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Abstract: In this article, we introduce the 2-tuple linguistic bipolar fuzzy set (2TLBFS), a new strat-
egy for dealing with uncertainty that incorporates a 2-tuple linguistic term into bipolar fuzzy set. The
2TLBFS is a better way to deal with uncertain and imprecise information in the decision-making en-
vironment. We elaborate the operational rules, based on which, the 2-tuple linguistic bipolar fuzzy
weighted averaging (2TLBFWA) operator and the 2-tuple linguistic bipolar fuzzy weighted geomet-
ric (2TLBFWG) operator are presented to fuse the 2TLBF numbers (2TLBFNs). The Heronian mean
(HM) operator, which can reflect the internal correlation between attributes and their influence on deci-
sion results, is integrated into the 2TLBF environment to analyze the effect of the correlation between
decision factors on decision results. Initially, the generalized 2-tuple linguistic bipolar fuzzy Heronian
mean (G2TLBFHM) operator and generalized 2-tuple linguistic bipolar fuzzy weighted Heronian mean
(G2TLBFWHM) operator are proposed and properties are explained. Further, 2-tuple linguistic bipo-
lar fuzzy geometric Heronian mean (2TLBFGHM) operator and 2-tuple linguistic bipolar weighted
geometric Heronian mean (2TLBFWGHM) operator are proposed along with some of their desirable
properties. Then, an approach to multi-attribute group decision-making (MAGDM) based on the pro-
posed aggregation operators under the 2TLBF framework is developed. At last, a numerical illustration
is provided for the selection of the best photovoltaic cell to demonstrate the use of the generated tech-
nique and exhibit its adequacy.
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1. Introduction

With the steady depletion of non-renewable resources like crude oil, natural gas, coal, and rising
pollution levels, the development of solar photovoltaic is expanding, especially after the COVID-19
pandemic. Photovoltaic cells are commonly used as an economical and reliable energy source in dif-
ferent fields all across the world. Solar photovoltaic has become a sustainable and cost-effective energy
alternative for company owners and has a significant reduction in the cost of purchasing and installing
solar systems. Renewable energy has been associated with continuous development and a significant
effort to select the alternative based on the supplier demands, since its beginnings. Depending on the
manufacturing process, different types of photovoltaic cells are currently available. It is necessary to
assess photovoltaic technologies on the market, one step in this direction was to build a MAGDM tool
to assist decision-makers (DMs) in selecting the most appropriate photovoltaic technology.

Decision-making is an activity that people perform regularly in their daily lives [1, 2]. The goal of
decision-making is to classify the various possibilities according to the level of reliability for DMs.
The situation in which individuals collectively choose the best alternative is known as group decision-
making or MAGDM. The decision is then no longer attributable to any single group member, this is
because the decision is influenced by all people and social group processes. Individual decisions are
mostly different from group decisions. The MAGDM is a decision-making strategy that is treated as a
logical and reasonable human activity. Due to the increased complexity of the environment in decision
analysis and the problem itself, DMs are periodically provided with numerical data to demonstrate
decision-making information. The fuzzy set (FS) theory introduced by Zadeh [3] is the modified
version of the crisp sets. In fact, FS expresses the importance of the fuzzy value and this value lies
between [0, 1]. FS tells the membership degree (MD) of an object. Intuitionistic fuzzy set (IFS)
was introduced by Atanassov [4] which is generalization of FS. IFS has two functions, MD and non-
membership degree (NMD) functions, and both functions map on a closed unit interval from a non-
empty set. The IFS has a condition that the sum of both degrees must belong to [0, 1]. Zhang [5]
proposed a bipolar fuzzy set (BFS) as an extension of FS, which is represented by two components:
a degree of positive membership function that belongs to [0, 1] and a degree of negative membership
function that belongs to [−1, 0].

BFS has recently gained popularity as a useful approach for resolving uncertainty in decision-
making. Akram et al. [6] developed the BFNS-TOPSIS methods for the solution of multi-attribute
decision-making and MAGDM problems defined by BF N-soft information. Zhao et al. [7] established
a BF interactive multi-attribute decision-making strategy known as TODIM method depending on the
cumulative prospect theory TODIM model for dealing with the MAGDM issues. Certain bipolar fuzzy
graphs with applications are discussed in [8]. Poulik et al. [9] proposed the Wiener index for a BF
graph, and the Wiener absolute index is dependent on the total accurate connectivity between all pairs
of vertices and in the entire bipolar fuzzy graph. Akram et al. [10] proposed a method for solving the
LR-bipolar fuzzy linear system, the LR-complex BF linear system with complex coefficients, and the
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LR-complex BF linear system with real coefficients. Further, Akram et al. [11–13] developed many
decision-making methods utilizing BFSs and its extensions. Naz and Akram [14, 15] developed a new
DM approach to deal with the MADM problems based on graph theory. Further, Akram et al. [16–20]
introduced several DM methods under generalized fuzzy scenario.

People like to express language such as “excellent”, “good”, “medium”, “poor”, and “very poor”
to evaluate some attributes of the evaluation object in MAGDM consequently, the research of infor-
mation aggregation operators using language as attribute value is significantly essential. The 2-tuple
linguistic (2TL) term is an effective tool, which can avoid the loss of information and get more accurate
evaluation results. The 2TL representation model, firstly introduced by Herrera and Martinez [21, 22],
is one of the most crucial approaches to deal with linguistic decision-making issues. Later on, sev-
eral 2TL aggregation operators and decision-making approaches have been developed. Under the
2TL Pythagorean fuzzy sets, Zhang et al. [23] enhanced the standard cumulative prospect theory and
TODIM method based on past study of researches. In the context of intuitionistic 2TL data, Faizi
et al. [24] proposed two strategies, namely Linear best-worst method (BWM) and Euclidean BWM
to the BWM, to produce superior attribute importance weights for MAGDM circumstances. To esti-
mate correctness and generate explainable outputs, Labella et al. [25] used 2-tuple BWM to mitigate
the amount of paired comparisons in MAGDM circumstances and quantify the uncertainties connected
with them. For addressing MAGDM issues, Zhao et al. [26] developed the enhanced TODIM approach,
which is dependent on 2TL neutrosophic sets and cumulative prospect theory. He et al. [27] introduced
a combination procedure QUALIFLEX method and the Pythagorean 2TL fuzzy set to assess the ef-
fectiveness of management employees in infrastructure tasks, employing the traditional QUALIFLEX
decision-making strategy and Pythagorean 2TL fuzzy numbers to convey DMs assessment on every
strategy.

The Heronian mean (HM) is a powerful aggregation operator that demonstrates the aggregated
parameter’s interrelationships. Initially, Beliakov [28] demonstrated that the HM is an aggregation
operator. Ayub et al. [29] developed a new family of cubic fuzzy HM Dombi (HMD) operators,
including cubic fuzzy HMD, cubic fuzzy weighted HMD, cubic fuzzy geometric HMD, and cubic
fuzzy weighted geometric HMD aggregation operators. Lin et al. [30] introduced the partitioned
geometric HM operator and partitioned HM (PHM) operator, some picture fuzzy interactional PHM
(PFIPHM), geometric PFIPHM operators, and its weighted forms. Deveci et al. [31] proposed a
novel extension of the combined compromise solution methodology that incorporates the power
Heronian function and logarithmic method. Pamucar et al. [32] utilized the weighted power Heronian
and weighted geometric power Heronian functions to enhance the traditional weighted aggregated
sum product assessment technique. Garg et al. [33] developed complex intuitionistic uncertain
linguistic (CIUL) arithmetic HM, CIUL weighted arithmetic HM, CIUL geometric HM, and CIUL
weighted geometric HM by combining the HM and the CIUL concepts. Liu et al. [34] introduced and
investigated the neutrosophic cubic power Heronian and neutrosophic cubic power weighted Heronian
aggregation operators.

BFS has a significant advantage when it comes to explaining decision information in MAGDM
situations for DMs. Many real-world events are dependent on opposite affect, such as positive af-
fect and negative affect, plausibility and preference consistency, neutrality and indifference, and so on.
BFS plays a vital role in handling these types of situations when two opposite directional concepts
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are involved. When there is uncertainty due to fuzziness and vagueness, the use of fuzzy linguistic
information to assess alternatives in unipolar scales might help to express DM’s preferences for al-
ternatives. However, in some situations, DMs must represent negative and positive perspectives that
cannot be represented by unipolar scales. The goal of this study is to build an adaptive linguistic
MAGDM model for bipolar linguistic scales in which both alternatives and attributes can change over
time. People frequently use language to evaluate object attributes in actual MAGDM, and there are
sometimes relationships between the attributes. As a result, the study of MAGDM with language as
attributes and relationships between attributes are theoretically significant and practically beneficial.
In MAGDM situations, aggregation operators are frequently used. Average and geometric aggregation
operators are the two types of aggregation operators. These aggregation operators have in common
that they emphasize the relevance of each attribute, but they are unable to express the interrelationships
between the individual data. The HM operator is a significant operator that takes into account attribute
interrelationships. This study intends to introduce the notion of the 2TLBFHM operator, because there
is no published article on the 2TLBFS based on HM operator.

The following are some of the aspects of this research article that are unique:
1) We present the 2TLBFS as a novel innovation in FS theory for addressing data complexity. The

2TLBFS combines the benefits of both 2TL terms and BFS, increasing the adaptability of the BFS.
2) To cope with group decision-making situations in which the attributes have interrelationships,

we propose a family of HM aggregation operators for 2TLBFS, such as G2TLBFHM, G2TLBFWHM,
2TLBFGHM, and 2TLBFWGHM operators.

3) Certain formal definitions, theorems, and properties of the suggested information aggregation
operators are derived under the current conditions.

4) To rank the alternatives, a novel MAGDM approach is presented, which is based on the
G2TLBFWHM and 2TLBFWGHM operators to integrate DM’s evaluation preferences.

5) To demonstrate the applicability and robustness of the proposed method, an illustrative example
for selecting a cost-effective solution of photovoltaic cells is presented.

To achieve this goal, the structure of this paper is arranged as follows: Section 2 introduces some
initial concepts related to 2TL terms, BFSs, and HM aggregation operators. In Section 3, a new infor-
mation representation form, i.e., 2TLBFS is defined, along with its basic theories, such as some basic
operational rules, score function, and accuracy function of 2TLBFNs. Further, the 2TLBF weighted
averaging and weighted geometric operators are developed. In Section 4, we propose a family of HM
aggregation operators, including the G2TLBFHM, G2TLBFWHM, 2TLBFGHM, and 2TLBFWGHM
operators along with some of its essential properties. Section 5 presents MAGDM model based on the
proposed G2TLBFWHM and 2TLBFWGHM operators. Section 6 provides a numerical illustration
of the approach presented in this article for selecting the optimal photovoltaic cell using 2TLBFNs.
Finally, in Section 7, we summarize the paper.

2. Preliminaries

Definition 2.1. [5] Let L be a fixed set. A bipolar fuzzy set (BFS) B in L is given as

B = {⟨ℓ, (ϖ+B(ℓ), η−B(ℓ))⟩|ℓ ∈ L} (2.1)
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where the positive MD function ϖ+
B

(ℓ) : L → [0, 1] represents the satisfaction degree of an element
ℓ to the property and negative MD function η−

B
(ℓ) : L → [−1, 0] represents the satisfaction degree of

an element ℓ to some implicit counter property corresponding to a BFS B, respectively, and, for every
ℓ ∈ L. Let ȷ = (ϖ+, η−) be a BF number (BFN).

Definition 2.2. Let ȷ = (ϖ+, η−), ȷ1 = (ϖ+1 , η
−
1 ) and ȷ2 = (ϖ+2 , η

−
2 ) be three BFNs, then the basic

operations are as follows:

(1) ȷ1 ⊕ ȷ2 = (ϖ+1 +ϖ
+
2 −ϖ

+
1ϖ
+
2 ,−|η

−
1 ||η

−
2 |);

(2) ȷ1 ⊗ ȷ2 = (ϖ+1ϖ
+
2 ,−(|η−1 | + |η

−
2 |) + |η

−
1 ||η

−
2 |);

(3) λȷ = (1 − (1 −ϖ+)λ,−|η−|λ), λ > 0;
(4) (ȷ)λ = ((ϖ+)λ,−1 + |1 + η−|λ), λ > 0;
(5) ȷc = (1 −ϖ+, |η−| − 1);
(6) ȷ1 ⊆ ȷ2 if and only if ϖ+1 ≤ ϖ

+
2 and η−1 ≥ η

−
2 ;

(7) ȷ1 ∪ ȷ2 = (max{ϖ+1 , ϖ
+
2 },min{η−1 , η

−
2 });

(8) ȷ1 ∩ ȷ2 = (min{ϖ+1 , ϖ
+
2 },max{η−1 , η

−
2 }).

