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Abstract: Pandemic due to SARS-CoV-2 (COVID-19) has affected to world in several aspects:
high number of confirmed cases, high number of deaths, low economic growth, among others.
Understanding of spatio-temporal dynamics of the virus is helpful and necessary for decision making,
for instance to decide where, whether and how, non-pharmaceutical intervention policies are to be
applied. This point has not been properly addressed in literature since typical strategies do not consider
marked differences on the epidemic spread across country or large territory. Those strategies assume
similarities and apply similar interventions instead. This work is focused on posing a methodology
where spatio-temporal epidemic dynamics is captured by means of dividing a territory in time-varying
epidemic regions, according to geographical closeness and infection level. In addition, a novel
Lagrangian-SEIR-based model is posed for describing the dynamic within and between those regions.
The capabilities of this methodology for identifying local outbreaks and reproducing the epidemic
curve are discussed for the case of COVID-19 epidemic in Jalisco state (Mexico). The contagions
from July 31, 2020 to March 31, 2021 are analyzed, with monthly adjustments, and the estimates
obtained at the level of the epidemic regions present satisfactory results since Relative Root Mean
Squared Error RRMSE is below 15% in most of regions, and at the level of the whole state outstanding
with RRMSE below 5%.

Keywords: spatio-temporal dynamics; SARS-CoV-2; Lagrangian SEIR; regional heterogeneity;
geographical network epidemic spread

1. Introduction

The pandemic generated by the SARS-CoV-2 coronavirus (COVID-19) has caused major social,
economic, and health impacts in the world, with more than 213 million confirmed cases; more than
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4.95 million deaths [1] and a global economic growth fell 3.6 percent in 2020 [2].
In such a long and devastating pandemic, it has been necessary to adjust strategies and tools for

better epidemiological surveillance. Typical strategies such as lockdowns, isolations, quarantines and
border closures have predominated. They have often been applied in a similar and simultaneous way
for a whole country or for a large territory, minimizing the fact that within same area there have been
marked differences in the spread of the virus. This was the case of Mexico, where on March 30, 2020,
the Federal Government ordered the suspension of non-essential activities throughout the country [3].
This is despite the fact that there are great contrasts in population concentration, ranging from the
megalopolis of Mexico City to 184,000 small towns with less than 2500 inhabitants, many of them
isolated from urban areas [4]. This has been one of the countries most affected by this pandemic where
the leadership and management of the epidemic by the government has been highly questioned [5–7].

In these cases of large and diverse territories, a clear understanding of the spatio-temporal
dynamics of COVID-19 is necessary to form the basis for decision making, planning and community
action [8]. But it is important to emphasize the fact that this spatio-temporal perspective should seek
to identify differences in regard how epidemic spreads across territory. This is because several studies
have documented that the incidence of COVID-19 is related to the spatial and socioeconomic
characteristics at the local level. For example, in [9] it is shown that geographical configuration, built
environment densities, socioeconomic characteristics, and infrastructure are related to COVID-19
incidence in Germany when they are assessed at the county scale.

In the context of the COVID-19 pandemic, different methodologies still being proposed [10–13],
and some of them argue the necessity of modelling the pandemic spread considering some type of
geographical/spatial perspective. In [8] and [14] bibliographic reviews are made to summarize some
of these proposals. In the case of [8] the main category considered in their review, was to locate
studies of the temporal pattern of the COVID-19 phenomenon together with its geographic expansion.
In [14], the relevant articles are classified and analyzed in three categories: disease mapping, exposure
mapping, and spatial epidemiological modeling. This last category is the focus of this paper. This is
in contrast to the fact that many published works only provide a representation of certain details in the
form of a map, and in that sense they do not offer relevant contributions in the field of spatial analysis.

Approaches in literature based on models for describing the infection curve in a large territory or
population, treating it as a whole isolated group are prevalent since are naturally formulated for
capturing specific aspects of the epidemic with good results. See [15–17] for instance. However, their
extension to capture heterogeneity on populations activity, or spatial dynamics could be not
straightforwardly performed.

Although there are many papers that model spatial dynamics of pandemic spread, most of them
develop from geographic units already given, whether these are countries, states, regions, counties or
municipalities [18], and many of them describe the dynamic on the basis of a classical epidemic model
(SEIR based models for instance) without particular considerations attending spread due to actual
mobility or social interaction as driven terms on their models. See for instance works as [19–23]. In
the case of [24] social aspects as age and race are considered, and corresponding regions are built
in order to model the meta-population dynamics with SEIR-type model. However the interactions at
region scale are just described as a procedure instead terms with epidemic significance. In [25] an
age-stratified, nation-scale model is developed and social contact is modeled from Google Community
Mobility data. Something that the COVID-19 pandemic has shown is that the dynamics of its expansion
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has not respected the administrative divisions of the territory, but geographical borders of the expansion
are closely related to the socioeconomic interconnection (that in place varies in time) instead.

In [26] a very complete review of the research activity in epidemic processes on networks is
presented. The study of spatially structured interactions, such as between cities or more general
geographical regions, is specially encouraged. Following the given advice, we model spatial
component in a natural way by means of the construction of a suitable graph by means of Louvain
algorithm. In [27] the authors presented quite interesting results about the classical final size relation
of network epidemic models. In particular, they conclude that in complex networks with arbitrary
degree distribution, the presented results result essential for estimating the expected magnitude or an
outbreak severity of an epidemic. In our proposed method, the topology and size of the connection
network remains optimal by construction. This graph allow our method to model spatial dynamics in
a natural and realistic way in the context of the COVID-19 problematic.

