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Abstract: In this paper, the recent trends of COVID-19 infection spread have been studied to explore
the advantages of leaky vaccination dynamics in SEVR (Susceptible Effected Vaccinated Recovered)
compartmental model with the help of Caputo-Fabrizio (CF) and Atangana-Baleanu derivative in the
Caputo sense (ABC) non-singular kernel fractional derivative operators with memory effect within the
model to show possible long–term approaches of the infection along with limited defensive vaccine
efficacy that can be designed numerically over the closed interval ranging from 0 to 1. One of the main
goals is to provide a stepping information about the usefulness of the aforementioned non-singular
kernel fractional approaches for a lenient case as well as a critical case in COVID-19 infection spread.
Another is to investigate the effect of death rate on state variables. The estimation of death rate for state
variables with suitable vaccine efficacy has a significant role in the stability of state variables in terms
of basic reproduction number that is derived using next generation matrix method, and order of the
fractional derivative. For non-integral orders the pandemic modeling sense viz, CF and ABC, has been
compared thoroughly. Graphical presentations together with numerical results have proposed that the
methodology is powerful and accurate which can provide new speculations for COVID-19 dynamical
systems.

Keywords: vaccine efficacy; non-singular kernel fractional derivative; basic reproduction number;
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1. Introduction

Mathematical forecasts are yet to gain its improvement in fighting the COVID-19 pandemic. The
meteoric spread, the course of actions, and the methods concerned in the containment of the infection
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demand the soonest and quickest understanding in perceiving solutions in line along with the bio-
logical, physiological, environmental, and continual aspects of life with much better predictions by
mathematical computerized modeling. Almost all the countries are still suffering from the infection
and its destructiveness is ascending gradually. The disease has spread, and is spreading amongst dif-
ferent countries or regions mainly through air-travel mode [1]. The infection doesn’t happen on its
own and the present occurrence is possibly because of our ignorance or casual thinking and way of liv-
ing [2]. As a matter of fact, there are many looming queries about COVID-19 spread, such as “number
of individuals that will be infected in coming days”, “time of appearance of rate of inflexion point of
infection”, “infections during the pinnacle period and number of individuals that are infected at that
time”, “effectiveness of present action to control the spread”, etc. Usually, in analysis of epidemiology,
virus causing diseases grow exponentially maintaining a determined rate of reproduction [3].

One of the most economical and efficient means to prevent and control the infection spread is
mass vaccination. The world is now getting leaky vaccinated to reduce the infection as the vaccines
obstruct signs and symptoms of lethal infections but do not put a stop to contamination or onward
spread [4–11]. It is seen in India that the government is facing a huge challenge to attain preferable
vaccination coverage in order for group immunity to be in effect [12]. Hysteresis loops can surface
in social replica of dynamical behaviour of vaccination [13]. The impact of varying vaccine efficacies
has been investigated in response to control the spread of disease [14–16]. The vaccine is effective
(infection can be prevented) for η = 1 (here we denote η as vaccine efficacy), whilst the value η = 0
means the vaccine is ineffective to prevent the virus infection. In the bio-mathematics regime, fractional
calculus is now one of the vital studies to elaborate precise cellular behavior, and many human disease’s
mathematical models have been described by various types of fractional-order derivative operators
[17–20].

FDEs (short for Fractional Differential Equation) are used to include the memory of the phe-
nomenon in the system’s dynamics. As per literature [21], there are multiple kinds of fractional deriva-
tive operators, amongst which we present the study of the model by fractional differential equation by
CF (short for Caputo-Fabrizio derivative) and ABC (short for Atangana-Baleanu-Caputo derivative)
sense. ODEs (short for Ordinary Differential Equation) are particular cases of FDEs. FDEs provide
descriptions of the courses of endemics, epidemics, pandemics, and some other natural processes in
a better way than the ODEs [22]. In reference to deterministic models of the contagiousness of any
disease, ODE models are well-structured yet sometimes researchers use models using FDE [23, 24].
Some recent research papers focusing on FDE for various real-life problems which are modelled math-
ematically to understand the problems and their solutions has been studied [25–36].

As per the author’s knowledge, the remark and application for vaccine efficacy, and the study and
experimentation has not yet looked into comparison between the mentioned fractional derivative oper-
ators for the SEVR COVID-19 model with the memory effect. The quantitative analysis makes the two
operators propitious choices in modeling the dynamics of the disease mathematically. In the upcoming
segments, the model is formed with fractional differential equation by CF and ABC sense. This tech-
nique is used to find the course of action of the infection whilst vaccination program is on the go. Using
Next Generation Matrix Method the expression for the basic reproduction number, Rn, is found and
by dint of that local stability are investigated for the equilibrium points. The existence and uniqueness
for the models are done using the Banach fixed-point theorem. Considering the course of events for
beginning of the transmission to clinical recuperation and seriousness of illness, the appropriateness of
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utilizing the two operators, joined by relative similitudes, are examined just as their disparities. Lastly,
the article is wrapped-up by scrutinizing the seriousness of the spread of infection in terms of CF and
ABC, and depict their upcoming involvement for the growth of infection control policy at worldwide
level to limit the spread amongst humans.

The follow-up sections deal with the essence of the manuscript. In Section 2, some preliminary
requisite knowings of CF and ABC non-singular kernel fractional derivatives is done to get acquainted
with customary notations. This section also has model formulation with a box diagram to have a
glimpse on the transmission dynamics. The parameters are broadly described with proper justification.
The equilibrium points are evaluated and also Rn is calculated. The stability analysis for the infection-
free equilibrium has been done in regard to Rn and Jacobian matrix. In Section 3, the solutions of the
CF and ABC systems are shown to exist and unique using Banach fixed-point theory and Lipschitz
condition. Section 4 deals with discussion and numerical simulation of both the systems in terms of
graphs, order of fractional derivative and Rn. At last, in Section 5, we draw the conclusions of the
entire manuscript.

2. Preliminaries

Here, the preliminary and primary definitions in terms of properties of the mentioned two fractional
derivative operators with exponential and Mittag-Leffler kernels are presented.

2.1. Properties of CF and ABC operators

Definition 1. [37] Consider f ∈ H1 (c1, c2), c2 > c1, α ∈ ]0, 1[ then the CF fractional derivative is
defined as:

CF
c1
Dα

t
[
f (t)

]
=
N(α)
1 − α

∫ t

c1

f ′(x)e

−α t − x
1 − α


dx,

where N(α) is a normalization function satisfying N(0) = N(1) = 1 if f < H1 (c1, c2) then

Dα
t ( f (t)) =

αN(α)
1 − α

∫ t

c1

( f (t) − f (x)) e

−α t − x
1 − α


dx.

