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Abstract: Objective: To explore the soft ultrasound marker (USM) combined with non-invasive pre-
natal testing (NIPT) in diagnosing fetal chromosomal abnormalities based on machine learning and
data mining techniques. Methods: To analyze the data of ultrasonic examination from 856 cases with
high-risk single pregnancy during early and middle pregnancy stage. NIPT was applied in 642 patients.
All 856 patients accepted amniocentesis and chromosome karyotype analysis to determine the efficacy
of USM, Down’s syndrome screening, and NIPT in detecting fetal chromosomal abnormalities. Re-
sults: Among the 856 fetuses, 129 fetuses (15.07%) with single positive USM and 36 fetuses (4.21%)
with two or more positive USM. There were 81 fetuses (9.46%) with chromosomal abnormalities. In
the group with multiple USM, chromosomal abnormalities were found in 36.11% of them. It was
higher than the group without USM, which was 6.22% (P < 0.01), and the group with just a single
USM (19.38%, P < 0.05). The sensitivity, specificity and accuracy were 96.72%, 98.45% and 98.29%
when the combination of USM, Down’s syndrome screening and NIPT was used to diagnose fetal
chromosomal abnormalities further evaluating the accuracy and effectiveness of the above diagnostic
criteria and methods with mainstream Classifiers based evaluation indicators of accuracy, f1 score,
AUC. Conclusions: The combination of USM, Down’s syndrome screening and NIPT is valuable for
the diagnosis of fetal chromosomal abnormalities.
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1. Introduction

Non-invasive prenatal testing (NIPT) is transforming prenatal diagnostic practice globally, particu-
larly considering the trend toward late marriage and childbirth while maintaining high sensitivity and
specificity for screening for common aneuploidy in the older mother age range [1,2]. Consequently, the
likelihood of invasive procedures and the related risk of miscarriage are decreased. NIPT has demon-
strated its ability to screen for and diagnose various chromosomal and genetic abnormalities in recent
years [2, 3]. In recent years. Advanced laboratory testing and purification techniques have improved
the performance of NIPT and allowed the introduction of new applications [4, 5]. As a consequence
of advancements in artificial intelligence, statistical machine learning can ensure correctness and out-
perform manual efficiency in the analysis and judgment of NIPT findings [6]. With the introduction of
this method into clinical practice, NIPT offers tremendous promise for aneuploidy screening [7, 8].

However, fewer than half of nations in Europe have included the NIPT test in their national policy,
and the test is still utilized by less than 25% of women [9, 10]. The thresholds offered to vary con-
siderably in the countries/regions that offer NIPT testing. Belgium and the Netherlands are presently
the only two European nations that provide NIPT to all pregnant women [11]. Certain nations provide
screening for high-risk pregnancies (e.g., between 1:100 and 1:1000), whereas others limit screen-
ing to the highest-risk pregnancies (e.g., above 1:50 or 1:100) [12, 13]. In the United States, the
majority of insurance companies cover high-risk populations for testing. Additionally, coverage of
NIPT chromosomes varies by country/region. Belgium and the Netherlands, in particular, both pro-
vide whole genome testing. Belgium is the only nation in the world with a NIPT testing rate of more
than 75% [13–15].

Although, the kind and breadth of NIPT tests available and whether the test is publicly supported
or must be privately paid vary significantly among health care systems worldwide [3,15,16]. In recent
years, metropolitan governments and health care professionals in some developing nations have pro-
gressively extended the audience for NIPT to minimize the danger of amniocentesis in women with late
pregnancies [4, 5]. As the scope of diagnosis broadens, it becomes essential and critical to providing
new impetus to the diagnostic process with the help of AI technology. These technologies are known to
save exponentially on manual labour, allowing clinicians to concentrate more on verifying unpleasant
nonsense occurrences and devising treatment strategies [17, 18]. With the rapid development of the
Internet of Medical Things, these findings could also serve public health health services well [19–21].
Past reviews of the use of AI in pregnancy research and healthcare have described great potential, but
little has been realized in the clinical setting. The low adoption of AI in clinical care in the field of
pregnancy may be due to the still unresolved issue of liability for medical errors, especially for so-
called black box algorithms. More research on maternal health is needed, with only 31% of papers
in the antenatal phase focusing on maternal needs. In recent years, AI techniques have started to gain
attention, and supervised learning-based machine learning is naturally applicable to imaging analysis
and large datasets in biomedicine. A fusion of various supervised learning may be valuable, as labelled
data from supervised ML methods is both time consuming and expensive. Artificial intelligence and
machine learning methods can be successfully used to optimize pregnancy outcomes; with appropriate
algorithmic improvements, refinements and ethical outcomes, these methods can be incorporated into
clinical care [22].

