSTSP10 0.813 0.969 1.000 1.000 MSTSP23 0.000 0.000 0.016 0.175
MSTSP11 0.459 0.949 1.000 0.988 MSTSP24 0.000 0.000 0.010 0.299
MSTSP12 0.090 0.331 0.535 0.547 MSTSP25 0.000 0.000 0.002 0.062
MSTSP13 0.025 0.096 0.611 0.940 BRPS 0 0 13 19

We use the pseudo-color plot (Figure 10) to exhibit the comparison results. Only eight “+” exists,
which indicates that CJD-MSO perform very well compared with other multi-solution optimization
algorithms.

Figure 11. Comparison of DI among the algorithms in 25 instances.

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4458–4480.

4476

Table 5. The DI values of the algorithms in 25 instances.

NAME NACS NGA NMA CJD-MSO NAME NACS NGA NMA CJD-MSO
MSTSP1 0.788 0.980 1.000 1.000 MSTSP14 0.876 0.844 0.981 0.988
MSTSP2 0.894 0.972 1.000 1.000 MSTSP15 0.744 0.847 0.932 0.902
MSTSP3 0.757 0.957 1.000 0.916 MSTSP16 0.680 0.783 0.926 0.918
MSTSP4 0.809 0.947 1.000 1.000 MSTSP17 0.765 0.803 0.944 0.881
MSTSP5 0.983 0.916 1.000 1.000 MSTSP18 0.671 0.704 0.932 0.737
MSTSP6 0.843 0.943 1.000 1.000 MSTSP19 0.675 0.699 0.865 0.862
MSTSP7 0.566 0.869 0.945 0.865 MSTSP20 0.745 0.671 0.865 0.826
MSTSP8 0.652 0.838 0.898 0.838 MSTSP21 0.773 0.628 0.834 0.870
MSTSP9 0.820 0.975 1.000 1.000 MSTSP22 0.713 0.409 0.816 0.874
MSTSP10 0.850 0.969 1.000 1.000 MSTSP23 0.671 0.344 0.829 0.839
MSTSP11 0.758 0.963 1.000 0.990 MSTSP24 0.724 0.319 0.811 0.897
MSTSP12 0.732 0.809 0.871 0.857 MSTSP25 0.725 0.270 0.747 0.859
MSTSP13 0.752 0.792 0.922 0.983

We calculate the DI of CJD-MSO, and compare with other algorithms in Table 5 and Figure 11. For
simple MSTSPs and geometry MSTSPs, the DIs of CJD-MSO are stably good. Seven MSTSPs have
a DI value of 1, and the left MSTSPs are approximately 1. From MSTSP19 to MSTSP25, CJD-MSO
significantly outperforms other algorithms too.

The results of the proposed method is based on the repeated experiments. Figure 12 gives the box
plots of Fβ, DI, and number of found solutions on 25 MSTSPs.

(a) Fβ (b) DI (c) Number of Solutions

Figure 12. The box plots of Fβ, DI, and number of multiple solutions on 25 MSTSPs.

5. Conclusions

In this article, we proposed a new multi-solution optimization algorithm named “CJD-MSO” to
address the MSTSPs. In the algorithm, we proposed a novel niching technique named “distancing”
method, together with a novel similarity metric named “circular Jaccard distance”, to maintain
population diversity during the course of searching multiple optimal solutions. The “distancing”

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4458–4480.

4477

strategy, different from all niching method emerge so far, were easy to implement. And “ circular
Jaccard distance” played an essential role in improving the performance of multi-solution
optimization.

We also employed basic ACO as the base metaheuristic and employed the 2-opt strategy as the
local search method in CJD-MSO. We laid greater emphasis on the strategy of niching and metric
definition than compare many and various classic metaheuristics or their improved versions.
Experimental results in 25 MSTSP instances showed that CJD-MSO significantly outperforms other
multi-solution optimization algorithms, in terms of Fβ and DI.

We believe that the “ circular Jaccard distance” metric and the “distancing” strategy can be applied
to other base metaheuristics for addressing some other combinatorial optimization problems.

Acknowledgements

This work was supported by Ministry of Education in China (MOE) under project grants of
Humanities and Social Sciences (No.21YJAZH040).