Definition 2. [37, 38] Let us assume that 0 < α < 1, then the integral of the fractional order α for a
function f (t) is defined as:

Iαt ( f (t)) =
2(1 − α)

(2 − α)N(α)
f (t) +

2α
(2 − α)N(α)

∫ t

0
f (y)dy,

t ≥ 0.

Definition 3. [39] Consider f ∈ H1 (c1, c2), c2 > c1, α ∈ ]0, 1[ then the ABC is defined as:

ABC
c1
Dα

t
[
f (t)

]
=
N(α)
1 − α

∫ t

c1

f ′(x)Mα

[
−α

(t − x)α

1 − α

]
dx,

whereMα represent the Mittag-Leffler function andN(α) is a normalization function satisfyingN(0) =

N(1) = 1 and N(α) = 1 − α +
α

Γ(α)
.
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Definition 4. [39] Let us assume that 0 < α < 1, then the integral of the ABC, fractional order α for
a function f (t) is defined as:

ABC
c1
Iαt

[
f (t)

]
=

1 − α
N(α)

f (t) +
α

N(α)Γ(α)
×

∫ t

c1

(t − y)α−1 f (y)dy,

t ≥ 0.

2.2. Model formulation

It is important to identify and then study the dynamical behaviour of unwanted results of COVID-19
disease on the populace growth and to predict what may occur. Keeping track of the infection has been
a steadily tiring job and vaccination has been a usual approach for lessening the infection, day-to-day
vaccination is currently supplied in all nations. It has been believed that the immune system will gener-
ate antibody against the virus after the vaccine doses. Even so, it may be not in a fully protective level.
The memory effect is an important element in several biological phenomenons, which is included in
the models. Hence, it is practicable to use fractional alternation, as fractional derivatives essentially in-
volve the effect of memory. One of the best ways to tackle such issue is to put the fractional derivatives
of order α ∈ (0, 1) for the state variables. The next step is to have some modification in the biological
parameters such that for a FDE system the both sides of an equation must have dimension 1

(time)α . This
can be done by raising each of the parameters by α [40]. Motivated by these details, the SEV model
presented Liu et al. [42] and Abuasad et al. [41], the updated SEVR model with vaccination by CF and
ABC non-singular kernel fractional derivative operators are as follows:

CF
0 D

α
t S (t) = λα − γαS E − (dα + να) S , (2.1)

CF
0 D

α
t E(t) = γαS E + (1 − η) γαVE − (dα + βα) E, (2.2)

CF
0 D

α
t V(t) = ναS − dαV − (1 − η) γαVE, (2.3)

CF
0 D

α
t R(t) = βαE − dαR. (2.4)

and

ABC
0 Dα

t S (t) = λα − γαS E − (dα + να) S , (2.5)
ABC
0 Dα

t E(t) = γαS E + (1 − η) γαVE − (dα + βα) E, (2.6)
ABC
0 Dα

t V(t) = ναS − dαV − (1 − η) γαVE, (2.7)
ABC
0 Dα

t R(t) = βαE − dαR. (2.8)

The initial conditions for both the systems are S (0) = S 0 > 0, E(0) = E0 ≥ 0, V(0) = V0 ≥ 0,
and R(0) = R0 ≥ 0. The virus spread method is considered amongst humans. In the models (2.1)–
(2.4) and (2.5)–(2.8), S (t) denotes the fractions of susceptible individuals, E(t) denotes the fractions of
virus effected individuals, V(t) denotes fractions of vaccinated individuals, and R(t) denotes fractions
of individuals who have recovered from the disease, at any time t. The explanation for the parameters
(non-state variables) is as following:

i) The parameter values involved in the aforementioned systems are considered to be non-negative,
and λ > 0.
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Figure 1. Box Diagram Illustrating a Brief Mathematical Model of Outcomes of a COVID-
19.

ii) λ: rate at which individuals are considered to be born susceptible.
iii) d: death rate of all the state variables.
iv) ν: rate at which susceptibles are vaccinated.
v) γ: rate at which susceptibles are effected by the virus.

vi) (1 − η) γ: rate at which vaccinated individuals are affected, which can be possible due to findings
present in [43].

v) β: recovery rate of affected individuals but are open to infection again if proper medical and
government guidelines are not followed.

Table 1. Different parameter values used for the SEVR model.

ν α η d β γ λ

0.01 0.8,0.7,0.6 0.5,0.8 0.002, 0.05 0.2 0.7 0.01
[41] estimated estimated estimated, [41] [41] [41] [41]

The vaccine efficacy can be given a numerical value [44], and as per our knowledge the vaccine efficacy
has not yet been modelled to any mathematical COVID-19 model. So for the solutions of system (2.1)–
(2.4) and (2.5)–(2.8) we take two values of η in order to compare the solution trajectories. Next, one
of the values for death rate of state variables, d, is taken as 0.002 to have a view at the infection in
terms of the basic reproduction number. The values of fractional order α are taken arbitrarily. This
section is followed by two other subsections dealing with finding the equilibrium points and the basic
reproduction number along with stability analysis of the equilibrium points.

2.2.1. Equilibrium points

Here, only two equilibrium points of the models given by the system (2.1)–(2.4) and (2.5)–(2.8) are
presented with biological clarification. The points are as following:
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i) X0

(
λα

dα + να
, 0,

λανα

dα (dα + να)
, 0

)
, which is named as “Infection-free equilibrium (IFE) point”. This

is the case where affected individuals are zero and individuals are in infection free state. The
vaccination for this point is fruitful for both short and long run as the infection can be contained.

ii) X∗ (S ∗, E∗,V∗,R∗), which is named as “Co-existing equilibrium (CoE) point”. The point X∗ satis-
fies the below mentioned system of the equations.

λα − γαS ∗E∗ − (dα + να) S ∗ = 0,
γαS ∗E∗ + (1 − η) γαV∗E∗ − (dα + βα) E∗ = 0,

ναS ∗ − dαV∗ − (1 − η) γαV∗E∗ = 0,
βαE∗ − dαR∗ = 0.

In this case, the affected individuals co-exist with susceptible individuals and this can be an alarm-
ing issue for the infection spread. The vaccination cannot be applied to the affected compartment
for this situation as it will wreck havoc to the immune system, and also rate of positive infection
will rise leading to indefinite death toll.

2.2.2. Basic reproduction number, Rn

It is important information in the mathematical regime of infectious disease models as it helps
in finding whether a pandemic will happen or not. The number Rn resembles the expected cases of
infections caused by an infectious individual inside susceptible populace. The next-generation matrix
method [45] is used to find Rn of the model presented in this article.