In [28] the authors review recent efforts on modeling spatially explicit infectious diseases.
Moreover, they show how modeling geographical regions, rather than a single, national approach, are
quite likely to lead to better results. The authors in [29] show that infections, in particular the
SARS-CoV-2, in one local district do not only depend on properties of the district, but also on the
strength of social ties, mobility of population among districts and their own degree of infectiousness.
It is clear that the virus does not stop at political borders and hence its spread through commute
mobility must be studied. Furthermore, an updated review of GIS methodologies is presented in [30].
There, the authors make emphasis in that spatial analysis has been increasingly utilized to study the
impacts of COVID-19. They present a very complete review of scientific results that used spatial
science to study the pandemic in the second half of 2020. Their results point out that the use of spatial
statistical tools have an upward trend.

There have been efforts in many directions to model propagation phenomena of a virus. Gandolfi
in [31] presents the nontrivial interplay between epidemic and percolation models. The author
proposed a new family of random networks which incorporate spatial features that are aimed to lead
to a suitable spatial propagation modeling. As the own author remarks, such interplay between
percolation and epidemics is still at an early stage and must be subject of further studies. In [32] the
authors study the propagation of the ZEBOV virus behind West Africa’s Ebola outbreak. There, they
remark that the virus did not fundamentally change, but Africa did. Thus, they proposed stochastic
models to study the geographic and socioeconomic effects that influence virus propagation. Although
this study present similarities in the spatial mobility, the dynamics of infected people is remarkable
different with the current pandemic of COVID-19. In [33] a complete study of incidence of AIDS and
tuberculosis. In this paper, the authors show empirical findings that strongly contradict the assertions
made by the National Research Council NRC, in 1993, saying that AIDS was going to remain
confined within poor communities. The authors predict a fast spread over the New York metropolitan
region showing that the density of commuting, as well as the intensity of poverty, completely
determined the number of AIDS and TB cases per unit population. In all the above studies, the spatial
interactions between regions shines as crucial in understanding any virus propagation phenomena.

Precisely this work focuses on posing a methodology in where spatio-temporal epidemic dynamics
is captured by means of dividing a territory into time-varying epidemic regions. This division seeks
to capture the mobility of the infectious agent by grouping neighboring geographical units (nodes)
whose local dynamics of contagion spread are similar. Proper procedure for detecting these epidemic
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regions is relevant for our study, then one of the contributions of this paper is an algorithm based on
the Louvain algorithm [34] that couples infectious and geographical information together.

To describe the dynamics of the infectious disease, a system of differential equations that
considers a Lagrangian movement [35] is proposed. This novel variation of a SEIR
(Susceptible-Exposed-Infected-Recovered) type model, divides the population/territory into n
epidemic regions and considers short temporal travel from one region to another. This formulation, in
contrast to the classical SEIR models, considers open populations at region level and also the
population distribution of the geographical area where the epidemic is taking place. Determining the
value of n is a key aspect that is explored in the context of the methodology itself.

Thus, the objective of this paper is to detail the proposed methodology to divide the territory into
epidemic regions, together with the Lagrangian model based on SEIR to describe the dynamics within
and between those regions. The capabilities of this methodology for identifying local outbreaks,
estimating exposed population and reproducing the epidemic curve are discussed for the case of
COVID-19 epidemic in Jalisco state, which is one of the main states of Mexico.

This paper is organized as follows: Spatio-temporal pandemic spread study is motivated in
Section 2.1. Our proposal model for regions, based on SEIR-type model with Lagrangian movement,
is presented in Section 2.2. Methodology for identifying suitable regions for our model, is presented
in Section 2.3. The study case for this work is addressed in Section 3.1. Finally, conclusions and
discussion are presented in the light of our study case in Section 4.

2. Materials and methods

2.1. Epidemic regions

According to Center for Disease Control and Prevention (CDC), infection of SARS-CoV-2, the
virus that causes COVID-19, occurs by exposure to respiratory fluids carrying infectious virus. This
exposure could occur in any of three ways: inhalation of very fine respiratory droplets and aerosol
particles; deposition of respiratory droplets and particles on exposed mucous membranes (mouth,
nose, or eye) by direct splashes and sprays (for instance, being coughed on); and touching mucous
membranes with hands that have been soiled either directly by virus-containing secretions or
indirectly by touching infected surfaces [36]. Thus, non-pharmaceutical intervention mechanisms
(NPI), namely infected isolation, social distancing, socioeconomic activity reduction, travel
restrictions, among others, are intended to decelerate the infection curve at human-human contact
scale. Recent contributions related to effectiveness analysis of NPI’s on different world regions can be
found on [37–41].

It is known that disease spread between cities is driven by population mobility and also, within
a specific city, disease dynamics is affected by local factors. Thus spatial heterogeneity is commonly
considered for studies at region, state or municipality scale (see [42–44]) and those factors are directly
related to socioeconomic activity of inhabitants. In other words, two connected cities or population
groups, with highly close socioeconomic activity, will present very similar outbreak dynamics and
could be considered as a single group. This rationale may be seen as equivalent to the significant
factors observed on [24].

Knowledge concerning spatio-temporal evolution of epidemics, within and between regions,
helps in assessment of currently available/depleted resources, and forecasting of needed resources or
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actions, derived from public health policies. Classical compartment-based models (see [35, 45]),
computational models based on networks or graphs representing groups (see [11,18–20,22] for recent
works modelling mobility and spatial spread, and [23, 24, 39, 44, 46, 47] for network models) , are
naturally employed for this aim. But as mentioned above, it is important to consider whether nearby
populations share similar contagion dynamics, so that at a given time they form part of the same
epidemic region. Again these regions will not necessarily coincide with administrative or economic
regions.

Capabilities of models based on epidemic dynamics per region as diagnostic instrument, resort at
first instance on the correct regions definition. As second instance, on a suitable model that assembles
those regions, and that might be properly implemented/codified into a numerical procedure that
describe the epidemic dynamics. This problematic, to our knowledge has not been integrally attended
on literature. The methodology proposed address both aspects: first, epidemic regions are identified
according infection level and geographical connection together; and second, multiple SEIR-type
models are placed to describe the inner dynamics of geographical units and contagions by mobility.
These aspects are described below.

