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Abstract: This paper deals with a new analytical model for microfluidic passive mixers. Two common 

approaches already exist for such a purpose. On the one hand, the resolution of the advection-diffusion-

reaction equation (ADRE) is the first one and the closest to physics. However, ADRE is a partial 

differential equation that requires finite element simulations. On the other hand, analytical models 

based on the analogy between microfluidics and electronics have already been established. However, 

they rely on the assumption of homogeneous fluids, which means that the mixer is supposed to be long 

enough to obtain a perfect mixture at the output. In this paper, we derive an analytical model from the 

ADRE under several assumptions. Then we integrate these equations within the electronic-equivalent 

models. The resulting models computed the relationship between pressure and flow rate in the 

microfluidic circuit but also takes the concentration gradients that can appear in the direction 

perpendicular to the channel into account. The model is compared with the finite element simulation 

performed with COMSOL Multiphysics in several study cases. We estimate that the global error 

introduced by our model compared to the finite element simulation is less than 5% in every use case. 

In counterparts, the cost in terms of computational resources is drastically reduced. The analytical 

model can be implemented in a large range of modelling and simulation languages, including SPICE 

and hardware description language such as Verilog-AMS. This feature is very interesting in the context 

of the in silico prototyping of large-scale microfluidic devices or multi-physics devices involving 

microfluidic circuits, e.g. lab-on-chips.  
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1. Introduction  

The development of microfluidics has been booming in recent years, with many applications in 

the pharmaceutics [1], biology [2], healthcare [3] or environmental monitoring [4]. However, the 

design and the manufacturing of microfluidic circuits still require a large deal of expertise both on 

engineering and on technological aspects. Today, most of the microfluidic designs are still performed 

with long and costly trial-and-error processes. One possible promoter for the democratization of 

microfluidics could be the development of technological standards allowing realization of microfluidic 

circuits on demand, and thus its design by engineers in silico without deep knowledge of the whole 

technological process. Following the path of electronics in the 90s, this transition requires dedicated 

computer-aided design tools and associated mathematical models in adequacy with the standard 

technologies. Many investigations have already been done for years in this avenue: numerical 

simulation of continuous microfluidic devices [5,6], droplets formation [7], particle flow [8], 

electroosmotic flows [9] or fluid active and passive mixing [10,11]. Moreover, microfluidics is rarely 

isolated in a system but interacts with other domains such as chemistry or biochemistry, electronic 

sensors, light or thermal phenomena, etc. All the models associated with all of these different parts of 

a lab-on-a-chip must therefore be interoperable and thus, implementable in the same computational 

environment. 

In this paper, the focus is put on continuous microfluidics and more specifically on passive 

mixers [10]. Continuous microfluidics concerns all applications where flows are laminar, i.e. flow for 

which viscous forces are dominant. The Reynolds number is a dimensionless parameter usually used 

to determine if these conditions are met [12]. A passive mixer is, as its name indicates, a microfluidic 

circuit allowing the mixing of two fluids under continuous microfluidic conditions. Most passive 

mixers are Y-shaped junction, as depicted in Figure 1. Because of the predominance of viscosity forces, 

mixing fluids in laminar conditions is not trivial. The mixture is only due to passive diffusion of 

molecules in the transverse direction along the channel [13,14], which is only effective after a given 

length of the channel. This parameter is called the mixing length and corresponds approximately to the 

ratio between the flow rate of the fluid and the diffusion coefficient of the chemical species involved. 

Generally speaking, the simulation of microfluidic circuits can be performed in two ways. On the 

one hand, fluid behavior and molecular diffusion inside microfluidic channels are respectively 

governed by the Navier-Stokes equations [15] and the reaction-advection-diffusion equation [16]. Both 

of them are partial differential equations (PDE) that must be solved by finite element simulators[17]. 

Commercial simulators (e.g. COMSOL Multiphysics [18] and more specifically its Microfluidic 

Module [19]), or academic open-source simulators (e.g. FeelPP [20]) natively implemented such 

features. This approach provides very accurate and faithful results towards actual behavior of the fluids. 

The downside is the heaviness of models from a computational perspective. Consequently, such tools 

are very suitable for design and the study of a microfluidic device alone, but can quickly become 

limiting for the simulation of this device as a part of a complete microfluidic system.  

