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Abstract: The remora optimization algorithm (ROA) is a newly proposed metaheuristic algorithm for 

solving global optimization problems. In ROA, each search agent searches new space according to the 

position of host, which makes the algorithm suffer from the drawbacks of slow convergence rate, poor 

solution accuracy, and local optima for some optimization problems. To tackle these problems, this 

study proposes an improved ROA (IROA) by introducing a new mechanism named autonomous 

foraging mechanism (AFM), which is inspired from the fact that remora can also find food on its own. 

In AFM, each remora has a small chance to search food randomly or according to the current food 

position. Thus the AFM can effectively expand the search space and improve the accuracy of the 

solution. To substantiate the efficacy of the proposed IROA, twenty-three classical benchmark 

functions and ten latest CEC 2021 test functions with various types and dimensions were employed to 

test the performance of IROA. Compared with seven metaheuristic and six modified algorithms, the 

results of test functions show that the IROA has superior performance in solving these optimization 

problems. Moreover, the results of five representative engineering design optimization problems also 

reveal that the IROA has the capability to obtain the optimal results for real-world optimization 

problems. To sum up, these test results confirm the effectiveness of the proposed mechanism. 

Keywords: remora optimization algorithm; arithmetic optimization algorithm; metaheuristic 

algorithm; swarm intelligence; global optimization 
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1. Introduction  

In recent years, metaheuristic algorithms (MAs) have aroused extensive attention from scholars 

of all walks of life [1]. MAs are widely recognized when applied to solve optimization problems in 

various fields, such as economy [2], biology [3], and engineering [4,5]. It should be pointed out that a 

MA usually contains several random factors, which increase the algorithm’s flexibility. The random 

factors can help MAs with extensive global search and local optimal avoidance. The MA obtains the 

estimated solution by cyclic iteration. In theory, with enough iterations, the MA can always find the 

theoretical solution or one very close to it. For a given number of iterations, the better the algorithm, 

the closer the theoretical solution. For other aspects, excellent algorithms converge faster and obtain 

more precise solutions, thereby saving costs. 

In contrast to conventional methods, metaheuristic methods, which utilize the idea of swarm 

intelligence, have the merits of simplicity, practicability, and ease of use. For instance, particle swarm 

optimization (PSO) [6] is inspired by the predation behaviors of a flock of birds. Each bird searches 

the food by its own experience and current best experience. The well-known whale optimization 

algorithm (WOA) [7] models the foraging behavior of the humpback whales, i.e., encircling the prey 

and using bubble-net attacking method. Unlike WOA, Grey Wolf Optimizer (GWO) [8] mimics the 

cooperative predation of the grey wolves, which presents an excellent performance in some 

engineering design problems. A recently proposed monarch butterfly optimization (MBO) [9] is 

inspired by the migration features of monarch butterflies. arithmetic optimization algorithm (AOA) [10] 

is associated with the arithmetic operators. Slime mould algorithm (SMA) [11] is developed based on 

the features of oscillating patterns and searching food of the slime mold. Other MAs include ant lion 

optimizer (ALO) [12], Salp swarm algorithm (SSA) [13], grasshopper optimization algorithm (GOA) [14], 

Harris hawks optimization (HHO) [15], Marine predators algorithm (MPA) [16], Aquila optimizer 

(AO) [17], and recently proposed artificial gorilla troops optimizer (GTO) [18], African vultures 

optimization algorithm (AVOA) [19], wild horse optimizer (WHO) [20], hunger games search (HGS) [21], 

colony predation algorithm (CPA) [22], etc. These algorithms play an important role in solving various 

optimization problems, and save time, cost, etc. 

Due to the “No free lunch theorem” (NFL) proposed by Wolpert et al. [23], it is always vital to 

develop new optimization algorithms to solve new and complex optimization problems, which 

motivates us to propose new optimization methods continually. The improvement of existing 

optimization methods is a current research hot spot. For instance, Al-qaness and Ewees et al. adopted 

the operators in firefly algorithm (FA) to enhance the exploitation capability of WOA and SSA for 

solving the unrelated parallel machine scheduling problem [24,25]. Onay modified the basic hunger 

games search (HGS) by applying the chaotic maps [26]. And the test results show the superiority of 

proposed algorithm compared to other methods. Two points are worth paying attention to: on the one 

hand, the improvement approaches had better not increase the computational complexity or time 

complexity, which will not increase the cost; on the other hand, they can significantly improve the 

optimization capability, such as faster convergence speed, higher accuracy, and stability. In this way, 

the enhanced algorithm can be applied well and has more practical value. When improving a MA, it is 

crucially important to balance the exploration and exploitation phases. Generally speaking, the well-

designed optimization algorithm will explore the entire search space in the incipient stage and then 

turn to local search around the best position in the later stage. 

The remora optimization algorithm (ROA) is a newly proposed metaheuristic optimization 
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algorithm in 2021 [27], which is inspired by the parasitic feature of remora. As the remora can follow 

the hosts, such as giant whales or swordfish, thus ROA adopts the WOA strategy and SFO strategy 

extracted from the WOA and SFO [7,28] to search the food. Like other MAs, such as PSO [6], WOA [7], 

GWO [8], AOA [10], SMA [11], and SSA [13], ROA also has a straightforward framework with 

comparative optimization performance. In addition, ROA solves some typical engineering problems, 

such as the welded beam design problem, I-beam design problem, three-bar truss design problem, 

pressure vessel design problem, and rolling element bearing problem. 

As mentioned before, it is necessary to modify existing optimization algorithm for better search 

capability and solving complex optimization problems. In practice, like other MAs, the basic ROA 

also has the drawbacks of slow convergence speed, low solution accuracy, and local optimum for some 

optimization problems. The main reason for these defects is the inflexible position updating options 

for search agents. Therefore, an improved ROA (IROA) with a novel autonomous foraging mechanism 

(AFM) is introduced in this paper. The AFM can expand the search space and boost the local 

exploitation capability of basic ROA by providing multiple options for position updating. The main 

contributions of this works are as follows: 

1) In the proposed IROA, each remora first has a slight chance to search the food by itself; otherwise, 

parasitism is selected.  

2) In the process of searching food autonomously, remora can choose to explore the food position 

randomly or based on the current food position (i.e., current best position). In this way, each remora 

will have a more diverse position updating selection and quickly obtain the food.  

3) The applied AFM can effectively increase population diversity and improve the global search 

capability and local search capability.  

To test the proposed IROA, twenty-three frequently used benchmark functions and ten very new 

IEEE CEC 2021 standard functions were employed, and also multiple metaheuristic algorithms and 

modified methods were selected for performance comparison. At last, the improved algorithm was 

tested by five engineering problems to validate practicality. 

The rest of this paper is organized as follows: Section 2 introduces the standard ROA, whereas 

Section 3 describes the details of the adopted autonomous foraging mechanism (AFM) and the 

proposed IROA. Section 4 introduces the test results of IROA and comparative optimization 

algorithms on various standard benchmark functions, while Section 5 shows the comparative results 

of IROA and other methods in solving five engineering design problems. Finally, Section 6 gives the 

conclusions for this paper and some future works. 

2. Remora optimization algorithm (ROA) 

The remora optimization algorithm is introduced in this section, which is a newly proposed 

metaheuristic method in 2021 [27]. Like other MAs, the ROA utilizes the biological characteristics of 

remora to complete the optimizing process, i.e., the parasitic behavior. Remora is able to attach itself 

to swordfish, whales, or other animals. Through the help of the host, remora can obtain food easily. 

Based on this, ROA adapted part of the position updating modes of WOA and SFO to conduct the 

global and local search. It should be noted that ROA uses an integer argument H (0 or 1) to determine 

to choose WOA strategy or SFO strategy. Thus to some extent the ROA will have the advantages of 

both optimization algorithms when solving the optimization problems. The detailed operation 

mechanism of the ROA is presented in Figure 1. 
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Figure 1. The position updating mechanism of remora in ROA. 

2.1. Free travel (Exploration) 

The ROA utilizes the SFO strategy to conduct the global search, which is based on the elite method 

used in the swordfish algorithm [28]. The position updating formula can be expressed as follows: 

��(� + 1) = �����(�) − (���� × (
�����(�)������(�)

�
) − �����(�))            (1) 

where Vi(t+1) is the candidate position of the ith remora. Xbest(t) is the current best position. Xrand(t) is 

a random position of remora. t means the current iteration number. And rand is a random number 

between 0 and 1. 

In addition, remora may change the host according to its experience. In this case, a new candidate 

position can be generated by: 

��′(� + 1) = ��(� + 1) + ����� × (��(� + 1) − ��(�))                 (2) 

where Vi'(t+1) is the candidate position of the ith remora. Xi(t) is the previous position of the ith remora. 

And randn is used to produce normally distributed random number. 

2.2. Eat thoughtfully (Exploitation) 

Remora also can attach themselves to the humpback whales for food. Hence remora will have the 

motion characteristics of humpback whales. The WOA strategy is employed in ROA to perform the 

local search [7]. To be specific, the bubble-net attacking method used in WOA is applied. The modified 

position updating formulas are as follows: 
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��(� + 1) = � × �� × ���( 2��) + �����(�)                     (3) 

� = |�����(�) − ��(�)|                              (4) 

� = ���� × (� − 1) + 1                              (5) 

� = −(1 +
�

�
)                                   (6) 

where D represents the distance between remora and food. According to Eqs (5) and (6), it can be seen 

that a is a random number within −2 and 1. And b decreases linearly from −1 to −2. 

Algorithm 1 The pseudo-code of basic remora optimization algorithm 

1   Initialization 

2     Initialize the remora population size (N) and maximum number of iterations (T) 

3     Initialize the positions of all search agents Xi (i=1, 2, 3, …, N) 

4     Set the remora factor C 

5     Main loop{ 

6     While (t ≤ T) 

7       Calculate the fitness of each remora 

8       find the best position and bestFitness, Xb 

9       Calculate the a, b, A, B 

10       For the ith remora 

11         If H(i) = 0 

12           Generate position Vi by Eq (3) 

13         Else if H(i) = 1 

14           Generate position Vi by Eq (1) 

15         End if 

16         Generate candidate position Vi' by Eq (2) 

17         if f(Vi') < f(Vi) 

18           Xi = Vi' 

19           H(i) = round(rand) 

20         else 

21           Update position Xi by Eq (7) 

22         End if 

23       End for 

24       t = t + 1 

25     End While} 

26   Return bestFitness, Xb 

Moreover, to further improve the solution quality, the remora can produce a small step by using 

the encircling prey mechanism in WOA, which is represented as follows: 

��(� + 1) = ��(� + 1) + � × �′                                   (7) 

� = 2 × � × ���� − �                                       (8) 

� = 2 × (1 −
�

�
)                                           (9) 
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�′ = ��(� + 1) − � × �����(�)                                   (10) 

where Xi(t+1) is the newly generated position of the ith remora. C denotes the remora factor, which is 

set to 0.1 in ROA.  

