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Abstract: Cancer is a serious threat to human health and life. Using anti-tumor drugs is one of the
important ways for treating cancer. A large number of experiments have shown that the hormesis
appeared in the dose-response relationship of various anti-tumor drugs. Modeling this phenomenon
will contribute to finding the appropriate dose. However, few studies have used dynamical models to
quantitatively explore the hormesis phenomenon in anti-tumor drug dose-response. In this study, we
present a mathematical model and dynamical analysis to quantify hormesis of anti-tumor drugs and
reveal the critical threshold of antibody dose. Firstly, a dynamical model is established to describe the
interactions among tumor cells, natural killer cells and M2-polarized macrophages. Model parameters
are fitted through the published experimental data. Secondly, the positivity of solution and bounded
invariant set are given. The stability of equilibrium points is proved. Thirdly, through bifurcation
analysis and numerical simulations, the hormesis phenomenon of low dose antibody promoting tumor
growth and high dose antibody inhibiting tumor growth is revealed. Furthermore, we fit out the quan-
titative relationship of the dose-response of antibodies. Finally, the critical threshold point of antibody
dose changing from promoting tumor growth to inhibiting tumor growth is obtained. These results can
provide suggestions for the selection of appropriate drug dosage in the clinical treatment of cancer.
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1. Introduction

Cancer is a major public health concern globally. Using anti-tumor drugs is a way to control tumor
growth. To achieve a better therapeutic effect, it is essential to choose the appropriate drug dose.
A lower dose may not achieve the treatment effect but stimulate tumor growth and a higher dose is
harmful to the patient’s health. Therefore, it is necessary to study the quantitative relationship of drug
dose-response. Hormesis is a biphasic dose-response phenomenon, which is generally defined as the
negative effects of chemicals on organisms that occur at high doses (such as growth and development

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2022190


4121

inhibition), but they are beneficial at low doses (such as stimulating growth and development). A large
number of experiments have shown that the hormesis appeared in the dose-response relationship of
various anti-tumor drugs [1]. Modeling this phenomenon will contribute to finding the appropriate
dose [2].

The hormesis phenomenon in the dose-response relationship was first proposed by Edward J. Cal-
abrese. In 2005, he and his collaborators evaluated the dose-response relationship between human
tumor cell lines and various drugs including anti-tumor drugs. The biphasic dose-response similar to
hormesis has been universally confirmed in 136 tumor cell lines with more than 30 tissue types and
120 different agents [1]. In 2009, Nascarella et al. proposed several observable indicators to quantita-
tively analyze whether hormesis occurs in the dose-response of a certain drug [3]. In 2014, Pearce et
al. found that a particular class of tumor-directed immune reactants, anticancer antibodies, stimulated
tumor growth at low doses and inhibited growth at higher doses [4]. Their experiments on multiple
murine models (normal mice, mice with high immunocompetence, mice with poor immunogenicity,
etc.) all showed the hormesis, indicating that the effect is widespread [5]. In 2015, Yoshimasu et al.
proposed a formula to fit the dose-response relationship of anti-tumor drugs in vitro. Their theoretical
model helps predict how hormesis affects patients with malignant tumors [6]. In 2019, Qian Li et al.
proposed and expanded a discrete-time tumor growth model that combines radiotherapy and CTLA4
pathway inhibitors to describe the development of the tumor microenvironment [7]. They found that
the intensity of radiotherapy had a significant impact on the kinetics of tumor growth. However, few
studies have used dynamical models to study the hormesis in anti-tumor drug dose-response.

In this study, we combine experimental data with a dynamical model to quantitatively explore the
hormesis of anti-tumor drugs. This study is structured as follows. Section 2 presents a mathematical
model and a nondimensional model of the interactions among tumor cells, natural killer cells and
M2-polarized tumor-associated macrophages. Section 3 provides the theoretical analysis. In Section
4, the data and parameter fitting are presented. Bifurcation analysis and quantitative simulations are
conducted in Section 5. Finally, some conclusions and future work are addressed in Section 6.

2. A mathematical model and its nondimensionalization

Nonhuman sialic acid N-glycolyl-neuraminic acid (Neu5Gc) is one of the three major mammalian
sialic acids. It is found to have a significant role in human cancer immunity and tumorigenesis [8].
Studies have demonstrated that anti-Neu5Gc antibodies can stimulate or inhibit progression of tumors
depending on the dosage used [5, 9, 10]. Experiments analyse the growth of Neu5Gc-positive tumors
in Neu5Gc-deficient mice, following administration of increasing concentrations of anti-Neu5Gc anti-
bodies [4]. They find the phenomenon that lower antibody concentrations stimulate tumor growth and
higher concentrations inhibit growth (Figure 1).

In the experimental mice, the anti-Neu5Gc antibodies are able to affect tumor growth by interacting
with natural killer (NK) cells [5]. When the Fab portion of the anti-Neu5Gc antibody binds to an
antigen, its Fc portion is recognized and bound by Fcγ receptors on NK cells, leading to activation
of NK cells [11]. This antibody-dependent cellular cytotoxicity (ADCC) mediates NK cells to kill
tumor cells. Besides, higher doses of antibodies promote NK cell-mediated ADCC. The experiments
on mice show that when the antibody dose is higher, the number of NK cells is larger than the control
group. When the antibody dose is lower, the number of NK cells is smaller than the control group.
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Figure 1. The dose-response curve to antibody-based anti-tumor therapeutics. Zone A repre-
sents that very low levels of tumor-directed antibody have no effect on tumor size. Red zone
B-C represents that dose in this area stimulates tumor growth and green zone D-E repre-
sents that dose in this area inhibits tumor growth[4]. Red circle represents the dose threshold
between two different zones. The dashed line represents the tumor size without treatment.