Definition 2.3. Let S = {♭ ȷ| ȷ = 1, . . . , σ} be a linguistic term set (LTS) and φ ∈ [1, σ] be a number
value representing the aggregation result of linguistic symbolic [21]. Then the function ∆ used to
obtain the 2TL information equivalent to φ is defined as:

∆ : [1, σ]→ S × [−
1
2
,

1
2

),

∆(φ) =

♭ ȷ, ȷ = round(φ)
υ = φ − ȷ, υ ∈ [−1

2 ,
1
2 ).

(2.2)

Definition 2.4. Let S = {♭ ȷ| ȷ = 1, . . . , σ} be a LTS and (♭ ȷ, υ ȷ) be a 2-tuple [21], there exists a function
∆−1 that restore the 2-tuple to its equivalent numerical value φ ∈ [1, σ] ⊂ R, where

∆−1 : S × [−
1
2
,

1
2

)→ [1, σ],

∆−1(♭ ȷ, υ) = ȷ + υ = φ. (2.3)

Definition 2.5. Let ak(k = 1, 2, . . . , n) be a group of non-negative numbers, if [28]

HM(a1, a2, . . . , an) =
2

n(n + 1)

n∑
j=1

n∑
k= j

√
a jak (2.4)

then HM is known as Heronian mean (HM) operator.

Based on Heronian mean, Yu [36] introduced the generalized Heronian mean (GHM) as follows:

Definition 2.6. Let s, t > 0 and ak(k = 1, 2, . . . , n) be a group of non-negative numbers [36]. If

GHMs,t(a1, a2, . . . , an) =

 2
n(n + 1)

n∑
j=1

n∑
k= j

as
ja

t
k


1

s+t

(2.5)

then GHMs,t is called GHM operator. The GHM operator decreases the HM operator when s = t = 1
2 .

Yu [36] then introduced the geometric HM operator, which is as follows:
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Definition 2.7. Let s, t > 0 and ak(k = 1, 2, . . . , n) be a group of non-negative real numbers [36], then

GHMs,t(a1, a2, . . . , an) =
1

s + t

 n∏
j=1,k= j

(sa j + tak)


2

n(n+1)

(2.6)

then GHMs,t is called the geometric HM (GHM) operator.

3. The 2-tuple linguistic bipolar fuzzy sets

In this section, by integrating BFS and 2TL terms, we introduce the new generalization of BFS,
called 2TLBFS. Further, we develop the 2TLBFWA and 2TLBFWG operators and discuss their desir-
able properties.

Definition 3.1. Let S = {♭0, ♭1, ♭2, . . . ♭σ} be a 2TL term set with odd cardinality σ+1. If ((♭l, £), (♭n,ℵ))
is defined for ♭l, ♭n ∈ S and £,ℵ ∈ [−1

2 ,
1
2 ) where (♭l, £) and (♭n,ℵ) express independently the MD and

NMD by 2TLSs, then 2TLBFS is defined as follows:

Fk = ((♭lk , £k), (♭nk ,ℵk)),

where 0 ≤ ∆−1(♭lk , £k) ≤ σ, 0 ≤ ∆−1(♭nk ,ℵk) ≤ σ.

Definition 3.2. Let F = ((♭l, £), (♭n,ℵ)) be a 2TLBFN. Then the score and accuracy functions of F are
defined as:

S(F) = ∆
(
σ

2

(
1 +

(
∆−1(♭l, £)
σ

)
−

(
∆−1(♭n,ℵ)
σ

)))
, S(F) ∈ [0, σ] (3.1)

ℶ(F) = ∆
(
σ

((
∆−1(♭l, £)
σ

)
+

(
∆−1(♭n,ℵ)
σ

)))
, ℶ(F) ∈ [0, σ] (3.2)

Definition 3.3. Let F1 = ((♭l1 , £1), (♭n1 ,ℵ1)) and F2 = ((♭l2 , £2), (♭n2 ,ℵ2)) be two 2TLBFNs, then we
have

(1) S(F1) < S(F2), then F1 < F2;
(2) S(F1) > S(F2), then F1 > F2;
(3) S(F1) = S(F2), ℶ(F1) < ℶ(F2), then F1 < F2;
(4) S(F1) = S(F2), ℶ(F1) > ℶ(F2), then F1 > F2;
(5) S(F1) = S(F2), ℶ(F1) = ℶ(F2), then F1 = F2.

Definition 3.4. Let F1 = ((♭l1 , £1), (♭n1 ,ℵ1)) and F2 = ((♭l2 , £2), (♭n2 ,ℵ2)) be two 2TLBFNs, then

(1) F1 ⊕ F2 =
 ∆

(
σ

(
1 −

(
1 −

(
∆−1(♭l1 ,£1)
σ

)) (
1 −

(
∆−1(♭l2 ,£2)
σ

))))
, ∆

(
σ

(
∆−1(♭n1 ,ℵ1)

σ

) (
∆−1(♭n2 ,ℵ2)

σ

)) ;
(2) F1 ⊗ F2 =

 ∆
(
σ

(
∆−1(♭l1 ,£1)
σ

) (
∆−1(♭l2 ,£2)
σ

))
, ∆

(
σ

(
1 −

(
1 −

(
∆−1(♭n1 ,ℵ1)

σ

)) (
1 −

(
∆−1(♭n2 ,ℵ2)

σ

)))) ;
(3) λF1 =

 ∆
σ

1−(1−( ∆−1(♭l1
,£1)

σ

))λ
,∆

(
σ

(
∆−1(♭n1 ,ℵ1)

σ

)λ) , λ > 0;

(4) Fλ1 =
 ∆

(
σ

(
∆−1(♭l1 ,£1)
σ

)λ)
, ∆

σ1−(1−( ∆−1(♭n1 ,ℵ1)
σ

))λ
, λ > 0.
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3.1. 2TLBFWA and 2TLBFWG operators

In this subsection, the two types of weighted aggregation operators are introduced: the 2TLBFWA
operator and the 2TLBFWG operator.

Definition 3.5. Let Fk = ((♭lk , £k), (♭nk ,ℵk))(k = 1, 2, . . . , n) be a collection of 2TLBFNs. The
2TLBFWA operator is a mapping Pn → P such that

2TLBFWA(F1,F2, . . . ,Fn) = ⊕n
k=1κ

⋆
kFk

where κ⋆ = (κ⋆1 , κ
⋆
2 , . . . , κ

⋆
n )T is the weight vector of Fk(k = 1, 2, . . . , n), such that κ⋆k ∈ [0, 1] and

n∑
k=1
κ⋆k = 1.

Theorem 3.1. Let Fk = ((♭lk , £k), (♭nk ,ℵk))(k = 1, 2, . . . , n) be a collection of 2TLBFNs with weight

vector κ⋆ = (κ⋆1 , κ
⋆
2 , . . . , κ

⋆
n )T , thereby satisfying κ⋆k ∈ [0, 1] and

n∑
k=1
κ⋆k = 1 (k = 1, 2, . . . , n). Then,

their aggregation value by the 2TLBFWA operator is still a 2TLBFN, and

2TLBFWA(F1,F2, . . . ,Fn) =

∆ σ 1 − n∏
k=1

(
1 −

(
∆−1(♭lk , £k)
σ

))κ⋆k  ,∆ σ n∏
k=1

(
∆−1(♭nk ,ℵk)
σ

)κ⋆k  .(3.3)

Proof. we prove that the Eq (3.3) holds by using mathematical induction method for positive integer n.

(a) when n = 1, we have

κ⋆1F1 =

(
∆

(
σ

(
1 −

(
1 −

(
∆−1(♭l1 ,£1)
σ

))κ⋆1 ))
,∆

(
σ

(
∆−1(♭n1 ,ℵ1)

σ

)κ⋆1 ) )
.

Thus, Eq (3.3) holds for n = 1.

(b) Suppose that Eq (3.3) holds for n = m,

2TLBFWA(F1,F2, . . . ,Fm) =
(
∆

(
σ

(
1 −

m∏
k=1

(
1 −

(
∆−1(♭lk ,£k)
σ

))κ⋆k ))
,∆

(
σ

m∏
k=1

(
∆−1(♭nk ,ℵk)

σ

)κ⋆k ) )
.

Then, when n = m + 1, by inductive assumption, we have

2TLBFWA(F1,F2, . . . ,Fm,Fm+1) = 2TLBFWA(F1,F2, . . . ,Fm) ⊕ κ⋆m+1Fm+1

=

(
∆

(
σ

(
1 −

m∏
k=1

(
1 −

(
∆−1(♭lk ,£k)
σ

))κ⋆k ))
,∆

(
σ

m∏
k=1

(
∆−1(♭nk ,ℵk)

σ

)κ⋆k ) )
⊕

(
∆

(
σ

(
1 −

(
1 −

(
∆−1(♭lm+1 ,£m+1)

σ

))κ⋆m+1
))
,∆

(
σ

(
∆−1(♭nm+1 ,ℵm+1)

σ

)κ⋆m+1
) )
.

=

(
∆

(
σ

(
1 −

m+1∏
k=1

(
1 −

(
∆−1(♭lk ,£k)
σ

))κ⋆k ))
,∆

(
σ

m+1∏
k=1

(
∆−1(♭nk ,ℵk)

σ

)κ⋆k ) )
.

Therefore, Eq (3.3) holds for positive integer n = m + 1. Thus, by mathematical induction method,
we know that Eq (3.3) holds for any n ≥ 1. □

Theorem 3.2. Let Fk = ((♭lk , £k), (♭nk ,ℵk)), F′k = ((♭′lk , £
′
k), (♭

′
nk
,ℵ′k))(k = 1, 2, . . . , n) be two sets of

2TLBFNs, then the 2TLBFWA operator has the following properties:
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(1) (Idempotency) If all Fk = ((♭lk , £k), (♭nk ,ℵk))(k = 1, 2, . . . , n) are equal, for all k = 1, 2, . . . , n,
then

2TLBFWA(F1,F2, . . . ,Fn) = F.

(2) (Monotonicity) If Fk ≤ F
′
k, for all k, then

2TLBFWA(F1,F2, . . . ,Fn) ≤ 2TLBFWA(F′1,F
′
2, . . . ,F

′
n).

(3) (Boundedness) If Fk = ((♭lk , £k), (♭nk ,ℵk))(k = 1, 2, . . . , n) be a collection of 2TLBFNs, and let
F− = (mink(♭lk , £k),maxk(♭nk ,ℵk)) and F+ = (maxk(♭lk , £k),mink(♭nk ,ℵk)), then

F
− ≤ 2TLBFWA(F1,F2, . . . ,Fn) ≤ F+.

Definition 3.6. Let Fk = ((♭lk , £k), (♭nk ,ℵk))(k = 1, 2, . . . , n) be a collection of 2TLBFNs. The
2TLBFWG operator is a mapping Pn → P, such that

2TLBFWG(F1,F2, . . . ,Fn) = ⊗n
k=1F

κ⋆k
k

where κ⋆ = (κ⋆1 , κ
⋆
2 , . . . , κ

⋆
n )T is the weight vector of Fk(k = 1, 2, . . . , n), such that κ⋆k ∈ [0, 1] and

n∑
k=1
κ⋆k = 1.

Theorem 3.3. Let Fk = ((♭lk , £k), (♭nk ,ℵk))(k = 1, 2, . . . , n) be a collection of 2TLBFNs with weight

vector κ⋆ = (κ⋆1 , κ
⋆
2 , . . . , κ

⋆
n )T , thereby satisfying κ⋆k ∈ [0, 1] and

n∑
k=1
κ⋆k = 1 (k = 1, 2, . . . , n). Then,

their aggregation value by the 2TLBFWG operator is still a 2TLBFN, and

2TLBFWG(F1,F2, . . . ,Fn) =
(
∆

(
σ

n∏
k=1

(
∆−1(♭lk ,£k)
σ

)κ⋆k )
,∆

(
σ

(
1 −

n∏
k=1

(
1 −

(
∆−1(♭nk ,ℵk)

σ

))κ⋆k )) )
. (3.4)

Theorem 3.4. Let Fk = ((♭lk , £k), (♭nk ,ℵk)),F′k = ((♭′lk , £
′
k), (♭

′
nk
,ℵ′k))(k = 1, 2, . . . , n) be two sets of

2TLBFNs, then the 2TLBFWG operator has the following properties:

(1) (Idempotency) If all Fk = ((♭lk , £k), (♭nk ,ℵk))(k = 1, 2, . . . , n) are equal, for all k = 1, 2, . . . , n,
then

2TLBFWG(F1,F2, . . . ,Fn) = F.