By conducting the above methods, ROA shows superior performance compared to WOA, SFO, 

HHO, EPO and other famous metaheuristic algorithms. The pseudo-code of ROA is presented in 

Algorithm 1. 

3. The proposed approach 

As described above, ROA is developed mainly based on the parasitic feeding on whales and 

swordfish. In reality, remora can also find its own food. In viewing this, a novel autonomous foraging 

mechanism is introduced into the basic remora optimization algorithm to enhance the search capability 

of remora. The improved remora optimization algorithm has a more flexible mode and strikes a good 

balance between exploration and exploitation. It is worth mentioning that this method will not increase 

the computational complexity of the original algorithm. The proposed mechanism also applies to 

other optimization algorithms, i.e., it has a certain universality. Details of the proposed IROA are 

presented below. 

3.1. Autonomous foraging mechanism (AFM) 

We consider that remora can have two choices when finding the food by itself. The first is to find 

the food randomly, and the second is to obtain the food based on the current food position. Therefore, 

we propose the autonomous foraging mechanism to improve the basic ROA.  

In the proposed AFM, two different operators are used to improve the optimization capability of 

ROA. First, the remora has a small chance x of looking for food in other unknown locations. When 

rand < x, remora will search the whole space widely and randomly. The mathematical formula can be 

expressed as follows: 

��(� + 1) = (�� − ��) × ���� + ��                           (11) 

where the UB and LB denote the upper boundary and lower boundary of search space, respectively. 

According to Eq (11), the first operator is favored to the exploration capability of the ROA, 

avoiding the local optimal points effectively. On the other hand, to improve the exploitation capability 

of ROA, the second operator is inspired by the Division (D) operator and Multiplication (M) operator 

in the recently proposed AOA [10]. The position updating equations are as follows: 

��(� + 1) = �
�����(�) ÷ (���� + ���) × ((�� − ��) × � + ��) × ����, ���� < 0.5
�����(�) × ���� × ((�� − ��) × � + ��) × ����,             ���� ≥ 0.5

  (12) 

���� = 1 − (
�

�
)�/�                                    (13) 

� = 10 × ���� − 1                                     (14) 

where the RMOP is the random math optimizer probability, calculated using the current number of 

iterations, maximum number of iterations, and parameter α. According to Eq (14), α is a random 

number between −1 and 9. 
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From Eq (12), the new position is generated on the basis of current best position (i.e., the position 

of food). And the Levy operator is utilized further to increase the diversity of the population [29]. 

Similarly, each remora will conduct the second operator when rand < y. Here the parameter y also 

is a small number. The effect of both parameters x and y will be analyzed in Section 4. 

3.2. The proposed IROA 

In the proposed IROA, each remora will first decide whether to find the food by itself, i.e., 

conduct the proposed AFM. If that is the case, after the location updating, remora also will choose a 

new host. If not, remora continues to engage the parasitic feeding behavior. The pseudo-code of the 

proposed IROA is presented in Algorithm 2. And the flowchart of the IROA is shown in Figure 2.  

 

Figure 2. Flowchart of the proposed IROA. 



4001 

Mathematical Biosciences and Engineering  Volume 19, Issue 4, 3994-4037. 

Algorithm 2 The pseudo-code of the improved remora optimization algorithm 

1   Initialization 

2     Initialize the remora population size (N) and maximum number of iterations (T) 

3     Initialize the positions of all search agents Xi (i=1, 2, 3, …, N) 

4     Set the remora factor C, probability parameters z and y 

5     Main loop{ 

6     While (t ≤ T) 

7       Calculate the fitness of each remora 

8       find the best position and bestFitness, Xb 

9       Calculate the a, b, A, B 

10       For the ith remora 

11         If p < z 

12           Update position Xi by Eq (11) 

13           H(i) = round(rand) 

14         Else if p < y 

15           Update position Xi by Eq (12) 

16           H(i) = round(rand) 

17         Else 

18           If H(i) = 0 

19             Generate position Vi by Eq (3) 

20           Else if H(i) = 1 

21             Generate position Vi by Eq (1) 

22           End if 

23           Generate candidate position Vi' by Eq (2) 

24           if f(Vi') < f(Vi) 

25             Xi = Vi' 

26             H(i) = round(rand) 

27           else 

28             Update position Xi by Eq (7) 

29           End if 

30         End if 

31       End for 

32       t = t + 1 

33     End While} 

34   Return bestFitness, Xb 

3.3. The computational complexity of IROA 

The computational complexity is an essential factor for the optimization algorithm related to the 

initialization, fitness evaluation, and position updating method. For the basic ROA, the computational 

complexity of initialization is O(N). Here the parameter N represents the number of search agents. And 

then, during the whole iterative process, the computational complexity of applying SFO strategy or 

WOA strategy is O(N × D × T), where T is the maximum number of iterations and D is the dimensions 

of search space. Moreover, the experience attack’s computational complexity is also O(N × D × T). 
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Consider the worst-case scenario, and host feeding is needed to be performed. Thus the additional 

computational complexity is O(N × D × T). Therefore, the overall computational complexity of ROA 

is O(N × (3TD + 1)). 

In the IROA, it should be noted that the proposed autonomous foraging mechanism is an optional 

position updating mode for each remora. When the remora looks for food randomly, the computational 

complexity is O(N × D × T). When the remora decides to look for food based on the best position, the 

computational complexity is O(N × D × T). Beyond that, the computational complexity of basic ROA’s 

position updating formulas also is O(3 × N × D × T) in the worst condition. To sum up, the 

computational complexity of IROA is O(N× (3TD + 1)), which is the same as that of basic ROA. 

4. Experimental tests and analysis 

4.1. Standard test functions and parameter settings 

To evaluate the effectiveness of the proposed IROA for solving optimization problems, two sets 

of test functions are utilized for the experimental tests [30,31], i.e., classical benchmark functions and 

IEEE CEC 2021 standard test functions. Table 1 lists the detailed information of these test 

functions. It is known that F1−F7 are the unimodal test functions that have only one extreme point. 

Oppositely, F8−F23 belongs to the multimodal test functions, containing multiple local optimal points. 

Hence, F1−F7 are commonly used to evaluate the exploitation capability of optimization methods, 

while F14−F23 are usually used to test the stability of optimization algorithms. It is noted that the 

dimension of test functions F1−F13 can be adjusted according to demands, which allows us to analyze 

the characteristics of the optimization algorithms in high-dimensional cases. Hence we investigate the 

performance of the optimization algorithms in four different dimensions (D = 30/100/500/1000). 

Furthermore, the latest CEC 2021 test functions are used to evaluate the improvement effects of the 

optimization algorithm, which have four types of test functions, i.e., unimodal test functions, basic test 

functions, hybrid test functions, and composition test functions [32]. 

Simultaneously, the basic ROA and the other six metaheuristic optimization algorithms (including 

particle swarm optimization algorithm (PSO) [6], whale optimization algorithm (WOA) [7], slap 

swarm algorithm (SSA) [13], slime mould algorithm (SMA) [11], arithmetic optimization algorithm 

(AOA) [10], and marine predators algorithm (MPA) [16]) and six modified optimization algorithms 

(including HHOCM [33], SWGWO [34], ROLGWO [35], DSCA [36], MALO [37] and HSCAHS [38]) 

are employed for extensive comparison. The ROA, SMA, AOA, and MPA are the newly proposed 

algorithms, while SSA, WOA, and PSO are very famous optimization algorithms, which have been 

widely studied. The parameter details of the IROA and comparative algorithms are listed in Table 2. 

For the modified algorithms, the parameter settings are the same as those in the native works. 

The number of iterations and population size of each algorithm are set to 500 and 30 for a proper 

comparison. To obtain convincing results, each algorithm was independently tested 30 times. The 

experimental results are analyzed mainly from two aspects. For one thing, the numerical results of 

these simulation experiments are analyzed according to the mean value and standard deviation. Also, 

two widely used statistical methods, i.e., the Wilcoxon signed-rank test [39] and Friedman ranking test [40], 

are employed to reveal the significant differences between the IROA and other comparative algorithms. 

For another, the convergence curves of these algorithms are also used to give a visual display of the 

optimization searching process. The experimental analyses of the IROA are presented as follows section. 
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Table 1. Feature properties of the test functions (D indicates the dimension). 

Function type Function Dimensions Range Theoretical 

optimization 

value 

Unimodal test functions F1 30/100/500/1000 [−100, 100] 0 

F2 30/100/500/1000 [−10, 10] 0 

F3 30/100/500/1000 [−100, 100] 0 

F4 30/100/500/1000 [−100, 100] 0 

F5 30/100/500/1000 [−30, 30] 0 

F6 30/100/500/1000 [−100, 100] 0 

F7 30/100/500/1000 [−1.28, 1.28] 0 

Multimodal test functions F8 30/100/500/1000 [−500, 500] −418.9829×D 

F9 30/100/500/1000 [−5.12, 5.12] 0 

F10 30/100/500/1000 [−32, 32] 0 

F11 30/100/500/1000 [−600, 600] 0 

F12 30/100/500/1000 [−50, 50] 0 

F13 30/100/500/1000 [−50, 50] 0 

Fixed-dimension multimodal 

test functions 

F14 2 [−65, 65] 0.998004 

F15 4 [−5, 5] 0.0003075 

F16 2 [−5, 5] −1.03163 

F17 2 [−5, 5] 0.398 

F18 2 [−2, 2] 3 

F19 3 [−1, 2] −3.8628 

F20 6 [0, 1] −3.3220 

F21 4 [0, 10] −10.1532 

F22 4 [0, 10] −10.4028 

F23 4 [0, 10] −10.5363 

CEC 2021 unimodal test 

functions 

CEC_01 10 [−100, 100] 100 

CEC 2021 basic test 

functions 

CEC_02 10 [−100, 100] 1100 

CEC_03 10 [−100, 100] 700 

CEC_04 10 [−100, 100] 1900 

CEC 2021 hybrid test 

functions 

CEC_05 10 [−100, 100] 1700 

CEC_06 10 [−100, 100] 1600 

CEC_07 10 [−100, 100] 2100 

CEC 2021 composition test 

functions 

CEC_08 10 [−100, 100] 2200 

CEC_09 10 [−100, 100] 2400 

CEC_10 10 [−100, 100] 2500 
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Table 2. Parameter values for the IROA and other comparative optimization algorithms. 