Aki Koivu et al. evaluated the performance of early pregnancy screening for Down’s syndrome us-
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ing seven predictive machine learning algorithms capable of binary classification, and they concluded
that machine learning algorithms could be an adaptive alternative and hold promise for developing
better risk assessment models based on existing clinical variables [22]. In a review, Lena David-
son et al. analyze several ML techniques that have been applied to improve chromosome screening,
including artificial neural networks (ANN); support vector machines; k-nearest neighbors and deep
neural networks, RF, NB, DT and logistic regression (LR). They believe that with appropriate algorith-
mic improvements, refinement and ethical outcomes, these methods can be incorporated into clinical
care [23]. Jianfeng Yang et al. Multiple Z tests using machine learning algorithms can better predict
NIPT data. Combining multiple Z values with clinical signs and quality control indicators, features
were collected from known samples and scaled for model training in support vector machine (SVM)
discriminations, with good results [24]. H.-G. Zhang et al. model and analyze the use of support vec-
tor machine algorithms, categorical regression tree algorithms and AdaBoost algorithms in machine
learning for prenatal Down’s syndrome screening and discuss the feasibility of artificial intelligence
algorithms for Down’s syndrome screening assessment [25]. Similar studies have been conducted by F.
He et al. They conducted separate retrospective studies based on large data case samples and obtained
encouraging results by evaluating the training effects of various models, and they still concluded that
ML models show robust performance and good extrapolation and can be used as an alternative tool for
Down’s risk assessment in maternal serum during mi trimester [26–29].

This work was a retrospective study of the treatment course of 856 women diagnosed with high-
risk singleton pregnancies in Shenzhen. Their ultrasound (856 instances) and NIPT (642 cases) data
from early and mid-pregnancy, respectively, were computed and evaluated using statistical machine
learning. Amniocentesis and karyotyping were performed on all 856 individuals to evaluate the effi-
cacy of USM, Down’s syndrome screening, and NIPT in identifying fetal chromosomal abnormalities.
Additionally, evaluation metrics will be utilized to assess the validity and relevance of AI techniques
based on gold standard results. Our approach demonstrates that the addition of NIPT to the USM and
Down’s syndrome screening process significantly reduces the fact that false positives are high. In terms
of accuracy, the mainstream machine learning classifier models, represented by Random Forest, were
trained on USM data, Down’s syndrome data and NIPT data. The results show that their sensitivity,
specificity and accuracy are 96.72%, 98.45% and 98.29%, respectively. Our evaluation metrics demon-
strate the feasibility of adding AI technology to the clinical process and provide a realistic foundation
for future clinical practice.

The organization of the article is as follows. We presented the USM and NIPT data samples and
the data collecting methods utilized in this research in Section 2. Section 3 discusses data processing
techniques that correspond to the data structure. Section 4 analyzes the relevant results of several sta-
tistical machine learning algorithms. In Section 5, we evaluated and compared clinical study findings.
Section 6 concludes the paper.

2. Data and materials

The materials involved in the analysis were clinical data from patients with pregnant women at
high risk of having a singleton pregnancy. The dataset was established in Shenzhen Second People’s
Hospital for the purpose of developing computer-aided diagnosis tools in retrospective pilot studies.
All procedures performed in studies involving human participants were under the ethical standards of
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the institutional research committee and with the 1964 Helsinki declaration and its later amendments
or comparable ethical standards. The dataset’s details are given below.