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in
the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. M. Dorigo, Traveling salesman problem, in IEEE International Conference Evolutionary
Computation, (2013).

2. R. M. Al-Khatib, K. M. O. Nahar, SRT-GA: smart real-time system using a powerful genetic
algorithm for school bus routing problem, in 2017 2nd International Conference on the
Applications of Information Technology in Developing Renewable Energy Processes & Systems
(IT-DREPS), (2017), 1–8. https://doi.org/10.1109/IT-DREPS.2017.8277816

3. S. Ma, Y. Hao, Research on the order picking optimization problem of the automated
warehouse, in 2009 Chinese Control and Decision Conference, (2009), 990–993.
https://doi.org/10.1109/CCDC.2009.5192816

4. T. Ghorpade, C. G. Corlu, Selective pick-up and delivery problem: a simheuristic
approach, in 2020 Winter Simulation Conference (WSC), (2020), 1468–1479.
https://doi.org/10.1109/WSC48552.2020.9384060

5. P. Kalita, B. Kalita, SCS and TSP in DNA sequencing, Int. J. Management It Eng., 3 (2013),
263–277.

6. M. Cygan, L. Kowalik, A. Socala, Improving TSP tours using dynamic programming over tree
decomposition, ACM Trans. Algorithms, 15 (2019), 1–19.

7. J. L. An, J. Gao, J. H. Lei, G. H. Gao, An improved algorithm for TSP problem
solving with Hopfield neural networks, Adv. Mater. Res., 143 (2011), 538–542.
https://doi.org/10.4028/www.scientific.net/AMR.143-144.538

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4458–4480.

http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1109/IT-DREPS.2017.8277816
http://dx.doi.org/https://doi.org/10.1109/CCDC.2009.5192816
http://dx.doi.org/https://doi.org/10.1109/WSC48552.2020.9384060
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.4028/www.scientific.net/AMR.143-144.538

4478

8. T. Liu, H. Zhang, Y. Gao, Solving TSP via fuzzy dynamic PSO and HNN algorithm, in
2012 7th International Conference on Computer Science Education (ICCSE), (2012), 105–109.
https://doi.org/10.1109/ICCSE.2012.6295036

9. H. Li, X. Liu, Z. Huang, C. Zeng, P. Zou, Z. Chu, et al., Newly emerging nature-inspired
optimization - algorithm review, unified framework, evaluation, and behavioral parameter
optimization, IEEE Access, 8 (2020), 72620–72649.

10. H. Li, Z. Huang, X. Liu, C. Zeng, P. Zou, Multi-fidelity Meta-optimization for
nature inspired optimization algorithms, Appl. Soft Comput., 96 (2020), 106619.
https://doi.org/10.1016/j.asoc.2020.106619

11. H. Li, J. Zhang, Fast source term estimation using the PGA-NM hybrid method, Eng. Appl. Artif.
Intel., 62 (2017), 68–79. https://doi.org/10.1016/j.engappai.2017.03.010

12. L. Wang, J. Zhang, H. Li, An improved genetic algorithm for TSP, in 2007
International Conference on Machine Learning and Cybernetics, (2007), 925–928.
https://doi.org/10.1109/ICMLC.2007.4370274

13. G. C. Chen, Y. U. Jin-Shou, Particle swarm optimization algorithm, Inf. Control, (2005), 454–458.

14. J. Zhang, W. Si, Improved enhanced self-tentative PSO algorithm for TSP, in
2010 Sixth International Conference on Natural Computation, (2010), 2638–2641.
https://doi.org/10.1109/ICNC.2010.5583011

15. M. Dorigo, G. D. Caro, L. M. Gambardella, Ant algorithms for discrete optimization, Artif. Life,
5 (1999), 137–172. https://doi.org/10.1162/106454699568728

16. F. Valdez, I. Chaparro, Ant colony optimization for solving the TSP symetric with parallel
processing, in 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS),
(2013), 1192–1196. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608570

