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Abstract: Background: Calcific aortic valve stenosis (CAVS) is a crucial cardiovascular disease facing
aging societies. Our research attempts to identify immune-related genes through bioinformatics and
machine learning analysis. Two machine learning strategies include Least Absolute Shrinkage
Selection Operator (LASSO) and Support Vector Machine Recursive Feature Elimination (SVM-RFE).
In addition, we deeply explore the role of immune cell infiltration in CAVS, aiming to study the
potential therapeutic targets of CAVS and explore possible drugs. Methods: Download three data sets
related to CAVS from the Gene Expression Omnibus. Gene set variation analysis (GSVA) looks for
potential mechanisms, determines differentially expressed immune-related genes (DEIRGs) by
combining the ImmPort database with CAVS differential genes, and explores the functions and
pathways of enrichment. Two machine learning methods, LASSO and SVM-RFE, screen key immune
signals and validate them in external data sets. Single-sample GSEA (ssGSEA) and CIBERSORT
analyze the subtypes of immune infiltrating cells and integrate the analysis with DEIRGs and key
immune signals. Finally, the possible targeted drugs are analyzed through the Connectivity Map
(CMap). Results: GSVA analysis of the gene set suggests that it is highly correlated with multiple
immune pathways. 266 differential genes (DEGs) integrate with immune genes to obtain 71 DEIRGs.
Enrichment analysis found that DEIRGs are related to oxidative stress, synaptic membrane
components, receptor activity, and a variety of cardiovascular diseases and immune pathways.
Angiotensin II Receptor Type 1(AGTRI), Phospholipid Transfer Protein (PLTP), Secretogranin II
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(SCG2) are identified as key immune signals of CAVS by machine learning. Immune infiltration found
that B cells naive and Macrophages M2 are less in CAVS, while Macrophages M0 is more in CAVS.
Simultaneously, AGTR1, PLTP, SCG2 are highly correlated with a variety of immune cell subtypes.
CMap analysis found that isoliquiritigenin, parthenolide, and pyrrolidine-dithiocarbamate are the top
three targeted drugs related to CAVS immunity. Conclusion: The key immune signals, immune
infiltration and potential drugs obtained from the research play a vital role in the pathophysiological
progress of CAVS.

Keywords: calcific aortic valve stenosis; immune cell; machine learning; differentially expressed
genes; pathways

1. Introduction

Calcific aortic valve stenosis (CAVS) is a continuous global progressive disease that causes
stenosis and contraction of the left ventricular outflow tract in the later stage of the disease, causing
destructive damage to the heart that affects hemodynamics [1]. Several epidemiological studies have
shown that 2.8% of the elderly (over 75 years old) have varying degrees of CAVS, and as many as 25%
of the community population over 65 years old have risk factors for valve sclerosis. Older men, high
triglyceride levels, smoking time limit, and early aortic valve replacement have been determined to be
associated with the progression of CAVS [2]. A calcified aortic valve often leads to aortic valve stenosis.
Inflammatory cell infiltration, lipid accumulation, and tissue fibrosis play a leading role in the initial
stage of the mechanism of CAVS [3]. Therefore, exploring the pathophysiological process of CAVS is
essential for the diagnosis and treatment of this complex disease with a poor prognosis.

The immune and inflammatory response is a key link in the pathological process of CAVS [4]. A
variety of inflammatory markers such as Toll-like receptor (7LR), interleukin-37, interleukin-6,
transforming growth factor-B1 are closely related to aortic valve stenosis caused by calcified aortic
valve Related [5,6]. Amyloid P Component Serum (4PCS), Heat Shock Protein 90 (HSP90), Protein
Disulfide Isomerase Family A Member 3 (PDIA3), Annexin A2 (ANXA?2), Toll Like Receptor 7 (TLR7)
and other immune-related genes (IRGs) also suggest that they have therapeutic effects in the process
of CAVS fibrosis [7,8]. Immune cell infiltration is also closely related to CAVS. CD8 T lymphocytes,
macrophages, and regulatory T lymphocytes (Tregs) appear in the pathophysiological process of
CAVS [9-11]. In addition, statin anti-inflammatory therapy affects CAVS and maybe a drug target for
the prevention of related diseases [12,13].

This study conducted bioinformatics and machine learning analysis of IRGs in CAVS and
explored potential regulatory methods and functional differences related to IRGs. Compared with
traditional models, machine learning models show superior performance in disease classification and
prediction [14]. The use of machine learning models is a novel method for disease diagnosis and
prediction [15-17]. We use Single-sample GSEA (ssGSEA) and CIBERSORT to explore the
relationship between differential immunity-related genes (DEIRGs) and the level of immune
infiltration of cell subsets. In addition, to better understand the immune mechanism of CAVS, the
potential connection between key immune signals and immune cell subsets was studied. The flow chart
of this research analysis is shown in Supplementary Figure 1.
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2. Materials and methods
2.1. Patient sample collecting and data preprocessing

Download the micro data set from Gene Expression Omnibus (GEO)
(https://www.ncbi.nlm.nih.gov/geo/). The following are the screening criteria: 1) Select tissue samples
including CAVS patients and normal controls; 2) Exclude samples from mitral and tricuspid valves; 3)
No other organic diseases. The data set GSE12644 and GSE51472 of the GPL570 platform (/HG-
U133 Plus 2] Affymetrix Human Genome U133 Plus 2.0 Array) were selected as the training data set,
and the data set GSE83453 of the GPL10558 platform (lllumina HumanHT-12 V4.0 expression
beadchip) was selected as the verification. GSE12644 includes 10 calcified aortic valve samples and
10 normal controls (10 CAVS vs 10 NC). GSE51472 includes 5 calcified aortic valve tissues and 5
normal controls (5 CAVS vs 5 NC). GSE83453 includes 9 aortic valve tissues with stenosis and
calcification and 8 normal controls (9 CAVS vs 8 NC). All tissue sample data undergoes background
correction and de-batch effect.