2.1. Study population

According to professional standards guidelines, this is a retrospective study of 856 patients diag-
nosed as high-risk pregnant women with a singleton pregnancy. They were treated in the Department of
Obstetrics and Gynecology of the hospital between January 2017 and December 2019. They were sin-
gleton pregnant women. All patients underwent down’s screening and karyotype analysis of amniotic
fluid to obtain a final diagnosis. Thus, the exclusion criteria were:

• Positive USM, including nuchal translucency (NT) thickening, nuchal fold(NF) thickening, ab-
sent or hypoplastic nasal bones, dilated lateral ventricles, dilated renal pelvis, single umbilical
artery,intracardiac strong echogenicfoci, and enhanced intestinal echogenicity.
• High risk of serological screening.
• Pregnancy with a history of having a child with chromosomal abnormalities.
• Pregnancy in which one of the spouses is a carrier or inversion of chromosomal balance.
• Pregnancy in which one of the spouses has a fragile X chromosome.
• Pregnancy in which one of the spouses is a patient or carrier of an X linked genetic disorder.
• Pregnancy with a history of the unexplained malformed fetus, spontaneous abortion, stillbirth or

neonatal death.
• Pregnancy with one or both spouses having a single gene disease or a history of giving birth to a

child with a single gene disease.

All the included patients signed the written informed consent of this study. Among the 856 cases
collected, 642 cases received NIPT test, and the remaining 214 cases only received screening and
ultrasound examination. According to the inclusion criteria, all the cases studied had high pregnancy
risk, and their age and pregnancy information is shown in Table 1.

Table 1. Age and pregnant time distribution of patients with high pregnancy risk.

Variable Value/Count
Age(mean),range(mean) 20∼41 (0.87±5.69)
gestational age(week),range(mean) 12∼22 (14.78±3.17)

2.2. Standard methods for clinical testing

2.2.1. USM measurement

Of 856 pregnancies, 642 underwent peripheral blood prenatal NIPT testing as follows: 5 mL of
peripheral blood was collected from enrolled pregnant women using EDTA anticoagulation tubes, 32
mixed thoroughly, and plasma was separated at 4°C and stored at -80°C. Plasma cf DNA was extracted
with a DNA extraction kit (Shenzhen UW Genetics). A purified library was constructed using a fetal
chromosome aneuploidy detection kit, which uses a combined probe anchored ligation sequencing
method. Massively parallel sequencing of library DNA was performed using the UW BGISEQ-500
sequencing platform. The human reference genome was applied as a comparator to which the raw data
Three obtained from sequencing were compared, and bioinformatics analysis was performed.
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2.2.2. Peripheral blood prenatal NIPT testing

All 856 cases underwent amniocentesis at Shenzhen Second People’s Hospital, and fetal chromo-
somes obtained from amniotic fluid were subjected to microarray and karyotype analysis. Traditional
cellular chromosome G ribbon karyotype analysis was applied. After centrifugation of the amniotic
fluid specimens, they were incubated, fixed, dripped, filmed, stained, and banded, and then read under
a microscope by a professional.

2.2.3. Laboratory methods for interventional prenatal diagnosis

At Shenzhen Second People’s Hospital, all 856 patients underwent amniocentesis, and fetal chro-
mosomes extracted from amniotic fluid were submitted to microarray and karyotype analysis.

Traditional cellular chromosome G ribbon karyotype analysis was applied. After centrifugation of
the amniotic fluid, specimens were incubated, fixed, dripped, filmed, stained, and banded, and then
read under a microscope by a professional.

3. Method

3.1. Experimental environment

Hardware environment: CPU 4 cores, RAM 32GB, GPU v100, video memory 16GB, disk 100GB
Environment.

Configuration: Python version 3.7, framework version Sklearn.

3.2. The design of the experiment

Figure 1. Schematic diagram of the experimental design process.

3.2.1. Experimental procedure

The experiment was built on the assumption that data is the artificial intelligence ceiling. As in-
dicated in Figure 1, the true values of the data set of the investigation were first statistically and an-
alytically evaluated using SPSS 22.0. The relationship between a) amniocentesis and chromosomal
findings, b) single USM positivity and chromosomal abnormalities, c) number of USM positivity and
chromosomal abnormalities, d) diagnostic efficacy of USM positivity and combined high-risk factors

Mathematical Biosciences and Engineering Volume 19, Issue 4, 4260–4276.



4265

for fetal chromosomal abnormalities and, e) relationship between NIPT test and amniocentesis kary-
otype results were analyzed computationally, respectively. The effectiveness of adding NIPT to clinical
diagnosis is compared and to utilized to evaluate the AI technology’s maximal effectiveness. Secondly,
we used the USM and Down’s syndrome screening data alone as control group datasets and used statis-
tical machine learning algorithms for computation and training. Furthermore, the control group results
were compared and analyzed with the true values to obtain the feasibility of implementing NIPT as a
supplementary diagnostic tool with AI technology.