This indicates that antibody dose can affect NK cell growth and higher doses favor NK cell expansion.
This hormesis phenomenon has been reproduced in multiple mouse models[5]. In this study, we

construct a dynamic model of the interactions among tumor cells, NK cells and M2-polarized tumor-
associated macrophages (TAMs) to describe the hormesis of anti-Neu5Gc antibodies. Based on both
the knowledge of immune system function and experiments reported in references [4] and [5], we have
the following model assumptions: 1) The tumor cells grow logistically in the absence of an immune
response. 2) NK cells kill tumor cells when they interact via the law of mass action. TAMs stimulate
tumor cells to proliferate when they interact via the law of mass action. 3) NK cells and TAMs may
be stimulated to proliferate upon contact with tumor cells. 4) The apoptotic rates of NK cells and
TAMs are independent of tumor cell density. 5) The effect of stimulation or inhibition could occur
independently of any adaptive immunity. 6) Antibody dosage affects NK cell growth and higher doses
favor NK cell expansion.

Using above assumptions, the graphical representation of the mathematical model, including three
different cells and various interactions, is depicted in Figure 2.

Then, we establish the following ordinary differential equations (ODEs) containing three variables:


dT
dt = rT (1 − T

K ) − aNT + bMT

dN
dt = k1NT − c1N

dM
dt = k2MT − c2M

(2.1)

where T represents tumor cell population, N represents NK cell population and M represents TAM
population. r is the intrinsic growth rate of the tumor, K is the carrying capacity of the tumor, a is
the killing rate of NK cells on tumor cells and b is the rate of proliferation of tumor when stimulated
by TAMs. k1 and k2 are the rates of proliferation of NK cells and TAMs when stimulated by tumor,
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Figure 2. Illustration of our tumor-immune system. The system consists of four components:
Tumor cells, NK cells, TAMs and antibodies. The edges with arrow represent promotion and
the edges with blunt side represent inhibition. The dashed lines represent apoptosis.

respectively. c1 and c2 are the apoptotic rates of NK cells and TAMs, respectively. The parameters
r,K, a, b, k1, k2, c1 and c2 are constants and assumed to be non-negative. In our model, antibody dosage
affects proliferation and apoptosis rates of NK cells (parameters k1 and c1).

For convenience of theoretical analysis, we nondimensionalize the model (2.1). Time is scaled
relative to the apoptotic rate of NK cells (c1), and we make the following substitutions:

x =
T
K
, τ = c1t, y =

N
N0
, z =

M
M0

(2.2)

where N0 represents initial population of NK cells and M0 represents initial population of TAMs. Then
we obtain the nondimensional system of equations:

dx
dτ = Ax(1 − x) − Bxy + Cxz

dy
dτ = Dxy − y

dz
dτ = Exz − Fz

(2.3)

where
A =

r
c1
, B =

aN0

c1
,C =

bM0

c1
,D =

Kk1

c1
, E =

Kk2

c1
, F =

c2

c1
. (2.4)

In this nondimensional system, antibody dose affects the parameter D. When the antibody dose is low,
the parameter D would be small and when the antibody dose is high, the parameter D would be large.

3. Theoretical analysis of the model system

3.1. Positivity and boundedness

According to the comparison theorem [12], we can easily obtain the following theorem.

Theorem 3.1. Let the initial conditions of system (2.3) be positive, then the solutions (x(τ), y(τ), z(τ))
of the system are nonnegative for all τ ≥ 0.
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Theorem 3.2. System (2.3) has a nonnegative invariant set Ω = {(x(τ), y(τ), z(τ)) ∈

R3 |0 ≤ x(τ) ≤ α, 0 ≤ y(τ) ≤ β, 0 ≤ z(τ) ≤ γ}, where α = min
{

F
E ,

1
D

}
, β = A

B , γ = A
C (α − 1) .

Proof. Let (x(τ), y(τ), z(τ)) be a solution of system (2.3) with (x(0), y(0), z(0)) ∈ Ω . When 0 ≤ x(τ) ≤
α ≤ 1

D , from system (2.3) we obtain

dy
dτ

= y(Dx − 1) ≤ 0, (3.1)

which implies that y is monotonic decreasing, so 0 ≤ y(τ) ≤ y(0) ≤ β,∀τ ≥ 0.
Similarly, when 0 ≤ x(τ) ≤ α ≤ F

E , from system (2.3) we obtain

dz
dτ

= z(Ex − F) ≤ 0, (3.2)

which implies that z is monotonic decreasing, so 0 ≤ z(τ) ≤ γ,∀τ ≥ 0.
From system (2.3) we obtain

x[A − Bβ − Ax] ≤
dx
dτ
≤ x[A + Cγ − Ax]. (3.3)

According to the comparison theorem [12], the lower bound of x(τ) is given by the lower bound of the
solution of equation

dx
dτ

= x[A − Bβ − Ax] = −Ax2. (3.4)

Thus, we obtain x(τ) ≥ 0,∀τ ≥ 0. The upper bound of x(τ) is given by the upper bound of the solution
of equation

dx
dτ

= x[A + Cγ − Ax]. (3.5)

Thus, we obtain x(τ) ≤ A+Cγ
A = α,∀τ ≥ 0. In summary, 0 ≤ x(τ) ≤ α,∀τ ≥ 0.

Therefore, the solutions of Eq (2.3) are bounded and the theorem is proven. �

3.2. Stability of equilibrium points

Considering the biological significance, the system (2.3) has four equilibrium points.
1) E0(0, 0, 0): Tumor cells, NK cells and TAMs are eliminated.
2) E1(1, 0, 0): The tumor cell population reaches the carrying capacity while NK cells and TAMs

are eliminated.
3) E2( 1

D ,
A(D−1)

BD , 0): The TAMs are eliminated. Tumor cells and NK cells coexist.
4) When F

E = 1
D , there exists a line of equilibrium points E3( 1

D , y
∗, A−AD+BDy∗

CD ). For biological and
dynamical relevance, we only take the subset of this line in the first octant. Thus, when D > 1, it
requires that y∗ ≥ A(D−1)

BD ; when 0 < D ≤ 1, we have that y∗ ≥ 0. The tumor cells, NK cells and TAMs
coexist.