Algorithm Parameters 

IROA C = 0.1; α∈[−1, 9]; μ = 0.499; z = 0.07; y = 0.1 

ROA [27] C = 0.1 

SMA [11] z = 0.03 

AOA [10] α = 5; μ = 0.499; Min = 0.2; Max = 0.9 

MPA [16] FADs = 0.2; P = 0.5; CF = [1, 0] 

SSA [13] c1∈[0, 1]; c2∈[0, 1] 

WOA [7] a1 = [2, 0]; a2 = [−2, −1]; b = 1 

PSO [6] c1 = 2; c2 = 2; W∈[0.2, 0.9]; vMax = 6 

HHOCM [33] The absolute value of escaping energy decreases from 2 to 0, mutation 

rate decreases linearly from 1 to 0. 

SWGWO [34] A = 2; valpha∈[−2, 0]; vbeta∈[0, 1]; vdelta∈[0, 0.5];  

ROLGWO [35] r3∈[0, 1] 

DSCA [36] w∈[0.1, 0.9], σ = 0.1; aend = 0; astart = 2 

MALO [37] Switch possibility = 0.5 

HSCAHS [38] a = 2; Bandwidth = 0.02 

4.2. Sensitivity analysis of z and y on IROA 

The performance of the proposed IROA is apparently related to the parameters z and y. Thus, 

obtaining the proper values for better optimization capability is necessary. Referring to remora’s actual 

situation, the z and y should be comparatively small. In this paper, z is considered as 0.03, 0.05 and 0.07, 

while y can be 0.1, 0.2 and 0.3. Hence there are nine cases for the proposed IROA. To verify the effects 

of these two parameters, twenty-three test functions are used (the dimensions of F1−F13 are 30). The 

results of the mean-square error for each function are listed in Table 3. The lowest values are 

highlighted in bold. It can be clearly observed that the IROA with z = 0.07 and y = 0.7 outperforms 

other cases and achieves fourteen best results out of twenty-three test functions. In viewing this, this 

version of the improved algorithm will be used for further experimental analysis. 
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Table 3. Sensitivity analysis on the IROA’s parameters (F1−F23). 

Function z = 0.03 

y = 0.1 

z = 0.03 

y = 0.2 

z = 0.03 

y = 0.3 

z = 0.05 

y = 0.1 

z = 0.05 

y = 0.2 

z = 0.05 

y = 0.3 

z = 0.07 

y = 0.1 

z = 0.07 

y = 0.2 

z = 0.07 

y = 0.3 

F1 0 0 0 0 0 0 0 0 0 

F2 0 0 0 0 0 0 0 0 0 

F3 0 0 0 0 0 0 0 0 0 

F4 0 0 0 0 0 0 0 0 0 

F5 2.10E−01 5.00E+01 1.01E+00 7.35E−02 4.83E−02 2.34E+01 1.28E−02 1.29E−02 1.33E−02 

F6 2.73E−05 7.55E−05 1.51E−04 1.29E−05 3.79E−05 4.63E−05 2.15E−06 4.90E−06 6.27E−05 

F7 4.82E−08 1.43E−08 1.78E−08 4.48E−08 1.92E−08 1.52E−08 2.36E−08 2.08E−08 1.99E−08 

F8 3.87E−01 2.14E+00 3.77E−01 3.80E−02 3.53E−02 3.47E−02 6.91E−03 8.27E−02 4.51E−02 

F9 0 0 0 0 0 0 0 0 0 

F10 7.89E−31 7.89E−31 7.89E−31 7.89E−31 7.89E−31 7.89E−31 7.89E−31 7.89E−31 7.89E−31 

F11 0 0 0 0 0 0 0 0 0 

F12 1.53E−07 8.13E−08 1.51E−07 5.71E−08 1.96E−08 7.56E−08 1.37E−08 1.79E−08 1.73E−08 

F13 1.41E−05 3.12E−05 1.06E−04 1.59E−05 1.83E−05 5.99E−05 9.76E−07 3.14E−06 9.39E−06 

F14 2.63E−14 2.62E−14 2.56E−14 2.62E−14 2.62E−14 2.62E−14 2.62E−14 2.62E−14 2.59E−14 

F15 6.73E−08 5.89E−08 3.22E−08 3.93E−08 2.42E−08 3.23E−08 5.66E−08 3.17E−09 9.62E−09 

F16 2.66E−12 2.78E−12 3.00E−12 2.71E−12 2.95E−12 2.90E−12 2.84E−12 3.20E−12 4.06E−12 

F17 1.19E−08 1.18E−08 1.10E−08 1.06E−08 1.02E−08 1.08E−08 1.14E−08 1.17E−08 1.09E−08 

F18 9.66E−10 5.87E−09 2.15E−09 8.14E−11 7.98E−09 2.47E−09 1.15E−09 3.87E−09 2.81E−09 

F19 1.52E−06 9.88E−07 2.79E−06 1.34E−06 7.43E−07 1.93E−06 1.36E−07 2.70E−06 1.03E−06 

F20 1.26E−02 8.73E−03 1.43E−02 1.69E−02 9.40E−03 1.18E−02 9.03E−03 7.59E−03 1.04E−02 

F21 7.26E−05 1.71E−05 1.20E−04 9.42E−06 4.88E−05 1.02E−05 1.86E−05 1.75E−05 6.20E−06 

F22 7.97E−06 1.18E−05 2.98E−05 3.55E−06 9.38E−05 1.58E−05 1.80E−06 8.34E−06 5.46E−07 

F23 8.31E−05 9.51E−05 7.48E−05 1.42E−05 1.33E−06 3.49E−05 6.97E−07 1.73E−05 1.08E−06 
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4.3. Comparison with metaheuristic algorithms 

4.3.1 Numerical analysis 

To verify the effectiveness of proposed mechanism applied in the basic ROA, extensive 

comparative analysis between IROA and other seven metaheuristic algorithms (including ROA, SMA, 

AOA, MPA, SSA, WOA, PSO, etc.) has been carried out. The numerical results of thirteen test 

functions in different dimensions (D = 30/100/500/1000) for these optimization methods are listed in 

Tables 4–5. And Table 6 shows the test results of ten fixed-dimension test functions. Note that the 

ranking results based on the Friedman ranking test are also presented at the end of each table. 

As shown in Tables 4–6, the basic ROA is weak in solving some test functions (such as F2–F6, 

F12 and F13). However, the IROA has obtained better results on these functions, even in different 

dimensions. Compared to other metaheuristic algorithms, the ranking results in different dimensions 

indicate that the IROA is the best optimization method. Thus, the proposed IROA with an autonomous 

foraging mechanism has excellent exploration and exploitation capability. For the results of fixed-

dimension problems listed in Table 6, the IROA is ranked second, while the MPA is the best. However, 

it is worth mentioning that the distance of mean rank values between IROA and MPA is very small. 

Therefore, the performance of IROA is still the best overall.  

The p-values results of the Wilcoxon signed-rank test are reported in Table 7. The significance 

level between the two algorithms is set to 0.05. In Table 7, the symbol “+/=/–” means the IROA 

performs better, similar, and worse than the comparative algorithm, respectively. From Table 7, it can 

be observed that the IROA has better performance than these algorithms. In particular, IROA did not 

lose once compared to SMA, SSA, WOA, and PSO. IROA also presents better results than SSA and 

PSO on most of the test functions with both outcomes of 58/4/0, which means that IROA is 58 times 

better than the comparison algorithms, similar at four times, and none worse respectively. As ROA and 

SMA are very efficient optimization methods, the IROA obtains similar results 24 and 22 times, 

respectively. Overall, it can be concluded that IROA is better than other optimization approaches. 

Table 8 shows the proposed IROA and ROA results on CEC 2021 test functions. In the same way, 30 

times tests are performed to obtain the statistical results. Moreover, the best results of all tests for these 

test functions are also given in Table 8. By contrast, it is observed that IROA has won all the test 

functions. Although the performance gap between the original algorithm and the improved version is 

not significant, the listed results still demonstrate the effectiveness of the proposed approach. Therefore, 

the basic ROA has been intensified with the help of an autonomous foraging mechanism when solving 

the CEC 2021 standard functions. 

4.3.2 Convergence analysis 

Due to the strategies of WOA and SFO, the basic ROA suffers from a slow convergence speed. 

Hence, the AFM is introduced into the ROA to modify this problem while also improving the 

algorithm’s exploration capability. In the proposed AFM, the strategy derived from AOA can 

effectively enhance the convergence speed and solution accuracy, whereas the behavior of finding food 

freely can prevent the algorithm from stagnating. Figures 4−7 exhibit the convergence features of the 

IROA and other comparative methods on test functions F1–F5, F7, F8, F10, and F13 in different 

dimensions (D = 30/100/500/1000), whereas Figure 8 displays the convergence features of these 
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optimization methods on test functions F14, F15, F17–F23. 

From Figures 4−7, in contrast to the basic ROA and other algorithms, the proposed IROA has 

achieved the fastest convergence rate and obtained the best results in the end on most of the test 

functions. It should be noted that IROA also presents excellent stability even though in very high 

dimensions. However, in any case, the performance of the IROA is still limited, and the theoretical 

optimal values of some test functions cannot be obtained, such as F5, F7, F13. From Figure 8, it can 

be seen that the IROA converges quickly and gets close to the theoretical optimal values. The 

advantages are obvious compared with other competitive optimizers. To sum up, the convergence 

characteristics in Figures 4−8 fully illustrate the effectiveness of the introduced mechanism, which 

makes the IROA strikes a good balance between exploration and exploitation processes. 

 

Figure 4. The convergence curves for the optimization algorithms on test functions (F1–

F5, F7, F8, F10, F13) with D = 30. 
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Figure 5. The convergence curves for the optimization algorithms on test functions (F1–

F5, F7, F8, F10, F13) with D = 100. 
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Figure 6. The convergence curves for the optimization algorithms on test functions (F1–

F5, F7, F8, F10, F13) with D = 500. 
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Figure 7. The convergence curves for the optimization algorithms on test functions (F1–

F5, F7, F8, F10, F13) with D = 1000. 
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Table 4. Results of the IROA and other metaheuristic algorithms on unimodal test functions (F1−F7) in different dimensions. 