2.2. Epidemiological model for regions

First option for epidemiological mathematical modelling is the classical
Susceptible-Infected-Recovered (SIR) compartmental model posed by [48]. However, it has been
remarked on literature concerning COVID-19, the relevance of asymptomatic or exposed population
onto dynamic of the epidemic. Thus, it is recommended Susceptible-Exposed-Infected-Recovered
(SEIR) compartmental model, defined by the ordinary differential equations system:

dS
dt

(t) = −β
S (t)I(t)

N
, (2.1)

dE
dt

(t) = β
S (t)I(t)

N
− σE(t), (2.2)

dI
dt

(t) = σE(t) − γI(t), (2.3)

dR
dt

(t) = γI(t), (2.4)

with initial conditions

S (t0) = S 0, E(t0) = E0, I(t0) = I0, R(t0) = R0, t0 ≤ t ≤ t0 + T, (2.5)

where total population N = S (t) + E(t) + I(t) + R(t) remains constant, parameter β > 0 corresponds to
transmission rate, σ > 0 to incubation rate, and γ > 0 to recovery rate and T is an user parameter that
corresponds to the final time chosen for the study.

It has been noticed that pandemic spread across a large territory is composed by multiple local
outbreaks, appearing on different times, and spreading at velocities varying from region to region
(highly heterogeneous). Naturally, spread within region adopts its particular dynamic that may be
described by SEIR model (Eqs (2.1)–(2.5)). Thus, two mobility phenomena are in consideration.
The first one is present within regions, the same that supports the epidemic outbreak and is captured
by SEIR model per region. The second one, that is present between geographically connected (or
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neighbours) regions. The later is causative of epidemic spread across larger areas such as states or
countries and can be seen as immigration term in open SEIR model for multiple regions.

Short term mobility between regions is described by Lagrangian movement model. It is assumed
total study population N is divided into n regions, such as N = N1 + . . . + Nn. For each region
i ∈ 1, . . . , n, it is satisfied Ni = S i + Ei + Ii + Ri. Susceptible individuals on region i are getting
infected when visiting any region j , i, j = 1, . . . , n, by infectious individuals residing on region j.
Then, transmission term on SEIR model (Eqs (2.1) and (2.2)), from Lagrangian mobility consideration
described on [35], becomes the sum:

β
S (t)I(t)

N
−→ S i(t)

n∑
j=1

βi j
I j(t)
N j

. (2.6)

Here it is assumed that all regions are mutually connected. Transmission within a region corresponds
to j = i on Eq (2.6), and transmission by mobility is given by j , i. In this formulation, transmission
rates try to explain contagions due to mobility. For instance, βkl should be zero on unconnected regions
even if both regions k, l are highly infectious. Otherwise, βkl , 0 would induce artificial infections
assuming not existent mobility. This double role of βkl parameters (namely describing connection,
and transmission rate within and between regions), often conducts to misleading interpretations of
transmission rate. For example, it may not be distinguishable whether low values of βkl obey to low
mobility rates (connectivity in turn) or low infection causality between neighbour regions. Even more,
this parameters may be significantly different from the inner transmission rate for each region.

Concerning the later point, we propose to maintain an overall transmission rate β. The rationale
is to separate transmission rate β, as the underlying characteristic of epidemic that is independent of
any region, whereas connectivity and infection causality due to mobility is computed from existing
connection between regions and actual infection level. This is explained below.

Let us remark that infection process due to inner mobility for a region differs from outer mobility
for same region. With this in mind, let us split sum on Eq (2.6) for analyzing inner dynamic of regions
i separately from mobility terms. Then, we have,

S i(t)
n∑

j=1

βi j
I j(t)
N j

= S iβii
Ii(t)
Ni

+ S i(t)
n∑

j=1, j,i

βi j
I j(t)
N j

. (2.7)

Later, from these considerations above, we propose contact rates given by:

βi j =

 αiIi, j
Ii(t)+I j(t)

S i(t)
, for i , j,

β, for i = j.
, (2.8)

where αi is a mobility rate. The rationale of Eq (2.8) is the following: infection due to mobility requires
that a susceptible individual, chosen with probability 1/S i(t) at time t in region i, encounters an infected
individual. This infected individual may come from a neighbouring region j (with rate αiI j(t)), or from
same region (with rate (αiIi(t)). Term Ii, j is an indicator function that is equal to 1 when there exists a
geographical connection between regions i and j, and 0 otherwise. As result, expression for βi j may be
computed at any time and codifies existing communication between regions (in αi and Ii, j terms) and
the actual infection level on both communities.
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Equation (2.8) provides information concerning to diffusion of infection between regions in a
more natural way than Lagrangian terms of Eq (2.6). This is, in the case of a small community i, Ii(t)
and S i(t) would be also small, but when i is neighbour of a region with high number of infections,
the chances that a infected individual arrives to region i are also high. Moreover, since S i(t) appears
dividing on Eq (2.8), the effect of infection due to immigration will have more impact on region i.
When region i is not a neighbour of a highly infected region, infection diffusion does not occur due to
indicator function Ii, j will be equal to zero.

Replacing Eq (2.8) on Eq (2.7) gives us:

S iβii
Ii(t)
Ni

+ S i(t)
n∑

j=1, j,i

βi j
I j(t)
N j

=

= S iβ
Ii(t)
Ni

+ S i(t)
n∑

j=1, j,i

αiIi, j
Ii(t) + I j(t)

S i(t)
I j(t)
N j

,

= S iβ
Ii(t)
Ni

+ S i(t)
αi

S i(t)

n∑
j=1, j,i

Ii, j(Ii(t) + I j(t))
I j(t)
N j

,

= S iβ
Ii(t)
Ni

+ αi

n∑
j=1, j,i

Ii, j(Ii(t) + I j(t))
I j(t)
N j

.