(2) (Monotonicity) If Fk ≤ F
′
k, for all k, then

2TLBFWG(F1,F2, . . . ,Fn) ≤ 2TLBFWG(F′1,F
′
2, . . . ,F

′
n).

(3) (Boundedness) If Fk = ((♭lk , £k), (♭nk ,ℵk))(k = 1, 2, . . . , n) be a collection of 2TLBFNs, and let
F− = (mink(♭lk , £k),maxk(♭nk ,ℵk)) and F+ = (maxk(♭lk , £k),mink(♭nk ,ℵk)), then

F
− ≤ 2TLBFWG(F1,F2, . . . ,Fn) ≤ F+.

Mathematical Biosciences and Engineering Volume 19, Issue 4, 3843–3878.



3851

4. The 2-tuple linguistic bipolar fuzzy Heronian mean aggregation operators

4.1. The G2TLBFHM operator and its weighted form

The generalized Heronian mean (GHM) operator and its weighted form in the 2TLBF environment
are introduced in this subsection. We also look into some of the properties of these operators.

4.1.1. The G2TLBFHM operator

In this subsection, we combine GHM with 2TLBFNs and propose the generalized 2TL bipolar fuzzy
Heronian mean (G2TLBFHM) operator.

Definition 4.1. Let Fk = ((♭lk , £k), (♭nk ,ℵk))(k = 1, 2, . . . , n) be a collection of 2TLBFNs. The
G2TLBFHM ia a mapping Pn → P such that

G2TLBFHMs,t(F1,F2, . . . ,Fn) =
(

2
n(n + 1)

⊕n
j=1 ⊕

n
k= j(F

s
j ⊗ F

t
k)
) 1

s+t

where s, t ≥ 0.

Theorem 4.1. The aggregated value by using G2TLBFHM operator is also 2TLBFN, where

G2TLBFHMs,t(F1,F2, . . . ,Fn)

=


∆

σ
1 − n∏

j=1,k= j

(
1 −

(
∆−1(♭l j ,£ j)

σ

)s (
∆−1(♭lk ,£k)
σ

)t
) 2

n(n+1)


1
s+t

 ,
∆

σ
1 −

1 − n∏
j=1,k= j

(
1 −

(
1 −

(
∆−1(♭n j ,ℵ j)

σ

))s (
1 −

(
∆−1(♭nk ,ℵk)

σ

))t
) 2

n(n+1)


1
s+t





where s, t > 0.

Proof. Utilizing Def. 3.4, we have

(F j)s =

∆ σ ∆−1(♭l j , £ j)
σ

s ,∆ σ 1 − 1 − ∆−1(♭n j ,ℵ j)
σ

s ,
(Fk)t =

∆ σ (
∆−1(♭lk , £k)
σ

)t ,∆ σ 1 − (
1 −

(
∆−1(♭nk ,ℵk)
σ

))t .
Thus,

(F j)s ⊗ (Fk)t =


∆

(
σ

(
∆−1(♭l j ,£ j)

σ

)s (
∆−1(♭lk ,£k)
σ

)t
)
,

∆

(
σ

(
1 −

(
1 −

(
∆−1(♭n j ,ℵ j)

σ

))s (
1 −

(
∆−1(♭nk ,ℵk)

σ

))t
))

 .
Therefore,

⊕n
j=1 ⊕

n
k= j (Fs

j ⊗ F
t
k) =


∆

(
σ

(
1 −

n∏
j=1,k= j

(
1 −

(
∆−1(♭l j ,£ j)

σ

)s (
∆−1(♭lk ,£k)
σ

)t
)))
,

∆

(
σ

(
n∏

j=1,k= j

(
1 −

(
1 −

(
∆−1(♭n j ,ℵ j)

σ

))s (
1 −

(
∆−1(♭nk ,ℵk)

σ

))t
)))

 .
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Furthermore,

2
n(n + 1)

⊕n
j=1 ⊕

n
k= j(F

s
j ⊗ F

t
k)

=


∆

σ
1 − n∏

j=1,k= j

(
1 −

(
∆−1(♭l j ,£ j)

σ

)s (
∆−1(♭lk ,£k)
σ

)t
) 2

n(n+1)

 ,

∆

σ
 n∏

j=1,k= j

(
1 −

(
1 −

(
∆−1(♭n j ,ℵ j)

σ

))s (
1 −

(
∆−1(♭nk ,ℵk)

σ

))t
) 2

n(n+1)



 .

G2TLBFHMs,t(F1,F2, . . . ,Fn) =
(

2
n(n + 1)

⊕n
j=1 ⊕

n
k= j(F

s
j ⊗ F

t
k)
) 1

s+t

=


∆

σ
1 − n∏

j=1,k= j

(
1 −

(
∆−1(♭l j ,£ j)

σ

)s (
∆−1(♭lk ,£k)
σ

)t
) 2

n(n+1)


1
s+t

 ,
∆

σ
1 −

1 − n∏
j=1,k= j

(
1 −

(
1 −

(
∆−1(♭n j ,ℵ j)

σ

))s (
1 −

(
∆−1(♭nk ,ℵk)

σ

))t
) 2

n(n+1)


1
s+t





.

□

Example 4.1. Let F1 = ((♭3, 0.4), (♭5,−0.2)), F2 = ((♭4, 0.3), (♭2,−0.5)), F3 = ((♭3, 0.1), (♭4,−0.4)),
and F4 = ((♭5, 0.2), (♭6,−0.3)) be four 2TLBFNs, and suppose s = 2 and t = 3, then according to
Theorem 4.1 we have

G2TLBFHMs,t(F1,F2, . . . ,Fn) =
(

2
n(n + 1)

⊕n
j=1 ⊕

n
k= j(F

s
j ⊗ F

t
k)
) 1

s+t

=



∆


6


1 −


(1 − (3.4

6 )2 × ( 3.4
6 )3) × (1 − (3.4

6 )2 × ( 4.3
6 )3)

×(1 − ( 3.4
6 )2 × ( 3.1

6 )3) × (1 − (3.4
6 )2 × ( 5.2

6 )3)
×(1 − ( 4.3

6 )2 × ( 4.3
6 )3) × (1 − (4.3

6 )2 × ( 3.1
6 )3)

×(1 − ( 4.3
6 )2 × ( 5.2

6 )3) × (1 − (3.1
6 )2 × ( 3.1

6 )3)
×(1 − ( 3.1

6 )2 × ( 5.2
6 )3) × (1 − (5.2

6 )2 × ( 5.2
6 )3)



2
4(4+1)



1
2+3


,

∆


6


1 −


1 −


(1 − (1 − 4.8

6 )2 × (1 − 4.8
6 )3) × (1 − (1 − 4.8

6 )2 × (1 − 1.5
6 )3)

×(1 − (1 − 4.8
6 )2 × (1 − 3.6

6 )3) × (1 − (1 − 4.8
6 )2 × (1 − 5.7

6 )3)
×(1 − (1 − 1.5

6 )2 × (1 − 1.5
6 )3) × (1 − (1 − 1.5

6 )2 × (1 − 3.6
6 )3)

×(1 − (1 − 1.5
6 )2 × (1 − 5.7

6 )3) × (1 − (1 − 3.6
6 )2 × (1 − 3.6

6 )3)
×(1 − (1 − 3.6

6 )2 × (1 − 5.7
6 )3) × (1 − (1 − 5.7

6 )2 × (1 − 5.7
6 )3)



2
4(4+1)



1
2+3






= ((♭3, 0.7626), (♭3, 0.5081)).

Property 4.1. (Idempotency) Let all Fk(k = 1, 2, . . . , n) are equal, i.e., Fk = F for all k, then

G2TLBFHMs,t(F1,F2, . . . ,Fn) = F.
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Proof. Since Fk = F = ((♭l, £), (♭n,ℵ)), then

G2TLBFHMs,t(F1,F2, . . . ,Fn)

=


∆

σ

1 − n∏

j=1,k= j

(
1 −

(
∆−1(♭l j ,£ j)

σ

)s (
∆−1(♭lk ,£k)
σ

)t
) 2

n(n+1)


1
s+t


 ,

∆

σ
1 −

1 − n∏
j=1,k= j

(
1 −

(
1 −

(
∆−1(♭n j ,ℵ j)

σ

))s (
1 −

(
∆−1(♭nk ,ℵk)

σ

))t
) 2

n(n+1)


1
s+t





.

=


∆

(
σ

(
1 −

(
1 −

(
∆−1(♭l,£)
σ

)s (
∆−1(♭l,£)
σ

)t) 1
s+t

))
,

∆

(
σ

(
1 −

(
1 −

(
∆−1(♭n,ℵ)
σ

))s (
1 −

(
∆−1(♭n,ℵ)
σ

))t) 1
s+t

)
 .

=
(
∆

(
σ

(
1 −

(
1 −

(
∆−1(♭l,£)
σ

))))
,∆

(
σ

(
1 −

(
1 −

(
∆−1(♭n,ℵ)
σ

)))) )
.

= ((♭l, £), (♭n,ℵ)) = F.

□

Property 4.2. (Monotonicity) Let Fk(k = 1, 2, . . . , n) and F′k(k = 1, 2, . . . , n) be two sets of 2TLBFNs.
If Fk ≥ F

′
k for all k, then

G2T LBFHMs,t(F1,F2, . . . ,Fn) ≥ G2T LBFHMs,t(F′1,F
′
2, . . . ,F

′
n).

Proof. Let F =
(
(♭l j , £ j), (♭n j ,ℵ j)

)
and F′ =

(
(♭′l j
, £′j), (♭

′
n j
,ℵ′j)

)
be two sets of 2TLBFNs. Since

(♭l j , £ j) ≥ (♭′l j
, £′j)

∆−1(♭l j , £ j) ≥ ∆−1(♭′l j
, £′j)(

∆−1(♭l j ,£ j)

σ

)s (
∆−1(♭lk ,£k)
σ

)t
≥

(
∆−1(♭′l j

,£′j)

σ

)s (
∆−1(♭′lk

,£′k)

σ

)t

n∏
j=1,k= j

(
1 −

(
∆−1(♭l j ,£ j)

σ

)s (
∆−1(♭lk ,£k)
σ

)t
) 2

n(n+1)

≤
n∏

j=1,k= j

(
1 −

(
∆−1(♭′l j

,£′j)

σ

)′s (
∆−1(♭′lk

,£′k)

σ

)t) 2
n(n+1)

.

1 −
n∏

j=1,k= j

(
1 −

(
∆−1(♭l j ,£ j)

σ

)s (
∆−1(♭lk ,£k)
σ

)t
) 2

n(n+1)

≥ 1 −
n∏

j=1,k= j

(
1 −

(
∆−1(♭′l j

,£′j)

σ

)s (
∆−1(♭′lk

,£′k)

σ

)t) 2
n(n+1)

.

∆

σ
1 − n∏

j=1,k= j

(
1 −

(
∆−1(♭l j ,£ j)

σ

)s (
∆−1(♭lk ,£k)
σ

)t
) 2

n(n+1)


1
s+t

 ≥
∆

σ
1 − n∏

j=1,k= j

(
1 −

(
∆−1(♭′l j

,£′j)

σ

)s (
∆−1(♭′lk

,£′k)

σ

)t) 2
n(n+1)


1

s+t
 .

Similarly, we can prove that (♭n j ,ℵ j) ≤ (♭′n j
,ℵ′j). □
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Property 4.3. (Boundedness) Let Fk(k = 1, 2, . . . , n) be a collection of 2TLBFNs, and let F− =
mink Fk, F

+ = maxk Fk, then

F
− ≤ G2T LBFHMs,t(F1,F2, . . . ,Fn) ≤ F+.

Proof. According to Property 4.1

G2T LBFHMs,t(F−1 ,F
−
2 , . . . ,F

−
n ) = F−

and
G2T LBFHMs,t(F+1 ,F

+
2 , . . . ,F

+
n ) = F+

From Property 4.2
F
− ≤ G2T LBFHMs,t(F1,F2, . . . ,Fn) ≤ F+.