Function D Metric IROA ROA SMA AOA MPA SSA WOA PSO 

F1 30 Mean 0 1.9159E−312 1.51E−283 4.61E−06 4.33E−23 2.18E−07 1.26E−70 4.71E−04 

Std 0 0 0 2.01E−06 5.92E−23 5.13E−07 6.90E−70 1.34E−03 

100 Mean 0 4.6714E−320 2.95E−303 9.89E−04 2.49E−19 1.35E+03 4.80E−72 2.03E+01 

Std 0 0 0 2.36E−04 2.06E−19 4.47E+02 1.76E−71 4.97E+00 

500 Mean 0 1.4526E−316 3.36E−238 5.38E−01 6.73E−17 9.45E+04 7.21E−70 5.85E+03 

Std 0 0 0 3.03E−02 4.63E−17 7.15E+03 3.32E−69 3.98E+02 

1000 Mean 0 2.0172E−312 1.23E−209 1.49E+00 6.51E−16 2.33E+05 1.77E−66 4.12E+04 

Std 0 0 0 3.42E−02 5.84E−16 1.20E+04 9.71E−66 1.63E+03 

F2 30 Mean 0 2.49E−158 4.71E−153 2.24E−03 3.34E−13 1.86E+00 8.27E−52 6.36E+00 

 Std 0 1.36E−157 2.58E−152 1.95E−03 2.65E−13 1.13E+00 2.05E−51 8.08E+00 

100 Mean 0 1.82E−164 3.24E−132 1.83E−02 1.57E−11 4.58E+01 5.77E−50 1.34E+02 

Std 0 0 1.77E−131 2.15E−03 1.75E−11 5.90E+00 2.54E−49 2.53E+01 

500 Mean 0 2.07E−153 3.31E−01 5.58E−01 5.89E−10 5.33E+02 7.53E−49 5.15E+49 

Std 0 1.13E−152 8.90E−01 7.69E−02 7.32E−10 2.20E+01 3.75E−48 2.22E+50 

1000 Mean 0 4.12E−158 1.23E−01 1.62E+00 1.19E+03 1.19E+03 6.66E−48 1.41E+03 

 Std 0 2.22E−157 3.84E−01 6.90E−02 1.87E+02 2.47E+01 2.24E−47 6.82E+01 

F3 30 Mean 0 8.34E−281 1.18E−270 1.03E−03 2.76E−04 1.61E+03 4.02E+04 9.54E+01 

Std 0 0 0 8.34E−04 4.56E−04 1.17E+03 1.11E+04 3.97E+01 

100 Mean 0 5.64E−278 2.39E−219 1.32E−01 8.30E+00 4.89E+04 9.90E+05 1.60E+04 

Std 0 0 0 3.71E−02 1.11E+01 2.07E+04 2.69E+05 3.06E+03 

500 Mean 0 6.92E−251 1.33E−187 6.85E+00 4.98E+03 1.44E+06 2.69E+07 5.37E+05 

Std 0 0 0 1.30E+00 3.16E+03 7.40E+05 1.09E+07 9.51E+04 

1000 Mean 0 1.38E−251 7.34E−112 3.29E+01 3.44E+04 5.45E+06 1.25E+08 2.26E+06 

Std 0 0 4.02E−111 5.83E+00 2.02E+04 2.31E+06 3.73E+07 4.98E+05 

Continued on next page 
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Function D Metric IROA ROA SMA AOA MPA SSA WOA PSO 

F4 30 Mean 0 9.53E−158 5.61E−156 1.72E−02 3.48E−09 1.14E+01 4.40E+01 1.11E+00 

Std 0 5.15E−157 3.07E−155 1.17E−02 2.16E−09 3.72E+00 2.72E+01 2.86E−01 

100 Mean 0 1.93E−155 1.62E−118 5.62E−02 2.27E−07 2.84E+01 7.89E+01 1.20E+01 

Std 0 1.04E−154 8.89E−118 6.90E−03 1.09E−07 3.71E+00 1.84E+01 1.70E+00 

500 Mean 0 6.08E−156 3.99E−85 1.20E−01 2.19E−05 4.14E+01 8.04E+01 2.79E+01 

Std 0 3.08E−155 2.19E−84 9.26E−03 1.83E−05 2.32E+00 2.11E+01 1.68E+00 

1000 Mean 0 4.31E−156 3.53E−80 1.53E−01 2.25E−04 4.50E+01 8.19E+01 3.34E+01 

 Std 0 2.36E−155 1.94E−79 9.80E−03 1.41E−04 3.80E+00 2.28E+01 1.53E+00 

F5 30 Mean 2.42E−02 2.60E+01 8.12E+00 2.80E+01 2.52E+01 2.48E+02 2.79E+01 7.21E+01 

Std 2.88E−02 4.85E+00 1.21E+01 2.87E−01 4.51E−01 4.78E+02 4.87E−01 5.82E+01 

100 Mean 1.66E−01 9.76E+01 3.69E+01 9.82E+01 9.68E+01 1.45E+05 9.82E+01 1.45E+04 

Std 2.86E−01 4.37E−01 3.88E+01 6.97E−02 7.06E−01 6.00E+04 1.83E−01 4.90E+03 

500 Mean 1.27E+00 4.88E+02 1.97E+02 5.00E+02 4.97E+02 3.66E+07 4.96E+02 3.02E+07 

Std 2.06E+00 3.37E+01 2.18E+02 2.36E−01 3.35E−01 4.82E+06 5.62E−01 4.42E+06 

1000 Mean 5.21E+00 9.90E+02 4.30E+02 1.00E+03 9.97E+02 1.21E+08 9.94E+02 2.79E+08 

 Std 1.14E+01 5.38E−01 4.23E+02 2.62E−01 2.59E−01 1.38E+07 7.90E−01 2.90E+07 

F6 30 Mean 1.24E−04 9.87E−02 5.47E−03 3.08E+00 4.13E−08 2.58E−07 3.45E−01 2.06E−04 

 Std 1.06E−04 1.23E−01 2.56E−03 2.40E−01 1.96E−08 6.59E−07 1.65E−01 2.59E−04 

100 Mean 4.25E−03 1.82E+00 1.00E+00 1.57E+01 3.63E+00 1.34E+03 3.86E+00 1.91E+01 

Std 7.18E−03 6.42E−01 1.23E+00 7.94E−01 7.20E−01 3.40E+02 1.35E+00 4.66E+00 

500 Mean 3.34E−02 1.58E+01 1.94E+01 1.13E+02 7.71E+01 9.47E+04 2.86E+01 5.82E+03 

Std 4.48E−02 6.51E+00 3.10E+01 1.65E+00 1.83E+00 5.39E+03 7.67E+00 4.88E+02 

1000 Mean 9.02E−02 2.73E+01 5.15E+01 2.42E+02 1.89E+02 2.33E+05 7.10E+01 4.14E+04 

 Std 1.40E−01 1.30E+01 7.52E+01 1.08E+00 3.05E+00 8.90E+03 1.77E+01 1.97E+03 

F7 30 Mean 8.27E−05 1.54E−04 1.51E−04 5.07E−05 1.45E−03 1.88E−01 3.57E−03 5.70E+00 

Std 7.27E−05 1.29E−04 1.50E−04 4.80E−05 8.20E−04 8.18E−02 4.15E−03 7.80E+00 

Continued on next page 
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Function D Metric IROA ROA SMA AOA MPA SSA WOA PSO 

F7 100 Mean 1.46E−04 1.26E−04 3.38E−04 5.22E−05 1.75E−03 2.71E+00 3.65E−03 2.52E+02 

Std 1.35E−04 1.28E−04 2.48E−04 4.57E−05 7.71E−04 6.06E−01 4.44E−03 1.01E+02 

500 Mean 1.08E−04 1.38E−04 7.19E−04 5.56E−05 2.08E−03 2.72E+02 3.65E−03 4.48E+04 

Std 9.44E−05 1.28E−04 4.85E−04 8.56E−05 8.49E−04 5.50E+01 4.19E−03 7.28E+03 

1000 Mean 1.66E−04 2.18E−04 9.51E−04 8.67E−05 2.83E−03 1.65E+03 4.68E−03 2.42E+05 

 Std 1.77E−04 2.52E−04 8.16E−04 8.12E−05 1.61E−03 1.61E+02 4.54E−03 7.12E+03 

Rank 30 Mean 1.43  3.14  3.14  5.43  3.86  6.29  6.00  6.71  

 Overall 1 2.5 2.5 5 4 7 6 8 

100 Mean 1.29  2.43  2.86  4.79  4.43  7.43  5.79  7.00  

 Overall 1 2 3 5 4 8 6 7 

500 Mean 1.14  2.29  3.29  4.86  4.71  7.43  5.29  7.00  

 Overall 1 2 3 5 4 8 6 7 

1000 Mean 1.14  2.29  3.14  4.71  5.07  7.21  5.29  7.14  

 Overall 1 2 3 4 5 8 6 7 

Table 5. Results of the IROA and other metaheuristic algorithms on multimodal test functions (F8−F13) in different dimensions. 