On the other hand, analytical models can be used to describe the behavior of microfluidic devices 

in a simplified but accurate way. By opposition to physical models, analytic models are only composed 

of time-derivative terms. A common approach used to write analytic models of microfluidic 

circuits is the analogy that has been demonstrated for years between electrical circuits and 

microfluidic circuits [21,22]. According to this analogy, flows are considered as electric currents, 

pressure differences as potential differences and channels as hydraulic resistance in the sense that a 

pressure difference at the two ends of a channel produces a flow which intensity depends on the channel 
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geometry. Thus, a microfluidic system can be analyzed according to its derived electronic-equivalent 

circuits. Such method has already been applied to the simulation and the in silico design of passive 

mixers [23,24]. Although very suitable to predict the relationship between pressure and flow at the 

inlets and the outlets of the device, electronic-equivalent models lack of accuracy in the description of 

the mixture itself. In particular, they are based on the homogeneous fluid assumption or, which is 

another way to put it, are only valid for channels which lengths are long enough compared to the fluid 

diffusion length. 

 

Figure 1. Schematic of the Y-shaped passive mixer. The device is composed of two inlets 

(here, one is the water and the other is a dye) and one outlet. As we can see on this cartoon 

(which is purely illustrative and not a simulation result), the mixing is established along the 

channel and, for a short channel, the dye concentration is not homogeneous in the x direction. 

This paper deals with the opportunity to enrich electronic equivalent modelling approach by 

adding an analytical model for the transverse concentration profile within the channel. The theoretical 

background, our assumptions and the way the model is implemented are described in the “Material 

and Method” section. The “Result” includes all the results of simulations performed to compare the 

analytic model with COMSOL. Finally, the validity of this approach and its interest in the context of 

in silico prototyping of large-scale microfluidic devices is discussed in the last part of the paper. 

2. Materials and methods 

2.1. Theoretical background 

2.1.1. Poiseuille’s flow 

First, let us consider a long cylindrical channel of radius 𝑅. Let the 𝑦-axis be the direction along 
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the channel. At steady state, the velocity field 𝐮 is unidirectional and laminar. Due to the boundary 

condition (i.e. 𝐮 = 0 at 𝑟 = 𝑅), the pressure-driven fluid velocity inside the channel has a parabolic 

profile. The 𝑦-component 𝑢𝑦 of 𝐮 can be modelled as a function of the radial distance 𝑟 by the 

following equation, called Poiseuille’s flow: 

𝑢𝑦(𝑟) = 𝑢𝑚𝑎𝑥 ∙ (1 −
𝑟2

𝑅2
) (1)  

where 𝑢𝑚𝑎𝑥  (in m ∙ s−1 ) is the maximum velocity at the centre of the channel. This quantity is 

proportional to the ratio of the flow rate 𝑄 (in m3 ∙ s−1) and the channel section 𝑆 (in m2). 

2.1.2. Advection-diffusion-advection-reaction law 

The structure of a passive mixer is depicted in Figure 1. It is composed of a Y-shaped junction at 

which two homogeneous laminar flow join together and a straight channel in which both fluids mix 

together. However, in this channel, flows are still laminar and the mixing is only due to the passive 

diffusion in the transverse direction.  

Generally speaking, the concentration of a given molecule inside a microfluidic device is 

described by the advection-diffusion-reaction equation (ADRE) [15]. All along this paper, we reduce 

the study down to a two-dimensional problem, assuming the system invariant by translation along the 

z-axis. The 2D-ADRE equation is the following: 

𝜕𝐶

𝜕𝑡
= 𝐷 ∙ Δ𝐶 − 𝐮(𝑥, 𝑦, 𝑡) ∘ ∇𝐶 + 𝑠(𝑥, 𝑦, 𝑡) (2)  

where 𝐶 is the concentration of a given molecule (in mol ∙ L−1), 𝐷 is the diffusion coefficient of that 

molecule (in m2 ∙ s−1), 𝐮(𝑥, 𝑦, 𝑡) is the velocity field of the fluid (in 𝑚 ∙ s−1), 𝑠(𝑥, 𝑦, 𝑡) is a local 

source (or a sink, depending on its sign) of molecule which can be due, for instance, to chemical 

reactions occurring in the channel, Δ is the Laplacian operator, ∇ is the gradient operator and ∘ is 

the dot product. 

2.2. Analytical solution for the 2D-ADRE 

2.2.1. Assumptions and validity domain 

In a straight channel, due to the laminar flow, transverse component of the fluid velocity can be 

neglected. Moreover, we consider the microfluidic system at its stationary state. The field velocity 

does not depend on the time nor on the position along the channel axis. Thus, the velocity field has 

only one component along 𝑦-axis and depends only on 𝑥 (i.e. 𝐮(𝑥, 𝑦, 𝑡) = 𝑢𝑦(𝑥) ∙ 𝐲). Finally, we 

assume that no chemical reaction occurs inside the channel (i.e. 𝑠(𝑥, 𝑦, 𝑡) = 0). The ADRE can thus 

be simplified as following: 