□

4.1.2. The G2TLBFWHM operator

Definition 4.2. Let s, t > 0,Fk = ((♭lk , £k), (♭nk ,ℵk))(k = 1, 2, . . . , n) be a collection of 2TLBFNs,
κ⋆ = (κ⋆1 , κ

⋆
2 , . . . , κ

⋆
n )T is the weight vector of Fk, satisfying κ⋆k > 0 and

∑n
k=1 κ

⋆
k = 1 (k = 1, 2, . . . , n).

The G2TLBFWHM operator is defined as follows:

G2TLBFWHMs,t
κ⋆

(F1,F2, . . . ,Fn) =
(
⊕n

j=1 ⊕
n
k= j

(
κ⋆j κ

⋆
k (F j)s ⊗ (Fk)t

)) 1
s+t
. (4.1)

Theorem 4.2. Let s, t > 0, Fk = ((♭lk , £k), (♭nk ,ℵk))(k = 1, 2, . . . , n) be a collection of 2TLBFNs. Then
the aggregated value using by G2TLBFWHM operator is also a 2TLBFN, and

G2TLBFWHMs,t
κ⋆

(F1,F2, . . . ,Fn)

=


∆

σ

1 − n∏

j=1,k= j

(
1 −

(
∆−1(♭l j ,£ j)

σ

)s (
∆−1(♭lk ,£k)
σ

)t
)κ⋆j κ⋆k 

1
s+t


 ,

∆

σ
1 −

1 − n∏
j=1,k= j

(
1 −

(
1 −

(
∆−1(♭n j ,ℵ j)

σ

))s (
1 −

(
∆−1(♭nk ,ℵk)

σ

))t
)κ⋆j κ⋆k 

1
s+t





. (4.2)

Proof. According to Definition 3.4, we can derive

(F j)s =

∆ σ ∆−1(♭l j , £ j)
σ

s ,∆ σ 1 − 1 − ∆−1(♭n j ,ℵ j)
σ

s ,
(Fk)t =

∆ σ (
∆−1(♭lk , £k)
σ

)t ,∆ σ 1 − (
1 −

(
∆−1(♭nk ,ℵk)
σ

))t .
Thus,

(F j)s ⊗ (Fk)t =


∆

(
σ

(
∆−1(♭l j ,£ j)

σ

)s (
∆−1(♭lk ,£k)
σ

)t
)
,

∆

(
σ

(
1 −

(
1 −

(
∆−1(♭n j ,ℵ j)

σ

))s (
1 −

(
∆−1(♭nk ,ℵk)

σ

))t
))

 .
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Therefore,

κ⋆j κ
⋆
k (F j)s ⊗ (Fk)t =


∆

σ 1 − (
1 −

(
∆−1(♭l j ,£ j)

σ

)s (
∆−1(♭lk ,£k)
σ

)t
)κ⋆j κ⋆k  ,

∆

σ (
1 −

(
1 −

(
∆−1(♭n j ,ℵ j)

σ

))s (
1 −

(
∆−1(♭nk ,ℵk)

σ

))t
)κ⋆j κ⋆k 

 .
Furthermore,

⊕n
j=1 ⊕

n
k= j (κ⋆j κ

⋆
k (F j)s ⊗ (Fk)t)

=


∆

σ 1 − n∏
j=1,k= j

(
1 −

(
∆−1(♭l j ,£ j)

σ

)s (
∆−1(♭lk ,£k)
σ

)t
)κ⋆j κ⋆k  ,

∆

σ  n∏
j=1,k= j

(
1 −

(
1 −

(
∆−1(♭n j ,ℵ j)

σ

))s (
1 −

(
∆−1(♭nk ,ℵk)

σ

))t
)κ⋆j κ⋆k 

 .

G2TLBFWHMs,t
κ⋆

(F1,F2, . . . ,Fn) =
(
⊕n

j=1 ⊕
n
k= j

(
κ⋆j κ

⋆
k (F j)s ⊗ (Fk)t

)) 1
s+t

=


∆

σ
1 − n∏

j=1,k= j

(
1 −

(
∆−1(♭l j ,£ j)

σ

)s (
∆−1(♭lk ,£k)
σ

)t
)κ⋆j κ⋆k 

1
s+t

 ,
∆

σ
1 −

1 − n∏
j=1,k= j

(
1 −

(
1 −

(
∆−1(♭n j ,ℵ j)

σ

))s (
1 −

(
∆−1(♭nk ,ℵk)

σ

))t
)κ⋆j κ⋆k 

1
s+t





.

□

Example 4.2. Let F1 = ((♭3, 0.4), (♭5, 0.2)), F2 = ((♭4, 0.3), (♭2,−0.5)), F3 = ((♭3, 0.1), (♭4,−0.4)), and
F4 = ((♭5, 0.2), (♭6,−0.3)) be four 2TLBFNs, and suppose s = 2 and t = 3, κ⋆ = (0.17, 0.32, 0.38, 0.13)
then according to Theorem 4.2 we have

G2TLBFWHMs,t
κ⋆

(F1,F2, . . . ,Fn) =
(
⊕n

j=1 ⊕
n
k= j

(
κ⋆j κ

⋆
k (F j)s ⊗ (Fk)t

)) 1
s+t

=



∆


6


1 −



(1 − ( 3.4
6 )2 × ( 3.4

6 )3)0.17×0.17 × (1 − ( 3.4
6 )2 × ( 4.3

6 )3)0.17×0.32

×(1 − ( 3.4
6 )2 × ( 3.1

6 )3)0.17×0.38 × (1 − ( 3.4
6 )2 × ( 5.2

6 )3)0.17×0.13

×(1 − ( 4.3
6 )2 × ( 4.3

6 )3)0.32×0.32 × (1 − ( 4.3
6 )2 × ( 3.1

6 )3)0.32×0.38

×(1 − ( 4.3
6 )2 × ( 5.2

6 )3)0.32×0.13 × (1 − ( 3.1
6 )2 × ( 3.1

6 )3)0.38×0.38

×(1 − ( 3.1
6 )2 × ( 5.2

6 )3)0.38×0.13 × (1 − ( 5.2
6 )2 × ( 5.2

6 )3)0.13×0.13





1
2+3


,

∆


6


1 −


1 −



(
1 − (1 − 5.2

6 )2 × (1 − 5.2
6 )3

)0.17×0.17
×

(
1 − (1 − 5.2

6 )2 × (1 − 1.5
6 )3

)0.17×0.32

×
(
1 − (1 − 5.2

6 )2 × (1 − 3.6
6 )3

)0.17×0.38
×

(
1 − (1 − 5.2

6 )2 × (1 − 5.7
6 )3

)0.17×0.13

×
(
1 − (1 − 1.5

6 )2 × (1 − 1.5
6 )3

)0.32×0.32
×

(
1 − (1 − 1.5

6 )2 × (1 − 3.6
6 )3

)0.32×0.38

×
(
1 − (1 − 1.5

6 )2 × (1 − 5.7
6 )3

)0.32×0.13
×

(
1 − (1 − 3.6

6 )2 × (1 − 3.6
6 )3

)0.38×0.38

×
(
1 − (1 − 3.6

6 )2 × (1 − 5.7
6 )3

)0.38×0.13
×

(
1 − (1 − 5.7

6 )2 × (1 − 5.7
6 )3

)0.13×0.13





1
2+3







.

= ((♭3, 0.2487), (♭2, 0.9455)).
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The G2TLBFWHM operator has the following features, which are easily shown.

Property 4.4. (Idempotancy) Let all Fk(k = 1, 2, . . . , n) are equal, i.e., Fk = F for all k, then

G2T LBFWHMs,t
κ⋆

(F1,F2, . . . ,Fn) = F.

Property 4.5. (Monotonicity) Let Fk(k = 1, 2, . . . , n) and F′k(k = 1, 2, . . . , n) be two sets of 2TLBFNs.
If Fk ≥ F

′
k for all k, then

G2TLBFWHMs,t
κ⋆

(F1,F2, . . . ,Fn) ≥ G2T LBFWHMs,t
κ⋆

(F′1,F
′
2, . . . ,F

′
n).

Property 4.6. (Boundedness) Let Fk(k = 1, 2, . . . , n) be a collection of 2TLBFNs, and let F− =
mink Fk, F

+ = maxk Fk, then

F
− ≤ G2TLBFWHMs,t

κ⋆
(F1,F2, . . . ,Fn) ≤ F+.

4.2. The 2TLBFGHM operator and its weighted form

In this subsection, we introduced the geometric Heronian mean (GHM) operator and its weighted
form. In addition, we investigate some properties of these operators.

4.2.1. The 2TLBFGHM operator

In this subsection, we combine GHM with 2TLBFNs and propose the 2TL bipolar fuzzy geometric
Heronian mean (2TLBFGHM) operator.

Definition 4.3. Let Fk = ((♭lk , £k), (♭nk ,ℵk))(k = 1, 2, . . . , n) be a collection of 2TLBFNs. The
2TLBFGHM ia a mapping Pn → P such that

2TLBFGHMs,t(F1,F2, . . . ,Fn) =
1

s + t

(
⊗n

j=1 ⊗
n
k= j (sF j ⊕ tFk)

) 2
n(n+1) (4.3)

where s, t ≥ 0.

Theorem 4.3. The aggregated value by using 2TLBFGHM operator is also 2TLBFN, where

2TLBFGHMs,t(F1,F2, . . . ,Fn)

=


∆

σ
1 −

1 − (
n∏

j=1,k= j

(
1 −

(
1 −

(
∆−1(♭l j ,£ j)

σ

)))s (
1 −

(
∆−1(♭lk ,£k)
σ

))t
) 2

n(n+1)


1
s+t


 ,

∆

σ

1 − n∏

j=1,k= j

(
1 −

(
∆−1(♭n j ,ℵ j)

σ

)s (
∆−1(♭nk ,ℵk)

σ

)t
) 2

n(n+1)


1
s+t





where s, t > 0.

Example 4.3. Let F1 = ((♭3, 0.4), (♭5,−0.2)), F2 = ((♭4, 0.3), (♭2,−0.5)), F3 = ((♭3, 0.1), (♭4,−0.4)),
and F4 = ((♭5, 0.2), (♭6,−0.3)) be four 2TLBFNs, and suppose s = 2 and t = 3, then according to
Theorem 4.3 we have

2TLBFGHMs,t(F1,F2, . . . ,Fn) =
1

s + t

(
⊗n

j=1 ⊗
n
k= j (sF j ⊕ tFk)

) 2
n(n+1)
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=



∆


6


1 −


1 −


(1 − (1 − 3.4

6 )2 × (1 − 3.4
6 )3) × (1 − (1 − 3.4

6 )2 × (1 − 4.3
6 )3)

×(1 − (1 − 3.4
6 )2 × (1 − 3.1

6 )3) × (1 − (1 − 3.4
6 )2 × (1 − 5.2

6 )3)
×(1 − (1 − 4.3

6 )2 × (1 − 4.3
6 )3) × (1 − (1 − 4.3

6 )2 × (1 − 3.1
6 )3)

×(1 − (1 − 4.3
6 )2 × (1 − 5.2

6 )3) × (1 − (1 − 3.1
6 )2 × (1 − 3.1

6 )3)
×(1 − (1 − 3.1

6 )2 × (1 − 5.2
6 )3) × (1 − (1 − 5.2

6 )2 × (1 − 5.2
6 )3)



2
4(4+1)



1
2+3




,


∆


6


1 −


(1 − ( 4.8

6 )2 × (4.8
6 )3) × (1 − ( 4.8

6 )2 × ( 1.5
6 )3)

×(1 − (4.8
6 )2 × (3.6

6 )3) × (1 − ( 4.8
6 )2 × (5.7

6 )3)
×(1 − (1.5

6 )2 × (1.5
6 )3) × (1 − ( 1.5

6 )2 × (3.6
6 )3)

×(1 − (1.5
6 )2 × (5.7

6 )3) × (1 − ( 3.6
6 )2 × (3.6

6 )3)
×(1 − (3.6

6 )2 × (5.7
6 )3) × (1 − ( 5.7

6 )2 × (5.7
6 )3)



2
4(4+1)



1
2+3






= ((♭2, 0.9433), (♭4, 0.6685)).

Property 4.7. (Idempotency) Let all Fk(k = 1, 2, . . . , n) are equal, i.e., Fk = F for all k, then

2TLBFGHM s,t(F1,F2, . . . ,Fn) = F.

Property 4.8. (Monotonicity) Let Fk(k = 1, 2, . . . , n) and F′k(k = 1, 2, . . . , n) be two sets of 2TLBFNs.
If Fk ≥ F

′
k for all k, then

2TLBFGHM s,t(F1,F2, . . . ,Fn) ≥ 2T LBFGHM s,t(F′1,F
′
2, . . . ,F

′
n).