Function D Metric IROA ROA SMA AOA MPA SSA WOA PSO 

F8 30 Mean −1.26E+04 −1.23E+04 −1.26E+04 −5.49E+03 −8.83E+03 −7.39E+03 −1.01E+04 −5.46E+03 

Std 1.67E−01 5.82E+02 3.29E−01 4.18E+02 5.12E+02 6.88E+02 1.80E+03 1.30E+03 

100 Mean −4.19E+04 −4.14E+04 −4.19E+04 −1.38E+04 −2.49E+04 −2.15E+04 −3.53E+04 −1.00E+04 

Std 1.38E−01 1.30E+03 1.13E+01 8.36E+02 8.47E+02 2.13E+03 6.24E+03 3.56E+03 

500 Mean −2.09E+05 −2.06E+05 −2.09E+05 −3.78E+04 −8.26E+04 −5.92E+04 −1.79E+05 −2.31E+04 

Std 1.05E+01 5.34E+03 1.92E+02 1.66E+03 3.14E+03 5.25E+03 2.71E+04 9.43E+03 

F8 1000 Mean −4.19E+05 −4.07E+05 −4.19E+05 −5.49E+04 −1.27E+05 −8.89E+04 −3.46E+05 −3.06E+04 

 Std 9.28E+00 2.56E+04 3.00E+02 2.36E+03 5.27E+03 6.14E+03 5.58E+04 1.27E+04 

Continued on next page 
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Function D Metric IROA ROA SMA AOA MPA SSA WOA PSO 

F9 30 Mean 0 0 0 1.42E−06 0 6.05E+01 3.79E−15 1.03E+02 

Std 0 0 0 1.49E−06 0 1.68E+01 1.44E−14 2.81E+01 

100 Mean 0 0 0 1.80E−04 0 2.40E+02 1.14E−14 7.81E+02 

Std 0 0 0 4.64E−05 0 3.69E+01 4.58E−14 6.71E+01 

500 Mean 0 0 0 1.05E−02 0 3.11E+03 6.06E−14 6.27E+03 

Std 0 0 0 9.58E−04 0 1.38E+02 3.32E−13 2.23E+02 

1000 Mean 0 0 0 3.75E−02 0 7.62E+03 6.06E−14 1.43E+04 

 Std 0 0 0 1.86E−03 0 1.67E+02 3.32E−13 3.67E+02 

F10 30 Mean 8.88E−16 8.88E−16 8.88E−16 4.58E−04 1.43E−12 2.45E+00 4.32E−15 1.15E−01 

Std 0 0 0 1.87E−04 8.43E−13 5.80E−01 3.02E−15 3.10E−01 

100 Mean 8.88E−16 8.88E−16 8.88E−16 3.42E−03 4.17E−11 1.03E+01 4.44E−15 3.71E+00 

Std 0 0 0 3.40E−04 1.97E−11 1.00E+00 2.47E−15 2.96E−01 

500 Mean 8.88E−16 8.88E−16 8.88E−16 2.66E−02 4.40E−10 1.43E+01 3.97E−15 1.20E+01 

Std 0 0 0 1.02E−03 1.90E−10 2.77E−01 2.23E−15 4.56E−01 

1000 Mean 8.88E−16 8.88E−16 8.88E−16 3.34E−02 8.53E−10 1.45E+01 5.03E−15 1.60E+01 

 Std 0 0 0 5.12E−04 3.29E−10 1.64E−01 3.11E−15 2.27E−01 

F11 30 Mean 0 0 0 6.00E−04 0 1.59E−02 4.32E−03 7.69E−03 

Std 0 0 0 2.21E−03 0 1.26E−02 2.37E−02 1.00E−02 

100 Mean 0 0 0 2.35E−01 0 1.36E+01 1.13E−02 4.11E−01 

Std 0 0 0 2.99E−01 0 3.21E+00 6.18E−02 8.93E−02 

500 Mean 0 0 0 1.25E+03 0 8.41E+02 0 7.84E+01 

Std 0 0 0 3.05E+02 0 7.28E+01 0 1.09E+01 

1000 Mean 0 0 0 1.41E+04 3.33E−17 2.10E+03 0 2.73E+02 

 Std 0 0 0 2.68E+03 5.17E−17 9.16E+01 0 1.60E+01 

F12 30 Mean 1.79E−05 9.82E−03 5.90E−03 7.30E−01 9.11E−06 6.41E+00 1.85E−02 2.07E−02 

 Std 1.50E−05 5.64E−03 8.01E−03 3.63E−02 4.77E−05 2.98E+00 1.17E−02 5.02E−02 

Continued on next page 
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Function D Metric IROA ROA SMA AOA MPA SSA WOA PSO 

F12 100 Mean 2.14E−05 1.99E−02 6.94E−03 9.11E−01 4.30E−02 3.54E+01 3.98E−02 5.21E+00 

Std 4.69E−05 1.27E−02 1.46E−02 5.46E−02 8.70E−03 1.16E+01 1.90E−02 1.49E+00 

500 Mean 2.74E−05 3.20E−02 6.53E−03 9.27E−01 4.17E−01 1.58E+06 9.14E−02 2.34E+05 

Std 5.17E−05 1.85E−02 1.24E−02 2.22E−02 2.46E−02 8.85E+05 3.72E−02 1.20E+05 

1000 Mean 1.32E−05 3.80E−02 3.12E−03 1.04E+00 6.44E−01 1.16E+07 8.04E−02 9.77E+06 

 Std 3.40E−05 1.87E−02 5.69E−03 1.22E−02 2.31E−02 4.20E+06 3.59E−02 1.83E+06 

F13 30 Mean 4.82E−04 2.36E−01 8.30E−03 2.96E+00 8.78E−03 1.79E+01 5.32E−01 5.85E−03 

Std 2.06E−03 1.53E−01 9.46E−03 2.87E−02 1.52E−02 1.59E+01 2.60E−01 5.52E−03 

100 Mean 1.15E−03 1.48E+00 1.46E−01 9.92E+00 8.16E+00 7.86E+03 2.66E+00 5.96E+01 

Std 1.49E−03 7.62E−01 2.30E−01 1.27E−02 1.72E+00 1.33E+04 7.78E−01 1.44E+01 

500 Mean 6.05E−03 7.90E+00 1.30E+00 4.93E+01 4.88E+01 3.68E+07 1.82E+01 4.19E+06 

Std 9.93E−03 2.90E+00 2.17E+00 3.39E−01 2.11E−01 8.43E+06 7.02E+00 9.56E+05 

1000 Mean 7.73E−03 1.85E+01 1.50E+00 1.00E+02 9.86E+01 1.53E+08 3.79E+01 8.19E+07 

 Std 1.57E−02 7.99E+00 2.33E+00 3.20E−01 2.67E−01 3.35E+07 1.09E+01 1.06E+07 

Rank 30 Mean 1.92  3.17  2.42  6.33  3.33  7.50  5.00  6.33  

 Overall 1 3 2 6.5 4 8 5 6.5 

100 Mean 1.75  2.67  2.08  6.17  4.17  7.50  4.33  7.33  

 Overall 1 3 2 6 4 8 5 7 

500 Mean 1.83  2.75  2.17  6.50  4.25  7.33  4.00  7.17  

 Overall 1 3 2 6 5 8 4 7 

1000 Mean 1.75  2.67  2.08  6.50  4.58  7.17  3.92  7.33  

 Overall 1 3 2 6 5 7 4 8 
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Table 6. Results of the IROA and other metaheuristic algorithms on fixed-dimension multimodal test functions (F14−F23). 

Function Metric IROA ROA SMA AOA MPA SSA WOA PSO 

F14 Mean 9.98E−01 4.19E+00 9.98E−01 1.09E+01 9.98E−01 1.20E+00 2.93E+00 3.20E+00 

Std 2.52E−13 4.69E+00 2.19E−13 3.39E+00 1.72E−16 6.05E−01 2.70E+00 2.59E+00 

F15 Mean 3.08E−04 5.28E−04 6.36E−04 6.75E−03 3.07E−04 4.35E−03 5.48E−04 3.78E−03 

Std 4.77E−07 3.31E−04 3.08E−04 1.00E−02 3.00E−15 1.22E−02 2.18E−04 6.85E−03 

F16 Mean −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 

Std 5.79E−09 8.73E−08 3.52E−10 2.84E−11 4.40E−16 2.31E−14 8.01E−10 6.39E−16 

F17 Mean 3.98E−01 3.98E−01 3.98E−01 4.00E−01 3.98E−01 3.98E−01 3.98E−01 3.98E−01 

Std 1.56E−08 1.13E−05 5.95E−09 9.04E−03 0 1.44E−14 1.29E−05 0.00E+00 

F18 Mean 3.00E+00 3.00E+00 3.00E+00 1.96E+01 3.00E+00 3.00E+00 4.80E+00 3.00E+00 

Std 2.17E−09 1.95E−04 7.31E−11 2.83E+01 2.07E−15 2.11E−13 6.85E+00 1.82E−15 

F19 Mean −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 

Std 1.52E−04 2.34E−03 6.51E−08 7.52E−05 2.39E−15 9.60E−13 7.39E−03 2.64E−15 

F20 Mean −3.27E+00 −3.23E+00 −3.24E+00 −3.29E+00 −3.32E+00 −3.20E+00 −3.23E+00 −3.24E+00 

Std 7.52E−02 1.56E−01 5.72E−02 5.12E−02 3.07E−12 4.34E−02 1.04E−01 1.25E−01 

F21 Mean −1.02E+01 −1.01E+01 −1.02E+01 −7.22E+00 −1.02E+01 −7.81E+00 −7.92E+00 −6.38E+00 

Std 4.91E−04 1.68E−02 1.16E−04 3.10E+00 3.28E−11 3.22E+00 2.78E+00 3.28E+00 

F22 Mean −1.04E+01 −1.04E+01 −1.04E+01 −6.34E+00 −1.02E+01 −7.57E+00 −7.64E+00 −8.22E+00 

Std 1.67E−03 2.59E−02 7.79E−05 3.08E+00 9.70E−01 3.39E+00 3.05E+00 3.24E+00 

F23 Mean −1.05E+01 −1.05E+01 −1.05E+01 −8.02E+00 −1.05E+01 −7.97E+00 −7.94E+00 −8.93E+00 

Std 7.91E−04 9.17E−03 6.28E−05 3.43E+00 7.15E−11 3.47E+00 3.25E+00 3.02E+00 

Rank Mean 3 4.15 3.45 6.4 2.9 5.55 5.45 5.1 

Overall 2 4 3 8 1 7 6 5 
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Table 7. Results of the Wilcoxon signed-rank test between IROA and other metaheuristic algorithms (F1−F23). 