∂𝐶

∂𝑡
= 𝐷 ∙ (

∂2𝐶

∂𝑥2
+

∂2𝐶

∂𝑦2
) − 𝑢𝑦(𝑥) ⋅

∂𝐶

∂y
 (3)  

The last assumption concerns the displacement of molecules along the channel direction. The 
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displacement due to the passive diffusion is assumed to be negligible in comparison to the 

displacement due to the advection. This point is validated a posteriori by COMSOL simulations. We 

showed that simulation results performed with an isotropic diffusion constant and anisotropic diffusion 

vector (𝐷𝑥 = 𝐷 and 𝐷𝑦 = 0) are quite similar within a large range of flow rate. Under this assumption, 

equation (3) now becomes:  

∂𝐶

∂𝑡
= 𝐷 ∙

∂2𝐶

∂𝑥2
− 𝑢𝑦(𝑥) ⋅

∂𝐶

∂𝑦
 (4)  

At the steady state, equation (4) can be rewritten as following: 

𝐷 ∙
∂2𝐶

∂𝑥2
− 𝑢𝑦(𝑥) ⋅

∂𝐶

∂𝑦
= 0 (5)  

2.2.2. Reference frame change 

To further simplify equation (5), we switch from the Earth reference frame to a new reference 

frame centred on a point that follows the diffusion front, i.e. a reference frame moving at a velocity 

𝑢𝑦(𝑥)  along the 𝑦 -axis. Let (𝑥′, 𝑦′)  be the coordinate system in this new reference frame. The 

transition equations between both coordinate systems are the following: 

𝑥′ = 𝑥
𝑦′ = 𝑦 − 𝑢𝑦(𝑥) ∙ 𝑡 (6)  

In this new reference frame, equation (5) becomes: 

D ∙
∂2𝐶

∂𝑥′2
− 𝑢𝑦(𝑥) ∙

∂𝐶

∂𝑡
∙

∂𝑡

∂𝑦′
∙

∂𝑦′

∂𝑦
= 0 (7)  

According to equation (6), ∂𝑦′ ∂𝑦⁄ = 1 and ∂𝑦′ ∂𝑡⁄ = −𝑢𝑦(𝑥). Equation (7) can be simplified as 

following: 

∂𝐶

∂𝑡
= −𝐷 ∙

∂2𝐶

∂𝑥′2
 (8)  

For the sake of simplicity, single quotation marks have been dropped in the following.  

2.2.3. Variable separation 

We solve equation (8) with the variables separation method which consists of assuming that the 

function 𝐶(𝑥, 𝑡)  is the product of a function depending only on the time 𝐶𝑇(𝑡)  and a function 

depending only on the position on the x-axis 𝐶𝑋(𝑥). 

𝐶(𝑥, 𝑡) = 𝐶𝑋(𝑥) ∙ 𝐶𝑇(𝑡) (9)  

Using this expression of 𝐶(𝑥, 𝑡) in equation (8) gives 

d𝐶𝑇

∂𝑡
⋅ 𝐶𝑋 = −𝐷 ∙ 𝐶𝑇 ⋅

d2𝐶𝑋

∂𝑥2
 (10)  

Separating 𝐶𝑇 and 𝐶𝑋 terms on both sides of the equality leads to: 
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1

𝐷 ∙ 𝐶𝑇

d𝐶𝑇

∂𝑡
= −

1

𝐶𝑋
∙

d2𝐶𝑋

∂𝑥2
 (11)  

This equation has to be true whatever the values of 𝑥 and 𝑡. As a consequence, the only valid solution 

is to have both terms of equation (11) equal to a constant. Let 𝛼 be this constant. 

2.2.4. Time-dependent solution 

Let us first consider the time-dependent term. The left term of equation (11) is a first-order 

ordinary differential equation (ODE) with a constant second term. Such equation converges only for 

negative values of 𝛼. To avoid any ambiguity about the sign of 𝛼, we introduce a new constant 𝜆 in 

such a way that 𝛼 = −𝜆2. The solution of the first-order ODE is 

𝐶𝑇(𝑡) = 𝐶𝑇(0) ∙ 𝑒−𝜆2∙𝐷∙𝑡 (12)  

2.2.5. Space-dependent solution 

Let us now consider the space-dependent term. The right term of equation (11) is a second-order 

ODE with a constant negative second term. The solution is supposed to be a combination of sine waves. 