Remark: The system (2.3) has another equilibrium point ( F
E , 0,

A(F−E)
CE ). However, considering the

biological significance, tumor cells should not exceed the maximum carrying capacity of the environ-
ment. Then we have F/E ≤ 1. When F = E, this equilibrium point becomes E1(1, 0, 0). When
F < E, A(F−E)

CE < 0, so this equilibrium point does not exist.
According to the stability theory of ODEs [13], we can easily obtain the Theorems 3.3 and 3.4.
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Theorem 3.3. The tumor-free equilibrium point E0(0, 0, 0) is always unstable.

Theorem 3.4. When D < 1, E < F,the equilibrium point E1(1, 0, 0) is locally asymptotically stable.

Theorem 3.5. When D > max{1, E
F }, the equilibrium point E2( 1

D ,
A(D−1)

BD , 0) is locally asymptotically
stable.

Proof. The Jacobian matrix J(E2) at equilibrium point E2 is given by

J(E2) =


− A

D − B
D

C
D

A(D−1)
B 0 0

0 0 E
D − F

 (3.6)

and the corresponding characteristic equation is

λ3 + a1λ
2 + a2λ + a3 = 0 (3.7)

where
a1 = A

D + (F − E
D ),

a2 = A
D

[
(D − 1) + (F − E

D )
]
,

a3 = A
D (D − 1)(F − E

D ).

(3.8)

According to Routh-Hurwitz criterion [14], the roots of Eq (3.7) have negative real parts equivalent to

a1 > 0, a3 > 0, a1a2 > a3. (3.9)

Therefore, the equilibrium point E2 is locally asymptotically stable if

a1 = A
D + (F − E

D ) > 0,

a3 = A
D (D − 1)(F − E

D ) > 0,

a1a2 − a3 =
[

A
D + (F − E

D )
]

A
D

[
(D − 1) + (F − E

D )
]
− A

D (D − 1)(F − E
D ) > 0.

(3.10)

When D > max{1, E
F }, the Eq (3.10) holds, so the equilibrium point E2 is locally asymptotically stable.

�

Theorem 3.6. When Q = (F − 1)By∗ − AF(1 − 1
D ) < 0, the equilibrium point E3( 1

D , y
∗, A−AD+BDy∗

CD ) is
stable. When Q > 0, the equilibrium point E3 is unstable. When Q = 0, B = Ck,D = E = F = 1, the
equilibrium point E3 is stable on the surface z = kyE/D,∀k ≥ 0.

Proof. The Jacobian matrix J(E3) at equilibrium point E3 is given by

J(E3) =


− A

D − B
D

C
D

Dy∗ 0 0

F
C (A − AD + BDy∗) 0 0

 (3.11)

and the corresponding characteristic equation is
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λ[λ2 +
A
D
λ +

(1 − F)BDy∗ + AF(D − 1)
D

] = 0. (3.12)

When Q > 0, Eq (3.12) has a positive root, so E3 is unstable.
When Q < 0, Eq (3.12) has one zero root and two negative roots, and we use the Center Manifold

Theorem [13] to solve the stability of E3. Let

R = By∗ − A(1 −
1
D

), P =

√
A2

D2 + 4Q,Q =
ER
D
− By∗, S =

ER
B
− Dy∗. (3.13)

To facilitate subsequent calculations, we make the following variable substitutions to move the equi-
librium point to the origin:

x = x −
1
D
, y = y − y∗, z = z −

R
C
. (3.14)

Then we obtain the new model: 
dx
dτ = (x + 1

D )(−Ax − By + Cz)

dy
dτ = Dx(y + y∗)

dz
dτ = Ex(z + R

C )

(3.15)

The Jacobian matrix J0 at (0, 0, 0) is given by

J0 =


− A

D − B
D

C
D

Dy∗ 0 0

ER
C 0 0

 (3.16)

and the corresponding eigenvalues are λ1 = 0, λ2 = 1
2 (− A

D − P), λ3 = 1
2 (− A

D + P). Construct a matrix M
whose columns are the eigenvectors of J0:

M =


0 n2 n3

C
B

Dy∗n2
λ2

Dy∗n3
λ3

1 ERn2
Cλ2

ERn3
λ3

 ,∀n2 , 0, n3 , 0,
A
D

+ λi −
Q
λi

= 0, i = 2, 3. (3.17)

Let T = M
−1

, then

T =


0 ER

CS
−Dy∗

S

Q
Pn2λ3

Q
PS n2

−CQ
BPS n2

−Q
Pn3λ2

−Q
PS n3

CQ
BPS n3

 (3.18)

and

T J0T
−1

=


0 0 0

0 λ2 0

0 0 λ3

 . (3.19)

Mathematical Biosciences and Engineering Volume 19, Issue 4, 4120–4144.