Figure 2. Experimental flowchart.

3.2.2. Statistical methods and preset parameters

SPSS22.0 software was applied to statistically analyze the data. Count data were expressed as fre-
quency or rate, test or Fisher’s exact probability method was used for comparison between groups, and
ROC curve method was used for diagnostic efficacy analysis; differences were considered statistically
significant at P < 0.05.

3.2.3. Data preprocessing

To ensure the accuracy of the operation, first set all the features of all numeric types to single-4
precision floating-point types. A key assumption of all verification methods is the independence of test
set and train set.

All validation methods rely on separating the dataset into training and testing (and sometimes vali-
dation) subsets, i.e., the data are trained on the training subset and tested on the testing subset, which
should be unavailable to the method that is being validated during the training process. In this study,
we divided the data set into the training set and the test set according to the ratio of 70% and 30%,
and the test set was only used in the evaluation stage. If there are missing values in the sample, it
may adversely affect the calculation results. Therefore, we checked the completeness of all samples to
ensure that there were no missing values. The distribution of data labels is very important for model
calculations. We performed one-hot encoding on the feature 14 labels and encoded the result through
label-encoder (Figure 1).

As we all know, most medical samples are unbalanced, and this research is still the case(Figure 2).
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Figure 3. Proportional distribution of high-risk or no-risk pregnant women. (1:high-risk
0:no-risk).

Figure 4. A schematic depicting SMOTE subsampling method logic implemented.

Therefore, we have up sampled the samples before training the model each time. Figure 3 introduces
the SMOTE up sampling idea used in this study to analyze and simulate a few types of samples and
add new artificially manufactured samples to the data set. In turn, the categories in the original data are
no longer seriously unbalanced. This is to ensure that the learned data is balanced during the training
processes of the model.

3.2.4. Classifier settings

This research mainly uses Random forest, logistic regression and support vector machine(SVM) to
fit the samples in the training set.

3.2.5. Parameter settings

In Random Forest, the function for measuring segmentation quality is set as the Gini function.
However we do not set the maximum depth of the tree, which means that during the fitting process, the
model will be extended to all leaves are pure.

In the logistic regression classifier, as an optimization problem, the binary class l2 penalty logistic
regression minimizes the following cost function:

min
w,c

1
2

wT w +C
n∑

i=1

log
(
exp
(
−yi

(
XT

i w + c
))
+ 1
)
, (3.1)
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Similarly, l1 regularized logistic regression solves the following optimization problem:

min
w,c
∥w∥1 +C

n∑
i=1

log
(
exp
(
−yi

(
XT

i w + c
))
+ 1
)
, (3.2)

Elastic-Net regularization is a combination of ℓ1 and ℓ2, and minimizes the following cost function:

min
w,c

1 − ρ
2

wT w + ρ∥w∥1 +C
n∑

i=1

log
(
exp
(
−yi

(
XT

i w + c
))
+ 1
)
, (3.3)

where ρ controls the strength of ℓ1 regularization vs.ℓ2 regularization.
In the support vector machine, we set RBF as the kernel function. Among them, γ is determined by

the parameter ”gamma” and must be greater than 0.
To evaluate the predictive models used, a 10-fold cross-validation process was carried out. K-fold

cross-validation is an evaluation tool that, in this study, tests the accuracy and ability to generalize to
new data by dividing the used dataset into 10 subsets and performing the model training and evaluation
phases 10 times. The advantage of using k-fold cross-validation is that the predictions are less sensitive
to data partitioning as the data are partitioned into different training and test sets k times. The 10-fold
cross-validation was chosen to fit all quantities in the training set. It is worth noting that even though
k-fold cross-training is less sensitive to data partitioning, we still perform cross-training on the training
set. In other words, the data in the test set is not seen by the model during the training phase, which
ensures the rigour with which we evaluate the accuracy and generalization ability of the model on
the test set. K-fold cross-validation maintained the parameter settings of all models, and to control
for variables, we did not adjust the parameters of all classification models during their initialization,
keeping only the simplest configuration rather than complicating their configuration. At the end of
training, all classifier models are used to classify the test dataset. The classification results will be
compared based on the set evaluation metrics.