Since term Ii, j indicates geographical connections between regions, it is defined a connectivity
matrix W t = [wt

i j]
n
i, j=1, where entries are defined by:

wt
i j = Ii(t) + I j(t), (2.9)

and diagonal terms wt
ii = 0. For practical purposes, in our implementation, an additional simplification

is made on weights wt
i j. It will be assumed that infection level for Ii and I j will not change drastically

in short intervals t ∈ T k = [tk, tk+1). Then, weights are computed at the beginning (on time tk) and
remain constants on T k. Then, weights should be updated again on time tk+1. This simplification is not
a drawback, since weights can be updated once Ii and I j are computed. Note that in consequence, the
regions structure is assumed constant within time interval T k. This will be described later.

Then, our corresponding SEIR model with Lagrangian movement, for each region i ∈ 1, . . . , n is
given by:

dS i

dt
(t) = −β

S i(t)Ii(t)
Ni

− αi

n∑
j=1, j,i

wi j
I j(t)
N j

, (2.10)

dEi

dt
(t) = β

S i(t)Ii(t)
Ni

− σEi(t) + αi

n∑
j=1, j,i

wi j
I j(t)
N j

, (2.11)

dIi

dt
(t) = σEi(t) − γIi(t), (2.12)

dRi

dt
(t) = γIi(t), (2.13)

with initial conditions

S i(t0) = S i,0, Ei(t0) = Ei,0, Ii(t0) = Ii,0, Ri(t0) = Ri,0, t0 ≤ t ≤ t0 + T. (2.14)

Mathematical Biosciences and Engineering Volume 19, Issue 4, 4237–4259.



4244

Here, terms β, γ and σ are the corresponding transmission, recovery and incubation rates (as in SEIR
model), αi is mobility rate and wi j are infection connectivity weights defined in Eq (2.9). We refer to
Eqs (2.10)–(2.14) as Epidemic Regions SEIR (ERSEIR) model.

Let us remark the relevance of infection connectivity weights wi j in contrast with original
Lagrangian mobility Eq (2.6). In Eq (2.6), transmission rates βi j becomes variables that should be
estimated from data. This leads to large dimensional problems where suitable numerical
implementations and prior information are mandatory. In our case, weights wi j are computed from
infection levels of current solution of ODE solver, together with epidemic regions identification
procedure described below. Consequently, the total number of free parameters in our formulation is
n + 3, for n regions. Namely, n parameters are for mobility rates αi

n
i=1, and 3 more corresponds to β, γ

and σ. In other words, a single value of β, γ and σ is used for all epidemic regions, and spread
between epidemic regions is conducted by weights wi j. In addition, all these parameters have
epidemiological interpretation.

There have been some interesting studies of the previous dynamics. For instance, in [49] an
asymptotic analysis of multi-patch stochastic SIS model is studied. They present remarkable
conclusions about the behaviour of the model when the number of sites and individuals goes to
infinity. However, it is not straightforward to add further model assumptions like the ones related to
social and economical aspects on the COVID-19 propagation. In [50] the authors derive a multi-patch
model describing the propagation of a virus within a structured host population. It is assumed that the
virus propagates by direct transmission and by indirect contamination of susceptible through the
environment. Due to the nature of the virus, once infected, individuals do not recover from the
disease. This last assumption is not share with the nature of the virus we are studying in this work.
In [51] a spatial propagation model of a disease between multiple species is proposed. There, the
spatial component is modeled by the use of patches. The authors show simulations for the spread of a
disease in one species and only two patches. In contrast, we deal with many more spatial regions
represented by a suitable constructed graph. In [52] the dynamics of a multi-patch SIR model are used
to study disease persistence and extinction problems. In [53] a general SEIRS multi-patch and
multi-group model is proposed. There, they consider differential state-host mobility patterns, by a
Lagrangian approach, to investigate the effects of heterogeneity in mobility patterns. In most of
related multi-patch SEIR epidemic models, epidemic dynamics is studied by exploration of previously
established patches and/or population units (groups defined by ethnicity or activity for instance). In
this work, population units, specifically the epidemic regions, and their transmission rates are build
within methodology itself as result of infection level and geographical information together.

2.3. Methodology for identification of epidemic regions

Let us consider an undirected graph representing a geographic region. See graphs on Figure 1
for instance. Nodes on graph represent geographic units, as states, cities or municipalities, and edges
between nodes indicate the existence of direct connection between two geographical units by roads.
This is, edges indicates neighborhood.

Epidemic regions target is exampled around orange nodes on Figure 1. Geographical units related
to orange nodes present similar infection level and are geographically connected. In addition, node 67
is leading the outbreak in that region. Nodes 17, 68 and 43 are colored in blue due to their infection
seems to be more influenced by a local outbreak raised on node 15. This behavior is some similar in the
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interface between other regions. Systematical epidemic regions identification with those considerations
can be seen as a clustering or community detection problem.

Figure 1. Graph representing the 125 municipalities of Jalisco state (the case study).
Edges indicate direct connection between two neighbour municipalities by roads, and
corresponding weight of connection is computed from the infection level between both
municipalities. Numbers are used to index the municipalities and colors to identify epidemic
regions. Epidemic regions are represented by a 7-regions graph on the upper left corner of
Figure. Color intensity of each city is proportional to number of confirmed active cases at
July 31, 2020.

Some algorithms for communities detection are based on a hierarchical approach, where nodes are
joined from a priority function. In [54] it is presented the Girvan-Newman algorithm where the concept
of betweenness is introduced. From that seminal contribution, further methods have been developed,
for instance Label propagation [55], Fluid communities [34] and Louvain algorithm. The later is used
in this work for reasons explained below.