4127

Make variable substitutions: 
y1

z1

z2

 = T


x

y

z

 . (3.20)

Then the system becomes:

dy1
dτ = ER

S (n2z1 + n3z2)[( R
B − y∗)y1 +

Ry∗(D−E)
C ( n2

λ2
z1 + n3

λ3
z2)]

dz1
dτ =

Q
Pn2
{
λ2
λ3

(n2z1 + n3z2) − A
λ3

(n2z1 + n3z2)2 +
C(D−E)

BS y1(n2z1 + n3z2) − λ2( n2
λ2

z1 + n3
λ3

z2)
+[ER( 1

λ3
− E

BS ) + Dy∗( D
S −

B
λ3

)](n2z1 + n3z2)( n2
λ2

z1 + n3
λ3

z2)}

dz2
dτ =

Q
Pn3
{−

λ3
λ2

(n2z1 + n3z2) + A
λ2

(n2z1 + n3z2)2 −
C(D−E)

BS y1(n2z1 + n3z2) + λ3( n2
λ2

z1 + n3
λ3

z2)
+[ER( E

BS −
1
λ2

) + Dy∗( B
λ2
− D

S )](n2z1 + n3z2)( n2
λ2

z1 + n3
λ3

z2)}

(3.21)

The model (3.21) satisfies the conditions of the Center Manifold Theorem [13], and there must exist a
central manifold  z1

z2

 = h(y1) =

 h1(y1)

h2(y1)

 . (3.22)

Let

A2 =

 λ1 0

0 λ2

 , g1(y1, z1, z2) =
dy1

dτ
, g2(y1, z1, z2) =

 dz1
dτ − λ2z1

dz2
dτ − λ3z2

 . (3.23)

Then h(y1) satisfies the following partial differential equation and boundary conditions

∂h
∂y1

(y1)g1(y1, h(y1)) − A2h(y1) − g2(y1, h(y1)) = 0, h(0) = 0,
∂h
∂y1

(0) = 0. (3.24)

h(y1) = 0 is a solution of the above equation. Substituting h(y1) = 0 into the first equation of model
(3.21), we obtain the equation satisfied by the solution on the central manifold is

dy1

dτ
= 0. (3.25)

Obviously the zero solution of this equation is stable. Thus the zero solution of model (3.21) is stable.
When Q = 0, the Center Manifold Theorem [13] used in previous proof is inapplicable. Instead, to

analyze the stability of E3, we reduce model (2.3) to a two-dimensional system (3.26) along the surface
z = kyE/D, for any k ≥ 0, which is invariant under (2.3) when F/E = 1/D.

dx
dτ = Ax(1 − x) − Bxy + Cxz

dy
dτ = Dxy − y

(3.26)

When Q = 0, B = Ck,D = E = F = 1, the Jacobian matrix J(E3) at equilibrium point E3 is given by

J(E3) =

 −A 0

y 0

 (3.27)
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and the corresponding characteristic equation is

λ2 + Aλ + y = 0. (3.28)

The eigenvalue λ1,2 = 1
2 (−A ±

√
A2 − 4y) < 0, so E3 is stable.

In summary, when Q < 0, the equilibrium point E3 is stable. When Q > 0, the equilibrium point E3

is unstable. When Q = 0, B = Ck,D = E = F = 1, the equilibrium point E3 is stable along the surface
z = kyE/D,∀k ≥ 0. �

Corollary: When D > 1, F ≤ 1, the equilibrium point E3( 1
D , y

∗, A−AD+BDy∗

CD ) is stable. When D <

1, F ≥ 1, the equilibrium point E3 is unstable.

Proof. It’s easy to verify that when D > 1, F ≤ 1, Q = (F − 1)By∗ − AF(1 − 1
D ) < 0, the equilibrium

point E3 is stable. When D < 1, F ≥ 1, Q > 0, the equilibrium point E3 is unstable. �

The above theoretical results are summarized in Table 1. Under the condition of E < F, the equilib-
rium point E1 is stable when D < 1 and the equilibrium point E2 is stable when D > 1. This indicates
that parameter D is the key parameter to change the steady state of the system. Increasing the value
of parameter D will change the steady state of the system from E1 to E2, which corresponds to the
process of increasing the antibody dose. Therefore, we suppose that equilibrium point E1 corresponds
to the steady state under the low dose of antibody and equilibrium point E2 corresponds to the steady
state under the high dose of antibody.

Table 1. Local stability of equilibrium points.

Equilibrium points Stable conditions
E0 unstable
E1 D < 1, E < F
E2 D > max{1, E/F}
E3 D > 1, F ≤ 1

4. Data and parameter fitting

4.1. Collection of data

We use the experimental data obtained from references [4] and [5]. These experiments analyzed the
growth of Neu5Gc-positive tumors in Neu5Gc-deficient mice, following administration of increasing
concentrations of anti-Neu5Gc antibodies.

The experimental data [5] includes the growth process of tumor in the first 10 days of certain
mice (called LLC mice) under four different antibody doses (other experimental conditions remain
the same), as shown in Figure 3. We also use the Siglec-E-deficient Siglece-null (SigE-/-) mice which
have an enhanced innate immune response [5]. The conversion of tumor volume to the number of
tumor cells is as follows: the volume of a single mammalian cell is about 100–10000 µm3 [15]. Ac-
cording to reference [16], mean cell density in solid (tumor) tissue is 106/mm3. Therefore, we assume
that the volume of a single tumor cell is 1000 µm3 and there are about 109 tumor cells in 1cm3 tumor.
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4.2. Parameter estimation

The model includes three variables and eight parameters. We obtain two parameters from the lit-
erature and identify the other six parameters by fitting experimental data. In this study, we use ex-
perimental data which is obtained under four different antibody doses. In our model, antibody dosage
affects proliferation and apoptosis rates of NK cells (parameters k1 and c1). Therefore, the values of
the parameters c1 and k1(corresponding to the parameter D) estimated by four sets of data are different.

Table 2. The optimal values and confidence intervals of parameters of the LLC mice model
(control group).