3.2.6. Evaluating markers

Given the abundance of the proposed methods for detecting ischemic beats and MI, it is essential
to validate these methods and compare them to find the more effective ones. Therefore, it’s critical to
utilize reliable validation methods and consistent performance measurements to provide generalizable
and repeatable outcomes.

First, there is a lack of uniformity in the performance measures that are used for evaluation. Most of
the studies use classification accuracy, which is a common measure of performance in technical fields.
The classification performance is mainly evaluated by the classification accuracy, which is defined as:

Accuracy =
T P + T N

T P + T N + FP + FN
, (3.4)

where TP, TN, FP and FN are the true positive, the true negative, the false positive and the false
negative, respectively. Besides the classification accuracy, the other two measurements, F1-score, ROC
and AUC, are used to evaluate classification performance. F1-score is defined as the harmonic mean
of precision and recall.

F1 =
2 × precision × recall

precision + recall
, (3.5)
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where

precision =
T P

T P + FP
, (3.6)

and

recall =
T P

T P + FN
. (3.7)

4. Results

4.1. Results of amniocentesis and chromosomal examination

After amniocentesis and chromosome examination in 856 pregnancy, a total of 81 cases of chromo-
somal abnormalities and 775 cases of normal chromosomes were detected.

4.2. Relationship between single USM positivity and chromosomal abnormalities

There were 129 cases (15.07%) of single USM positivity, of which 25 patients (19.38%) had chro-
mosomal abnormalities. Among the solitary USM positivity, NT thickening and nasal bone abnormal-
ities had the greatest diagnostic value for fetal chromosomal abnormalities (P < 0.05), as shown in
Table 2.

Table 2. Relationship between solitary USM positivity and chromosomal abnormalities.

USM positivity
Chromosomal abnormalities
(cases) χ2 value P value
Yes None

NT thickening
Yes 14 67

6.388 0.011
None 67 708

Nasal bone
abnormalities

Yes 5 15
4.063 0.044

None 76 760

NF thickening
Yes 1 3

- 0.329
None 80 772

Widening of the
lateral ventricles

Yes 1 3
- 0.329

None 80 772
Dilated renal
pelvis

Yes 0 4
- 1.000

None 81 771
Single umbilical
artery

Yes 2 5
- 0.136

None 79 770
Intracardiac strong
echogenic foci

Yes 0 2
- 1.000

None 81 773
Echo enhancement
of the intestinal canal

Yes 1 2
- 0.258

None 80 773

Choroid plexus cyst
Yes 1 3

- 0.329
None 80 772
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4.3. Relationship between the number of USM positives and chromosomal abnormalities

The rate of chromosomal abnormalities in the USM positive number 1 group was 19.38%, which
was higher than that in the USM negative group (6.22%) (χ2 =24.744, P < 0.01); the rate of chromoso-
mal abnormalities in the USM positive number 2 group was 36.11%, which was higher than that in the
USM negative group (6.22%) (χ2 = 42.994, P < 0.01), and also higher than that in the USM positive
number 1 group 19.38% (χ2 = 4.445, P < 0.05), as shown in Table 3.

Table 3. Relationship between solitary USM positivity and chromosomal abnormalities.

Number of USM positives
Chromosomal abnormalities (cases)

χ2 value P value
Yes None

0 43 648
53.116 0.0001 25* 104

≥2 13∗# 23
Note:* indicates that the rate of chromosomal abnormalities in this group has P<0.05 compared with the USM-
negative group, and # indicates that the rate of chromosomal abnormalities in this group has P<0.05 compared
with the USM-positive number 1 group.

4.4. Diagnostic efficacy of USM positivity and combined high-risk factors for fetal chromosomal
abnormalities

The results of amniocentesis karyotyping were used as the diagnostic gold standard. There were 274
(32.01%) positive USM screening cases alone, of which 57 (20.80%) were chromosomal abnormali-
ties. 265 (30.96%) positive USM + Down screening cases, of which 62 (23.40%) were chromosomal
abnormalities. 68 (10.59%) positive USM + Down screening + NIPT screening cases, of which 59
(86.76%) were chromosomal abnormalities. The sensitivity, specificity and accuracy of USM+ Down
screening + NIPT screening for the diagnosis of fetal chromosomal abnormalities were 96.72% and
98.45% and 98.29% respectively, as shown in Table 4.

Table 4. Diagnostic efficacy of USM positivity and combined high-risks factors for fetal
chromosomal abnormalities.