The Jacobian matrices F and V with the rate of appearance of new infections and rate of transfer
of individuals into and out of compartments, respectively, at X0 are given by

F =


0 0 0 0

0
γαλα {dα + (1 − η) να}

dα (dα + να)
0 0

να 0 0 0
0 βα 0 0

 ,V =


dα + να

γαλα

dα + να
0 0

0 dα + βα 0 0

0
(1 − η) γαλανα

dα (dα + να)
dα 0

0 0 0 dα


.

Proceeding further, we get

FV−1 = diag (0,Rn, 0, 0) .

The eigenvalues for the diagonal matrix FV−1 are the diagonal elements itself, and amongst them

the dominant eigenvalue is Rn =
γαλα {dα + (1 − η) να}
dα (dα + βα) (dα + να)

, which is the reproduction number for the

proposed models.
The infection will self-annihilate if Rn < 1, otherwise for Rn > 1 the infection will conquer and

begin to a pandemic or an epidemic until and unless the medical as well as government guidelines are
not implemented amongst the mass.
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2.2.3. Stability analysis

The discussion will be for the case Rn < 1, then the system (2.1)–(2.4) and (2.5)–(2.8) has IFE point
X0 and it is globally asymptotically stable in an invariant region [41, 42]

Γ = {(S , E,V,R) : S > 0, E ≥ 0,V ≥ 0,R ≥ 0, 0 < S + E + V + R ≤ 1} .

Now, to check local stablity the Jacobian of the models (2.1)–(2.4) or (2.5)–(2.8) at X0 is evaluated and
it is given by the matrix

J (X0) = F (X0) − V (X0) =



− (dα + να) −
γαλα

dα + να
0 0

0 (dα + βα) (Rn − 1) 0 0

να −
(1 − η) γαλανα

dα (dα + να)
−dα 0

0 βα 0 −dα


.

The characteristic equation for the matrix J(X0) in variable ξ is given by

4∏
i=1

(aii − ξ) = 0,

where a11 = − (dα + να), a22 = (dα + βα) (Rn − 1), a33 = −dα, and a44 = −dα are the eigenvalues.
Therefore, the IFE point X0 of the models (2.1)–(2.4) and (2.5)–(2.8) is locally asymptotically stable
for a22 < 0, implies that Rn < 1. So, it can be stated in a theorem as following:

Theorem 1. For Rn < 1, the IFE point X0 is locally asymptotically stable for the COVID-19 models
(2.1)–(2.4) and (2.5)–(2.8).

The follow-up section is about two of the most essential parts of any system of equations viz,
existence and uniqueness of solutions.

3. Existence and uniqueness of solutions

Here, in this section, necessary theorems are provided and discussed thoroughly to support the
existence and uniqueness of solutions of models (2.1)–(2.4) and (2.5)–(2.8) together with the initial
conditions, by applying the Banach fixed-point theory.

3.1. For the CF Model (2.1)–(2.4)

The findings for the system of equations of COVID-19 CF model using the fractional integral are
as follows [38, 46]:

S (t) = CF
0 I

α
t {λ

α − γαS E − (dα + να) S } + S 0,

E(t) = CF
0 I

α
t {γ

αS E + (1 − η) γαVE − (dα + βα) E} + E0,

V(t) = CF
0 I

α
t {ν

αS − dαV − (1 − η) γαVE} + V0,
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R(t) = CF
0 I

α
t {β

αE − dαR} + R0.

The symbols, after arranged in the view of the problem, gives the following results:

S (t) = S 0 +
2 (1 − α)

(2 − α)N(α)
[
λα − γαS (t)E(t) − (dα + να) S (t)

]
+

2α
(2 − α)N(α)

∫ t

0

[
λα − γαS (y)E(y) − (dα + να) S (y)

]
dy,

E(t) = E0 +
2 (1 − α)

(2 − α)N(α)
[
γαS (t)E(t) + (1 − η) γαV(t)E(t) − (dα + βα) E(t)

]
+

2α
(2 − α)N(α)

∫ t

0

[
γαS (y)E(y) + (1 − η) γαV(y)E(y) − (dα + βα) E(y)

]
dy,

V(t) = V0 +
2 (1 − α)

(2 − α)N(α)
[
ναS (t) − dαV(t) − (1 − η) γαV(t)E(t)

]
+

2α
(2 − α)N(α)

∫ t

0

[
ναS (y) − dαV(y) − (1 − η) γαV(y)E(y)

]
dy,

R(t) = R0 +
2 (1 − α)

(2 − α)N(α)
[
βαE(t) − dαR(t)

]
+

2α
(2 − α)N(α)

∫ t

0

[
βαE(y) − dαR(y)

]
dy.

For the sake of simplicity, we consider

H1(S , t) =
[
λα − γαS (t)E(t) − (dα + να) S (t)

]
, (3.1)

H2(E, t) =
[
γαS (t)E(t) + (1 − η) γαV(t)E(t) − (dα + βα) E(t)

]
, (3.2)

H3(V, t) =
[
ναS (t) − dαV(t) − (1 − η) γαV(t)E(t)

]
, (3.3)

H4(R, t) =
[
βαE(t) − dαR(t)

]
. (3.4)

Theorem 2. The Lipschitz condition and contraction are justified by the kernel

i) H1 if 0 ≤ (γαω2 + dα + να) < 1.
ii) H2 if 0 ≤ (γαω1 + (1 − η) γαω3 + dα + βα) < 1.

iii) H3 if 0 ≤ (dα + (1 − η) γαω2) < 1.
iv) H4 if 0 ≤ dα < 1.

Proof. Let us assume that the state variables present in the COVID-19 models are bounded, and there-
fore it can be said that ‖ S (t) ‖≤ ω1, ‖ E(t) ‖≤ ω2, ‖ V(t) ‖≤ ω3, and ‖ R(t) ‖≤ ω4 [46].

Let us consider S (t) and S ′(t) be the two functions, and therefore

‖ H1(S , t) −H1(S ′, t) ‖ = ‖ −γα
(
S (t) − S ′(t)

)
E(t) − (dα + να)

(
S (t) − S ′(t)

)
‖

≤ ‖ γαE(t)
(
S (t) − S ′(t)

)
‖ + ‖ (dα + να)

(
S (t) − S ′(t)

)
‖

≤
[
γα ‖ E(t) ‖ + (dα + να)

]
‖ S (t) − S ′(t) ‖

≤
[
γαω2 + dα + να

]
‖ S (t) − S ′(t) ‖ .