Parameters Biological meaning Units Value Source Confidence
intervals1

r Intrinsic growth rate
of the tumor

day−1 0.35 Fitted [0.212,0.477]

K Carrying capacity of
the tumor

cell 5 × 109 Fitted [1.751 ×
109, 1.105 × 1012]

a Killing rate of NK
cells on tumor

day−1cell−1 3.5 × 10−6 [18] /

b Rate of proliferation
of tumor when
stimulated by TAMs

day−1cell−1 2 × 10−6 Fitted [1.144 ×
10−8, 1.143 × 10−5]

k1 Rate of proliferation
of NK cells when
stimulated by tumor

day−1cell−1 1.7×10−12 Fitted [1.7× 10−15, 1.513×
10−9]

k2 Rate of proliferation
of TAMs when
stimulated by tumor

day−1cell−1 0.8×10−11 Fitted [0.808 ×
10−15, 1.207 × 10−9]

c1 Apoptotic rate of
NK cells

day−1 0.3 Fitted [0.129885,0.452479]

c2 Apoptotic rate of
TAMs

day−1 0.1 [19] /

1 The confidence level is 95%.

To identify the parameters in the model, we convert the parameter identification into the problem
of optimization by minimizing the following objective function. Mathematically, the objective func-
tion is defined as the error between the simulation results and the time series experimental data. The
formulation can be expressed as

min
K

J(K) =

n∑
i=1

m∑
j=1

(
yD

i (t j) − yi(t j,K)
max(yD

i (t j))
)
2

. (4.1)

yD
i (t j) represents the measured data of component i at time-point t j, which in our case, is the time series

data of mouse experiments obtained from the literature. yi(t j,K) represents the ith component of the
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solutions of ODEs at time t j with parameter set K. The numerical solution of the ODEs is solved by
MATLAB, with the initial value set to be the approximation of the first data point of the mouse data.
The particle swarm optimization (PSO) [17] algorithm is used to optimize this object function. We
first estimate six parameters of the model using data from the control group (without antibody). Then
we fix the parameters r,K, b and k2 and only change k1 and c1 to fit the experimental data under three
different drug doses. The obtained optimization parameters of the control group are listed in Table 2.
The optimal values of parameters c1 and k1 of the LLC mice model when the dose is 14 ug, 28 ug and
56 ug are listed in Table 3 and the estimated values of the other four parameters are the same as in
Table 2.

Table 3. The optimal values and confidence intervals of parameters of the LLC mice model
(dose = 14 ug, 28 ug and 56ug)

k1 c1

dose Value Confidence intervals1 Value Confidence intervals1

14ug 1.4 × 10−12 [1.414 × 10−15, 2.176 × 10−10] 0.5 [0.285,0.58]
28ug 1.7 × 10−13 [1.959 × 10−15, 2.1707 × 10−9] 3.2 [0.302684,3.53284]
56ug 2.34 × 10−10 [1.181 × 10−15, 2.5606 × 10−9] 0.135 [0.09558,0.256394]

1 The confidence level is 95%.

We use the estimated parameter values to simulate the growth process of the tumor in the first 12
days under different antibody doses and the results are depicted in Figure 3.

From Figure 3 we can observe that the numerical simulations of the model fit the experimental
data well. When the antibody dose is 14 ug and 28 ug, the tumor volume in mice is always larger
than the control group, indicating that these two lower antibody doses would promote tumor growth.
When the antibody dose is 56 ug, the tumor volume in mice is always smaller than the control group,
pointing that the higher antibody dose can inhibit tumor growth. Besides, 28 ug of antibody has a more
significant effect on promoting tumor growth than 14 ug. The above simulation results are consistent
with the hormesis phenomenon.

4.3. Parameter uncertainty and identifiability

In our study, we use 24 data points under four different antibody doses to fit six parameters in
our model, so the parameter uncertainty needs to be translated into confidence intervals for model
predictions [20]. After estimating the optimal parameters, we exploit the profile likelihood to analyze
the identifiability of the parameters [21] and use the software package [22] to estimate the parameters’
confidence intervals. These finite sample confidence intervals are listed in Tables 2 and 3 and the
confidence level is 95%.

The profile likelihood of six parameters in the LLC mice model are shown in Figure 4 and the
profile likelihood of six parameters in the SigE-/- mice model are shown in Figure 5.

To be specific, the profile likelihood for r, b and c1 in LLC mice model and r, k2 and c1 in SigE-/-
mice model show a steep concave shape, indicating that the optimization routines would reach their
minimum rapidly. The profile likelihood for K, k1 and k2 in LLC mice model and K, k1 and b in SigE-/-
mice model also show a concave shape, however, the curves on one side of the vertical dashed lines
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Figure 3. Comparisons between the numerical simulation and the published experimental
data. Curves represent the simulation results under different antibody doses. Crosses, stars,
circles and pluses represent the experimental data when the antibody dose is control group,
14ug, 28ug and 56ug in reference [5], respectively.

decrease slowly, indicating that their optimization routines would reach their minimum slowly.

4.4. Sensitivity analysis

The global sensitivity of parameters reflects how the system responds to the perturbation of param-
eters in the model. To obtain the sensitivity of the input parameters to all variables in the model, the
sensitivity function s j(t) of the parameter P j at time t is defined as follows [23, 24]:

s j(t) =
∂O(t)
O(t)

/
∂P j(t)
P j(t)

≈ (|O(P j + ∆P j, t) − O(P j − ∆P j, t)|/O(P j, t))/(2∆P j/P j)) (4.2)

where O(t) is the model output at time t and ∆P j is a small perturbation which is 10% in our situation.
S j

T0
=

∫ T0
0 s j(t)dt

T0
is the sensitivity value of parameter P j (T0 is the total time length of simulation time). We

choose different T0 and display the sensitivity analysis to the perturbation of parameters in the model
in Figure 6.