Target of community algorithms is to build a graph partition Gn with n communities, that divides
a simple graph G(V, E), with V nodes and E edges, maximizing the modularity function:

Q(Gn) =
1

2L

∑
er,s∈E

[
ŵrs −

krks

2L

]
δ(cr, cs), (2.15)
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where L is the sum of weights of edges on the graph, [ŵrs] is weighted adjacency matrix:

[ŵrs] =

{
ŵrs, weight for edge connecting node r and node s,
0, no connection,

ers indicates the edge connecting nodes r and s, kl =
∑

s ŵls is the sum of weights of incident edges to
the node l, cr indicates current community for node r and δ is the delta function:

δ(cr, cs) =

{
1 if node r and node s are in same community,
0 otherwise.

The term krks
2L is considered as a probability of existence of an edge between nodes r and s

according their respective weight degree.
Let us point out that weights for spread between epidemic regions are taken as the weights wi j

indicated on Eqs (2.10)–(2.13), and they should not be confused with the weights between nodes
(geographical units) denoted by ŵrs. The interpretation on both cases is similar, however the context
of applicability changes. Within Louvain algorithm, community nodes are collapsed into a single
representing community node. Corresponding inner weighted edges are added in a single
self-connecting weighted edge. Equivalently, connections between nodes in different communities are
added as a single inter-community weighted edge. Those actually could be used as the weights wt

i j.
However, the interpretation of weights in that context turns not so natural. In place, we opt to take the
weights based on weight of node (namely infection level) instead edge, in order to maintain an
interpretation as infection level. Corresponding weights are described below. Dynamics within each
epidemic region may be modeled with the help of a standard SEIR model with mobility.

Rationale of modularity function is to promote that communities are defined by clusters of nodes
densely intra-community connected whereas number of inter-community connections is lower than
number of connections on a equivalent randomly connected graph. Negative or zero values of
modularity, means that a community structure cannot be identified from given graph (a fully
connected graph for instance). Positive values of modularity indicates that a community structure is
identified and upper bound for modularity is 1. In this sense, the large modularity value is, the better
quality of the community structure. In [56] it is mentioned that optimal partition may be
indistinguishable from other partitions with high modularity value. As result, optimal partition should
be identified by addition of particular information. Thus, modularity is application dependant, and in
practical applications, a good modularity is obtained from experience. In [57] it is computed a
modularity value for a graph partition obtained onto a large scale hierarchical graph. They report in
that context Q(Gp) = 0.3 as good modularity value. In this work, we employed the Louvain algorithm
implementation of Gephi software [58].

In contrast with natural approaches where weight of connection is defined by connectivity level,
in our model weights are computed as in Eq (2.9) at geographic units instead epidemic regions . That
is the weight of one edge connecting node r and node s, at time t is computed as:

ŵt
rs = Ir(t) + Is(t). (2.16)

This approach produces a weighted undirected graph, that gathers geographical connection and
infection level at once. Thus, epidemic spread across geographic units occurs from highly infected units
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towards surrounding units only if there exist mobility between them. Note that, since weights from Eq
(2.16) vary with time, the structure of communities will change with time according infections levels.

It is important to mention that, since Louvain algorithm is designed to increase modularity by
selecting nodes for each community in such a way that density of graph is scattered (together with
infection levels on Eq (2.16)), it turns out that highly infected neighbouring geographic units (nodes
with high weights) are promoted to be in different communities. That is, once a unit increases its
infection level significantly due to a local outbreak, a new community is created to restrain the density
level of the graph, and its epidemic dynamics is therefore captured by this resulting graph.

In contrast with Louvain algorithm, by means of using the betweenness approach of the Girvan
Newman algorithm, it could be identified the geographic units that play important role (as a bridge
between regions) on the epidemic spread across state. This will be part of future studies.

With the consideration that epidemic dynamics of a node belonging to specific community is
represented by the epidemic dynamics of the entire community, the dynamics of the entire state is
described by our ERSEIR model with the number of epidemic regions equals to number of
communities n, as first hierarchical diagnostic level.

Regarding the hierarchical structure in which the spread of an epidemic can be analyzed, some
remarks may be indicated. It is a fact that hierarchical diffusion models are relevant for studying
epidemic spread in modern times [59]. Since COVID-19 expansion has not respected administrative
divisions of territory, neither at municipalities nor country scales, our methodology as is applied in
this work is limited to a scale of municipalities within single state, and could be applied on a more
general scale. However, the methodology is not covering interaction at neither inter-country nor
intra-country scale due to is not the main aim of our study. However, such an interactions could be
incorporated in one of two simplified ways. First one, suggested by anonymous reviewer, comes from
a block-modelling approach, in which blocks of non-zero (low valued) weights are placed off of the
diagonal of the (reordered) adjacency matrix, for incorporating “peripheral” relations (neighboring
states or countries, or connections with other non-neighboring geographic entities) whereas relations
obtained from our epidemic regions procedure are maintained as blocks along the diagonal of the later
adjacency matrix. In other words, outer-interactions of state are represented as a block of nodes
communicating inner nodes. In this scenario, we envisage that in cases of peripheral blocks densely
intra-connnected, Louvain algorithm will build such a block as a sole community naturally, and then
ERSEIR methodology is straightforwardly applicable. Second one, consist in considering a (surely
very large) initial graph formed by every geographical unit within a country for instance. Consider the
graph shown on Figure 1, for such a initial graph, Louvain algorithm will build an equivalent graph
(as the one shown in small panel of Figure 1) composed by the epidemic regions within country. Then,
infection by interactions at next hierarchical level (countries for instance) may be added as epidemic
region nodes. Next step, could estimate the epidemic dynamics from a modified super version of Eqs
(2.10)–(2.14) model, or even consider a next hierarchical level formed by groups of epidemic regions
that in turn are groped by Louvain algorithm, and so on towards upper hierarchies. In this second
approach, Eqs (2.10)–(2.14) should be modified as an open version, to consider the inter-communities
contagions and be able to propagate the external infectious across hierarchical levels. In both cases:
the block-modelling approach and super ERSEIR, an interesting computational problem arises due to
increase on the problem dimension. Relevant aspects of numerical implementation of ERSEIR model
are lead to be described in the context of the case of study in next section.
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3. Experiments and results