Screening index

Chromosomal
abnormalities
(cases)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

P
predictive
value (%)

N
predictive
value (%)Yes None

USM alone
P 57 217

70.37 72.00 71.85 20.80 95.88
N 24 558

USM+Down
screening

P 62 203
76.54 73.81 74.07 23.40 96.79

N 19 572
USM+Down
screening+NIPT

P 59 9
96.72 98.45 98.29 86.76 99.65

N 2 572
Note: ”P” means Positive and ”N” means Negative.
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4.5. Comparison of NIPT test and amniocentesis karyotype results

In this study, 68 patients with ”USM positive + Down screening + NIPT positive” , NIPT suggested
34 patients with a high risk of trisomy 21, 23 patients with an increased risk of trisomy 21 and trisomy
18, and 11 patients with an increased risk of trisomy 13, 86.76% (59/68) were consistent with the
karyotype results. The mean age was (34.67 ± 4.77) years, of which 36 patients were >35 years.

4.6. Evaluation results of the classifier

The evaluating indicators among USM based datasets are significantly different from those of USM
combined with NIPT in several key respects. Figure 5 displayed the four mainly evaluating indicators
of train set and test set of USM data.

Figure 5. Positive sonogram of various ultrasonic soft indicators.

For the control variables, we configured the same parameters for each classifier and did not set
additional parameters. In terms of the presentation of the results, there were significant differences,
with the Random Forest, KNN, Bagging, Gradient Boosting, and Decision Tree classifiers showing
good performance in terms of ACC and f1 score, but the MLP, Extra tree The performance of MLP,
Extra tree and Decision Tree classifier is good in terms of ACC and f1 score.

We especially found that AUC exhibits significant disparities of classifiers involved in figure(D).
This proves inconsistent results for prediction results and the value for approach based NIPT tech-
niques.
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Figure 6. Evaluation results of classifier on train set and test set.
(A:the r2 score of train set and test set B:Accuracy of train set and test set C:F1 score of train
set and test set D:AUC of train set and test set)

Overall, non-NIPT types of data were learned on different classifiers with poor results, despite some
data pre-processing. This reflects the value of the importance of NIPT data.

5. Discussion

Certain specific signs of prenatal ultrasound suggest the possibility of chromosomal abnormalities
in the fetus, and their positive presentation may suggest further invasive prenatal testing such as am-
niocentesis [30]. The results of this study showed that the detection rate of these indices did not agree
with the diagnostic value: 1 NT thickening, recognized as one of the most predictive USM, was
associated with fetal abnormalities such as multiple organ development or chromosomal abnormali-
ties. In this study, 81 cases of NT thickening had the highest incidence of all USMs. Among them,
14 cases (17.28%) had chromosomal abnormalities, which is like foreign studies [31],and is of great
significance for the early detections of fetal chromosomal abnormalities. 2 Abnormal nasal bone
development, an important USM indicator. In the present study, 5 out of 20 cases (25.00%) of nasal
bone abnormalities were chromosomal abnormalities, similar to those reported in the literature [32].
The detection of nasal bone abnormalities is difficult in ultrasonography and should prevent missed
misdiagnosis. 3 There is a correlation between NF thickening, and chromosomal aberrations. There
were only four cases of NF thickening in our group, and one of them had chromosomal abnormalities,
which may be related to the composition of our circumstances. No further NF examination was per-
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formed in the cases with no positive findings on NT examination in our group, resulting in fewer cases
with abnormal NF. 4 Other USM positivity, including lateral ventricular dilatation, renal pelvic di-
latation, single umbilical artery, intracardiac strong echogenic foci, intestinal echogenic enhancement,
and choroidal cysts have some diagnostic value for fetal chromosomal abnormalities, particularly in
fetuses with multiple USM positivity.

In the present study, all the above-mentioned USM-positive cases were less frequent: one case with
ultrasound suggestive of several strong spots in the left and right ventricles, a right lateral ventricular
choroid plexus cyst, and amniocentesis showing a de novo mutated micro repeat in the long arm of
chromosome 22; one case with enhanced bowel echo combined with fetal 4th ventricular widening
and right ectopic kidney, whose amniocentesis showed normal karyotype but positive for rubella virus
infection; In one case of NT thickening combined with choroid plexus cyst amniocentesis did not
reveal chromosomal abnormalities and the choroid plexus cyst disappeared on repeat ultrasound at 26
weeks of gestation.