However, we know from observations and/or finite element simulations that the concentration profile 

is sigmoidal in the channel [13]. We therefore look for the solution as Fourier series decomposition of 

𝐶𝑋(𝑥) Matching with equation (11). For that purpose, let first introduce 𝐶�̂�(𝑥), an extension of 𝐶𝑋(𝑥) 

on ℝ (i.e. beyond the boundaries of the channel) which is periodic with a period of 2 ∙ 𝑊 where 𝑊 

is the channel width. The expression of 𝐶�̂�(𝑥) as a Fourier series decomposition is the following 

𝐶�̂�(𝑥) = ∑ 𝐴𝑛 ∙ sin(𝜆𝑛 ∙ 𝑥) + 𝐵𝑛 ∙ cos(𝜆𝑛 ∙ 𝑥)
∞

𝑛=0
 (13)  

where 𝑛 is the order of the Fourier term, 𝐴𝑛 and 𝐵𝑛 are the Fourier coefficients and 𝜆𝑛 is the value 

of 𝜆 associated with the 𝑛-th term of the series. Because of boundaries conditions, i.e. 𝑑𝐶�̂� 𝑑𝑥⁄ = 0 

for 𝑥 = 0 and 𝑥 = 𝑊, 𝐴𝑛 = 0 ∀ 𝑛 and : 

𝜆𝑛 =
𝑛 ∙ π

𝑊
 (14)  

2.2.6. Full solution 

Putting equations (12) and (14) together leads to the final expression for 𝐶(𝑥, 𝑡): 

𝐶(𝑥, 𝑡) = ∑ 𝐵𝑛 ∙ cos (
𝑛 ∙ π ∙ 𝑥

𝑊
) ∙ e−𝐷∙𝑡∙(

𝑛∙π
𝑊

)
2

 

∞

𝑛=0

 (15)  

with 𝐵𝑛 computed from the concentration profile at the start of the channel 𝐶0(𝑥): 
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𝐵𝑛 =
1

𝑊
∙ ∫ 𝐶0(𝑥)

𝑊

−𝑊

∙ cos (π ∙ 𝑛 ∙
𝑥

𝑊
) ∙ 𝑑𝑥 (16)  

Finally, using the reference frame change backwards, we can establish that 𝑦 = 𝑦′ + 𝑢𝑦(𝑥) ∙ 𝑡. 

As the reference frame follows the diffusion front, 𝑦′ = 0 and thus 𝑦 = 𝑢𝑦(𝑥) ∙ 𝑡. Replacing 𝑡 by 

𝑦 in equation (15) gives the concentration map as a function of 𝑥 and 𝑦 in the channel: 

𝐶(𝑥, 𝑦) = ∑ 𝐵𝑛 ∙ cos (
𝑛 ∙ π ∙ 𝑥

𝑊
) ∙ e

−
𝐷

𝑢𝑦
∙𝑦∙(

𝑛∙π
𝑊

)
2

 

∞

𝑛=0

 (17)  

2.3. Concentration profile at the beginning of the channel 

According to equations (16) and (17), the concentration profile throughout the channel depends 

on the initial concentration profile 𝐶0(𝑥). Establishing an analytical expression based on theoretical 

considerations for 𝐶0(𝑥) is very tricky. However, we know that 𝐶0(𝑥) always exhibits a sigmoidal 

profile. It can be thus approximated by an empirical model:  

𝐶0(𝑥) =
𝑎

1 + e−𝑏∙(𝑥−𝑐)
+ 𝑑 (18)  

with 𝑎 , 𝑏 , 𝑐  and  𝑑  four fitting parameters. The literature and simulations we performed with 

COMSOL Multiphysics gave us empirical equation to predict the values of these four parameters. 𝑎 

is the amplitude of the sigmoid which depends on the difference of concentration for the molecule of 

interest in both inlets (𝑎 = 𝐶2 − 𝐶1). 𝑑 is the reference concentration level, i.e. the concentration level 

at the inlet 1 (𝑑 = 𝐶1). 𝑐 is the position of the inflection point on the 𝑥-axis. This value depends 

mostly on the ratio of the flow rate at both inlets (𝑐 = 𝑊 ∙ 𝑄1 (𝑄1 + 𝑄2)⁄ ). It should be mentioned that 

this estimation of 𝑐 is very coarse at the beginning of the channel because of perturbations due to the 

mixing but becomes reliable after a few tenths of micrometres. Finally, 𝑏 represents the steepness of 

the sigmoid at the inflection point. 𝑏 is hard to estimate a priori but we establish with a large set of 

COMSOL simulations that there is a linear relationship between b and the total flow rare (𝑏 = 𝑘1 ∙

(𝑄1 + 𝑄2) + 𝑘2). The two empirical parameters 𝑘1 and 𝑘2 only depends on the geometry of the Y-

shaped junction and have to be extracted from COMSOL simulations once per junction geometry.  