Property 4.9. (Boundedness) Let Fk(k = 1, 2, . . . , n) be a collection of 2TLBFNs, and let F− =
mink Fk, F

+ = maxk Fk, then

F
− ≤ 2TLBFGHM s,t(F1,F2, . . . ,Fn) ≤ F+.

4.2.2. The 2TLBFWGHM operator

Definition 4.4. Let s, t > 0,Fk = ((♭lk , £k), (♭nk ,ℵk))(k = 1, 2, . . . , n) be a collection of 2TLBFNs,
κ⋆ = (κ⋆1 , κ

⋆
2 , . . . , κ

⋆
n )T is the weight vector of Fk, satisfying κ⋆k > 0 and

∑n
k=1 κ

⋆
k = 1 (k = 1, 2, . . . , n).

The 2TLBFWGHM operator is defined as follows:

2TLBFWGHMs,t
κ⋆

(F1,F2, . . . ,Fn) =
1

s + t

(
⊗n

j=1 ⊗
n
k= j (sF j ⊕ tFk)κ

⋆
j κ
⋆
k
)
. (4.4)

Theorem 4.4. Let s, t > 0,Fk = ((♭lk , £k), (♭nk ,ℵk))(k = 1, 2, . . . , n) be a collection of 2TLBFNs. Then,
the aggregated value by using the 2TLBFWGHM operator is also a 2TLBFN, and

2TLBFGWHMs,t
κ⋆

(F1,F2, . . . ,Fn)

=


∆

σ
1 −

1 − n∏
j=1,k= j

(
1 −

(
1 −

(
∆−1(♭l j ,£ j)

σ

))s (
1 −

(
∆−1(♭lk ,£k)
σ

))t
)κ⋆j κ⋆k 

1
s+t


 ,

∆

σ
1 − n∏

j=1,k= j

(
1 −

(
∆−1(♭n j ,ℵ j)

σ

)s (
∆−1(♭nk ,ℵk)

σ

)t
)κ⋆j κ⋆k 

1
s+t




. (4.5)
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Example 4.4. Let F1 = ((♭3, 0.4), (♭5, 0.2)), F2 = ((♭4, 0.3), (♭2,−0.5)), F3 = ((♭3, 0.1), (♭4,−0.4)), and
F4 = ((♭5, 0.2), (♭6,−0.3)) be four 2TLBFNs, and suppose s = 2 and t = 3, κ⋆ = (0.17, 0.32, 0.38, 0.13),
then according to Theorem 4.4 we have

2TLBFWGHMs,t
κ⋆

(F1,F2, . . . ,Fn) =
1

s + t

(
⊗n

j=1 ⊗
n
k= j (sF j ⊕ tFk)κ

⋆
j κ
⋆
k
)

=



∆


6


1 −


1 −



(
1 − (1 − 3.4

6 )2 × (1 − 3.4
6 )3

)0.17×0.17
×

(
1 − (1 − 3.4

6 )2 × (1 − 4.3
6 )3

)0.17×0.32

×
(
1 − (1 − 3.4

6 )2 × (1 − 3.1
6 )3

)0.17×0.38
×

(
1 − (1 − 3.4

6 )2 × (1 − 5.2
6 )3

)0.17×0.13

×
(
1 − (1 − 4.3

6 )2 × (1 − 4.3
6 )3

)0.32×0.32
×

(
1 − (1 − 4.3

6 )2 × (1 − 3.1
6 )3

)0.32×0.38

×
(
1 − (1 − 4.3

6 )2 × (1 − 5.2
6 )3

)0.32×0.13
×

(
1 − (1 − 3.1

6 )2 × (1 − 3.1
6 )3

)0.38×0.38

×
(
1 − (1 − 3.1

6 )2 × (1 − 5.2
6 )3

)0.38×0.13
×

(
1 − (1 − 5.2

6 )2 × (1 − 5.2
6 )3

)0.13×0.13





1
2+3




,

∆


6


1 −



(1 − ( 5.2
6 )2 × ( 5.2

6 )3)0.17×0.17 × (1 − ( 5.2
6 )2 × ( 1.5

6 )3)0.17×0.32

×(1 − ( 5.2
6 )2 × ( 3.6

6 )3)0.17×0.38 × (1 − ( 5.2
6 )2 × ( 5.7

6 )3)0.17×0.13

×(1 − ( 1.5
6 )2 × ( 1.5

6 )3)0.32×0.32 × (1 − ( 1.5
6 )2 × ( 3.6

6 )3)0.32×0.38

×(1 − ( 1.5
6 )2 × ( 5.7

6 )3)0.32×0.13 × (1 − ( 3.6
6 )2 × ( 3.6

6 )3)0.38×0.38

×(1 − ( 3.6
6 )2 × ( 5.7

6 )3)0.38×0.13 × (1 − ( 5.7
6 )2 × ( 5.7

6 )3)0.13×0.13





1
2+3





.

= ((♭3, 0.1564), (♭3, 0.7362)).

Property 4.10. (Idempotency) Let all Fk(k = 1, 2, . . . , n) are equal, i.e., Fk = F for all k, then

2TLBFWGHMs,t
κ⋆

(F1,F2, . . . ,Fn) = F.

Property 4.11. (Monotonicity) Let Fk(k = 1, 2, . . . , n) and F′k(k = 1, 2, . . . , n) be two sets of 2TLBFNs.
If Fk ≥ F

′
k for all k, then

2TLBFWGHMs,t
κ⋆

(F1,F2, . . . ,Fn) ≥ 2T LBFWGHMs,t
κ⋆

(F′1,F
′
2, . . . ,F

′
n).

Property 4.12. (Boundedness) Let Fk(k = 1, 2, . . . , n) be a collection of 2TLBFNs, and let F− =
mink Fk, F

+ = maxk Fk, then

F
− ≤ 2T LBFWGHMs,t

κ⋆
(F1,F2, . . . ,Fn) ≤ F+.

5. An approach to MAGDM problem with 2TLBF information

We provide a novel approach to MAGDM in this section, based on the suggested G2TLBFWHM
and 2TLBFWGHM operators. Consider 𭟋 = {𭟋1, 𭟋2, . . . , 𭟋m} be a set of alternatives, Q =

{Q1,Q2, . . . ,Qn} be the set of attributes, and D = {D1,D2, . . . ,Dl} be a set of experts. For at-
tribute Qk(k = 1, 2, . . . , n) of alternative 𭟋 j( j = 1, 2, . . . ,m), the DM Dh(h = 1, 2, . . . , l) expresses
his assessment by Fh

jk = ((♭hl jk
, £h

jk), (♭
h
n jk
,ℵh

jk)), which is a 2TLBFN defined on the 2TL term set
♭hjk ∈ S = (♭0, ♭1, ♭2, . . . , ♭σ). Thus, for each DM’s an individual 2TLBF assessment matrix can be
derived, which can be denoted as Fh = (Fh

jk)m×n. Let κ⋆ = (κ⋆1 , κ
⋆
2 , . . . , κ

⋆
n )T be the weight vector of

attributes, such that κ⋆k ∈ [0, 1],
n∑

k=1
κ⋆k = 1. Let κ⋆⋆ = (κ⋆⋆1 , κ

⋆⋆
2 , . . . , κ

⋆⋆
l )T be the weight vector of

DMs, satisfying κ⋆⋆h ∈ [0, 1],
l∑

h=1
κ⋆⋆h = 1. The essential steps for addressing the 2TLBF-MAGDM

problem are described below:
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Step 1. Utilize the 2TLBFWA operator from Eq (3.3) and the 2TLBFWG operator from Eq (3.4) to
aggregate all individual 2TLBF decision matrices Fh = (Fh

jk)m×n(h = 1, 2, . . . , l) into a collective
2TLBF decision matrix F = (F jk)m×n.

Step 2. Aggregate the 2TLBF evaluation values of alternative 𭟋 j on all attributes Qk(k = 1, 2, . . . , n)
into the overall evaluation value of the alternative 𭟋 j( j = 1, 2, . . . ,m) by using the G2TLBFWHM
operator from Eq (4.2) and the 2TLBFWGHM operator from Eq (4.5) to derive the overall pref-
erence values of the alternatives 𭟋 j( j = 1, 2, . . . ,m).

Step 3. Determine the score S(F j) of overall assessment value F j( j = 1, 2, . . . ,m) according to Def.
3.1.

Step 4. By ranking the alternatives 𭟋 j( j = 1, 2, . . . ,m) based on their score values, select the best
alternative.

Step 5. End.

We give the following flowchart (Figure 1) to better explain the steps of the developed MAGDM
approach in this paper.
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2TLBFWA (𝔍1,𝔍2,…,𝔍𝑛) 

2TLBFWG (𝔍1,𝔍2,…,𝔍𝑛) 

G2TLBFWH𝑀𝑠, 𝑡(𝔍1,𝔍2,…,𝔍𝑛) 2TLBFWGH𝑀𝑠, 𝑡(𝔍1,𝔍2,…,𝔍𝑛) 
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MAGDM method 

Collect all evaluation values to 

construct the decision matrices 

under 2TLBFNs.                                                                                      

Figure 1. The flowchart of developed MAGDM approach.
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6. Illustrative example and discussion

6.1. Evaluation process of the proposed method

Due to population growth and industrial development, the need for electrical energy is increasing
rapidly. A long time ago, traditional energy sources like crude oil, natural gas, and coal were thought
to be the main sources of generating electricity. Electricity prices are increasing rapidly over the last
decade. Solar photovoltaic development is extending, as non-renewable resources are limited and pol-
lution is increasing rapidly. Photovoltaic cells are commonly used as an economical and reliable energy
source in different fields all across the world. As a result, academics and researchers work with govern-
ment and different companies to enhance renewable energy standards and decreasing CO2 emissions.
Photovoltaic cells provide a cost-effective solution to this problem because it is close to demand areas
and does not require extra transmission routes. Photovoltaic cells are essential for investors to conduct
appropriate risk preference measures to guarantee that the project is implemented smoothly and that the
expected benefits are achieved. Renewable energy sources have a rapid increase in electricity output,
contributing 181 GW in 2018. Solar photovoltaic systems have the maximum capacity 55 percent, fol-
lowed by wind power 28 percent, and hydropower 11 percent. The implementation of this technology
provides a huge opportunity to increase system efficiency while reducing costs. A company’s board of
directors decided to reduce costs in order to increase profit. They observe that electricity is a major
expenditure that can be reduced if solar energy is used to generate electricity. They have five alterna-
tives of photovoltaic cells for their solar plant: Mono-crystalline photovoltaic cell (𭟋1), Poly-crystalline
photovoltaic cell (𭟋2), Thin-film photovoltaic cell (𭟋3), Amorphous silicon (𭟋4), Copper indium dise-
lenide (𭟋5). They select a photovoltaic cell based on the following attributes: Heat absorption (Q1),
Expenditure (Q2), Efficiency and reliability (Q3), Ability of charge separation (Q4). Furthermore, four

attributes have weight vector that is κ⋆ = (0.23, 0.31, 0.27, 0.19)T , and
n∑

k=1
κ⋆k = 1. Whereas the experts

believed that 2TL information is better choice for them. To select the optimal photovoltaic cell, three
experts Dh(h = 1, 2, 3) are invited to give their assessments using LTS S = {♭0 = extremely poor, ♭1 =
very poor, ♭2 = poor, ♭3 = fair, ♭4 = good, ♭5 = very good, ♭6 = extremely good}. The weight
vector of these experts is κ⋆⋆ = (0.3, 0.5, 0.2). The assessment values provided by the three experts for
each attribute of each alternative are represented in the decision matrix Fh = (Fh

jk)5×4(h = 1, 2, 3), as in
Tables 1, 2, and 3, respectively.

Table 1. 2TLBF decision matrix F1 provided by first expert D1.