The literature [33] reported an increased risk of fetal trisomy 18 in those with choroid plexus cysts
that did not disappear by 26 weeks of gestation. The study [34] showed that the predictive accuracy of
chromosomal abnormalities with multiple USMs was significantly better than that with a single USM.

In this study, the risk of chromosomal abnormalities was higher in fetuses with multiple (n≥2)
positive USMC than in fetuses with single (n≥1) positive USMC, implying that the clinical significance
of USMC has a cumulative effect and that the more USMC detected on ultrasound screening, the more
pregnancy should be advised to undergo further investigation.

NIPT screening has been widely used in clinical practice worldwide [35, 36]. The results of this
study found that USM-positive combined with Down’s screening and NIPT high-risk improved the
sensitivity, specificity and accuracy of the diagnosis of fetal chromosomal abnormalities by 96.72%,
98.45% and 98.29%, respectively, which fully indicates that NIPT screening is necessary for fetuses
with USM and Down’s screening abnormalities to further clarify the risk of developing fetal chro-
mosomal abnormalities. In the present study, 68 patients with positive USM combined with Down’s
screening and high risk of NIPT had a high compliance rate (86.76%) with karyotype results, indicat-
ing the high accuracy of NIPT testing for the diagnosis of fetal chromosomal abnormalities, like the
results of previous studies [37]. The importance of ultrasound screening is also illustrated by the fact
that all 59 fetuses with abnormal NIPT and confirmed chromosomal abnormalities by amniocentesis
in our group of cases had abnormal ultrasound soft makers.

The main shortcomings of this study are that the number of cases is not large enough, especially the
number of cases of USM positive fetuses other than NT thickening and nasal bone abnormalities, to
make an accurate determination of the clinical value of these USM abnormalities. All cases enrolled in
this study were singleton pregnancies, and there is a lack of data from studies on the twin or multiple
pregnancies. In addition, due to the high cost of the NIPT testing, not all fetuses in this study were 12
tested, which may bias the study results.

6. Conclusions

In summary, among pregnancies with high-risk factors, the chance of chromosomal abnormalities in
USM-positive fetuses in early and mid-term pregnancies is higher than in USM-negative fetuses. The
predictive value of different USM types and the number of USM abnormalities for fetal chromosomal
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abnormalities varies. USM combined with Down’s screening and NIPT testing is of great value in
detecting fetal chromosomal abnormalities. When the prenatal diagnosis is found to have positive
fetal USM, a comprehensive and integrated assessment should be performed in combination with the
maternal age and serological findings. NIPT testing must be performed on high-risk fetuses, and
amniocentesis chromosome examination should be performed if necessary to improve the accuracy
of diagnosis. In contrast, unnecessary interventional prenatal diagnosis on low-risk pregnant women
should be avoided as much as possible.

On the one hand, statistical machine learning algorithms offer a viable alternative to prenatal risk
assessment, with better detection rates at certain false positive rates reducing unnecessary invasive
testing, while the introduction of the technology into prenatal diagnosis can effectively reduce hospital
screening costs and is suitable for use in large scale populations. Beyond this, the main limitation of
our work is the relatively small sample size. In order to fully investigate the capabilities of statisti-
cal machine learning algorithms, we need to develop, train and test algorithms using larger datasets,
including a wider range of clinical and demographic variables.
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27. Ö. Uzun, H. Kaya, F. Gürgen, and F. G. Varol, Prenatal risk assessment of trisomy 21 by prob-
abilistic classifiers, in 2013 21st Signal Process. Commun. Appl. Conf. (SIU). IEEE, 2013, pp.
1–4. https://doi.org/10.1109/SIU.2013.6531604

28. H. Ocak, A medical decision support system based on support vector machines and the
genetic algorithm for the evaluation of fetal well-being, J. Med. Syst., 37 (2013), 1–9.
https://doi.org/10.1007/s10916-012-9913-4

29. I. Vovsha, A. Rajan, A. Salleb-Aouissi, A. Raja, A. Radeva, H. Diab, et al., Predicting preterm
birth is not elusive: Machine learning paves the way to individual wellness, in 2014 AAAI Spring
Symposium Series, 2014.