2.4. Extraction procedure for sigmoid parameters 

Depending on the application, it can be useful to estimate 𝑎 , 𝑏 , 𝑐  and 𝑑  either from the 

flow/concentration on mixer inlets or from an arbitrary profile 𝐶(𝑥). This can obviously be performed 

using commonplace optimization methods but also following a specific extraction procedure described 

in this subsection. For the sake of simplicity, let us rewrite the sigmoid as following:  

𝐶(𝑥) =
2 ∙ (𝑎′ − 𝑑′)

1 + e𝑏∙(𝑥−𝑐)
+ 𝑑′ (19)  

Now (𝑐, 𝑎′) is the coordinate of the inflection point of 𝐶(𝑥), 2 ∙ 𝑑′ is the amplitude of the sigmoid 

and 𝑏 is still related to the steepness of the curve at the inflection point.  
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2.4.1. Computation of 𝑎’ and 𝑐  

The inflection point of 𝐶(𝑥) corresponds to the maxima of the derivative 𝐶′(𝑥). The first step 

of the extraction procedure is therefore the numerical calculation of this derivative. Then, the apex of 

the derivative is accurately calculated using a second-degree interpolation polynomial 𝐿(𝑥) = 𝛼 ∙

𝑥2 + 𝛽 ∙ 𝑥 + 𝛾 . The coefficients 𝛼 , 𝛽  and 𝛾  of this polynomial corresponds to the Lagrange 

interpolation with the three highest points of 𝐶′(𝑥) and thus can be computed analytically from the 

coordinates of these points. The computation of 𝑐  from 𝐿(𝑥)  is straightforward: 𝑐 = 𝛽 2 ∙ 𝛼⁄  . 

Finally, 𝑎’ = 𝐶(𝑐)  is computed from a linear interpolation of 𝐶(𝑥)  with two points surrounding 

𝑥 = 𝑐. 

2.4.2. Computation of 𝑏 and 𝑑′  

The slope 𝑠  at the inflection point can be calculated in two ways: i) from the interpolation 

polynomial: 𝑠 = 𝐿(𝑐) = 𝛼 ∙ 𝑐2 + 𝛽 ∙ 𝑐 + 𝛾 or ii) from the derivative of the sigmoidal function 𝑠 =

𝐶′(𝑐) = 𝑏 ∙ (𝑑′ − 𝑎′)/2. This gives a relationship between 𝑏 and 𝑎′, 𝑐 and 𝑑’: 

𝑏 =
2 ∙ (𝛼 ∙ 𝑐2 + 𝛽 ∙ 𝑐 + 𝛾)

𝑑′ − 𝑎′
 (20)  

The parameter 𝑑’ is the amplitude of the sigmoid which can be easily computed from the curve if and 

only if we can consider that 𝐶(𝑥) reach its asymptotes at 𝑥 = 0 and 𝑥 = 𝑊. But this is, however, 

not necessarily the case. Thus, a simple iterative method is implemented, starting with 𝑑′ =

𝐶((𝑊) − 𝐶(0))/2 and increasing 𝑑′ step-by-step up to value that minimise the root mean square 

error (RMSE) between the sigmoid obtained with fitted parameters and the actual values of 𝐶(𝑥).  

3. Results 

In this part, the validation procedure for our analytical model is described. In principle, the 

validation of a model goes by a comparison with experimental results. However, as the passive mixer 

is a very simple microfluidic circuits, we can trust COMSOL simulations to faithfully reproduce reality: 

COMSOL's performance for simulating microfluidic mixers in laminar flow has already been proved 

even for circuits more sophisticated than those studied in this paper e.g. mixers including semicircle 

elements [25] and trapezoidal blades [26]. Therefore, we opted in this study for a validation of our 

model by comparison with COMSOL simulations. This approach encompasses three main advantages: 

it is cheaper, it requires less labor force and gives access to a large number of physical quantities 

(velocity at any point, concentration at any point) which is not possible with the experimental model. 

The first subsection concerns the validation of the sigmoidal model used for the initial 𝐶0(𝑥) 

profile as well as its Fourier series. Second, the validation of the concentration map model, i.e. equation 

(16) is discussed. Finally, the procedure for extracting the sigmoid parameters from a given 

concentration profile is also assessed. All the tests have been performed with a single type of molecule 

with a concentration 𝐶1 at the first inlet 1 and 0 at the second inlet. Several combinations of flow 

rates 𝑄1 and 𝑄2 have been tested, with flow rate values ranging from 0.5 nL∙ s −1 to 2.5 nL ∙ s−1. 