Q1 Q2 Q3 Q4

𭟋1 ((♭3, 0), (♭5, 0)) ((♭1, 0), (♭3, 0)) ((♭2, 0), (♭4, 0)) ((♭3, 0), (♭2, 0))

𭟋2 ((♭4, 0), (♭3, 0)) ((♭5, 0), (♭2, 0)) ((♭2, 0), (♭3, 0)) ((♭4, 0), (♭2, 0))

𭟋3 ((♭1, 0), (♭4, 0)) ((♭3, 0), (♭3, 0)) ((♭1, 0), (♭3, 0)) ((♭4, 0), (♭3, 0))

𭟋4 ((♭2, 0), (♭6, 0)) ((♭3, 0), (♭4, 0)) ((♭5, 0), (♭3, 0)) ((♭1, 0), (♭5, 0))

𭟋5 ((♭4, 0), (♭1, 0)) ((♭1, 0), (♭7, 0)) ((♭6, 0), (♭1, 0)) ((♭2, 0), (♭2, 0))
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Table 2. 2TLBF decision matrix F2 provided by second expert D2.
Q1 Q2 Q3 Q4

𭟋1 ((♭2, 0), (♭5, 0)) ((♭4, 0), (♭2, 0)) ((♭3, 0), (♭5, 0)) ((♭4, 0), (♭4, 0))

𭟋2 ((♭4, 0), (♭1, 0)) ((♭5, 0), (♭2, 0)) ((♭6, 0), (♭1, 0)) ((♭2, 0), (♭6, 0))

𭟋3 ((♭3, 0), (♭2, 0)) ((♭3, 0), (♭5, 0)) ((♭2, 0), (♭3, 0)) ((♭3, 0), (♭4, 0))

𭟋4 ((♭2, 0), (♭6, 0)) ((♭1, 0), (♭4, 0)) ((♭3, 0), (♭5, 0)) ((♭5, 0), (♭3, 0))

𭟋5 ((♭5, 0), (♭1, 0)) ((♭2, 0), (♭2, 0)) ((♭3, 0), (♭1, 0)) ((♭1, 0), (♭7, 0))

Table 3. 2TLBF decision matrix F3 provided by third expert D3.
Q1 Q2 Q3 Q4

𭟋1 ((♭1, 0), (♭6, 0)) ((♭3, 0), (♭4, 0)) ((♭2, 0), (♭5, 0)) ((♭1, 0), (♭5, 0))

𭟋2 ((♭4, 0), (♭4, 0)) ((♭2, 0), (♭6, 0)) ((♭1, 0), (♭7, 0)) ((♭4, 0), (♭2, 0))

𭟋3 ((♭2, 0), (♭3, 0)) ((♭4, 0), (♭3, 0)) ((♭3, 0), (♭3, 0)) ((♭4, 0), (♭1, 0))

𭟋4 ((♭3, 0), (♭5, 0)) ((♭2, 0), (♭4, 0)) ((♭6, 0), (♭1, 0)) ((♭4, 0), (♭3, 0))

𭟋5 ((♭7, 0), (♭1, 0)) ((♭5, 0), (♭1, 0)) ((♭4, 0), (♭1, 0)) ((♭5, 0), (♭3, 0))

6.2. Decision making process

In order to choose the most desirable photovoltaic cell, the G2TLBFWHM and 2TLBFWGHM
operators are used to solve the MAGDM problem with 2TLBFNs, which involves the following com-
puting steps:

Step 1. Utilizing the 2TLBFWA from Eq (3.3) and the 2TLBFWG from Eq (3.4), we fuse all assess-
ment values to get the overall 2TLBFNs F j( j = 1, 2, 3, 4, 5) of the alternatives. The fused result
is shown in Table 4.

Table 4. Aggregated 2TLBF decision matrix by G2TLBFWA and 2TLBFWG operators.

Q1 Q2 Q3 Q4

G2TLBFWA operator

𭟋1 ((♭2, 0.1415), (♭5, 0.1857)) ((♭3, 0.0529), (♭3,−0.4054)) ((♭3,−0.4772), (♭5,−0.3238)) ((♭3, 0.2166), (♭3, 0.3973))

𭟋2 ((♭4, 0.0000), (♭2,−0.1654)) ((♭5,−0.4461), (♭2, 0.4915)) ((♭4, 0.4274), (♭2, 0.0519)) ((♭3, 0.1010), (♭3, 0.4641))

𭟋3 ((♭2, 0.2635), (♭3,−0.3297)) ((♭3, 0.2182), (♭4,−0.1270)) ((♭2,−0.0590), (♭3, 0.0000)) ((♭4,−0.4721), (♭3,−0.2192))

𭟋4 ((♭2, 0.2148), (♭6,−0.2148)) ((♭2,−0.1358), (♭4, 0.0000)) ((♭4, 0.4287), (♭3, 0.1090)) ((♭4,−0.0973), (♭3, 0.4968))

𭟋5 ((♭5, 0.3747), (♭1, 0.0000)) ((♭3,−0.4705), (♭3,−0.4646)) ((♭4, 0.3675), (♭1, 0.0000)) ((♭2, 0.3582), (♭4, 0.0577))

2TLBFWG operator

𭟋1 ((♭2,−0.0337), (♭5, 0.2337)) ((♭2, 0.4915), (♭3,−0.2382)) ((♭2, 0.4495), (♭5,−0.2704)) ((♭3,−0.2192), (♭4,−0.2648))

𭟋2 ((♭4, 0.0000), (♭2, 0.3421)) ((♭4, 0.1628), (♭3, 0.1836)) ((♭3, 0.0157), (♭4,−0.2879)) ((♭3,−0.1716), (♭5,−0.4641))

𭟋3 ((♭2,−0.0104), (♭3,−0.1226)) ((♭3, 0.1777), (♭4, 0.1270)) ((♭2,−0.2383), (♭3, 0.0000)) ((♭3, 0.4641), (♭3, 0.2166))

𭟋4 ((♭2, 0.1689), (♭6,−0.1689)) ((♭2,−0.4029), (♭4, 0.0000)) ((♭4, 0.0168), (♭4,−0.1426)) ((♭3,−0.0495), (♭4,−0.2896))

𭟋5 ((♭5, 0.0018), (♭1, 0.0000)) ((♭2,−0.0488), (♭4, 0.3851)) ((♭4,−0.0878), (♭1, 0.0000)) ((♭2,−0.3014), (♭6,−0.3618))

Step 2. Using Eqs (4.2) and (4.5) to aggregate the 2TLBF assessment values F j of alternative 𭟋 j on
all attributes Qk(k = 1, 2, 3, 4), into the overall assessment value F j of the alternative 𭟋 j ( j =
1, 2, 3, 4, 5) (take s = 2 and t = 3). The overall assessment values of alternatives 𭟋 j ( j =
1, 2, 3, 4, 5) are shown in Table 5.
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Table 5. Fused assessment values by G2TLBFWHM and 2TLBFWGHM operators.

Alternatives Overall assessment values by G2TLBFWHM Overall assessment values by 2TLBFWGHM

𭟋1 ((♭3,−0.4392), (♭4,−0.0151)) ((♭3,−0.1204), (♭4,−0.1222))

𭟋2 ((♭4,−0.1760), (♭3,−0.1781)) ((♭4,−0.1615), (♭3, 0.2750))

𭟋3 ((♭3,−0.3760), (♭4,−0.4739)) ((♭3,−0.0786), (♭3, 0.1544))

𭟋4 ((♭3, 0.1383), (♭4, 0.1756)) ((♭3,−0.0911), (♭4, 0.0569))

𭟋5 ((♭4,−0.3497), (♭2, 0.2376)) ((♭3, 0.1549), (♭4,−0.3829))

Step 3. Determine the score function S(F j) of overall assessment value F j ( j = 1, 2, 3, 4, 5) utilizing
Eq (3.1). Score function of alternatives by G2TLBFWHM and 2TLBFWGHM operators are as
follows:

SHM(𭟋1) = (♭3, 0.2880),SHM(𭟋2) = (♭5,−0.4990),SHM(𭟋3) = (♭4,−0.4510),
SHM(𭟋4) = (♭3, 0.4814),SHM(𭟋5) = (♭5,−0.2937).

SGHM(𭟋1) = (♭4,−0.4991),SGHM(𭟋2) = (♭4, 0.2817),SGHM(𭟋3) = (♭4,−0.1164),
SGHM(𭟋4) = (♭3, 0.4260),SGHM(𭟋5) = (♭4,−0.2311).

Step 4. Rank all alternatives 𭟋 j ( j = 1, 2, 3, 4, 5) according to the score index. The ranking of all
alternatives is as: 𭟋5 > 𭟋2 > 𭟋3 > 𭟋4 > 𭟋1 and 𭟋2 > 𭟋3 > 𭟋5 > 𭟋1 > 𭟋4 utilizing G2TLBFWHM
and 2TLBFWGHM operators, respectively. Therefore, 𭟋5 or 𭟋2 is the best choice.

Step 5. End.

Different attribute weight values have a significant effect on the ranking of alternatives, as demon-
strated in Tables 6 and 7. When κ⋆1 = 0.1, κ⋆2 = 0.2, κ⋆3 = 0.3, and κ⋆4 = 0.4, the five alternatives are
ranked 𭟋5 > 𭟋2 > 𭟋4 > 𭟋3 > 𭟋1 in order of preference. In other words, 𭟋5 is the best alternative. When
κ⋆1 = 0.2, κ⋆2 = 0.1, κ⋆3 = 0.3, and κ⋆4 = 0.4 , than the ranking is 𭟋5 > 𭟋2 > 𭟋4 > 𭟋3 > 𭟋1, and
still 𭟋5 is the best alternative. When κ⋆1 = 0.3, κ⋆2 = 0.1, κ⋆3 = 0.2, and κ⋆4 = 0.4 , than the ranking
is 𭟋5 > 𭟋2 > 𭟋3 > 𭟋4 > 𭟋1. Here is the slightest difference in the ranking of alternative, however
𭟋5 is the best alternative. When κ⋆1 = 0.4, κ⋆2 = 0.1, κ⋆3 = 0.2, and κ⋆4 = 0.3 , than the ranking is
𭟋5 > 𭟋2 > 𭟋3 > 𭟋4 > 𭟋1 and 𭟋5 is the best alternative, as shown in Table 6 based on G2TLBFWHM
operator. As a consequence, in the decision-making process the attributes weight can be varied to get
appropriate decision results. Similarly the different outcomes by utilizing 2TLBFWGHM operator are
shown in Table 7.
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Table 6. Influence of attribute weight κ⋆ on alternative ranking utilizing G2TLBFWHM
operator (s = 2, t = 3).

Weights Scores Ranking
κ⋆1 = 0.1, κ⋆2 = 0.2, SHM

1 = (♭3, 0.3689),SHM
2 = (♭4, 0.2697),SHM

3 = (♭4,−0.2814), 𭟋5 > 𭟋2 > 𭟋4 > 𭟋3 > 𭟋1

κ⋆3 = 0.3, κ⋆4 = 0.4 SHM
4 = (♭4,−0.2213),SHM

5 = (♭4, 0.3436)

κ⋆1 = 0.2, κ⋆2 = 0.1, SHM
1 = (♭3, 0.2348),SHM

2 = (♭4, 0.2770),SHM
3 = (♭4,−0.2690), 𭟋5 > 𭟋2 > 𭟋4 > 𭟋3 > 𭟋1

κ⋆3 = 0.3, κ⋆4 = 0.4 SHM
4 = (♭4,−0.2562),SHM

5 = (♭5,−0.4185)

κ⋆1 = 0.3, κ⋆2 = 0.1, SHM
1 = (♭3, 0.2133),SHM

2 = (♭4, 0.2652)SHM
3 = (♭4,−0.2444), 𭟋5 > 𭟋2 > 𭟋3 > 𭟋4 > 𭟋1

κ⋆3 = 0.2, κ⋆4 = 0.4, SHM
4 = (♭4,−0.4446),SHM

5 = (♭5,−0.3323)

κ⋆1 = 0.4, κ⋆2 = 0.1, SHM
1 = (♭3, 0.0671),SHM

2 = (♭4, 0.4098),SHM
3 = (♭4,−0.3131), 𭟋5 > 𭟋2 > 𭟋3 > 𭟋4 > 𭟋1

κ⋆3 = 0.2, κ⋆4 = 0.3, SHM
4 = (♭3, 0.3958),SHM

5 = (♭5,−0.0206)

Table 7. Influence of attribute weight κ⋆ on alternative ranking utilizing 2TLBFWGHM
operator (s = 2, t = 3).