So, it can be mentioned now that

‖ H1(S , t) −H1(S ′, t) ‖ ≤ φ1 ‖ S (t) − S ′(t) ‖,
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where φ1 = (γαω2 + dα + να). Thus, the Lipschitz condition is achieved for kernel H1 and 0 ≤
(γαω2 + dα + να) < 1 [46] givesH1, and also contraction is justified.

Like wise, contraction and the Lipschitz condition can be done and written for the kernelsH2,H3,
andH4 as mentioned below;

‖ H2(E, t) −H2(E′, t) ‖ ≤ φ2 ‖ E(t) − E′(t) ‖,
‖ H3(V, t) −H3(V ′, t) ‖ ≤ φ3 ‖ V(t) − V ′(t) ‖,
‖ H4(R, t) −H4(R′, t) ‖ ≤ φ4 ‖ R(t) − R′(t) ‖,

where φ2 = (γαω1 + (1 − η) γαω3 + dα + βα), φ3 = (dα + (1 − η) γαω2), and φ4 = dα.

Taking the kernels H1, H2, H3, and H4 into consideration the following equations are obtained,
which are as follows:

S (t) = S 0 +
2

(2 − α)N(α)

[
(1 − α)H1(S , t) + α

∫ t

0
H1(S , z)dz

]
, (3.5)

E(t) = E0 +
2

(2 − α)N(α)

[
(1 − α)H2(E, t) + α

∫ t

0
H2(E, z)dz

]
, (3.6)

V(t) = V0 +
2

(2 − α)N(α)

[
(1 − α)H3(V, t) + α

∫ t

0
H3(V, z)dz

]
, (3.7)

R(t) = R0 +
2

(2 − α)N(α)

[
(1 − α)H4(R, t) + α

∫ t

0
H4(R, z)dz

]
. (3.8)

The following iterative formulae are now seen closely, which are as follows:

S n(t) = S 0 +
2

(2 − α)N(α)

[
(1 − α)H1(S n−1, t) + α

∫ t

0
H1(S n−1, z)dz

]
, (3.9)

En(t) = E0 +
2

(2 − α)N(α)

[
(1 − α)H2(En−1, t) + α

∫ t

0
H2(En−1, z)dz

]
, (3.10)

Vn(t) = V0 +
2

(2 − α)N(α)

[
(1 − α)H3(Vn−1, t) + α

∫ t

0
H3(Vn−1, z)dz

]
, (3.11)

Rn(t) = R0 +
2

(2 − α)N(α)

[
(1 − α)H4(Rn−1, t) + α

∫ t

0
H4(Rn−1, z)dz

]
, (3.12)

with the initial conditions of the COVID-19 model given in the system of Eqs (2.1)–(2.4). The upcom-
ing expressions for the difference of sequential terms are written as:

ρn(t) = S n(t) − S n−1(t) =
2 (1 − α)

(2 − α)N(α)
[
(H1(S n−1, t) −H1(S n−2, t))

]
+

2α
(2 − α)N(α)

∫ t

0
(H1(S n−1, z) −H1(S n−2, z)) dz,

σn(t) = En(t) − En−1(t) =
2 (1 − α)

(2 − α)N(α)
[
(H2(En−1, t) −H2(En−2, t))

]
+

2α
(2 − α)N(α)

∫ t

0
(H2(En−1, z) −H2(En−2, z)) dz,
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δn(t) = Vn(t) − Vn−1(t) =
2 (1 − α)

(2 − α)N(α)
[
(H3(Vn−1, t) −H3(Vn−2, t))

]
+

2α
(2 − α)N(α)

∫ t

0
(H3(Vn−1, z) −H3(Vn−2, z)) dz,

πn(t) = Rn(t) − Rn−1(t) =
2 (1 − α)

(2 − α)N(α)
[
(H4(Rn−1, t) −H4(Rn−2, t))

]
+

2α
(2 − α)N(α)

∫ t

0
(H4(Rn−1, z) −H4(Rn−2, z)) dz.

It is evident that

S n(t) =

n∑
m=1

ρm(t), En(t) =

n∑
m=1

σm(t), Vn(t) =

n∑
m=1

δm(t), Rn(t) =

n∑
m=1

πm(t).

Involving norm to ρn(t) then using triangle inequality, we get

‖ ρn(t) ‖ = ‖ S n(t) − S n−1(t) ‖ ≤
2 (1 − α)

(2 − α)N(α)
‖ (H1(S n−1, t) −H1(S n−2, t)) ‖

+
2α

(2 − α)N(α)
‖

∫ t

0
(H1(S n−1, z) −H1(S n−2, z)) dz ‖ .

It has been shown that the the Lipschitz condition is satisfied by the kernelH1, therefore

‖ S n(t) − S n−1(t) ‖ ≤
2φ1

(2 − α)N(α)

[
(1 − α) ‖ S n−1 − S n−2 ‖ +α

∫ t

0
‖ S n−1 − S n−2 ‖ dz

]
.

Thus, it can be deduced that

‖ ρn(t) ‖ ≤
2φ1

(2 − α)N(α)

[
(1 − α) ‖ ρn−1(t) ‖ +α

∫ t

0
‖ ρn−1(z) ‖ dz

]
. (3.13)

In the same way, other results are followed as;

‖ σn(t) ‖ ≤
2φ2

(2 − α)N(α)

[
(1 − α) ‖ σn−1(t) ‖ +α

∫ t

0
‖ σn−1(z) ‖ dz

]
, (3.14)

‖ δn(t) ‖ ≤
2φ3

(2 − α)N(α)

[
(1 − α) ‖ δn−1(t) ‖ +α

∫ t

0
‖ δn−1(z) ‖ dz

]
, (3.15)

‖ πn(t) ‖ ≤
2φ4

(2 − α)N(α)

[
(1 − α) ‖ πn−1(t) ‖ +α

∫ t

0
‖ πn−1(z) ‖ dz

]
. (3.16)

By taking the inequalities (3.13)–(3.16) into consideration the following theorem can be stated, which
is:

Theorem 3. The system (2.1)–(2.4) has a solution if there exist a real number τ0, satisfying

2φi

(2 − α)N(α)
[1 + α (τ0 − 1)] < 1,

for all i = 1, 2, 3, 4.
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Proof. Inequations (3.13)–(3.16) are considered along with the fact that the state variables are bounded
and the kernels Hi (i = 1, 2, 3, 4) satisfy the Lipschitz condition. The following mentioned relations
employ the iterative method [46]:

‖ ρn(t) ‖ ≤ ‖ S n(0) ‖
{

2φ1

(2 − α)N(α)
[1 + α (τ − 1)]

}n

, (3.17)

‖ σn(t) ‖ ≤ ‖ En(0) ‖
{

2φ2

(2 − α)N(α)
[1 + α (τ − 1)]

}n

, (3.18)

‖ δn(t) ‖ ≤ ‖ Vn(0) ‖
{

2φ3

(2 − α)N(α)
[1 + α (τ − 1)]

}n

, (3.19)

‖ πn(t) ‖ ≤ ‖ Rn(0) ‖
{

2φ4

(2 − α)N(α)
[1 + α (τ − 1)]

}n

. (3.20)

Thus, solutions of the system (2.1)–(2.4) exist, which are given by the functions (or inequalities)
(3.17)–(3.20), and are also continuous. Let us now consider that

S (t) − S 0 = S n(t) −Sn(t),
E(t) − E0 = En(t) − En(t),
V(t) − V0 = Vn(t) −Vn(t),
R(t) − R0 = Rn(t) − Rn(t).