17. S. Gao, J. Zhong, Y. Cui, C. Gao, X. Li, A novel pheromone initialization strategy
of ACO algorithms for solving TSP, in 2017 13th International Conference on Natural
Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), (2017), 243–248.
https://doi.org/10.1109/FSKD.2017.8393155

18. Y. Zhang, C. Wang, H. Li, X. Su, M. Zhao, N. Zhang, An improved 2-Opt
and ACO hybrid algorithm for TSP, in 2018 Eighth International Conference on
Instrumentation Measurement, Computer, Communication and Control (IMCCC), (2018), 547–
552. https://doi.org/10.1109/IMCCC.2018.00121

19. R. W. Dewantoro, P. Sihombing, Sutarman, The combination of ant colony optimization
(ACO) and Tabu search (TS) algorithm to solve the traveling salesman problem (TSP), in
2019 3rd International Conference on Electrical, Telecommunication and Computer Engineering
(ELTICOM), (2019), 160–164. https://doi.org/10.1109/ELTICOM47379.2019.8943832

20. T. Öncan, A survey of the generalized assignment problem and its applications, INFOR Inform.
Syst. Oper. Res., 45 (2008), 123–141. https://doi.org/10.3138/infor.45.3.123

21. T. Huang, Y. J. Gong, J. Zhang, Seeking multiple solutions of combinatorial optimization
problems: a proof of principle study, in 2018 IEEE Symposium Series on Computational
Intelligence (SSCI), (2018), 18–21. https://doi.org/10.1109/SSCI.2018.8628856

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4458–4480.

http://dx.doi.org/https://doi.org/10.1109/ICCSE.2012.6295036
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2020.106619
http://dx.doi.org/https://doi.org/10.1016/j.engappai.2017.03.010
http://dx.doi.org/https://doi.org/10.1109/ICMLC.2007.4370274
http://dx.doi.org/https://doi.org/10.1109/ICNC.2010.5583011
http://dx.doi.org/https://doi.org/10.1162/106454699568728
http://dx.doi.org/https://doi.org/10.1109/IFSA-NAFIPS.2013.6608570
http://dx.doi.org/https://doi.org/10.1109/FSKD.2017.8393155
http://dx.doi.org/https://doi.org/10.1109/IMCCC.2018.00121
http://dx.doi.org/https://doi.org/10.1109/ELTICOM47379.2019.8943832
http://dx.doi.org/https://doi.org/10.3138/infor.45.3.123
http://dx.doi.org/https://doi.org/10.1109/SSCI.2018.8628856

4479

22. T. Huang, Y. J. Gong, S. Kwong, H. Wang, J. Zhang, A niching memetic algorithm for
multi-solution traveling salesman problem, IEEE Trans. Evolut. Comput., 24 (2020), 508–522.
https://doi.org/10.1109/TEVC.2019.2936440

23. X. C. Han, H. W. Ke, Y. J. Gong, Y. Lin, W. L. Liu, J. Zhang, Multimodal optimization of traveling
salesman problem: a niching ant colony system, Proc. Genet. Evol. Comput. Conf. Companion,
(2018), 87–88. https://doi.org/10.1145/3205651.3205731

24. L. Gilbert, The traveling salesman problem: an overview of exact and approximate algorithms,
Eur. J. Oper. Res., 59 (1992), 231–247. https://doi.org/10.1016/0377-2217(92)90138-Y

25. B. Fleischmann, A cutting plane procedure for the travelling salesman problem on road networks,
Eur. J. Oper. Res., 21 (1985), 307–317. https://doi.org/10.1016/0377-2217(85)90151-1

26. H. P. Hipólito, S. G. Juan, A branch-and-cut algorithm for a traveling salesman
problem with pickup and delivery, Discrete Appl. Math., 145 (2004), 126–139.
https://doi.org/10.1016/j.dam.2003.09.013

27. M. Dorigo, L. M. Gambardella, Ant colony system: a cooperative learning approach
to the traveling salesman problem, IEEE Trans. Evol. Comput., 1 (1997), 53–66.
https://doi.org/10.1109/4235.585892

28. K. A. De Jong, An Analysis of the Behavior of A Class of Genetic Adaptive Systems, ProQuest
Dissertations Publishing, 1975.