Weights Scores Ranking
κ⋆1 = 0.1, κ⋆2 = 0.2, SGHM

1 = (♭4,−0.3918),SGHM
2 = (♭4,−0.0843),SGHM

3 = (♭4, 0.0048), 𭟋3 > 𭟋2 > 𭟋4 > 𭟋1 > 𭟋5

κ⋆3 = 0.3, κ⋆4 = 0.4 SGHM
4 = (♭4,−0.2370),SGHM

5 = (♭3, 0.2781)

κ⋆1 = 0.2, κ⋆2 = 0.1, SGHM
1 = (♭3, 0.4825),SGHM

2 = (♭4,−0.0710),SGHM
3 = (♭4, 0.0133), 𭟋3 > 𭟋2 > 𭟋4 > 𭟋1 > 𭟋5

κ⋆3 = 0.3, κ⋆4 = 0.4 SGHM
4 = (♭4,−0.3175),SGHM

5 = (♭3, 0.4242)

κ⋆1 = 0.3, κ⋆2 = 0.1, SGHM
1 = (♭3, 0.4177),SGHM

2 = (♭4, 0.0094),SGHM
3 = (♭4, 0.0358), 𭟋3 > 𭟋2 > 𭟋4 > 𭟋5 > 𭟋1

κ⋆3 = 0.2, κ⋆4 = 0.4, SGHM
4 = (♭3, 0.4578),SGHM

5 = (♭3, 0.4436)

κ⋆1 = 0.4, κ⋆2 = 0.1, SGHM
1 = (♭3, 0.2737),SGHM

2 = (♭4, 0.1855),SGHM
3 = (♭4,−0.0331), 𭟋2 > 𭟋3 > 𭟋5 > 𭟋1 > 𭟋4

κ⋆3 = 0.2, κ⋆4 = 0.3, SGHM
4 = (♭3, 0.2684),SGHM

5 = (♭4,−0.1974)

6.3. Parameter influence

Surely, the parameters s and t have a great influence on the ranking results. The influence of param-
eters on score functions and ranking results based on G2TLBFWHM and 2TLBFWGHM operators
are evaluated in this subsection. We fix the several values of s and t, and evaluate the scores of the
overall aggregation. Further, scores are used to rank the alternatives. In Tables 8 and 9 score values
are evaluated by varying s and t based on G2TLBFWHM and 2TLBFGWHM operators, respectively.
Then these scores are used to rank the alternatives. Ranking results from Table 10 are used to select
the best alternative, 𭟋5 and 𭟋2 are the best alternatives based on G2TLBFWHM and 2TLBFWGHM
operators, respectively.

As the values of s and t vary at the same time, the scores of the five alternatives change as well,
resulting in an irregular change accordingly, as shown in Tables 8 and 9 based on G2TLBFWHM and
2TLBFWGHM operators. The change in values of s and t have a significant influence on the results
of the alternatives ranking. Table 10 demonstrates that when s and t are changed, the ranking results
are relatively stable, and the best alternative remained unchanged. The decision preference can be
represented in the actual decision-making process by varying the values of s and t to obtain the best
decision results.
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Table 8. Score values by varying s and t based on the G2T LBFWHM operator.
Parameter values Score functions
s = t = 0.5 SHM

1 = (♭2, 0.3985), SHM
2 = (♭4,−0.3920), SHM

3 = (♭3,−0.3138), SHM
4 = (♭2, 0.4184), SHM

5 = (♭4,−0.3323)

s = t = 1 SHM
1 = (♭3,−0.1830), SHM

2 = (♭4, 0.0610), SHM
3 = (♭3, 0.1018), SHM

4 = (♭3,−0.1253), SHM
5 = (♭4, 0.1457)

s = t = 2 SHM
1 = (♭3, 0.1731), SHM

2 = (♭4, 0.4197), SHM
3 = (♭3, 0.4407), SHM

4 = (♭3, 0.3053), SHM
5 = (♭5,−0.4105)

s = 3, t = 4 SHM
1 = (♭3, 0.4369), SHM

2 = (♭5,−0.3629), SHM
3 = (♭4,−0.3229), SHM

4 = (♭4,−0.3379), SHM
5 = (♭5,−0.0659)

s = 4, t = 3 SHM
1 = (♭3, 0.4359), SHM

2 = (♭5,−0.3434), SHM
3 = (♭4,−0.3369), SHM

4 = (♭4,−0.3654), SHM
5 = (♭5,−0.0288)

s = 5, t = 6 SHM
1 = (♭4,−0.3663), SHM

2 = (♭5,−0.2087), SHM
3 = (♭4,−0.1665), SHM

4 = (♭4,−0.1007), SHM
5 = (♭5, 0.2306)

s = 6, t = 5 SHM
1 = (♭4,−0.3639), SHM

2 = (♭5,−0.2005), SHM
3 = (♭4,−0.1730), SHM

4 = (♭4,−0.1050), SHM
5 = (♭5, 0.2448)

s = 7, t = 8 SHM
1 = (♭4,−0.2402), SHM

2 = (♭5,−0.1187), SHM
3 = (♭4,−0.0700), SHM

4 = (♭4, 0.0445), SHM
5 = (♭5, 0.4174)

s = 8, t = 7 SHM
1 = (♭4,−0.2385), SHM

2 = (♭5,−0.1144), SHM
3 = (♭4,−0.0732), SHM

4 = (♭4, 0.0446), SHM
5 = (♭5, 0.4241)

s = 1, t = 9 SHM
1 = (♭4,−0.3257), SHM

2 = (♭5,−0.2461), SHM
3 = (♭4,−0.1150), SHM

4 = (♭4, 0.0041), SHM
5 = (♭5, 0.1821)

s = 9, t = 1 SHM
1 = (♭4,−0.3293), SHM

2 = (♭5,−0.1503), SHM
3 = (♭4,−0.1849), SHM

4 = (♭4,−0.1453), SHM
5 = (♭5, 0.3953)

s = t = 10 SHM
1 = (♭4,−0.1355), SHM

2 = (♭5,−0.0439), SHM
3 = (♭4, 0.0097), SHM

4 = (♭4, 0.1619), SHM
5 = (♭6,−0.4265)

Table 9. Score values by varying s and t based on the 2TLBFWGHM operator.
Parameter values Score functions
s = t = 0.5 SGHM

1 = (♭4, 0.4425), SGHM
2 = (♭5, 0.2342), SGHM

3 = (♭5,−0.2274),SGHM
4 = (♭4, 0.3902), SGHM

5 = (♭5, 0.1811)

s = t = 1 SGHM
1 = (♭4,−0.0219),SGHM

2 = (♭5,−0.2048),SGHM
3 = (♭4, 0.3335), SGHM

4 = (♭4,−0.0868),SGHM
5 = (♭5,−0.3859)

s = t = 2 SGHM
1 = (♭4,−0.4094),SGHM

2 = (♭4, 0.4340), SGHM
3 = (♭4,−0.0223),SGHM

4 = (♭4,−0.4951),SGHM
5 = (♭4, 0.0061)

s = 3, t = 4 SGHM
1 = (♭3, 0.3385), SGHM

2 = (♭4, 0.1488), SGHM
3 = (♭4,−0.2615),SGHM

4 = (♭3, 0.2222), SGHM
5 = (♭3, 0.4955)

s = 4, t = 3 SGHM
1 = (♭3, 0.3027), SGHM

2 = (♭4, 0.2111), SGHM
3 = (♭4,−0.2736),SGHM

4 = (♭3, 0.1584), SGHM
5 = (♭4,−0.4688)

s = 5, t = 6 SGHM
1 = (♭3, 0.1412), SGHM

2 = (♭4,−0.0319),SGHM
3 = (♭4,−0.4497),SGHM

4 = (♭3,−0.0616),SGHM
5 = (♭3, 0.1477)

s = 6, t = 5 SGHM
1 = (♭3, 0.1198), SGHM

2 = (♭4, 0.0002), SGHM
3 = (♭4,−0.4552),SGHM

4 = (♭3,−0.0884),SGHM
5 = (♭3, 0.1650)

s = 7, t = 8 SGHM
1 = (♭3, 0.0215), SGHM

2 = (♭4,−0.1589),SGHM
3 = (♭3, 0.4237), SGHM

4 = (♭3,−0.2577),SGHM
5 = (♭3,−0.0660)

s = 8, t = 7 SGHM
1 = (♭3, 0.0074), SGHM

2 = (♭4,−0.1413),SGHM
3 = (♭3, 0.4217), SGHM

4 = (♭3,−0.2677),SGHM
5 = (♭3,−0.0561)

s = 1, t = 9 SGHM
1 = (♭3, 0.2199), SGHM

2 = (♭4,−0.1981),SGHM
3 = (♭4,−0.4622),SGHM

4 = (♭3, 0.0421), SGHM
5 = (♭3, 0.0067)

s = 9, t = 1 SGHM
1 = (♭3, 0.0159), SGHM

2 = (♭4, 0.1304), SGHM
3 = (♭3, 0.4816), SGHM

4 = (♭3,−0.2845),SGHM
5 = (♭3, 0.2408)

s = t = 10 SGHM
1 = (♭3,−0.0821),SGHM

2 = (♭4,−0.2708),SGHM
3 = (♭3, 0.3125), SGHM

4 = (♭3,−0.4277),SGHM
5 = (♭3,−0.2376)

Table 10. Ranking by varying s and t based on G2TLBFWHM and 2TLBFWGHM opera-
tors.

Parameters G2TLBFWHM operator 2TLBFWGHM operator
s = t = 0.5 𭟋5 > 𭟋2 > 𭟋3 > 𭟋4 > 𭟋1 𭟋2 > 𭟋5 > 𭟋3 > 𭟋1 > 𭟋4

s = t = 1 𭟋5 > 𭟋2 > 𭟋3 > 𭟋4 > 𭟋1 𭟋2 > 𭟋5 > 𭟋3 > 𭟋1 > 𭟋4

s = t = 2 𭟋5 > 𭟋2 > 𭟋3 > 𭟋4 > 𭟋1 𭟋2 > 𭟋5 > 𭟋3 > 𭟋1 > 𭟋4

s = 3, t = 4 𭟋5 > 𭟋2 > 𭟋3 > 𭟋4 > 𭟋1 𭟋2 > 𭟋3 > 𭟋5 > 𭟋1 > 𭟋4

s = 4, t = 3 𭟋5 > 𭟋2 > 𭟋3 > 𭟋4 > 𭟋1 𭟋2 > 𭟋3 > 𭟋5 > 𭟋1 > 𭟋4

s = 5, t = 6 𭟋5 > 𭟋2 > 𭟋4 > 𭟋3 > 𭟋1 𭟋2 > 𭟋3 > 𭟋5 > 𭟋1 > 𭟋4

s = 6, t = 5 𭟋5 > 𭟋2 > 𭟋4 > 𭟋3 > 𭟋1 𭟋2 > 𭟋3 > 𭟋5 > 𭟋1 > 𭟋4

s = 7, t = 8 𭟋5 > 𭟋2 > 𭟋4 > 𭟋3 > 𭟋1 𭟋2 > 𭟋3 > 𭟋1 > 𭟋5 > 𭟋4

s = 8, t = 7 𭟋5 > 𭟋2 > 𭟋4 > 𭟋3 > 𭟋1 𭟋2 > 𭟋3 > 𭟋1 > 𭟋5 > 𭟋4

s = 1, t = 9 𭟋5 > 𭟋2 > 𭟋4 > 𭟋3 > 𭟋1 𭟋2 > 𭟋3 > 𭟋1 > 𭟋4 > 𭟋5

s = 9, t = 1 𭟋5 > 𭟋2 > 𭟋4 > 𭟋3 > 𭟋1 𭟋2 > 𭟋3 > 𭟋5 > 𭟋1 > 𭟋4

s = t = 10 𭟋5 > 𭟋2 > 𭟋4 > 𭟋3 > 𭟋1 𭟋2 > 𭟋3 > 𭟋1 > 𭟋5 > 𭟋4

Based on the G2TLBFWHM operator, the scores vary accordingly, corresponding to different values

Mathematical Biosciences and Engineering Volume 19, Issue 4, 3843–3878.



3865

of s and t for alternatives 𭟋 j( j = 1, 2, 3, 4, 5) as shown in Figures 2–6. In Figure 7 the value of parameter
s = 3 is fixed, and t is varied from 1 to 10. The value of parameter t = 3 is fixed, and s is varied from
1 to 10 in Figure 8.

Figure 2. Scores of photovoltaic cell 𭟋1 based on the G2TLBFWHM operator when s, t ∈
(1, 10).

Figure 3. Scores of photovoltaic cell 𭟋2 based on the G2TLBFWHM operator when s, t ∈
(1, 10).

Mathematical Biosciences and Engineering Volume 19, Issue 4, 3843–3878.



3866

Figure 4. Scores of photovoltaic cell 𭟋3 based on the G2TLBFWHM operator when s, t ∈
(1, 10).