Taking Sn(t) into consideration, we now achieve

‖ Sn(t) ‖ =
2

(2 − α)N(α)
‖ {(1 − α) (H1(S , t) −H1(S n−1, t))} + α

∫ t

0
(H1(S , z) −H1(S n−1, z)) dz ‖

≤ φ1 ‖ S − S n−1 ‖

{
2 (1 − α)

(2 − α)N(α)
[1 + α (τ − 1)]

}
.

If this process is iterated then at τ = τ0, we get

‖ Sn(t) ‖ ≤
{

2φ1

(2 − α)N(α)
[1 + α(τ0 − 1)]

}n+1

ω1.

Now, it is clear that lim
n→∞
‖ Sn(t) ‖= 0. In the same manner it can be put that En(t) → 0, Vn(t) → 0,

and Rn(t)→ 0 whenever n→ ∞.

To clarify the uniqueness for the solutions of the system (2.1)–(2.4), we now assume that S ′(t),
E′(t), V ′(t), and R′(t) are a distinct set of solutions for the said system, then

S (t) − S ′(t) =
2 (1 − α)

(2 − α)N(α)
(
H1(S , t) −H1(S ′, t)

)
+

2α
(2 − α)N(α)

∫ t

0

(
H1(S , z) −H1(S ′, z)

)
dz.

Let us consider that kernel H1 justify the Lipschitz condition and taking the norm on the above equa-
tion, we get the inequality given below;

‖ S (t) − S ′(t) ‖
{

1 −
2φ1

(2 − α)N(α)
[1 + α(τ − 1)]

}
≤ 0. (3.21)
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Similarly,

‖ E(t) − E′(t) ‖
{

1 −
2φ2

(2 − α)N(α)
[1 + α(τ − 1)]

}
≤ 0, (3.22)

‖ V(t) − V ′(t) ‖
{

1 −
2φ3

(2 − α)N(α)
[1 + α(τ − 1)]

}
≤ 0, (3.23)

‖ R(t) − R′(t) ‖
{

1 −
2φ4

(2 − α)N(α)
[1 + α(τ − 1)]

}
≤ 0. (3.24)

Theorem 4. For the system (2.1)–(2.4), a unique solution exists if the following inequalities holds good{
1 −

2φi

(2 − α)N(α)
[1 + α(τ − 1)]

}
> 0,

for all i=1,2,3,4.

Proof. If we consider the assumption made, then from the inequalities given by (3.21)–(3.24), we get

‖ S (t) − S ′(t) ‖= 0, ‖ E(t) − E′(t) ‖= 0, ‖ V(t) − V ′(t) ‖= 0, ‖ R(t) − R′(t) ‖= 0.

This implies that S (t) = S ′(t), E(t) = E′(t), V(t) = V ′(t), and R(t) = R′(t). And this justifies the proof
of COVID-19 model (2.1)–(2.4).

3.2. For the ABC Model (2.5)–(2.8)

The system of equations of COVID-19 ABC model using the fractional integral [38,46], the findings
involve the following:

S (t) = ABC
0 Iαt {λ

α − γαS E − (dα + να) S } + S 0,

E(t) = ABC
0 Iαt {γ

αS E + (1 − η) γαVE − (dα + βα) E} + E0,

V(t) = ABC
0 Iαt {ν

αS − dαV − (1 − η) γαVE} + V0,

R(t) = ABC
0 Iαt {β

αE − dαR} + R0.

The symbols, after arranged in view of the problem, give the following results;

S (t) = S 0 +
(1 − α)
N(α)

[
λα − γαS (t)E(t) − (dα + να) S (t)

]
+

α

N(α)Γ(α)

∫ t

0
(t − y)α−1 [

λα − γαS (y)E(y) − (dα + να) S (y)
]
dy,

E(t) = E0 +
(1 − α)
N(α)

[
γαS (t)E(t) + (1 − η) γαV(t)E(t) − (dα + βα) E(t)

]
+

α

N(α)Γ(α)

∫ t

0
(t − y)α−1 [

γαS (y)E(y) + (1 − η) γαV(y)E(y) − (dα + βα) E(y)
]
dy,

V(t) = V0 +
(1 − α)
N(α)

[
ναS (t) − dαV(t) − (1 − η) γαV(t)E(t)

]
+

α

N(α)Γ(α)

∫ t

0
(t − y)α−1 [

ναS (y) − dαV(y) − (1 − η) γαV(y)E(y)
]
dy,
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R(t) = R0 +
(1 − α)
N(α)

[
βαE(t) − dαR(t)

]
+

α

N(α)Γ(α)

∫ t

0

[
βαE(y) − dαR(y)

]
dy.

For the sake of simplicity, we consider

H̄1(S , t) =
[
λα − γαS (t)E(t) − (dα + να) S (t)

]
, (3.25)

H̄2(E, t) =
[
γαS (t)E(t) + (1 − η) γαV(t)E(t) − (dα + βα) E(t)

]
, (3.26)

H̄3(V, t) =
[
ναS (t) − dαV(t) − (1 − η) γαV(t)E(t)

]
, (3.27)

H̄4(R, t) =
[
βαE(t) − dαR(t)

]
. (3.28)

Theorem 5. The Lipschitz condition and contraction are justified by the kernel

i) H̄1 if 0 ≤ (γαω̄2 + dα + να) < 1.
ii) H̄2 if 0 ≤ (γαω̄1 + (1 − η) γαω̄3 + dα + βα) < 1.

iii) H̄3 if 0 ≤ (dα + (1 − η) γαω̄2) < 1.
iv) H̄4 if 0 ≤ dα < 1.