29. D. E. Goldberg, J. Richardson, Genetic algorithms with sharing for multimodal function
optimization, in Genetic Algorithms and Their Applications, Proceedings of the Second
International Conference on Genetic Algorithms, Proc Icga, (1987), 41—49.

30. A. Petrowski, A clearing procedure as a niching method for genetic algorithms, in
Proceedings of IEEE International Conference on Evolutionary Computation, (1996), 798–803.
https://doi.org/10.1109/ICEC.1996.542703

31. G. R. Harik, Finding multimodal solutions using restricted tournament selection, in Proceedings
of the 6th International Conference on Genetic Algorithms, (1995), 24–31.

32. J. P. Li, M. E. Balazs, G. T. Parks, P. J. Clarkson, A species conserving genetic
algorithm for multimodal function optimization, Evol. Comput., 10 (2002), 207–234.
https://doi.org/10.1162/106365602760234081

33. X. Li, M. G. Epitropakis, K. Deb, A. Engelbrecht, Seeking multiple solutions : an updated survey
on niching methods and their applications, IEEE Trans. Evol. Comput., 21 (2017), 518–538.
https://doi.org/10.1109/TEVC.2016.2638437

34. H. Li, P. Zou, Z. Huang, C. Zeng, X. Liu, Multimodal optimization using whale optimization
algorithm enhanced with local search and niching technique, Math. Bio. Eng., 17 (2020), 1–27.
https://doi.org/10.3934/mbe.2020001

35. T. Bektas, L. Gouveia, Requiem for the Miller-Tucker-Zemlin subtour elimination constraints?,
Eur. J. Oper. Res., 236 (2014), 820–832. https://doi.org/10.1016/j.ejor.2013.07.038

36. G. Szekely, M. L. Rizzo, N. K. Bakirov, Measuring and testing dependence by correlation of
distances, Ann. Statist., 35 (2007), 2769–2794. https://doi.org/10.1214/009053607000000505

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4458–4480.

http://dx.doi.org/https://doi.org/10.1109/TEVC.2019.2936440
http://dx.doi.org/https://doi.org/10.1145/3205651.3205731
http://dx.doi.org/https://doi.org/10.1016/0377-2217(92)90138-Y
http://dx.doi.org/https://doi.org/10.1016/0377-2217(85)90151-1
http://dx.doi.org/https://doi.org/10.1016/j.dam.2003.09.013
http://dx.doi.org/https://doi.org/10.1109/4235.585892
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1109/ICEC.1996.542703
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1162/106365602760234081
http://dx.doi.org/https://doi.org/10.1109/TEVC.2016.2638437
http://dx.doi.org/https://doi.org/10.3934/mbe.2020001
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2013.07.038
http://dx.doi.org/https://doi.org/10.1214/009053607000000505

4480

37. J. Bank, B. Cole, Calculating the Jaccard similarity coefficient with map reduce for entity pairs in
wikipedia, Wikipedia Similarity Team, 1 (2008), 94.

38. M. Shameem, R. Ferdous, An efficient k-means algorithm integrated with Jaccard distance
measure for document clustering, in Asian Himalayas International Conference on Internet,
(2009), 1–6. https://doi.org/10.1109/AHICI.2009.5340335

39. G. A. Croes, A method for solving travelling salesman problems, Oper. Res., 6 (1958), 791–812.
https://doi.org/10.1287/opre.6.6.791

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4458–4480.

http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1109/AHICI.2009.5340335
http://dx.doi.org/https://doi.org/10.1287/opre.6.6.791
http://creativecommons.org/licenses/by/4.0

	Introduction
	Related work
	Traveling salesman problem
	Ant colony optimization for traveling salesman problem
	Multi-Solution optimization
	Similarity metrics
	Pearson correlation coefficient
	Distance correlation coefficient
	Common edge similarity
	Jaccard distance

	Circular Jaccard distance based multi-solution ant colony optimization
	Distancing
	Circular Jaccard distance
	2-opt strategy
	Circular Jaccard distance based multi-solution optimization algorithm based on ant colony optimization

	Experiments
	Benchmark TSPs
	Evaluation criteria
	Experimental results

	Conclusions