Function D IROA vs. ROA IROA vs. SMA IROA vs. AOA IROA vs. MPA IROA vs. SSA IROA vs. WOA IROA vs. PSO 

F1 30 5.00E−01 1 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

100 1 2.50E−01 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

500 2.50E−01 5.00E−01 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

1000 2.50E−01 3.91E−03 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

F2 30 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

100 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

500 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

1000 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

F3 30 6.10E−05 1 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

100 6.10E−05 2.50E−01 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

500 6.10E−05 9.77E−04 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

1000 6.10E−05 4.88E−04 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

F4 30 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

100 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

500 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

1000 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

F5 30 6.10E−05 8.54E−04 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

100 6.10E−05 3.05E−04 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

500 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

1000 6.10E−05 1.16E−03 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

F6 30 6.10E−05 3.05E−04 6.10E−05 6.10E−05 6.10E−05 6.10E−05 5.37E−03 

100 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

500 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

1000 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

Continued on next page 
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Function D IROA vs. ROA IROA vs. SMA IROA vs. AOA IROA vs. MPA IROA vs. SSA IROA vs. WOA IROA vs. PSO 

F7 30 5.61E−01 5.99E−01 4.79E−02 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

100 5.61E−01 1.16E−03 7.62E−01 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

500 5.54E−02 2.01E−03 3.02E−02 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

1000 1 8.54E−04 1.81E−02 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

F8 30 1.83E−04 4.27E−04 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

100 1.81E−02 1.22E−04 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

500 3.05E−04 4.27E−04 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

1000 1.22E−04 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

F9 30 1 1 6.10E−05 1 6.10E−05 1 6.10E−05 

100 1 1 6.10E−05 1 6.10E−05 1 6.10E−05 

500 1 1 6.10E−05 1 6.10E−05 1 6.10E−05 

1000 1 1 6.10E−05 1 6.10E−05 1 6.10E−05 

F10 30 1 1 6.10E−05 6.10E−05 6.10E−05 4.88E−04 6.10E−05 

100 1 1 6.10E−05 6.10E−05 6.10E−05 2.44E−04 6.10E−05 

500 1 1 6.10E−05 6.10E−05 6.10E−05 9.77E−04 6.10E−05 

1000 1 1 6.10E−05 6.10E−05 6.10E−05 2.44E−04 6.10E−05 

F11 30 1 1 6.10E−05 1 6.10E−05 1 6.10E−05 

100 1 1 6.10E−05 1 6.10E−05 1 6.10E−05 

500 1 1 6.10E−05 1 6.10E−05 1 6.10E−05 

1000 1 1 6.10E−05 5.00E−01 6.10E−05 5.00E−01 6.10E−05 

F12 30 6.10E−05 6.10E−05 6.10E−05 1.22E−04 6.10E−05 6.10E−05 1.51E−02 

100 6.10E−05 1.22E−04 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

500 6.10E−05 6.10E−04 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

1000 6.10E−05 1.22E−04 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

F13 30 6.10E−05 6.10E−05 6.10E−05 1.88E−01 6.10E−05 6.10E−05 2.08E−01 

100 6.10E−05 6.10E−04 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

Continued on next page 
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Function D IROA vs. ROA IROA vs. SMA IROA vs. AOA IROA vs. MPA IROA vs. SSA IROA vs. WOA IROA vs. PSO 

F13 500 6.10E−05 3.05E−04 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

1000 6.10E−05 6.10E−04 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

F14 2 6.10E−05 6.10E−05 6.10E−05 6.10E−05 8.33E−02 8.54E−04 2.62E−03 

F15 4 1.35E−01 1.22E−04 2.56E−02 6.10E−05 6.10E−05 3.05E−04 6.10E−05 

F16 2 3.02E−02 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

F17 2 5.24E−01 6.10E−05 8.36E−03 6.10E−05 6.10E−05 5.61E−01 6.10E−05 

F18 2 9.34E−01 6.10E−05 7.62E−01 6.10E−05 6.10E−05 1.51E−01 6.10E−05 

F19 3 6.10E−05 6.10E−05 1.51E−02 6.10E−05 6.10E−05 1.22E−04 6.10E−05 

F20 6 1 4.54E−01 6.10E−05 6.10E−05 2.56E−02 3.89E−01 9.78E−01 

F21 4 1.16E−03 3.30E−01 9.46E−02 6.10E−05 7.30E−02 6.10E−05 2.62E−03 

F22 4 6.10E−04 2.77E−01 1.22E−04 6.10E−05 8.04E−01 6.10E−05 7.62E−01 

F23 4 6.10E−05 5.54E−02 3.05E−04 6.10E−05 8.04E−01 6.10E−05 3.30E−01 

Overall (+/=/−) 37/24/1 40/22/0 55/3/4 49/9/4 58/4/0 51/11/0 58/4/0 



4020 

Mathematical Biosciences and Engineering  Volume 19, Issue 4, 3994-4037. 

Table 8. Comparison results of IROA and ROA on CEC2021 test functions (CEC_01−CEC_10). 

Function Algorithm Best Mean Std 

CEC_01 IROA 1.96E+07 3.25E+08 3.29E+08 

 ROA 3.23E+07 1.26E+09 1.79E+09 

CEC_02 IROA 1.40E+03 2.01E+03 2.82E+02 

 ROA 1.61E+03 2.08E+03 2.41E+02 

CEC_03 IROA 7.22E+02 7.67E+02 2.17E+01 

 ROA 7.35E+02 7.84E+02 2.00E+01 

CEC_04 IROA 1.90E+03 1.91E+03 3.30E+00 

 ROA 1.90E+03 2.27E+03 1.94E+03 

CEC_05 IROA 3.22E+03 2.31E+04 4.06E+04 

 ROA 3.71E+03 7.63E+04 1.46E+05 

CEC_06 IROA 1.60E+03 1.75E+03 1.03E+02 

 ROA 1.75E+03 1.86E+03 1.11E+02 

CEC_07 IROA 3.43E+03 9.22E+03 6.89E+03 

 ROA 3.33E+03 1.18E+04 1.01E+04 

CEC_08 IROA 2.31E+03 2.32E+03 1.58E+01 

 ROA 2.27E+03 2.40E+03 1.05E+02 

CEC_09 IROA 2.74E+03 2.76E+03 7.43E+01 

 ROA 2.75E+03 2.77E+03 7.91E+01 

CEC_10 IROA 2.93E+03 2.97E+03 6.71E+01 

 ROA 2.93E+03 3.01E+03 5.87E+01 

4.4. Comparison with modified algorithms 

In this section, to further demonstrate the superior search capability of the IROA, six modified 

algorithms, including HHOCM [33], SWGWO [34], ROLGWO [35], DSCA [36], MALO [37], and 

HSCAHS [38] are employed to compare with the IROA. Table 9 shows the results of classical test 

functions. Note that the dimension of test functions F1−F13 is set to 1000 for better comparison.  

From Table 9, the overall ranking of the IROA is still the first among these advanced algorithms. 

On functions F1−F7, IROA obtains the theoretical optimal values on F1−F4, whereas HHOCM wins 

the first on F5 and F6, and hybrid algorithm HSCAHS wins on F7. According to the optimal results on 

F5−F7, IROA still shows very competitive exploitation performance. For the functions F8−F13, IROA 

displays excellent exploration capability on high-dimensional cases. However, it is also noted that 

HHOCM ranks first on F12 and F13, while the IROA ranks second. Moreover, on the fixed-dimension 

test functions F14−F23, the IROA also presents the best optimal results with very low standard 

deviation, which means high stability. 

Table 10 presents the Wilcoxon signed-rank test results between IROA and other modified 

optimization methods. The statistical results show that most p-values are lower than 0.05, which means 

the IROA has a significant difference in optimization capability compared to other advanced 

optimization algorithms. According to the overall results, IROA is able to obtain better or similar 
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optimal solutions than others. Moreover, it is noted that IROA is obviously better than SWGWO, 

DSCA, MALO, and HSCAHS.  

Therefore, the proposed IROA also has very comparative performance compared to other 

modified optimization algorithms. 

 

Figure 8. The convergence curves for the optimization algorithms on fixed-dimension test 

functions (F14, F15, F17–F23). 



4022 

Mathematical Biosciences and Engineering      Volume 19, Issue 4, 3994-4037. 

Table 9. Results of the IROA and other modified algorithms on test functions (F1−F23). 

Function Metric IROA HHOCM SWGWO ROLGWO DSCA MALO HSCAHS 

F1 Mean 0 0 6.42E−07 1.9763E−323 6.22E−84 5.71E+05 2.20E−25 

 Std 0 0 3.04E−07 0 3.36E−83 1.19E+05 5.09E−25 

F2 Mean 0 0 1.13E−03 1.06E−164 Inf Inf 6.74E−15 

 Std 0 0 1.03E−03 0 NaN NaN 1.39E−14 

F3 Mean 0 0 7.73E+05 6.1755E−319 3.22E−35 7.55E+06 1.16E−22 

 Std 0 0 3.07E+05 0 1.76E−34 2.61E+06 3.85E−22 

F4 Mean 0 9.82E−199 8.31E+01 4.63E−84 2.82E−33 5.48E+01 1.27E−07 

 Std 0 0 3.67E+00 1.95E−83 1.52E−32 5.79E+00 3.56E−07 

F5 Mean 5.21E+00 9.42E−01 9.98E+02 9.98E+02 9.99E+02 7.18E+02 9.99E+02 

 Std 1.14E+01 1.45E+00 8.14E−02 2.44E−01 1.54E−02 3.74E+02 9.42E−03 

F6 Mean 9.02E−02 3.05E−02 2.30E+02 2.13E+02 2.48E+02 1.36E+01 2.49E+02 

 Std 1.40E−01 5.30E−02 1.27E+00 3.07E+00 2.67E−01 6.27E+00 1.72E−01 

F7 Mean 1.66E−04 1.52E−04 1.50E−02 7.93E−05 4.01E−03 1.06E−04 7.40E−05 

 Std 1.77E−04 1.66E−04 6.66E−03 7.89E−05 3.17E−03 1.00E−04 6.27E−05 

F8 Mean −4.19E+05 −4.19E+05 −2.97E+04 −5.51E+04 −2.69E+04 −3.78E+05 −1.46E+04 

 Std 9.28E+00 5.78E+01 2.18E+04 3.27E+04 2.71E+03 3.91E+04 2.41E+03 

F9 Mean 0 0 5.80E−06 0 0 8.81E+03 0 

 Std 0 0 2.42E−05 0 0 2.95E+02 0 

F10 Mean 8.88E−16 8.88E−16 2.45E−05 3.14E−15 8.88E−16 1.61E+01 5.63E−15 

 Std 0 0 5.45E−06 1.74E−15 0 1.55E+00 7.19E−15 

F11 Mean 0 0 5.17E−08 0 0 5.20E+03 0 

 Std 0 0 3.39E−08 0 0 8.96E+02 0 

F12 Mean 1.32E−05 6.65E−06 9.96E−01 8.59E−01 1.17E+00 5.01E−04 1.18E+00 

Std 3.40E−05 1.26E−05 1.85E−02 2.09E−02 5.21E−03 4.52E−04 4.06E−03 

Continued on next page 
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Function Metric IROA HHOCM SWGWO ROLGWO DSCA MALO HSCAHS 