The concentration of the molecule at inlet 1 as well as its diffusion coefficient has also been tested but 

it turns out that they do not have any major impact on the shape of the curve. 
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3.1. Validation of the sigmoid model for the initial profile 

First, COMSOL Multiphysics simulation of the Y-shaped junction described on Figure 1 is 

performed for different combinations of inlets flow rate and the cross-section concentration profile for 

𝑦 = 0  are exported. Then, the Curve Fitting toolbox of MATLAB with the Levenberg-Marquart 

algorithm is used to extract the optimal parameters of the sigmoid (d is assumed to be 0). Extracted 

parameters are then compared to the expected one. Figure 2 shows the results for 𝑄1 = 𝑄2 = 0.5 nL ∙

s−1 and 𝐶1 = 1 mM. The fitting of the concentration profile by the sigmoidal function is very good. 

The RMSE is less than 1% of the average concentration. The values of 𝑎 and 𝑐 are consistent with 

the expected ones: 𝑎 = 𝐶1 = 1 mM and 𝑐 = 5 µm for a 10-µm width as 𝑄1 = 𝑄2. 

 

Figure 2. Fitting of the cross-section concentration profile at the input of the mixer with a 

sigmoidal function (MATLAB Curve Fitting Toolbox screenshot). The simulation results 

obtained with COMSOL (black dots) are fitted with a sigmoidal function given in equation 

(17) with 𝑑 = 0  (blue curve). Simulations have been performed with 𝑄1 = 𝑄2 =

0.5 nL ∙ s−1 and 𝐶1 = 1 mM.  

We also extracted the value of 𝑏  for 25 combination of inlet fluxes 𝑄1  and 𝑄2 . The linear 

relationship between 𝑏  and the total flux 𝑄𝑡𝑜𝑡 = 𝑄1 + 𝑄2  is confirmed with a high degree of 

confidence (see Figure 3): the relative error between extracted values for 𝑏  and their linear 

interpolation is less than 10% over all the combinations (the RMSE is about 3%). For the Y-shaped 

junction geometry considered in this study, the values of 𝑘1 and 𝑘2 are respectively 0.605 ∙ 10−6 s ∙

µm4 and 1.31 µm−1.  

The second validation step consists of assessing the impact of the Fourier series decomposition 

of the sigmoid. For that purpose, we compare on the RMSE between the COMSOL simulations and 

the Fourier decomposition of the sigmoid, on the one hand, and the RMSE between the sigmoid fit of 

COMSOL simulations and its Fourier decomposition, on the other hand. Figure 4 shows the results. 

The right table highlights that, beyond the fifth order, the error introduced by the Fourier 

decomposition is lower than the one introduced by the sigmoid fit. Thus, it can be pointed out that the 

impact of using a Fourier series is negligible and only a few number of terms are required to obtain a 

good approximation of the sigmoidal function. 
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Figure 3. Linear interpolation of the extracted value of 𝑏  and the total flux for 25 

combinations of 𝑄1 and 𝑄2.  

 

Figure 4. Impact of the Fourier series decomposition. The left plot compares the sigmoid 

equation (black curve) and its Fourier series decomposition (blue dots) in the same 

conditions as for Figure 2. The red curve gives the error introduced by the Fourier 

decomposition as a function of the position in the x-axis. The table on the right compares 

the relative error observed between COMSOL, the sigmoid fit and the Fourier series 

decomposition as a function of the order.  

3.2. Validation of the model on the whole channel 

In this subsection, the validity of the model of the concentration map inside the whole channel, 

Fourier 
series order

Relative 
Error

COMSOL vs
Fourier

Relative 
Error

Sigmoid vs 
Fourier

1 2.76 % 2.70 %

3 0.418 % 0.835 %

5 0.330 % 0.303 %

7 0.317 % 0.116 %

9 0.311 % < 0.050 %
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i.e. equation (17), is assessed. For that purpose, we compare again the map simulated with COMSOL 

and the map calculated with the analytical model. Figure 5A shows the difference between both maps 

for six different inlet flow rate combinations. It can be observed that the highest difference between 

the two models occurs rather at the beginning of the channel, where the two flows meet. At this point, 

velocity fields in the transverse direction might exist. They are natively taken into account by the 

COMSOL simulation but not in our model. This error can reach up to 10% percent but fades quickly 

along the channel. At the end of the channel, the RMSE decreases down to 1% (see Figure 5B). Figures 

5C and 5D represent respectively the maximum error (in %) observed in the channel and at the end of 

the channel for 25 couples of input flows. According to these results, it can be pointed out that errors 

introduced by our model are acceptable.  

 

Figure 5. Simulation results for the validation of the model inside the channel. (A) is the 

error between COMSOL simulation and the analytic model for six different inlet flow rate 

combinations: 𝑄1 values are respectively 0.5, 2.5, 1, 0.5, 2.5 and 0.5 while 𝑄2 values are 

respectively 0.5, 2.5, 0.5, 1, 0.5 and 2.5. (B) gives the COMSOL simulation results, the 

result obtained with the analytical model and the error between both for 𝑄1 = 𝑄2 = 1 nL ∙

s−1. (C) gives the maximal error (in %) measured all along the channel for 25 different 

inlet flow rate combination. (D) gives the same data at the end of the channel.  
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3.3. Validation of the extraction procedure for the sigmoid parameters 

The last validation step concerns the parameter extraction procedure for the sigmoidal function. 