From Figure 6, we can see that the variable T (Tumor) in the model is most sensitive to the pertur-
bation of r (tumor intrinsic growth rate), and is sensitive to the perturbation of a (NK cell killing rate to
tumor) and c1(NK cell apoptotic rate) too. This indicates that inhibiting tumor proliferation is effective
for tumor control and changing the killing rate of NK cells or the NK cell apoptotic rate will also have
a certain impact on tumor proliferation. The variable N (NK cells) in the model is most sensitive to the
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Figure 4. Parameter identifiability of the LLC mice model (control group). Blue lines repre-
sent the profile likelihood for parameters. Pink dashed lines correspond to the optimal values
of each parameter. Each parameter is varied over a wide range around the optimal value and
the remaining parameters are refitted.

perturbation of c1. Besides, c1 is the only parameter that has a significant impact on NK cells among
the eight parameters of the model.

5. Numerical results

5.1. Simulating the influence of the key parameter D on the dynamics of model

The theoretical analysis presented in Section 3 indicates that parameter D = Kk1
c1

is a key parameter
to change the steady state of the system. This suggests that the ratio of NK cell proliferation rate (k1) to
apoptotic rate (c1) is a capital factor affecting the steady state of the system. In this section, we verify
this result from the perspective of dynamics. We simulate the growth process of the tumor in first 100
days under four different antibody doses, as shown in Figure 7(a).

The cases where the antibody dose is 14 ug, 28 ug and control group correspond to D < 1 in the
dimensionless model. The system will eventually reach the equilibrium point E1. The tumor growth
rate at the early stage is different under three antibody doses and the tumor cells proliferate fastest
when the dose is 28 ug. The case of 56 ug belongs to the situation of D > 1 in the dimensionless
model. Tumor growth will first go through an oscillating process and finally reach the steady state E2.

We also simulate the dynamic of NK cells in first 100 days, as shown in Figure 7(b). When the
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Figure 5. Parameter identifiability of the SigE-/- mice model(control group). Blue lines
represent the profile likelihood for parameters. Pink dashed lines correspond to the optimal
values of each parameter. Each parameter is varied over a wide range around the optimal
value and the remaining parameters are refitted.

antibody dose is low (14 ug, 28 ug), the number of NK cells is less than the control group and the
promoting effect of M2-like TAMs is greater than the killing effect of NK cells, which generally pro-
motes tumor growth. When the antibody dose is high (56 ug), the number of NK cells is more than the
control group and the killing effect of NK cells is greater than the promoting effect of M2-like TAMs,
which generally inhibits tumor growth. These simulation results are consistent with the hormesis phe-
nomenon.

5.2. Bifurcation analysis of parameters

To further understand the relationship between the steady state of model and parameter D, we use
one-parameter bifurcation analysis and find that the stability of the equilibrium point changes as the
parameter D increases, as shown in Figure 8.

When D < 1, E1 is stable; when D > 1, E1 is unstable and E2 is stable. By increasing the parameter
D, the system undergoes a transition from monostability in a higher state to monostability in a lower
state. In addition, we draw trajectories in a 3-dimensional phase-space with different initial values
to represent that the value of the dimensionless parameter D determines the dynamics of the system
(Figure 9).
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Figure 6. The sensitivity analysis to the perturbation of parameters in the model.
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Figure 7. (a)Dynamics of tumor under four different antibody doses and (b) dynamics of
NK cells under four different antibody doses. Curves with star, triangle, rectangle and circle
represent the simulation results of control, 14ug, 28ug and 56ug, respectively.

5.3. Nonlinear relationship between antibody dose and model parameter D

After simulating the dynamics of tumor and immune cells, we would like to obtain a quantitative
drug dose-response relationship curve, which reflects the hormesis phenomenon, to find the threshold
point of drug dose. As mentioned above, the parameter D is positively correlated with the ratio of
NK cell proliferation to apoptosis and is a key parameter to change the steady state of the system.
Therefore, we look for the quantitative relationship between log(1/D) and drug (antibody) dose.

There are the following reasons for choosing log(1/D) to represent the biological response. When
D > 1, the system will eventually reach the steady state E2( 1

D ,
A(D−1)

BD , 0) and the steady state of tumor
cell is 1/D.

When D < 1, the system will ultimately reach the equilibrium point E1(1, 0, 0), which is not related
to D. However, different antibody dosage will influence the early growth rate of the tumor. The
parameter D is positively correlated with the ratio of NK cell proliferation rate to apoptosis rate. The

Mathematical Biosciences and Engineering Volume 19, Issue 4, 4120–4144.



4135

0 2 4 6 8 10

D

0

0.5

1

1.5

D
im

e
n

s
io

n
le

s
s
 v

a
lu

e
 o

f 
tu

m
o

r(
x
) 

c
e
ll
 c

o
u

n
ts E

1
 stable

E
1
 unstable

E
2
 stable

(1,1)

Figure 8. One-parameter bifurcation analysis for the dimensionless model with respect to
parameter D. The solid lines describe the stable equilibrium points of tumor. The dashed line
corresponds to the unstable equilibrium point. Circle represents the bifurcation point.

smaller D or the slower k1 will lead to the acceleration of tumor growth. Therefore, log(1/D) is
positively correlated with tumor growth rate.

In summary, using log(1/D) to indicate the biological response can better reflect the changes in the
tumor growth process caused by different antibody doses. According to reference [5], we infer that the
quantitative relationship between the biological response log(1/D) and the antibody dose (denoted as
θ) is as follows:

log
(

1
D

)
= pθ2 + qθ + m. (5.1)

We use 14 ug, 28 ug and 56 ug experimental data for LLC mice to fit the quantitative relationship
between log(1/D) and drug (antibody) dose in LLC mice, as shown in Figure 10. The coefficients of
the drug dose-response curve are listed in Table 4.

Table 4. The coefficients of quantitative drug dose-response curve.