3.1. Case study: Jalisco

Diagnosis capabilities of ERSEIR model are analyzed in the case of Jalisco state within the
period ranging since July 31, 2020 to March 31, 2021. The interest of this case of study lies in the fact
that Mexico is one of the most affected countries, with more than 286.259 confirmed deaths as of
10/24/21 [60], and a fall of 8.2 percent in its gross domestic product in 2020 [2]. Jalisco is one of the
main states of Mexico, with 8.4 million inhabitants, distributed in 125 municipalities. Many of them
are small rural municipalities, but also include medium-sized cities, such as Puerto Vallarta, and a
large city: the metropolitan area of Guadalajara. The later has 5.3 million inhabitants, a good
connectivity with the rest of the country, and with the United States and Canada. In this way, due to
these characteristics of Jalisco state, it is interesting to characterize its the epidemic dynamics. In
addition, the 125 municipalities of Jalisco are officially grouped into 12 administrative regions, which
were established according to their closeness and similarities in terms of factors such as
socioeconomic characteristics, hydrological basins, road connectivity, among others [61]. So it is
interesting to contrast the epidemic regions with these administrative regions. We refer to the later as
economic regions.

This case of study is depicted as the graph with edges in solid black lines on Figure 1. In this
graph the 125 municipalities of Jalisco state are represented as nodes, where edges between nodes
indicate the existence of a common land border between two municipalities. Graph on blue dashed
edges corresponds to epidemic regions, resulting from procedure described in Section 2.3 with the
following considerations.

Weights of connection (Eq (2.16)) for graph of Figure 1, are computed from the confirmed active
cases on July 31, 2020 for each node (color level of municipalities on Figure 1 is proportional to this
value). We take then initial time t0 at July 31, 2020. Thus, each entry of the matrix of initial weights is
defined by:

ŵ0
rs = Ir(0) + Is(0).

With this weights, the Gephi implementation of Louvain algorithm constructs n = 7 communities
(indicated by colors on Figure 1) with a resulting modularity of Q = 0.389. At the same time, Louvain’s
algorithm provides the corresponding weighted connectivity matrix wi j. That is, Jalisco state is divided
on n = 7 epidemic regions at the beginning of this study.

Within each epidemic region i = 1, . . . , n, susceptible, exposed, infected and removed initial
populations are estimated as follows.

• Susceptible:
S i,0 = Ni − Ii,0 − Ei,0 − Ri,0,

where Ni is computed as the sum of inhabitants in cities belonging to corresponding epidemic
region i (source [4]) and is considered fix along time.
• Exposed:

Ei,0 = C(t0 + 6) −C(t0),

where C(t0) corresponds to number of active cases∗ reported by [60] at time t0, and C(t0 + 6)
∗Data base considers date from first symptom, rather that confirmed active case date. However this specification is transparent for

the methodology.

Mathematical Biosciences and Engineering Volume 19, Issue 4, 4237–4259.



4249

indicates the active cases 6 days after initial time. This consideration is consistent with the age
time, or incubation period of virus after exposition (6 days on average according WHO and [62]).
Note that this value is required only for initial condition estimates, and therefore does not restrict
the application our methodology for t > t0.
• Infectious:

Ii,0 = C(t0) −C(t0 − 14),

where C(t0 − 14) is the number of active cases 14 days before t0. Since 14 days is the time
for recovering from COVID-19 infection, the rationale is to consider that some cases are getting
recovered at time t0.
• Removed:

Ri,0 = C(t0 − 14).

This removed category corresponds to the cases subtracted from infectious population.

Parameter values of ERSEIR model, are placed according to WHO reports. This is, recovery
rate was left as γ = 1

14 according to 14 days of recovery mentioned above, and it keep fixed since is
an inherent characteristic of the pathogen. For estimating the value of β (Eqs (2.10) and (2.11)), we
consider that according to studies [63–65], R0 is close to 1.4, but it can even go up to 4.2. Then given
γ, β could be in range β ∈ (0.01, 0.3). Parameter β, αi and σ were manually adjusted every period to fit
the data†. Thus, parameters for ERSEIR were taken as:

β ∈ [0.01, 0.10713], γ = 0.07142, σ ∈ [0.1, 0.25]

α ∈ [0.01, 1].

In the case of parameter σ, the range for manual fit was taken from [66]. A time step of one day
was considered in our experiments.

On Figure 2 are presented the curves (in red) corresponding to estimated infectious cases for each
one of the 7 epidemic regions, obtained from our ERSEIR model implementation and for Jalisco state.
Actual confirmed cases obtained from [60] data are drawn on blue lines with circular marks. These
data correspond to sum of confirmed cases in the municipalities belonging to every epidemic region.
It is observed that relative error (drawn on green line with squared marks) is below of 20% in most
of the estimations. In addition, in the cases with high values of relative error, the actual difference in
number of cases estimated against data (black numbers over black dashed lines) is low. Since each
epidemic region has different scale, quantitative evaluation of the per-epidemic region quality of the
estimation should not be performed via Mean Squared Error (MSE) (see [67] for further details). In
place, a scaled-independent monthly‡ comparison is performed by the Relative Root Mean Squared
Error (RRMSE) computed as:

RRMS Em
i =

√
1
M

∑M
t=1(Ii,t − di,t)2

1
M

∑M
t=1 di,t

, for i = 1, . . . , n,

where m corresponds to month, M is for averaging over number of days in month m, Ii,t are the
infectious for epidemic region at day t, and di,t is the corresponding COVID-19 infectious data. It is

†Applying methodologies for estimating parameters from data with this methodology will be considered in further studies
‡It is chosen monthly computations of RRMSE since it is the time up to epidemic regions are recomputed in our experiments.
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observed that RRMSE values for August (upper left box on every panel on Figure 2) is consistently
lower than 20% with respect data, with exception of epidemic region 1, where the magnitude of data
is very low. It is remarked that better estimations are obtained on larger regions and total Jalisco state
cases; with an excellent RRMSE.