Proof. Let us assume that the state variables present in the COVID-19 models are bounded, and there-
fore it can be said that ‖ S (t) ‖≤ ω̄1, ‖ E(t) ‖≤ ω̄2, ‖ V(t) ‖≤ ω̄3, and ‖ R(t) ‖≤ ω̄4 [46].

Let us consider S (t) and S ′(t) be the two functions, and therefore

‖ H̄1(S , t) − H̄1(S ′, t) ‖ = ‖ −γα
(
S (t) − S ′(t)

)
E(t) − (dα + να)

(
S (t) − S ′(t)

)
‖

≤ ‖ γαE(t)
(
S (t) − S ′(t)

)
‖ + ‖ (dα + να)

(
S (t) − S ′(t)

)
‖

≤
[
γα ‖ E(t) ‖ + (dα + να)

]
‖ S (t) − S ′(t) ‖

≤
[
γαω̄2 + dα + να

]
‖ S (t) − S ′(t) ‖ .

So, it can be mentioned now that

‖ H̄1(S , t) − H̄1(S ′, t) ‖ ≤ φ̄1 ‖ S (t) − S ′(t) ‖,

where φ̄1 = (γαω̄2 + dα + να). Thus, the Lipschitz condition is achieved for kernel H̄1 and 0 ≤
(γαω̄2 + dα + να) < 1 [46] gives H̄1, and also contraction is justified.

Like wise, the Lipschitz condition and contraction can be performed and written for the kernels H̄2,
H̄3, and H̄4 as mentioned below;

‖ H̄2(E, t) − H̄2(E′, t) ‖ ≤ φ̄2 ‖ E(t) − E′(t) ‖,
‖ H̄3(V, t) − H̄3(V ′, t) ‖ ≤ φ̄3 ‖ V(t) − V ′(t) ‖,
‖ H̄4(R, t) − H̄4(R′, t) ‖ ≤ φ4 ‖ R(t) − R′(t) ‖,

where φ̄2 = (γαω̄1 + (1 − η) γαω̄3 + dα + βα), φ̄3 = (dα + (1 − η) γαω̄2), and φ4 = dα.

Taking the kernels H̄1, H̄2, H̄3, and H̄4 into consideration the following equations are obtained:

S (t) = S 0 +
1

N(α)Γ(α)

[
Γ(α) (1 − α) H̄1(S , t) + α

∫ t

0
(t − z)α−1

H̄1(S , z)dz
]
, (3.29)
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E(t) = E0 +
1

N(α)Γ(α)

[
Γ(α) (1 − α) H̄2(E, t) + α

∫ t

0
(t − z)α−1

H̄2(E, z)dz
]
, (3.30)

V(t) = V0 +
1

N(α)Γ(α)

[
Γ(α) (1 − α) H̄3(V, t) + α

∫ t

0
(t − z)α−1

H̄3(V, z)dz
]
, (3.31)

R(t) = R0 +
1

N(α)Γ(α)

[
Γ(α) (1 − α) H̄4(R, t) + α

∫ t

0
(t − z)α−1

H̄4(R, z)dz
]
. (3.32)

The following iterative formulae with the initial conditions of the COVID-19 model given in the system
of Eqs (2.5)–(2.8) are now seen closely, which are as follows:

S (t) = S 0 +
1

N(α)Γ(α)

[
Γ(α) (1 − α) H̄1(S n−1, t) + α

∫ t

0
(t − z)α−1

H̄1(S n−1, z)dz
]
, (3.33)

E(t) = E0 +
1

N(α)Γ(α)

[
Γ(α) (1 − α) H̄2(En−1, t) + α

∫ t

0
(t − z)α−1

H̄2(En−1, z)dz
]
, (3.34)

V(t) = V0 +
1

N(α)Γ(α)

[
Γ(α) (1 − α) H̄3(Vn−1, t) + α

∫ t

0
(t − z)α−1

H̄3(Vn−1, z)dz
]
, (3.35)

R(t) = R0 +
1

N(α)Γ(α)

[
Γ(α) (1 − α) H̄4(Rn−1, t) + α

∫ t

0
(t − z)α−1

H̄4(Rn−1, z)dz
]
. (3.36)

The upcoming expressions for the difference of sequential terms are written as follows:

ρ̄n(t) = S n(t) − S n−1(t) =
(1 − α)
N(1 − α)

(
H̄1(S n−1, t) − H̄1(S n−2, t)

)
+

α

N(α)Γ(α)

∫ t

0
(t − z)α−1

(
H̄1(S n−1, z) − H̄1(S n−2, z)

)
dz,

σ̄n(t) = En(t) − En−1(t) =
(1 − α)
N(1 − α)

(
H̄2(En−1, t) − H̄2(En−2, t)

)
+

α

N(α)Γ(α)

∫ t

0
(t − z)α−1

(
H̄2(En−1, z) − H̄2(En−2, z)

)
dz,

δ̄n(t) = Vn(t) − Vn−1(t) =
(1 − α)
N(1 − α)

(
H̄3(Vn−1, t) − H̄3(Vn−2, t)

)
+

α

N(α)Γ(α)

∫ t

0
(t − z)α−1

(
H̄3(Vn−1, z) − H̄3(Vn−2, z)

)
dz,

π̄n(t) = Rn(t) − Rn−1(t) =
(1 − α)
N(1 − α)

(
H̄4(Rn−1, t) − H̄4(Rn−2, t)

)
+

α

N(α)Γ(α)

∫ t

0
(t − z)α−1

(
H̄4(Rn−1, z) − H̄4(Rn−2, z)

)
dz.

It is evident that

S n(t) =

n∑
m=1

ρ̄m(t), En(t) =

n∑
m=1

σ̄m(t), Vn(t) =

n∑
m=1

δ̄m(t), Rn(t) =

n∑
m=1

π̄m(t).
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Involving norm to ρ̄n(t) then using triangle inequality, we get

‖ ρ̄n(t) ‖ ≤
(1 − α)
N(α)

‖
(
H̄1(S n−1, t) − H̄1(S n−2, t)

)
‖

+
α

N(α)Γ(α)
‖

∫ t

0
(t − z)α−1 (H1(S n−1, z) −H1(S n−2, z)) dz ‖ .

It has been shown that the Lipschitz condition is satisfied by the kernel H̄1, therefore

‖ S n(t) − S n−1(t) ‖ ≤
(1 − α) φ̄1

N(α)
‖ S n−1 − S n−2 ‖

+
αφ̄1

N(α)Γ(α)

[∫ t

0
(t − z)α−1

‖ S n−1 − S n−2 ‖ dz
]
.