For that purpose, we first calculate 1000 sigmoid functions 𝑠𝑖(𝑥) according to equation (18) for 𝑥 

in the range [0; 10]µm with four parameters 𝑎, 𝑏, 𝑐 and 𝑑 randomly drawn in a range that suits 

with our application: [0.1; 10] mM  for 𝑎 , [0.5;  5] µm−1  for 𝑏 , [1;  9] µm  for 𝑐  and [0; 1] mM 

for 𝑑. Then, we use the parameter extraction procedure to retrieve 𝑎, 𝑏, 𝑐 and 𝑑 from 𝑠𝑖(𝑥) and 

calculate the mean error (ME) and the RMSE between the original and the extracted values, as well as 

the RMSE between the original curve and the one obtained with the extracted parameters.  

Parameters 𝑎  and 𝑐  are always very well estimated, without offset and with an RMSE of  

240 ppm for 𝑎 and 86 ppm for 𝑐. Parameters 𝑏 and 𝑑 are slightly underestimated with an ME 

of −0.5% for 𝑏 and −0.3% for 𝑑. The RMSE is about 2% for 𝑏 and 1.3% for 𝑑. Finally, the 

average RMSE between the original curve and the one obtained with extracted parameters is about 

0.15%. These results validate our parameter extraction procedure. 

4. Discussion 

The analytical model presented in this paper is able to accurately predict the concentration profiles 

at the outlet of a passive mixer whatever its length. Compared with COMSOL simulations, which is 

our reference in the paper, the analytical model is more versatile and lighter in terms of computation 

resources. The model relies on two main assumtions: i) the laminar flow and ii) the sigmoid shape of 

the concentration profile at any point of the channel. It relies only on technological or physical 

parameters, except for two parameters (𝑘1 and 𝑘2) which depends on the shape of the junction. Thus, 

the model might be adapted for a different junction shape after a required calibration step consisting 

of the extraction of 𝑘1  and 𝑘2  for the studied junction shape from experiments or finite element 

simulation. In a future work, it might be interesting to look for an empirical relationship between the 

junction geometry (angle, width of the channels, etc.) and 𝑘1 and 𝑘2.  

The simplicity of the model enables its implementation with various types of computational 

languages. This includes, among others, Verilog-AMS, a hardware description language (HDL) used 

for the description and the design of electronics circuits and systems [27]. Verilog-AMS models of 

microfluidic devices under the assumption of homogeneous fluids have already been established [28,29]. 

At the same time, we also demonstrated the possibility to implement biochemical reaction models with 

such language [30], as well as reaction-advection-diffusion processes in microfluidic cavities [31]. The 

implementation of models for the passive mixers and other microfluidic devices exhibiting 

concentration gradients will thus enrich the library of building blocks with the ultimate focus on the in 

silico prototyping of lab-on-chip with a single language and environment [31].  

Verilog-AMS models are composed of black boxes with two kinds of connections between each 

other: the nodes or terminals which corresponds to quantities linked together by the generalized 

Kirchhoff laws (current/voltage in electronics, pressure/flow in microfluidics) [27] on the one hand, 

and the free quantities used for signal-flow descriptions. The analytical model described in this paper 

might be used for the Verilog-AMS description of several microfluidics circuits (Figure 6):  

• A short Y-shaped junction, which would be composed of three terminals (one for each inlet 

and one for the outlet), two input quantities (the concentration of the molecule of interest at 

each inlet) and four output quantities (the parameters of the sigmoid giving the concentration 
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profile at the output). 

• A short non-uniform channel, which would be composed of two terminals (one for the inlet 

and one for the outlet), four input quantities and four output quantities (the parameters of the 

sigmoid giving the concentration profile at the input and at the output).  

• A long non-uniform channel, which would be composed of two terminals (one for the inlet and 

one for the outlet), four input quantities (the parameters of the sigmoid giving the concentration 

profile at the input) and one single output quantity (the concentration which is assumed to be 

homogeneous after a long channel).  

• A Y-shaped splitter with long channels, which would be composed of three terminals (one for 

the inlet and one for each outlet), four input quantities (the parameters of the sigmoid giving 

the concentration profile at the input and at the output) and two output quantities (the 

concentration which is assumed to be homogeneous on each branch of the Y-shaped splitter).  