30. L. Zhen, Y.-D. Yang, Y.-J. Li, L.-L. Xu, D.-Z. Li, The role of ultrasound in the choice between
chorionic villus sampling and amniocentesis for patients with a positive nipt result for trisomy
18/13, Prenat. Diagn., 39 (2019), 1155–1158. https://doi.org/10.1002/pd.5524

31. S. K. Alldred, Y. Takwoingi, B. Guo, M. Pennant, J. J. Deeks, J. P. Neilson, et al., First trimester ul-
trasound tests alone or in combination with first trimester serum tests for down’s syndrome screen-
ing, Cochrane Database Syst. Rev., no. 3, 2017. https://doi.org/10.1002/14651858.CD012600

32. K. M. Wojda, H. Moczulska, P. J. Sieroszewski, The absence of fetal nasal bones in ultrasound
examination between 11+ 0 and 13+ 6 weeks of gestation versus the occurrence of trisomies 21,
18, and 13, Ginekol. Pol., 90 (2019), 604–606. https://doi.org/10.5603/GP.2019.0104

33. Y. Nan, Z. Liu, J. Zhang, R. Yang, Q. Yu, F. Wang, et al., Relationship between the choroid plexus
cyst and the aneuploidy, Zhonghua Yi Xue Za Zhi, 98 (2018), 2987–2990.

34. A. Åhman, O. Axelsson, G. Maras, C. Rubertsson, A. Sarkadi, P. Lindgren, Ultrasonographic fetal
soft markers in a low-risk population: prevalence, association with trisomies and invasive tests,
Acta Obstet. Gynecol. Scand., 93 (2014), 367–373. https://doi.org/10.1111/aogs.12334

35. T. S. Hartwig, L. Ambye, L. Werge, M. K. Weiergang, P. Nørgaard, S. Sørensen, et al., Non-
invasive prenatal testing (nipt) in pregnancies with trisomy 21, 18 and 13 performed in a public
setting–factors of importance for correct interpretation of results, Eur. J. Obstet. Gynecol. Reprod.
Biol., 226 (2018), 35–39. https://doi.org/10.1016/j.ejogrb.2018.04.042

36. J. Harraway, Non-invasive prenatal testing, Aust. Fam. Physician, 46 (2017),735–739.

Mathematical Biosciences and Engineering Volume 19, Issue 4, 4260–4276.

http://dx.doi.org/https://doi.org/10.1093/bib/bbaa369
http://dx.doi.org/https://doi.org/10.1101/216689
http://dx.doi.org/https://doi.org/10.12998/wjcc.v9.i18.4573
http://dx.doi.org/https://doi.org/10.1016/j.cca.2021.07.015
http://dx.doi.org/https://doi.org/10.1109/SIU.2013.6531604
http://dx.doi.org/https://doi.org/10.1007/s10916-012-9913-4
http://dx.doi.org/https://doi.org/10.1002/pd.5524
http://dx.doi.org/https://doi.org/10.1002/14651858.CD012600
http://dx.doi.org/https://doi.org/10.5603/GP.2019.0104
http://dx.doi.org/https://doi.org/10.1111/aogs.12334
http://dx.doi.org/https://doi.org/10.1016/j.ejogrb.2018.04.042


4276

37. A. J. Ainsworth, M. A. Holman, E. Codsi,M. Wick, Use of genetic testing after abnormal
screening ultrasound: A descriptive cohort study, Gynecol. Obstet. Invest., 83 (2018), 466–470.
https://doi.org/10.1159/000484242

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 4, 4260–4276.

http://dx.doi.org/https://doi.org/10.1159/000484242
http://creativecommons.org/licenses/by/4.0

	Introduction
	Data and materials
	Study population
	Standard methods for clinical testing
	USM measurement
	Peripheral blood prenatal NIPT testing
	Laboratory methods for interventional prenatal diagnosis


	Method
	Experimental environment
	The design of the experiment
	Experimental procedure
	Statistical methods and preset parameters
	Data preprocessing
	Classifier settings
	Parameter settings
	Evaluating markers


	Results
	Results of amniocentesis and chromosomal examination
	Relationship between single USM positivity and chromosomal abnormalities
	Relationship between the number of USM positives and chromosomal abnormalities
	Diagnostic efficacy of USM positivity and combined high-risk factors for fetal chromosomal abnormalities
	Comparison of NIPT test and amniocentesis karyotype results
	Evaluation results of the classifier

	Discussion
	Conclusions