Thus, it can be deduced that

‖ ρ̄n(t) ‖ ≤
φ̄1

N(α)Γ(α)

[
Γ(α) ‖ ρ̄n−1(t) ‖ +α

∫ t

0
(t − z)α−1

‖ ρ̄n−1(z) ‖ dz
]
. (3.37)

In the same way, other results are followed as:

‖ σ̄n(t) ‖ ≤
φ̄2

N(α)Γ(α)

[
Γ(α) ‖ σ̄n−1(t) ‖ +α

∫ t

0
(t − z)α−1

‖ σ̄n−1(z) ‖ dz
]
, (3.38)

‖ δ̄n(t) ‖ ≤
φ̄3

N(α)Γ(α)

[
Γ(α) ‖ δ̄n−1(t) ‖ +α

∫ t

0
(t − z)α−1

‖ δ̄n−1(z) ‖ dz
]
, (3.39)

‖ π̄n(t) ‖ ≤
φ̄4

N(α)Γ(α)

[
Γ(α) ‖ π̄n−1(t) ‖ +α

∫ t

0
(t − z)α−1

‖ π̄n−1(z) ‖ dz
]
. (3.40)

Taking the inequalities (3.37)–(3.40) into consideration, the following theorem can be put forward:

Theorem 6. The system (2.5)–(2.8) has a solution if there exist a real number τ0, satisfying

φ̄i

N(α)Γ(α)
[
Γ(α) (1 − α) + τα0

]
< 1,

for all i = 1, 2, 3, 4.

Proof. The Inequations (3.37)–(3.40) are considered along with the fact that the state variables are
bounded and the kernels H̄i (i = 1, 2, 3, 4) satisfy the Lipschitz condition. The following mentioned
relations employ the iterative method [46]:

‖ ρ̄n(t) ‖ ≤ ‖ S n(0) ‖
{

φ̄1

N(α)Γ(α)
[
Γ(α) (1 − α) + τα0

]}n

, (3.41)

‖ σ̄n(t) ‖ ≤ ‖ En(0) ‖
{

φ̄2

N(α)Γ(α)
[
Γ(α) (1 − α) + τα0

]}n

, (3.42)

‖ δ̄n(t) ‖ ≤ ‖ Vn(0) ‖
{

φ̄3

N(α)Γ(α)
[
Γ(α) (1 − α) + τα0

]}n

, (3.43)
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‖ π̄n(t) ‖ ≤ ‖ Rn(0) ‖
{

φ̄4

N(α)Γ(α)
[
Γ(α) (1 − α) + τα0

]}n

. (3.44)

Thus, solutions of the system (2.5)–(2.8) exist, which are given by the functions (or inequalities)
(3.41)–(3.44), and are also continuous. Let us now consider that

S (t) − S 0 = S n(t) − S̄n(t),
E(t) − E0 = En(t) − Ēn(t),
V(t) − V0 = Vn(t) − V̄n(t),
R(t) − R0 = Rn(t) − R̄n(t).

Taking S̄n(t) into consideration, we now achieve

‖ S̄n(t) ‖ =
1

N(α)Γ(α)
‖
{
(1 − α)

(
H̄1(S , t) − H̄1(S n−1, t)

)}
+α

∫ t

0
(t − z)α−1

(
H̄1(S , t) − H̄1(S n−1, t)

)
dz ‖

≤ φ̄1 ‖ S n − S n−1 ‖

{
1

N(α)Γ(α)
[Γ(α) (1 − α) + τα]

}
.

If this process is iterated then at τ = τ0, we get

‖ S̄n(t) ‖ ≤
{

1
N(α)Γ(α)

[
Γ(α) (1 − α) + τα0

]}
ω̄1.

Now, it is clear that lim
n→∞
‖ S̄n(t) ‖= 0. In the same manner it can be put that Ēn(t) → 0, V̄n(t) → 0,

and R̄n(t)→ 0 whenever n→ ∞.

To clarify the uniqueness for the solutions of the system (2.5)–(2.8), we now assume that S ′(t),
E′(t), V ′(t), and R′(t) are a distinct set of solutions for the said system, then

S (t) − S ′(t) =
(1 − α)
N(α)

(
H̄1(S , t) − H̄1(S ′, t)

)
+

α

N(α)Γ(α)

∫ t

0
(t − z)α−1

(
H̄1(S , z) − H̄1(S ′, z)

)
dz.

Let us consider that kernel H̄1 justify the Lipschitz condition and taking norm on above equation, we
get the following inequality given below as:

‖ S (t) − S ′(t) ‖
{

1 −
φ̄1

N(α)Γ(α)
[Γ(α) (1 − α) + τα]

}
≤ 0. (3.45)

Similarly,

‖ E(t) − E′(t) ‖
{

1 −
φ̄2

N(α)Γ(α)
[Γ(α) (1 − α) + τα]

}
≤ 0, (3.46)

‖ V(t) − V ′(t) ‖
{

1 −
φ̄3

N(α)Γ(α)
[Γ(α) (1 − α) + τα]

}
≤ 0, (3.47)

‖ R(t) − R′(t) ‖
{

1 −
φ̄4

N(α)Γ(α)
[Γ(α) (1 − α) + τα]

}
≤ 0. (3.48)
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Theorem 7. For the system (2.5)–(2.8), a unique solution exists if the following inequalities hold good{
1 −

φ̄i

N(α)Γ(α)
[Γ(α) (1 − α) + τα]

}
> 0

for all i = 1, 2, 3, 4.

Proof. If we consider the assumption made, then from the inequalities given by (3.45)–(3.48),

‖ S (t) − S ′(t) ‖= 0, ‖ E(t) − E′(t) ‖= 0, ‖ V(t) − V ′(t) ‖= 0, ‖ R(t) − R′(t) ‖= 0.

This implies that S (t) = S ′(t), E(t) = E′(t), V(t) = V ′(t), and R(t) = R′(t). And this justifies the proof
for the uniqueness of the solutions for COVID-19 model (2.5)–(2.8).

4. Discussion and numerical results

The numerical simulation is done using Mathematica for both CF and ABC approach models (2.1)–
(2.4) and (2.5)–(2.8), respectively. Next, the comparison and discussion of the following results are
done. The dynamics of the novel COVID-19 infection-vaccination model are given by the system
(2.1)–(2.4) and (2.5)–(2.8), respectively, for various values of α, randomly selected, are plotted in
Figures 2 – 5. The parametric plot amongst the state variables of the SEVR model are plotted in
Figures 6 and 7. The initial values of the state variables are taken as: S 0 = 0.1, E0 = 0.05, V0 = 0.5,
and R0 = 0 [41, 46].