 

For all of these models, between pressure and flow rate are linked together according to the 

microfluidic/electronic analogies and generalised Kirchhoff laws. Besides, the relationship between 

free quantities is computed with the analytic models and integral calculation of the concentration 

across the channel width. All of these models might be combined together to obtain a complex 

microfluidic network. An example of model composition is given in [32]: we showed that the analytic 

model computed the same concentration map for a Y-shaped junction with a 500µm-long channel and 

for a Y-shaped junction with a 250µm-long channel followed by a 250µm-long short channel. 

 

Figure 6. Examples of Verilog-AMS compact models of microfluidic devices based on our 

analytical model. (A) is a short Y-shaped junction described in detail this paper. (B) is a 

splitter for which the input has a sigmoid concentration profile. Output channels are long 

enough to meet in the homogeneous fluid assumption at the output. The concentration 

inside each branch of the splitter is computed by integration of the concentration profile 

just before the splitter. (C) is the short straight channel with sigmoid concentration profile 

at the input and the output. (D) is a channel long enough to meet in the homogeneous fluid 

assumption at the output. The concentration at the output is the integral of the concentration 

profile over the whole channel section.   

Up to that point, we only discussed microfluidic devices with a single molecule of interest. 

However, most of the microfluidic mixers involve two or more chemical compounds. The complete 

model for a microfluidic system with multiple molecules of interest is a set of PDEs composed of one 
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instance of equation (2) per molecule. If no reaction occurs, i.e. 𝑠(𝑡, 𝑥, 𝑦) = 0 , each equation is 

independent and can be solved separately. Thus, the resulting analytical model is simply a 

superposition of analytical models, one per molecule. Additional free quantities are added to the model, 

one per molecule (corresponding to its concentration) when fluid are considered to be homogeneous 

and four per molecule (the parameters of the sigmoid) otherwise. 

The problem is much more complex when reactions occur in the channel. In this case, equations 

are no more independent and the coupling makes its analytical resolution very tricky. However, two 

extreme situations deserve to be discussed. If the reaction rate in low compared to the time it takes for 

the molecule to cross the channel from end to end, 𝑠(𝑡, 𝑥, 𝑦) can be neglected and only the reactants 

have to be considered. Conversely, if the reaction rate is high enough, we can consider that biochemical 

process is always at its steady state. Thus we first calculate the map of the reactant with the analytical 

model and then calculate the biochemical equilibrium state with the biochemical reactions. In between, 

the only way to take reaction into account is to solve numerically the set of couples PDEs with finite 

element methods. COMSOL provides specific modules for that purpose.  

The last point that deserves to be discussed is the assumption of the sigmoid profile of the 

concentration, which is the most common profile encountered in the case of a two-fluid mixture. 

However, other profiles might be observed, for instance if one considers a three-inlet mixer. In such 

cases, more complex, deserve deeper investigation. In such cases, several avenues can already be put 

forward. One of them consists of adapting the profile function and, thus, changing the set of parameters 

that characterize the profile. Equation (15) suggests that the concentration profile is conserved along 

the channel. Thus, as soon as we have a mathematical equation for the profile at the input of the channel, 

the associated Fourier coefficients can be calculated and altered by equation (15), and then used to 

compute the output concentration profile. Another alternative would be to keep sigmoid function but 

to characterize an actual profile as a superposition of sigmoidal functions. In this case, the structure of 

the model is not affected: superposition of sigmoidal functions can be treated just as in the case of 

multiple molecules problems. This is a kind of equivalent in microfluidic of the superposition theorem 

in electronics. Of course, this approach has to be verified and assessed on a large range of circuits, but 

we already demonstrate its validity in the case of a circuit mixing the same molecule at different 

concentration and at different flow rate. The concentration map inside the channel is always equal to 

the sum of the concentration map considering that there are only molecules at the first inlet and the 

map considering that there are only molecules at the second inlet. In particular, if the concentration of 

both inlets are equal, whatever the flow rate, the resulting concentration map is homogeneous, which 

is in accordance with the theoretical expectations.  

5. Conclusions 

The paper describes an analytical model for passive mixers by departing from the assumption of 

a channel long enough to ensure a homogeneous mixing. The model relies on a few analytical 

equations, some numerical integrations to compute the Fourier coefficients and an iterative curve 

fitting procedure. It is therefore quite light from a computational point of view compared to a finite 

element model. This approach gives very satisfactory results in the case of a simple Y-shaped mixer 

but might also be used to describe more complex behaviors (mixing of several molecules, multi-input 

mixer). One of the strengths this modelling approach is interoperable together with other models of 

microfluidic devices, but also biochemical and electronic devices, in a modelling environment based 
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on hardware description languages (Verilog-AMS for instance). It is thus a step forward towards a 

plug-and-play in silico prototyping environment for lab-on-a-chip.  
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