Mice model p q m
LLC -0.006548 0.3914 -2.347
SigE-/- -0.02413 0.6694 -0.3766

The blue dashed line intersects with the dose-response curve at the point (47.16, 1.55), suggesting
that the antibody dose of 47.16 ug has no effect on tumor growth. This point is the threshold that we
obtain from promoting tumor growth to inhibiting tumor growth. In clinical treatment, it will have the
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(a) D < 1 (b) D > 1

Figure 9. The trajectories in a 3-dimensional phase-space with different initial values. (a)
D < 1: All curves with different initial points eventually approach the same equilibrium point
E1(1, 0, 0), which indicates that the tumor cell population reaches the carrying capacity while
NK cells and TAMs are eliminated. E1 is a stable attractor corresponding to the steady-state
under the low dose of antibody. (b) D > 1: All curves with different initial points eventu-
ally approach the same equilibrium point E2(0.2, 1.33, 0), which indicates that the TAMs are
eliminated. This situation predicts the long-term coexistence of tumor cells and NK cells and
E2 corresponds to the steady state under the high dose of antibody.

adverse effect of stimulating tumor growth if the antibody dose is less than this threshold. Therefore,
the antibody dose used in clinical should be larger than this threshold to inhibit tumor growth.

The grey dashed line represents the case of D = 1. This line corresponds to the critical point where
the steady state of the system changes from E1 to E2. The upper part of the line corresponds to the
steady state E1 and the lower part corresponds to the steady state E2. The two dashed lines together
divide the dose-response relationship curve into three parts (Figure 10).

1) In first part above the blue dashed line, the value of log(1/D) is greater than that of the control
group and the early growth rate of tumor is larger than that of the control group. The antibody dose in
this interval stimulates tumor growth.

2) For second part between the two dashed lines, the value of log(1/D) is less than the control group
but larger than zero. The early growth rate of tumor is smaller than that of the control group, but the
system steady state has not changed. The antibody dose in this interval can slow down the early growth
of tumor, but still cannot inhibit tumor growth at last, and the tumor will reach the maximum carrying
capacity of the environment.

3) In third part below the grey dashed line, the value of log(1/D) is less than zero. The early growth
rate of tumor is smaller than that of the control group and the system steady state changes from E1 to
E2. The antibody dose in this interval can slow down the early proliferation of the tumor. After the
oscillating process, it can finally achieve the effect of inhibiting tumor growth and the tumor will be
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Figure 10. The dose-response curve of LLC mice. The red curve describes the quantitative
relationship between log(1/D) and drug (antibody) dose. The blue dashed line represents
the value of log(1/D) of the control group. The grey dashed line represents the case of
log(1/D) = 0. Hollow circles represent the values of log(1/D) when the dose is 14, 28 and
56 ug, respectively. The two filled circles represent points of intersection.

eliminated eventually as the parameter D gradually increases.
The antibody dose-response curve in Figure 10 well displays the characteristics of hormesis effect

that low-dose antibodies stimulate tumor growth and high-dose antibodies inhibit tumor growth. It
also clearly reflects the threshold point of the dose from promoting tumor growth to inhibiting tumor
growth.

5.4. The influence of the innate immune response on the dose-response

To investigate the effect of innate immune response on the drug dose-response, we further simulate
the data of the Siglec-E-deficient Siglece-null (SigE-/-) mice. Siglec-E in the mouse is the functionally
equivalent homolog of the inhibitory human Siglec-9, being expressed prominently on myeloid cells
[5]. Siglecs are a family of sialic-acid-binding immunoglobulin-like lectins. They could regulate
the growth and survival of cells in the innate and adaptive immune systems, either by inhibition of
proliferation or induction of apoptosis [25]. In SigE-/- mice, the deficiency of Siglecs affects the
regulation of innate immune system cells’ growth and leads to an enhanced innate immune response.
We identify the parameters in model (2.1) using the data of SigE-/- mice. The obtained optimization
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parameters of the control group are listed in Table 5. The optimal values of parameters c1 and k1 of the
SigE-/- mice model when the dose is 11 ug and 28 ug are listed in Table 6 and the estimated values of
the other four parameters are the same as in Table 5.

Table 5. The optimal values and confidence intervals of parameters of the SigE-/- mice
model (control group).

Parameters Biological meaning Units Value Source Confidence intervals1

r Intrinsic growth rate
of the tumor

day−1 0.3179 Fitted [0.16753,0.318248]

K Carrying capacity of
the tumor

cell 1 × 1010 Fitted [6.579 × 109, 3 × 1012]

a Killing rate of NK
cells on tumor

day−1cell−1 3.5 × 10−6 [18] /

b Rate of proliferation
of tumor when
stimulated by TAMs

day−1cell−1 5.434 ×
10−9

Fitted [1.153 ×
10−11, 2.1053 × 10−7]

k1 Rate of proliferation
of NK cells when
stimulated by tumor

day−1cell−1 6.543 ×
10−11

Fitted [6.543 × 10−15, 3.39 ×
10−10]

k2 Rate of proliferation
of TAMs when
stimulated by tumor

day−1cell−1 1.773 ×
10−11

Fitted [2× 10−13, 1.774× 10−9]

c1 Apoptotic rate of
NK cells

day−1 0.2743 Fitted [0.167881,0.395107]

c2 Apoptotic rate of
TAMs

day−1 0.1 [19] /

1 The confidence level is 95%.

Table 6. The optimal values and confidence intervals of parameters of the SigE-/- mice
model(dose = 11 ug, 28 ug)

k1 c1

dose Value Confidence intervals1 Value Confidence intervals1

11ug 1 × 10−14 [1.87 × 10−17, 1.167 × 10−11] 1.1673 [0.871635, 1.7239]
28ug 5 × 10−11 [5 × 10−14, 1.6077 × 10−9] 0.1404 [0.0920847,0.242514]

1 The confidence level is 95%.

We use these parameters to simulate the growth process of the tumor in the first 16 days under
different antibody doses and the results are depicted in Figure 11.