F13 Mean 7.73E−03 2.11E−03 9.80E+01 9.99E+01 1.00E+02 1.36E+00 9.99E+01 

 Std 1.57E−02 2.34E−03 1.16E+00 1.30E−02 3.85E−02 7.91E−01 2.65E−02 

F14 Mean 9.98E−01 1.20E+00 5.63E+00 5.33E+00 1.51E+00 1.59E+00 2.92E+00 

 Std 2.52E−13 4.81E−01 4.62E+00 4.69E+00 6.48E−01 8.48E−01 2.22E−01 

F15 Mean 3.08E−04 3.32E−04 5.76E−04 3.50E−04 1.35E−03 7.94E−04 2.80E−03 

 Std 4.77E−07 2.88E−05 1.62E−04 7.63E−05 3.67E−04 3.49E−04 1.94E−03 

F16 Mean −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.03E+00 −1.02E+00 

 Std 5.79E−09 1.56E−09 4.44E−06 3.81E−05 2.89E−04 1.10E−13 7.19E−03 

F17 Mean 3.98E−01 3.98E−01 3.98E−01 3.98E−01 4.00E−01 3.98E−01 6.84E−01 

 Std 1.56E−08 3.33E−08 1.08E−05 9.51E−07 3.14E−03 2.17E−14 3.11E−01 

F18 Mean 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.01E+00 3.00E+00 3.00E+00 

 Std 2.17E−09 2.08E−08 5.96E−05 7.89E−05 9.13E−03 4.36E−13 5.34E−03 

F19 Mean −3.86E+00 −3.86E+00 −3.86E+00 −3.86E+00 −3.84E+00 −3.86E+00 −3.36E+00 

 Std 1.52E−04 3.91E−04 4.62E−03 3.79E−04 1.74E−02 2.17E−12 3.42E−01 

F20 Mean −3.27E+00 −3.27E+00 −3.18E+00 −3.25E+00 −3.02E+00 −3.24E+00 −1.50E+00 

 Std 7.52E−02 7.38E−02 1.20E−01 8.25E−02 8.13E−02 5.73E−02 5.34E−01 

F21 Mean −1.02E+01 −5.22E+00 −7.25E+00 −5.45E+00 −4.34E+00 −7.37E+00 −6.53E−01 

 Std 4.91E−04 9.30E−01 2.57E+00 1.56E+00 7.39E−01 2.92E+00 3.40E−01 

F22 Mean −1.04E+01 −5.26E+00 −8.78E+00 −6.47E+00 −4.41E+00 −7.02E+00 −7.44E−01 

 Std 1.67E−03 9.70E−01 2.49E+00 2.62E+00 3.88E−01 3.28E+00 2.58E−01 

F23 Mean −1.05E+01 −5.49E+00 −9.98E+00 −5.97E+00 −4.50E+00 −8.21E+00 −9.18E−01 

 Std 7.91E−04 1.36E+00 1.65E+00 1.97E+00 7.69E−01 3.19E+00 3.25E−01 

Rank Mean 2.07  2.63  4.54  3.78  5.33  4.33  5.15  

Overall 1 2 5 3 7 4 6 
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Table 10. Results of the Wilcoxon signed-rank test between IROA and other modified algorithms (F1−F23). 

Function IROA vs. HHOCM IROA vs. SWGWO IROA vs. ROLGWO IROA vs. DSCA IROA vs. MALO IROA vs. HSCAHS 

F1 1 6.10E−05 6.25E−02 6.10E−05 6.10E−05 6.10E−05 

F2 1 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

F3 1 6.10E−05 1.56E−02 6.10E−05 6.10E−05 6.10E−05 

F4 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

F5 6.37E−02 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

F6 6.79E−01 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

F7 1.88E−01 6.10E−05 3.30E−01 6.10E−05 4.21E−01 2.77E−01 

F8 8.36E−03 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

F9 1 6.10E−05 1 1 6.10E−05 1 

F10 1 6.10E−05 4.88E−04 1 6.10E−05 9.77E−04 

F11 1 6.10E−05 1 1 6.10E−05 1 

F12 3.89E−01 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

F13 3.59E−01 6.10E−05 6.10E−05 6.10E−05 6.10E−05 6.10E−05 

F14 1.51E−01 1.16E−03 1.53E−03 6.10E−05 8.04E−01 6.10E−05 

F15 6.71E−03 6.10E−05 1.51E−02 6.10E−05 3.05E−04 6.10E−05 

F16 6.10E−05 3.36E−03 4.27E−03 6.10E−05 6.10E−05 6.10E−05 

F17 6.10E−05 5.54E−02 1.51E−01 6.10E−05 6.10E−05 6.10E−05 

F18 6.10E−05 2.56E−02 8.90E−01 6.10E−05 6.10E−05 6.10E−05 

F19 2.56E−02 5.37E−03 1.51E−01 6.10E−05 6.10E−05 6.10E−05 

F20 5.37E−03 1.16E−03 4.21E−01 6.10E−05 4.13E−02 6.10E−05 

F21 6.10E−05 6.10E−05 6.10E−05 6.10E−05 2.56E−02 6.10E−05 

F22 6.10E−05 6.10E−05 6.10E−05 6.10E−05 2.56E−02 6.10E−05 

F23 6.10E−05 6.10E−05 6.10E−05 6.10E−05 8.36E−03 6.10E−05 

Overall (+/=/−) 11/12/0 22/1/0 15/8/0 20/3/0 21/2/0 20/3/0 
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5. Results of engineering optimization problems 

Five constrained engineering design problems are selected for testing to verify the performance 

and efficiency of the proposed IROA in solving practical problems. These problems include the welded 

beam design problem, tension/compression spring design problem, three-bar truss design problem, car 

crashworthiness, and tubular column design problem. The maximum number of iterations is also set 

as 500, and the number of search agents is 30. The detailed results of the proposed IROA and other 

optimization methods are presented in the following subsections. Note that the best solution is 

highlighted in bold. 

5.1. The welded beam design problem 

The design of a welded beam [41] requires to obtain the lowest fabrication cost with four variables, 

i.e., the height of the bar (t), the thickness of the bar (b), length of the welded part of the bar (l), and 

thickness of the weld (h), as shown in Figure 9. The four constraints of this design problem are buckling 

load (pc), bending stress (θ), shear stress (τ), and deflection of the beam (δ). 

 

Figure 9. Welded beam design problem: three-dimensional model diagram (left), structure 

parameters (right). 

The mathematical formulas for this problem can be expressed as follows: 

Consider  

�⃗ = [��, ��, ��, ��] = [ℎ, �, �, �] 

Minimize  

�(�⃗) = 1.10471��
��� + 0.04811����(14.0 + ��) 

Subject to 

��(�⃗) = �(�⃗) − ���� 
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��(�⃗) = �(�⃗) − ���� 

��(�⃗) = �(�⃗) − ���� 

��(�⃗) = �� − �� ≤ 0 

��(�⃗) = � − ��(�⃗) ≤ 0 

��(�⃗) = 0.125 − �� ≤ 0 

��(�⃗) = 1.10471��
� + 0.04811����(14.0 + ��) − 5 ≤ 0

 

where 

�(�⃗) = �(�′)� + 2�′�′′
��

2�
+ (�′′)� 

�′ =
�

√2����

, �′′ =
��

�
, � = �(� +

��

2
) 

� = �
��

�

4
+ (

�� + ��

2
)� 

� = 2 �√2���� �
��

�

4
+ (

�� + ��

2
)��� 

�(�⃗) =
6��

��
���

, �(�⃗) =
6���

���
���

 

��(�⃗) =
4.013����

���
�

36
��

�1 −
��

2�
�

�

4�
� 

Variable range 

� = 6000 lb, � = 14 in, � = 30 × 10� psi, � = 12 × 10� psi 

�max=13600 psi, �max=30000 psi, �max=0.25 in 

This problem is figured out by the proposed IROA and other eight optimization methods, like 

ROA [27], AOA [10], SMA [11], WOA [7], GWO [8], GSA [42], CSCA [43], and CPSO [44]. The 

optimal solutions are listed in Table 11. From Table 11, it can be observed that IROA gets the least cost 

1.695245, and the four corresponding variables are h = 0.205734, l = 3.253035, t = 9.036624, and b = 

0.205730. Thus IROA outperforms other methods when dealing with the welded beam design problem. 
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Table 11. Comparison of optimal solutions for the welded beam design problem. 

Algorithm Optimal values for variables Optimal cost 

h l t b 

IROA 0.205734 3.253035 9.036624 0.205730 1.695245 

ROA [27] 0.200077 3.365754 9.011182 0.206893 1.706447 

AOA [10] 0.194475 2.57092 10.000 0.201827 1.7164 

SMA [11] 0.2054 3.2589 9.0384 0.2058 1.69604 

WOA [7] 0.205396 3.484293 9.037426 0.206276 1.730499 

GWO [8] 0.205676 3.478377 9.03681 0.205778 1.72624 

GSA [42] 0.182129 3.856979 10.00000 0.202376 1.879952 

CSCA [43] 0.203137 3.542998 9.033498 0.206179 1.733461 

CPSO [44] 0.202369 3.544214 9.04821 0.205723 1.72802 

5.2. The tension/compression spring design problem 

The lowest manufacturing weight is the objective of the tension/compression spring design 

problem [45]. In this problem, there are three constraints, i.e., the deflection, surge frequency, and 

shear stress. As shown in Figure 10, three design variables are needed to be considered in the 

optimization design process: the mean coil diameter (D), wire diameter (d), and the number of active 

coils (N). 

 

Figure 10. Tension/compression spring design problem (three-dimensional model diagram). 

The mathematical formulas for this problem can be expressed as follows: 

Consider  

�⃗ = [��, ��, ��, ��] = [�, �, �] 
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Minimize  

�(�⃗) = (�� + 2)����
� 

Subject to  

��(�⃗) = 1 −
��

���

71785��
� ≤ 0 

��(�⃗) =
4��

� − ����

12566(����
� − ��

�)
+

1

5108��
� ≤ 0 

��(�⃗) = 1 −
140.45��

��
���

≤ 0 

��(�⃗) =
�� + ��

1.5
− 1 ≤ 0 

Variable range 

0.05 ≤ �� ≤ 2.00 

0.25 ≤ �� ≤ 1.30 

2.00 ≤ �� ≤ 15.00 

The optimal solution of IROA for this problem is also compared with those of other optimization 

methods, including AOA [10], MPA [16], PFA [46], WOA [7], MMPA [47], CPSO [44], ISCA [48] 

and IMFO [49]. The results are listed in Table 12. It can be observed that IROA obtains the minimum 

weight 0.01019759, and the three corresponding variables are d = 0.0500, D = 0.3674088, and N = 

9.10217765. Thus we can conclude that IROA is better than other methods when solving this problem. 

Table 12. Comparison of optimal solutions for the tension/compression spring design problem. 