Figure 5. Scores of photovoltaic cell 𭟋4 based on the G2TLBFWHM operator when s, t ∈
(1, 10).
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Figure 6. Scores of photovoltaic cell 𭟋5 based on the G2TLBFWHM operator when s, t ∈
(1, 10).

Figure 7. Scores of photovoltaic cells 𭟋 j( j = 1, 2, . . . , 5) based on the G2TLBFWHM oper-
ator when s = 3, t ∈ (1, 10).
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Figure 8. Scores of photovoltaic cells 𭟋 j( j = 1, 2, . . . , 5) based on the G2TLBFWHM oper-
ator when t = 3, s ∈ (1, 10).

Based on the 2TLBFWGHM operator, the scores vary accordingly, corresponding to different values
of s and t for alternatives 𭟋 j( j = 1, 2, 3, 4, 5) as shown in Figures 9–13. In Figure 14 the value of
parameter s = 3 is fixed, and t is varied from 1 to 10. In Figure 15 the value of parameter t = 3 is fixed,
and s is varied from 1 to 10.

Figure 9. Scores of photovoltaic cell 𭟋1 based on the 2TLBFWGHM operator when s, t ∈
(1, 10).
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Figure 10. Scores of photovoltaic cell 𭟋2 based on the 2TLBFWGHM operator when s, t ∈
(1, 10).

Figure 11. Scores of photovoltaic cell 𭟋3 based on the 2TLBFWGHM operator when s, t ∈
(1, 10).
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Figure 12. Scores of photovoltaic cell 𭟋4 based on the 2TLBFWGHM operator when s, t ∈
(1, 10).

Figure 13. Scores of photovoltaic cell 𭟋5 based on the 2TLBFWGHM operator when s, t ∈
(1, 10).
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Figure 14. Scores of photovoltaic cells 𭟋 j( j = 1, 2, . . . , 5) based on the 2TLBFWGHM
operator when s = 3, t ∈ (1, 10).

Figure 15. Scores of photovoltaic cells 𭟋 j( j = 1, 2, . . . , 5) based on the 2TLBFWGHM
operator when t = 3, s ∈ (1, 10).

When the parameters s and t are assigned the same values, the ranking results of the G2TLBFWHM
and 2TLBFWGHM operators are not the same, and the score values vary differently. G2TLBFWHM
and 2TLBFWGHM operators consider the relationship between two input arguments. These results in-
dicate that the proposed methods are flexible. In actual decision-making, the parameters could be varied
based on DM’s preferences. The gloomy decision-maker could choose smaller parameters, whereas
the optimistic decision-maker could choose larger parameters. Consequently, these results indicate that
the suggested G2TLBFWHM and 2TLBFWGHM operators are more flexible and adaptable. Also the
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proposed strategy are most effective, realistic, and sufficient to address real-world MAGDM problems.

6.4. Comparative analysis

The ability to consider the interrelationship among the 2TLBFNs is a unique feature of the
G2TLBFWHM and 2TLBFWGHM operators. To demonstrate the effectiveness of the suggested op-
erators, we provide comparative analysis. To verify the validity of the developed approach, we utilize
different approaches to solve the above mentioned MAGDM problem in Subsection 6.1. These meth-
ods include the 2TLBFWA operator, 2TLBFWG operator, the 2TL bipolar fuzzy weighted Hamy mean
[37] (2TLBFWHM) operator, the 2TL bipolar fuzzy weighted dual Hamy mean [38] (2TLBFWDHM)
operator, the 2TL bipolar fuzzy weighted Maclaurin symmetric mean [39] (2TLBFWMSM) operator,
and the 2TL bipolar fuzzy weighted dual Maclaurin symmetric mean [40] (2TLBFWDMSM) operator.
Detailed evaluation results gained using different MAGDM approaches are given in Tables 11–16.

Table 11. The outcomes utilizing 2TLBFWA operator.
2TLBFWA Scores values The order

𭟋1 ((♭3,−0.2530), (♭4,−0.2456)) (♭3, 0.4963) 𭟋5 > 𭟋2 > 𭟋3 > f𭟋4 > 𭟋1

𭟋2 ((♭4, 0.1497), (♭2, 0.3458)) (♭5,−0.0981)

𭟋3 ((♭3,−0.2482), (♭3, 0.1161)) (♭4,−0.1822)

𭟋4 ((♭3, 0.1559), (♭4,−0.0348)) (♭4,−0.4046)

𭟋5 ((♭4,−0.1614), (♭2,−0.2589)) (♭5, 0.0488)

Table 12. The outcomes utilizing 2TLBFWG operator.
2TLBFWG Scores values The order

𭟋1 ((♭2, 0.3982), (♭4, 0.1699)) (♭3, 0.1142) 𭟋2 > 𭟋5 > 𭟋3 > 𭟋1 > 𭟋2

𭟋2 ((♭4,−0.4867), (♭3, 0.4502)) (♭4, 0.0316)

𭟋3 ((♭2, 0.4733), (♭3, 0.3939)) (♭4,−0.4603)

𭟋4 ((♭2, 0.4698), (♭4, 0.4454)) (♭3, 0.0122)

𭟋5 ((♭3,−0.1526), (♭3, 0.3604)) (♭4,−0.2565)

Table 13. The outcomes utilizing 2TLBFWHM operator.
2TLBFWHM Scores values The order

𭟋1 ((♭6, 0.1111), (♭10.2620)) (♭6, 0.4246) 𭟋2 > 𭟋5 > 𭟋3 > 𭟋4 > 𭟋1

𭟋2 ((♭7,−0.2399), (♭1 − 0.3123)) (♭7, 0.0362)

𭟋3 ((♭6, 0.0880), (♭1 − 0.0719)) (♭7,−0.4201)

𭟋4 ((♭6, 0.2394), (♭10.3353)) (♭6, 0.4520)

𭟋5 ((♭7,−0.4646), (♭1 − 0.4275)) (♭7,−0.0185)
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Table 14. The outcomes utilizing 2TLBFWDHM operator.
2TLBFWDHM Scores values The order

𭟋1 ((♭1,−0.3159), (♭7,−0.2518)) (♭1,−0.0321) 𭟋5 > 𭟋2 > 𭟋3 > 𭟋1 > 𭟋4

𭟋2 ((♭1, 0.0870), (♭6, 0.4438)) (♭1, 0.3216)

𭟋3 ((♭1,−0.2613), (♭6, 0.4293)) (♭1, 0.1547)

𭟋4 ((♭1,−0.2369), (♭7,−0.1422)) (♭1,−0.0473)

𭟋5 ((♭1,−0.0449), (♭6,−0.0374)) (♭1, 0.4962)

Table 15. The outcomes utilizing 2TLBFWMSM operator.
2TLBFWMSM Scores values The order

𭟋1 ((♭6, 0.1130), (♭1, 0.2595)) (♭6, 0.4267) 𭟋2 > 𭟋5 > 𭟋3 > 𭟋4 > 𭟋1

𭟋2 ((♭7,−0.2398), (♭1,−0.3126)) (♭7, 0.0364)

𭟋3 ((♭6, 0.0917), (♭1,−0.0734)) (♭7,−0.4175)

𭟋4 ((♭6, 0.2487), (♭1, 0.3320)) (♭6, 0.4584)

𭟋5 ((♭7,−0.4588), (♭1,−0.4291)) (♭7,−0.0149)

Table 16. The outcomes utilizing 2TLBFWDMSM operator.
2TLBFWDMSM Scores values The order

𭟋1 ((♭1,−0.3161), (♭7,−0.2470)) (♭1,−0.0346) 𭟋5 > 𭟋2 > 𭟋3 > 𭟋1 > 𭟋4

𭟋2 ((♭1, 0.0852), (♭6, 0.4470)) (♭1, 0.3191)

𭟋3 ((♭1,−0.2622), (♭6, 0.4300)) (♭1, 0.1539)

𭟋4 ((♭1,−0.2383), (♭7,−0.1403)) (♭1,−0.0490)

𭟋5 ((♭1,−0.0483), (♭6,−0.0121)) (♭1, 0.4819)

We compare our suggested approach to other approaches such as the 2TLBFWA and 2TLBFWG
operators. Tables 11,12 indicates that the 2TLBFWA and 2TLBFWG operators are unable to provide
the interrelationship between the 2TLBFNs. In the above example, we should consider not only the
attribute values of each photovoltaic cells, but also the correlations between these attributes while se-
lecting the most optimal photovoltaic cell. Approaches based on 2TLBFWA and 2TLBFWG operators
are ineffective in dealing with this issue. Our approach is more appropriate for dealing with this issue
than, 2TLBFWA and 2TLBFWG operators as it can capture parameter correlations. The interrela-
tionship between the 2TLBFNs is evaluated by the G2TLBFHM, G2TLBFWHM, 2TLBFGHM, and
2TLBFWGHM operators. In addition, 2TLBFWA and 2TLBFWG operators do not have any parame-
ters, but our purposed operator has two parameters, that make our operator more flexible and adaptable.
Here, we propose a novel approach for MAGDM problems based on 2TLBFS, which is an influential
approach for demonstrating and indicating DM’s assessments. As a result, compared with different
approaches, our approach has some benefits and superiorities.

The ranking effects of the above approaches are slightly different, as shown in the above calcula-
tions, but still, the best alternative is 𭟋2 or 𭟋5. It shows that the G2TLBFWHM and 2TLBFWGHM
operators are more effective and appropriate with 2TLBFNs for MAGDM problems. The 2TLBFS is
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more general and contains more information in the MAGDM process. As a result, in MAGDM, our
proposed method gives more general and powerful information.

(1) The drawback of 2TLBFWA and 2TLBFWG is that in the process of fusion the interrelationship
between arguments is not taken into account. In other words, they assume that all attributes are
identical, which is to some extent inaccurate. To select the most desirable photovoltaic cell, in
an illustrative example, we not only take into account the attribute values of each alternative but
also their interrelationship. As a result, the 2TLBFWA and 2TLBFWG techniques are inappli-
cable to this situation. Our technique is more practical to tackle this problem than 2TLBFWA
and 2TLBFWG techniques because it can easily capture interrelationships among multi-input
arguments.

(2) Since both G2TLBFWHM and 2TLBFWGHM operators can consider the correlation among
multi-input arguments, the optimal alternative is selected in the same way, demonstrating the
rationality and validity of the proposed operators. Furthermore, 2TLBFWHM, 2TLBFWDHM,
2TLBFWMSM, and 2TLBFWDMSM operators do not reduce the effects of extremely strong or
weak ranking outcomes, whereas our suggested method does. This shows our proposed technique
is more straightforward and superior.

7. Conclusions

Choosing the optimal photovoltaic cell is essential for a company’s board of directors. The selection
of an appropriate photovoltaic cell not only increases profit but also reduces expenditures. As a result,
choosing the best photovoltaic cell is an important MAGDM problem. In comparison to the classical
and FSs, a BFS gives better precision, flexibility, and compatibility for the system. In this article,
we investigated the MAGDM problem by combining the concepts of 2TL terms and HM operators
with BF numbers. As a result of being inspired by the generalized HM operator and the geometric
HM operator, we introduced some G2TLBFHM and 2TLBFGHM aggregation operators, as well as
their weighted forms. The G2TLBFWHM and 2TLBFWGHM operators were different from other
operators not only by accommodating the 2TLBFNs as well as by considering the interdependent phe-
nomena among the arguments. Providing our operators to have a broader range of practical application
potentials, a numerical example has been provided to evaluate the developed approach and demonstrate
the feasibility and usefulness of the suggested method. By using the illustrated example, we can see
that the parameters of the aggregation operators influence the ranking of alternatives. The significance
of the parameters s and t on decision-making results and comparative analysis have been demonstrated.

On the other hand, there are still some limitations in this research study. Firstly, this work only deals
with the aggregation of 2TLBFNs. Secondly, this research is only applied to the evaluation of photo-
voltaic cells with 2TLBFS. In fact, it has broad implications for assessment methods and related fields
such as cognitive computation, engineering, natural and artificial cognitive systems, and management
applications.s To overcome discussed limitations, in the future work, we will integrate this approach
with other generalized FSs, including dual hesitant q-ROF 2-tuple linguistic sets, probability hesitant
FSs, cloud approaches, and so on, to enlarge the area for expression of assessment results, adapt to
a wider range of assessment environments, and increase the versatility of the strategy. Furthermore,
we will investigate more aggregation operators for fusing 2TLBFNs, such as the 2TLBF Bonferroni
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operators, the 2TLBF power Bonferroni operators, and the 2TLBF Muirhead mean operators, which
can capture the interrelationships among given input attributes.
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