Figure 2. Daily estimating results from August 1, until August 31, 2020 obtained from
ERSEIR implementation are presented in red lines, for each epidemic region and for
Jalisco state. Active cases data (source [60]) are drawn on blue line with circular marks.
Relative error is computed for every day and drawn on green with squared marks and values
corresponds to right axis. Numbers over dashed black lines indicates the absolute error.
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Figure 3. Estimates obtained from ERSEIR model from August 1, 2020, until March 31,
2021, are drawn on red line. Active cases data (source [60]) are drawn on blue line with
circular marks. Relative error is computed for every day and drawn on green with squared
marks and values corresponds to right axis. Numbers over dashed black lines indicates the
absolute error.

On Figure 3 are shown the estimates from ERSEIR model for time ranging from August 1, 2020,
until March 31, 2021. These estimates are obtained as the sum of infectious of every epidemic region.
This is:

RRMS E =

√
1
N

∑N
t=1(I·,t − d·,t)2

1
N

∑N
t=1 d·,t

,

where · indicate that is not dependent of epidemic region. It is observed that the relative error is below
10% most of the time and the RRMES is also reasonably low: 0.123. In addition, it is interesting to
note that some jumps appear at the end of months October, December and January. Around that
months, the pandemic peaks and in addition, the increase of confirmed cases obeys to socioeconomic
activity increase due to end-of-year festivities. Moreover, NPI and public health policies are not being
considered in ERSEIR model. We envisage that better estimates may be obtained by adding NPI
considerations to ERSEIR model, and reducing time between epidemic regions identification step
(perhaps after 15 days of simulation instead a month). Later aspects are in considerations for future
work.

On Figure 4 are presented the epidemic regions identified from Louvain algorithm
implementation. Panel (a) shows the seven initial epidemic regions, obtained when considering initial
numbers (on July 31, 2020) and it is the same division that is presented on Figure 1. With the numbers
of infectious at the end of August 2020, weights on Eq (2.16) are recomputed and Louvain algorithm
is executed again to reproduce the epidemic dynamics of September, 2020. In consequence, epidemic
regions are redefined for next month. This procedure is repeated every month until January 31, 2021
and it produces the nine epidemic region division shown on panel (b). January month is chosen due to
corresponds to month when pandemic peaks and coincidence between epidemic and economic
regions is more evident. Color of municipalities on panels (a) and (b) indicate belonging epidemic
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region and intensity level of color is proportional to number of infectious from the ERSEIR
implementation with respect to total active cases at the end of the month. On panel (c) it is presented
the current division of Jalisco state based on economic activity and geographic criteria [61]. Colors of
panels (a) and (b) where chosen as colors of epidemic regions to associate the similarities in both
divisions. The municipalities with highest economic activity on each region of panel (c) are
highlighted. Same leading municipalities per region are also highlighted on panels (a) and (b) for
identifying in which epidemic region are located.

(a) Seven epidemic regions on July 31, 2020. (b) Nine epidemic regions on January 31,
2021.

(c) Twelve economic regions

Figure 4. Division of Jalisco state on epidemic regions according to Louvain algorithm and
active cases at July 31 (panel (a)) and August 25, 2020. Current division in regions for state,
according to economic activity and geographic criteria, is shown on panel (c).
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There are some remarks to do around Figure 4. The first one is the relation between social-
economic activity and epidemics dynamics is evidenced. It is observed that municipalities: Tepatitlan
de Morelos, Colotlán, Guadalajara, Puerto Vallarta and Zapotlán el Grande, have the largest number
of confirmed cases on epidemic regions of panel (a). Those are also the leading municipalities on the
economic regions of panel (c). In the case of Lagos de Moreno on July 31, it is assigned to epidemic
region of Tepetitlan de Morelos, see panel (a). The rationale is, socio-economic activity between
Tepatitlán de Morelos and Guadalajara is more active, due to closeness and the fact that Guadalajara
is the capital city. Thus epidemic spread is delayed for Lagos de Moreno. However, once infection
evolves, Lagos de Moreno develops its own local outbreak that is captured by Louvain algorithm,
dividing blue region on panel (a) into two epidemic regions (blue and green on panel (b)). Resulting
epidemic regions are consistent with economic regions of panel (c) (on green and blue respectively).

As natural, since Guadalajara city is the capital of state, it has largest numbers of inhabitants and
economic activity. Thus, it governs the outbreak in municipalities belonging Region Centro. However,
it is remarkable that its neighbour municipalities of Zapopan is grouped (and kept) on its own epidemic
region. This is explained from the fact that Zapopan has enough inhabitants and inner economic activity
for supporting its own outbreak and in turn, influences surrounding municipalities. In fact, on July 31,
the municipalities of San Martı́n de Bolaños appears to be more influenced by the local outbreak of
Zapopan (see panel (a)) and this is natural since San Martı́n de Bolaños is a bridge city between Region
Norte and the rest of the state. However, on January 31, 2021 (panel (b)) its epidemic region changes
due to increment of infectious in the northern cities (specifically in Colotlán) and the existent economic
activity, as result epidemic region and economic region coincide.

Another interesting case is the municipalities of Chapala. It is the leading city of Region Sureste
(see panel (c)). However, there exists a lake between Chapala and the rest of the municipalities
belonging this economic region. This conform a natural barrier that diminishes the social activity.
Then, Chapala is grouped in epidemic regions where there exists a more direct social activity due to
road connections.

In the case of Puerto Vallarta, it expected that it govern the outbreak in surrounding municipalities,
since Puerto Vallarta concentrates most of the socio-economical activity in its region due to tourism.

Regions Laguna, Costa Sur, and Sierra de Amula, are conformed by towns and settlements with
a considerable degree of marginalization. Thus, it is reasonable that there is not a clear leading city in
terms of infectious and therefore the epidemic regions are wider than corresponding economic regions.
In other words, since there is not a clear leading municipalities, or local outbreak (see that intensity
level of color around that region is almost uniform) the corresponding epidemic region is extended (see
both: panels (a) and (b)).