Due to lack of clinical evidence and support, it is not sure the precise death rate of individuals due
to COVID-19 infection, and so we manipulate the value of d to understand the death dynamics. The
numerical simulations’ comparison of Figures 2(a)–(d), 3(a)–(d), 4(a)–(d), 5(a)–(d) and Figures 2(e)–
(h), 3(e)–(h), 4(e)–(h), 5(e)–(h) for both the CF- and ABC approach, respectively, show that for same
non-natural values of α, parameter values given in Table 1 and same initial conditions the SEVR model
shows different trajectories. It is observed that susceptible populace decrease at a slower rate with the
ABC approach as compared to the CF approach for the values of α in Table 1, which can be clearly
seen in Figure 2(e),(f) and 2(a),(b). But Figure 2(c),(d) and 2(g),(h) show that both CF- and ABC
approach provides precisely same result. It is deduced from Figures 3(a),(b) vs. 3(e),(f) and 4(a),(b)
vs. 4(e),(f) about comparisons that the ABC approach gives much variation in effected and vaccinated
populaces than the CF approach, for d = 0.002 and η = 0.5, and 0.8. One more prominent aspect
suggests that the effected and vaccinated populaces provide a sharp increase because of high spread
of COVID-19 infection presented by Hellewell et al. [47] and Gupta et al. [48]. But Figures 3(c),(d)
vs. 3(g),(h) and 4(c),(d) vs. 4(g),(h) explain that both the CF- and ABC approach yields almost same
outcome.

Moreover, on minute speculation of comparisons shown in Figure 3(a),(b),(e),(f) with Figure
5(a),(b),(e),(f) we see a difference between the peak of effected and recovered populaces, when
d = 0.002. Be that as it may, it is noted that in Figure 3(c),(d),(g),(h) with Figure 5(c),(d),(g),(h)
the difference between the decreasing peak points is approximately 5 days, calculated at d = 0.05. The
gradient of curves for different values of α share similarities with the findings. This shows that affected
individuals are recovering very quickly by the ABC approach, whereas the CF approach shows almost
a delay in the transfer of affected individuals to recover compartments.
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Figure 2. Time plot comparison for the Susceptible compartment for CF(a)–(d) and ABC(e)–
(h) approach using different values for α, η, d and other parameter values from Table 1.
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Figure 3. Time plot comparison for the Effected compartment for CF(a)–(d) and ABC(e)–(h)
approach using different values for α, η, d and other parameter values from Table 1.
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Figure 4. Time plot comparison for the Vaccinated compartment for CF(a)–(d) and ABC(e)–
(h) approach using different values for α, η, d and other parameter values from Table 1.
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Figure 5. Time plot comparison for the Recovered compartment for CF(a)–(d) and ABC(e)–
(h) approach using different values for α, η, d and other parameter values from Table 1.
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Table 2. The reproduction number values and nature of the IFE point X0 for different values
of η, d and α.

η d α Rn X0 Remark

0.8 5.852 Unstable
0.002 0.7 4.434 Unstable

0.6 3.341 Unstable
0.5 0.8 0.504 Stable

0.05 0.7 0.495 Stable
0.6 0.484 Stable
0.8 3.594 Unstable

0.002 0.7 2.821 Unstable
0.6 2.206 Unstable

0.8 0.8 0.467 Stable
0.05 0.7 0.454 Stable

0.6 0.436 Stable
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Figure 6. Parametric plot of the state variables for Rn > 1, α = 0.7, η = 0.5, d = 0.002 and
other parameter values from Table 1.

In all this, we have come across that for almost any efficacy of vaccine, and for arbitrary chosen
α if the death rate d = 0.002, then affected individuals exhibits virulent characteristics. This may
result in tending towards the co-existing equilibrium point X∗. From the Table 2, it can be deduced
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Figure 7. Parametric plot of the state variables for Rn > 1, α = 0.7, η = 0.8, d = 0.002 and
other parameter values from Table 1.

mathematically that for any vaccine efficacy ranging between 50% to 80% effectiveness can bring
stability to the susceptible individuals to fight against the virus. It would be interesting to see how
some state variables of the SEVR model are responding to each other for the cases when Rn > 1.
Therefore, Figures 6 and 7 provide parametric plot between the state variables and it is noticeable that
they experience a chaotic behaviour.

The virtue of the models (2.1)–(2.4) and (2.5)–(2.8), when contrasted, found remarkable differences
under the parameter values given in Table 1. The reason is memory properties of the kernel in the frac-
tional derivatives’ definitions. The CF and ABC derivative has exponential kernel and generalized
Mittag-Leffler kernel, respectively. The ABC type shows a power-law memory, and also partial expo-
nential decay memory [49]. It is clear that the model lies upon the fractional order notably, for various
values of α it displays a clear difference and suggested models (2.1)–(2.4) and (2.5)–(2.8) explores new
aspects at the fractional values of α.

5. Conclusions

Infection-related contact ascends with a growth in the size of population. Thus, COVID-19 infection
spread during vaccination program for non-integer order model is considered, using the CF and ABC
sense. Numerical simulation output for the proposed fractional order models are shown with distinct
fractional order values α ∈]0, 1[ and briefly compared, discussed and investigated. The vaccine efficacy
and the death rate for state variables plays a significant role in escaping the infection. Since COVID-19
virus biology is changing rapidly, so the precise estimation of death rate, d, can unfold the appropriate
time for vaccine administration and how effective it should be. The graphical results demonstrate the
ABC approach provides better suitability for mild cases. Whereas, the CF approach provides superior
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and more flexible results for critical cases. The CF approach provided a guarantee for use in lenient
cases, whereas the ABC approach has a notable impact on the dynamics of COVID-19 infection and
has given new insight for its use as a device to further research in dynamics of the spread of the disease
in critical cases. These results show that CF and ABC approach implementation in real life situations
are both plausible and doable as per the severity of illness for patient management. The findings
also underline that even incomplete vaccination can have delay positive repercussions in minding the
symptoms and spread of the Coronavirus COVID-19. It is found from the analysis that proposed
fractional order mathematical models yield better results than that of the classical ones. The entire
manuscript deals with the solution of a dynamical system of COVID-19 model for various fractional
order α ranging in the interval [0, 1].

For future research work the analysis of COVID-19 infection spread for different geographical
areas can be achieved by examining the models with relevant parameter values as per data trends of
the region, and also including quarantine and number of dosages of vaccines compartments. It is
anticipated that this research will provide significance and will thus strengthen the research relevant
to COVID-19 transmission dynamics, so that progressive disease control policies are formulated to
provide patients with better medical care to all in need.
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