As shown in Figure 11, when the antibody dose is 11 ug, the tumor volume in mice is larger than that
of the control group. The number of NK cells is less than that of the control group and the promoting
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Figure 11. Comparison between numerical simulation and published experimental data of
the tumor in mice with enhanced innate immune response. Curves represent the simulation
results under different antibody doses. Crosses, stars and circles represent the experimental
data when the antibody dose is control group, 11 ug and 28 ug in reference [5], respectively.

effect of M2-like TAMs is greater than the killing effect of NK cells, which generally promotes tumor
growth. When the dose is 28 ug, the tumor volume in the mice is smaller than that of the control
group. The number of NK cells is more than that of the control group, and the killing effect of NK
cells is dominant, which generally inhibits tumor growth. The above results show that the hormesis
also appears in mice with enhanced innate immune response.

We fit both the quantitative relationship between log(1/D) and antibody dose in LLC mice and
SigE-/- mice, as shown in Figure 12. To fit the dose-response curve, we use 14 ug, 28 ug and 56 ug
data for LLC mice and use control group, 11 ug and 28 ug data for SigE-/- mice. The dose-response
curve of mice with an enhanced innate immune response (SigE-/-) is on the left of the dose-response
curve of ordinary mice (LLC), indicating that enhancing the innate immune response will shift the
dose-response curve to the left.

Additionally, the antibody dose of 28 ug is used in two mouse experiments. In LLC mice, the
value of log(1/D) corresponding to 28 ug is greater than that of the control group, indicating that 28
ug antibody can stimulate tumor growth. In the experiment of mice with enhanced innate immune
response, the value of log(1/D) corresponding to 28 ug is smaller than that of the control group,
showing that 28 ug antibody can inhibit tumor growth. So with enhanced innate immune response, a
lower dose of antibody is required to achieve the same stimulation and inhibition effect.
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Figure 12. Changing the innate immune response affects the dose-response curve. The red
curve describes the quantitative relationship between log(1/D) and antibody dose of LLC
mice, while the blue curve describes the quantitative relationship between log(1/D) and an-
tibody dose of SigE-/- mice. The red dashed line represents the value of log(1/D) of the
control group in LLC mice, and the blue dashed line represents the value of log(1/D) of the
control group in SigE-/- mice. The black dashed line represents the case of the dose is 28 ug.
The circles represent the experimental data of two mice.

5.5. The great effect of intrinsic growth rate on tumor growth process

In this section, we investigate the influence of the intrinsic growth rate of tumor (r) on tumor growth.
We only change the parameter r and keep other parameters and initial values of the model (2.1) un-
changed.

First, when the drug dose is 14 ug and 28 ug (the corresponding value of parameter D at the two
doses can be obtained using (5.1)), we change the parameter r to obtain the dynamics of tumor cells
in four cases, as shown in Figure 13(a),(b). We find that changing the intrinsic growth rate of tumor
cells will affect the proliferation of tumor. The greater intrinsic growth rate of tumor cells will lead to
the quicker proliferation of tumor in the early stage, and the number of tumor cells will reach a steady
state faster.

Second, with the drug dose of 56 ug, the parameter r is changed to obtain the dynamics of tumor
cells in three cases, as shown in Figure 13(c). We find that reducing the inherent growth rate of tumor
cells can reduce the peak value of tumor cell number during the growth process. Meanwhile, reducing
the inherent growth rate of tumor cells will prolong the oscillation process of tumor cell growth, which

Mathematical Biosciences and Engineering Volume 19, Issue 4, 4120–4144.



4141

causes the tumor to take a longer time to reach a steady state.
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Figure 13. The dynamics of tumor cells under three different doses when changing the
parameter r. Curves with circle, triangle, rectangle and filled circle represent the simulation
results with different r.

Besides, changing the intrinsic growth rate of tumor cells will not change the steady state that
the number of tumor cells finally reaches. This result is consistent with the stability analysis, that
is, changing the parameter r will not change the steady state of the system. This indicates that only
reducing the intrinsic growth rate of tumor cells cannot effectively inhibit tumor and other treatments
are needed, such as increasing the dosage of drugs, enhancing the innate immune response and so on.

6. Conclusion and discussion

In this study, we construct a dynamic model to study the hormesis in the anti-tumor drugs dose-
response and investigate the mechanism of tumor inhibition or promotion by the immune system. We
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fit out the quantitative dose-response curve of drugs (antibodies), which can well reflect the hormesis,
and obtain the critical threshold point of antibody dose changing from promoting tumor growth to
inhibiting tumor growth. In clinical applications, if the antibody dose is lower than this threshold,
it will have the adverse effect of stimulating tumor growth. Therefore, to inhibit tumor growth, the
antibody dose should be larger than this threshold. Comparing the experiments of mice with enhanced
innate immune response and ordinary mice, we find that improving the innate immune response can
shift the dose-response curve to the left. Besides, we find that changing the intrinsic growth rate
of tumor will affect the proliferation of tumor and prolong the oscillation process of tumor growth.
However, only reducing the intrinsic growth rate of tumor cannot effectively inhibit tumor growth and
other treatments are needed, such as increasing the dosage of drugs, enhancing the innate immune
response and so on.

In this work, we only model tumor cells, NK cells and M2-polarized macrophages, and do not
consider other immune cells, cytokines and other factors. Therefore, other immune cells and cytokines
can be added to the existing model to further study the dynamics of their interactions. In addition, this
study only considers the impact of enhancing innate immune response on the dose-response curve of
anti-tumor drugs, and the impact of other immunotherapy can be considered in subsequent studies.
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