Algorithm Optimal values for variables Optimal weight 

d D N 

IROA 0.0500 0.3674088 9.10217765 0.01019759 

AOA [10] 0.0500 

 

0.349809 

 

11.8637 

 

0.012124 

 MPA [16] 0.051724477 0.35757003 11.2391955 0.012665 

PFA [46] 0.051726 0.357629 11.235724 0.012665 

WOA [7] 0.051207 0.345215 12.0043032 0.0126763 

MMPA [47] 0.05168827 

 

0.35669876 

 

11.29008064 

 

0.01266524 

 CPSO [44] 0.051728 0.357644 11.244543 0.012674 

ISCA [48] 0.0520217 0.364768 10.832300 0.012667 

IMFO [49] 0.05159 

 

0.354337 11.4301 0.012666 
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5.3. The three-bar truss design problem 

This problem is to minimize a three‑bar truss’s design weight [50]. As shown in Figure 11, two 

variables should be considered: the cross-sectional area of two bars (A1 and A2). 

 

Figure 11. Three-bar truss design problem: three-dimensional model diagram (left), 

structure parameters (right). 

The mathematical formulas for this problem can be expressed as follows: 

Consider  

�⃗ = [��, ��] = [�1, �2] 

Minimize  

�(�⃗) = (2√2�� + ��)� 

Subject to  

��(�⃗) =
√2�� + ��

√2��
� + 2����

� − � ≤ 0 

��(�⃗) =
��

√2��
� + 2����

� − � ≤ 0 

��(�⃗) =
1

√2�� + ��

� − � ≤ 0 

Variable range 

0 ≤ ��, �� ≤ 1 

For this problem, the comparative algorithms are ROA [27], SFO [28], AOA [10], HHO [15], 

MFO [51], SSA [13], PSO-DE [52], and HSCAHS [38]. Table 13 shows the results of this problem. 
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IROA outperforms other optimization techniques with lowest weight 263.8526902, and [A1, A2] = 

[0.78814380, 0.40895198]. Thus IROA is a competitive method compared with other algorithms for 

solving this design problem. 

Table 13. Comparison of optimal solutions for the three-bar truss design problem. 

Algorithm Optimal values for variables Optimal weight 

A1 A2 

IROA 0.78814380 0.40895198 263.8526902 

ROA [27] 0.79509685 0.38951232 263.8845249 

SFO [28] 0.7884562 0.40886831 263.8959212 

AOA [10] 0.79369 0.39426 263.9154 

HHO [15] 0.788662816 0.40828313 263.8958434 

MFO [51] 0.788244771 0.409466906 263.8959797 

SSA [13] 0.788665414 0.408275784 263.8958434 

PSO-DE [52] 0.7886751 0.4082482 263.8958433 

HSCAHS [38] 0.7885721 0.4084012 263.881992 

5.4. The car crashworthiness design problem 

The frequently-used car crashworthiness design problem is considered firstly proposed by Gu et 

al. [53]. This problem also belongs to a minima problem with eleven variables, subject to ten 

constraints. Figure 12 shows the finite element model of this problem. 

 

Figure 12. Three-dimensional model diagram of the car side crash [54]. 

The mathematical formulas for this problem can be expressed as follows: 

Minimize  

�(�⃗) = 1.98 + 4.90�� + 6.67�� + 6.98�� + 4.01�� + 1.78�� + 2.73�� 
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Subject to  

��(�⃗) = 1.16 − 0.3717���� − 0.00931����� − 0.484���� + 0.01343����� ≤ 1 

��(�⃗) = 0.261 − 0.0159���� − 0.188���� − 0.019���� + 0.0144���� + 0.0008757�����

+ 0.080405���� + 0.00139����� + 0.00001575������ ≤ 0.32 

��(�⃗) = 0.214 + 0.00817�� − 0.131���� − 0.0704���� + 0.03099���� − 0.018����

+ 0.0208���� + 0.121���� − 0.00364���� + 0.0007715����� − 0.0005354�����

+ 0.00121����� ≤ 0.32 

��(�⃗) = 0.074 − 0.061�� − 0.163���� + 0.001232����� − 0.166���� + 0.227��
� ≤ 0.32 

��(�⃗) = 28.98 + 3.818�� − 4.2���� + 0.0207����� + 6.63���� − 7.7���� + 0.32����� ≤ 32 

��(�⃗) = 33.86 + 2.95�� + 0.1792��� − 5.057���� − 11.0���� − 0.0215����� − 9.98����

+ 22.0���� ≤ 32 

��(�⃗) = 46.36 − 9.9�� − 12.9���� + 0.1107����� ≤ 32 

��(�⃗) = 4.72 − 0.5�� − 0.19���� − 0.0122����� + 0.009325����� + 0.000191���
� ≤ 4 

��(�⃗) = 10.58 − 0.674���� − 1.95���� + 0.02054����� − 0.0198����� + 0.028����� ≤ 9.9 

���(�⃗) = 16.45 − 0.489���� − 0.843���� + 0.0432����� − 0.0556����� − 0.000786���
� ≤ 15.7 

Variable range 

0.5 ≤ �� − �� ≤ 1.5 

��, �� ∈ (0.192, 0.345) 

−30 ≤ ���, ��� ≤ 30 

Table 14. Comparison of optimal solutions for the car crashworthiness design problem. 

Algorit

hm 

IROA ROA 

[27] 

SMA 

[11] 

MPA 

[16] 

WOA 

[7] 

HHOCM 

[33] 

ROLGWO 

[35] 

MALO 

[37] 

x1 0.5 0.5 0.5 0.5 0.8521 0.5001638 0.5012548 0.5 

x2 1.23105 1.22942 1.22739 1.22823 1.2136 1.2486123 1.2455510 1.2281

x3 0.5 0.5 0.5 0.5 0.6604

56984 

0.6595579

1 

0.5000457

82 
0.5 

x4 1.19766

1424 

1.21197

2272 

1.20428

7412 

1.20490

1091 

1.1156

16325 

1.0985153

62 

1.1802539

69 

1.2126

4054 x5 0.5 0.5 0.50000 0.5 0.5 0.7579885 0.5000347 0.5 

x6 1.07429

465 

1.37798

8073 

1.04185

9698 

1.23930

9536 

1.1950

91288 

0.7672683

4 

1.1658804

73 

1.3080

40562 x7 0.5 0.50005

6939 
0.5 0.5 0.5898

46554 

0.5000551

87 

0.5000882

71 
0.5 

x8 0.34499 0.34489 0.345 0.34498 0.2711 0.3431048 0.3448952 0.3449

x9 0.34432

8614 

0.19263

109 

0.34248

3167 
0.192 0.2769

58707 

0.1920318

67 

0.2995826

79 

0.2804

01292 x10 0.95239

6505 

0.62239

9549 

0.29675

4695 

0.44035

4143 

4.3437

35373 

2.8988050

96 

3.5950796

59 

0.4242

93419 x11 1.01140 – 1.15796 1.78504 2.2352 – 2.2901802 4.6565

fmin 23.1889

37 

23.2354

42 

23.1910

21 

23.1998

22 

25.836

569 
24.483584 23.222427 

23.229

404 
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Table 14 shows the optimal results of IROA and other comparative algorithms, including ROA [27], 

SMA [11], MPA [16], WOA [7], HHOCM [33], ROLGWO [35], and MALO [37]. In Table 14, the 

IROA obtains the best solution (fmin = 23.18893698) among these optimization methods. Thus IROA 

has the merits in solving the car crashworthiness design problem. 

5.4. The tubular column design problem 

Designing a tubular column aims to minimize the cost with compressive load P = 2,500 kgf [55], 

as shown in Figure 13. The yield stress (σy), modulus of elasticity (E), and density (ρ) of the column 

are 500 kgf/cm2, 0.85 × 106 kgf/cm2, and 0.0025 kgf/cm3, respectively. And the column’s length is 250 cm. 

In addition, the objective function is considered to be the sum of material and manufacturing costs. 

 

Figure 13. The schematic diagram of the tubular column [56]. 

The mathematical formulas for this problem can be expressed as follows: 

Minimize  

�(�, �) = 9.8�� + 2� 

Subject to  

�� =
�

�����
− 1 ≤ 0 

�� =
8���

�����(�� + ��)
− 1 ≤ 0 

�� =
2.0

�
− 1 ≤ 0 
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�� =
�

14
− 1 ≤ 0 

�� =
0.2

�
− 1 ≤ 0 

�� =
�

0.8
− 1 ≤ 0 

Variable range 

0.01 ≤ �, � ≤ 100 

Table 15 lists the results of IROA and other comparative methods, including ROA [27], SMA [11], 

MPA [16], WOA [7], HHOCM [33], ROLGWO [35], and MALO [37]. In Table 15, it is observed that 

IROA obtains the lowest cost (26.531303) with [d, T] = [5.451154, 0.291965]. Thus, the IROA also 

can solve this problem very well. 

Table 15. Comparison of optimal solutions for the tubular column car design problem. 

Algorithm Optimal values for variables Optimal cost 

d T 

IROA 5.451154 0.291965 26.531303 

ROA [27] 5.433671 0.294813 26.598146 

SMA [11] 5.451212 0.291960 26.531379 

MPA [16] 5.451389 0.291951 26.531737 

WOA [7] 5.437032 0.294228 26.583393 

HHOCM [33] 5.492022 0.289790 26.613000 

ROLGWO [35] 5.452650 0.291894 26.534764 

MALO [37] 5.451140 0.291967 26.531342 

6. Conclusions and future works 

This paper presents an improved ROA (IROA) by introducing a new search mechanism named 

autonomous foraging mechanism (AFM). This mechanism is based on the individual’s autonomous 

foraging behavior. Each remora has a little chance to search the food randomly or based on food 

position within the determined space. Thus these two cases are mathematically modeled and utilized 

to improve the basic ROA. The former can enhance the global search of the algorithm, while the latter 

can boost the local search of the algorithm. 

Experimental tests were conducted using twenty-three classical benchmark functions, ten latest 

CEC 2021 test functions, and five engineering design optimization problems. The results of proposed 

IROA on these test functions are compared to the basic ROA and other famous optimization methods. 

It can be found that the IROA is the best optimizer on almost all test functions and practical problems. 

The proposed IROA also shows very stable performance on high-dimensional test functions, which 

indicates the effective role of the proposed mechanism. Moreover, it should be noted that the AFM 

will not increase the computational complexity of the original method and keep the simplicity.  
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Other MAs may use the proposed mechanism applied in IROA to enhance the search capability 

in future work. And the IROA also can be implemented on more complex practical optimization 

problems, such as parameter optimization, data mining, feature selection, and large-scale global 

optimization problems. 
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