Due to space constraints, temporal evolution of epidemic regions every month is presented as
supplementary material.

Finally, it should be noted that our model is able to provide an estimation for exposed population.
However, this was not shown in this work due to impossibility for having data for verification.

4. Conclusions

This work addresses the problematic of describing the spatial-temporal pandemic spread for
SARS-CoV-2 (COVID-19) across large regions. In order to deal with the heterogeneity of COVID-19
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spread in this scenario, it is proposed a novel SEIR-type model with Lagrangian-like movement where
epidemic dynamics is described from behavior within and between time varying epidemic regions.

The methodology used for epidemic region identification overcome existing methodologies since
local epidemic dynamic is captured at the same time that mobility relation between epidemic regions
considers actual connections between geographical units. In addition, the design of algorithm for
epidemic regions identification is translated to competence for identifying local outbreaks and
reflecting the close relation between epidemic spread and socioeconomic population activity.

In regard numerical aspects, our methodology has few free parameters, all of them having
epidemiological significance, and it is implemented using standard packages (namely Python ODE
solver and Gephi software). That is, numerical procedure may be implemented with low
computational cost in terms of software development and execution time.

The capabilities of our methodology are shown by analyzing the dynamics of the SARS-CoV-2
pandemic in the state of Jalisco, Mexico, as a case study. At the beginning of the study period (July
2020) the 125 municipalities of Jalisco were grouped into seven epidemic regions and by January 2021
nine regions are identified. The estimates for each epidemic region and for the state as a whole are
satisfactory since the RRMSE obtained is below 15% in six from seven epidemic regions and equals to
4% for the whole Jalisco state. It should be noted that the epidemic regions maintain a good relationship
with the 12 economic/geographical regions into which the 125 municipalities of Jalisco are officially
grouped.

This methodology has been extended for analyze the epidemic dynamics for months from
September, 2020, until February, 2021, obtaining similar results. Those results are shown as
supplementary material.

During the development of this work, there were identified some issues that could complement it
as future work. Incorporating a dynamic parameter estimation via data assimilation techniques would
certainly improve this methodology. On the other hand, we are convinced that process for identifying
epidemic regions could be reinforced by adding socioeconomic aspects: Indicators such as economic
activity level, health care services access, education access level, infrastructure development, etc.,
whenever available, would be helpful and are obviously relevant for the epidemic dynamics. Without
doubt, the NPI mechanisms modify the dynamic of contagions within municipalities. Analyzing effects
of heterogeneous application of NPI policies is a key aspect that could be incorporated to ERSEIR
model.

Finally, it is remarked that proposal methodology is extensible for modelling spread of diverse
contagion agents and inclusive, to model socioeconomic dynamics.
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regiones de Jalisco, Technical report, Gobierno de Jalisco, 2016. Available from:
https://seplan.app.jalisco.gob.mx/biblioteca/archivo/verDocumento/939.

62. K. Ejima, K. S. Kim, C. Ludema, A. I. Bento, S. Iwanami, Y. Fujita, et al., Estimation
of the incubation period of COVID-19 using viral load data, Epidemics, 35 (2021), 100454.
https://doi.org/10.1016/j.epidem.2021.100454

63. H. Najafimehr, K. M. Ali, S. Safari, M. Yousefifard, M. Hosseini, Estimation of basic reproduction
number for COVID-19 and the reasons for its differences, Int. J. Clin. Pract., 74 (2020), e13518.
https://doi.org/10.1111/ijcp.13518

64. W. He, G. Y. Yi, Y. Zhu, Estimation of the basic reproduction number, average incubation time,
asymptomatic infection rate, and case fatality rate for COVID-19: Meta-analysis and sensitivity
analysis, J. Med. Virol., 92 (2020), 2543–2550. https://doi.org/10.1002/jmv.26041

65. S. Zhao, B. Tang, S. S. Musa, S. Ma, J. Zhang, M. Zeng, et al., Estimating the generation interval
and inferring the latent period of COVID-19 from the contact tracing data, Epidemics, 36 (2021),
100482. https://doi.org/10.1016/j.epidem.2021.100482

66. J. A. Backer, D. Klinkenberg, J. Wallinga, Incubation period of 2019 novel coronavirus (2019-
NCOV) infections among travellers from Wuhan, China, 20–28 January 2020, Eurosurveillance,
25 (2020), 2000062. https://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062

67. R. J. Hyndman, A. B. Koehler, Another look at measures of forecast accuracy, Int. J. Forecast.,
22 (2006), 679–688. https://doi.org/10.1016/j.ijforecast.2006.03.001

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 4, 4237–4259.

http://dx.doi.org/https://doi.org/10.1103/PhysRevE.70.066111
http://dx.doi.org/https://doi.org/10.13140/2.1.1341.1520
http://dx.doi.org/https://doi.org/10.1016/s0277-9536(96)00197-9
http://dx.doi.org/https://doi.org/10.1016/s0277-9536(96)00197-9
http://dx.doi.org/https://doi.org/10.1016/j.epidem.2021.100454
http://dx.doi.org/https://doi.org/10.1111/ijcp.13518
http://dx.doi.org/https://doi.org/10.1002/jmv.26041
http://dx.doi.org/https://doi.org/10.1016/j.epidem.2021.100482
http://dx.doi.org/https://doi.org/10.2807/1560-7917.ES.2020.25.5.2000062
http://dx.doi.org/https://doi.org/10.1016/j.ijforecast.2006.03.001
http://creativecommons.org/licenses/by/4.0

	Introduction
	Materials and methods
	Epidemic regions
	Epidemiological model for regions
	Methodology for identification of epidemic regions

	Experiments and results 
	Case study: Jalisco

	Conclusions