2.2. Gene set variation analysis (GSVA) pathway analysis and identification of DEIRGs

Use GSVA to analyze the data set to find pathways with significant differences between samples,
analyzing genes more biologically meaningful [18]. The Benjamini & Hochberg method was used for
multiple testing calibrations. The score value > 0.5 and adjust P-value < 0.05 is the cutoff value of
pathway enrichment. The Limma package [19] (Version 3.44.3) in the R software (Version 4.0.2;
https://www.r-project.org/) is used to screen differentially expressed genes (DEGs). The screening
criteria for significant differences are P-value < 0.05, | log2 (Fold Change) | > 1. A total of 2483 IRGs
were obtained from the ImmPort (https://www.immport.org/) database, and DEIRGs were identified
by matching IRGs and DEGs. The ggplot2 package [20] (Version 3.3.5) draws bar graphs of GSVA
and volcano graphs of DEIRGs.

2.3. Pathway enrichment analysis of DEIRGs

Enrichment analysis of pathways and functions of DEIRGs to discover possible immune
pathways and functions. Gene Ontology (GO) and Disease Ontology (DO) enrichment analysis are
sorted by adjust P-value < 0.05 and Count value. We use the ggplot2 package (Version 3.3.5) of R
software to visualize the plot. The Molecular Signatures Database (MSigDB) library is a collection of
annotated gene sets. We can perform a series of analyses on the predefined gene set in the MSigDB
library. Gene Set Enrichment Analysis (GSEA) uses “c2.cp.kegg.v7.2.symbols.gmt” under MSigDB
(https://www.gsea-msigdb.org/gsea/msigdb/) [21] as the reference gene set, and the cutoff value is set
to adjust P-value < 0.05.

2.4. Key immune signal screening and external verification
The obtained DEIRGs were further screened using machine learning methods to obtain key

immune signals. Two machine learning methods—Least Absolute Shrinkage Selection Operator
(LASSO) [22] and Support Vector Machine Recursive Feature Elimination (SVM-RFE) [23] perform
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feature screening for differences in gene expression values to obtain more accurate screening
predictions. LASSO is an analysis method that can perform feature selection on research models.
After screening, it aims to enhance the prediction accuracy and reliability of the model. SVM-RFE
adopts the risk minimization principle and the experience error minimization principle. It can be
used to improve learning performance to filter models. We use the g/lmnet package [24] (Version 4.1)
and el071 package [25] (Version 1.7) of the R software to execute the LASSO and SVM-RFE
algorithms. Afterward, the external verification data set GSE83453 was verified against the selected
key immune signals.

2.5. Evaluation of tissue-infiltrating immune cells

ssGSEA [26] and CIBERSORT [27] are two tools for analyzing immune infiltrating cell subtypes.
CIBERSORT analyzes the infiltration of immune cells between CAVS and normal controls.
Subsequently, the relationship between the DEIRGs of CAVS and the subtypes of immune infiltrating
cells was established. At the same time, the key immune signals obtained by machine learning
screening are correlated with the immune infiltrating cells obtained by two analysis methods. Finally,
in the MSigDB library “c5.all.v7.4.symbols.gmt’ uses “IMMUNITY” as the keyword to find the
immune pathway of interest, calculate the pathway enrichment score and analyze the key immune
signals found and their correlation. Spearman correlation analysis was used for the correlation. We used
the corrplot package [28] (Version 0.9) of R software to make a related heat map. The pheatmap [29]
package (Version 1.0.12) constructs a heat map of immune cells. The vioplot package [30] (Version 0.3.7)
is used to compare the levels of immune cells between the two groups.

2.6. Potential drug analysis of immune-related genes

The Connectivity Map (CMap) (https://www.broadinstitute.org/connectivity-map-cmap) [31] is
a database that analyzes the relationship between genes and their possible targeted drugs. Use CLUE
(https://clue.i0/) to predict the targeted drugs for CAVS immunotherapy on the 150 most significant
up-and down-regulated immune genes in the data set. At the same time, use the Touchstone module to
analyze the mechanism of actions (MoA) of the drug of interest and explore potential modes of action.

2.7. Statistical analysis
All statistical analysis uses R software (Version 4.0.2). Use Student’s t test for normally
distributed variables and Mann-Whitney U test for abnormally distributed variables to compare the
differences between the two groups.
3. Results
3.1. GSVA results and DEIRGs
Use non-parametric unsupervised GSVA for gene sets to find the difference between the gene set

in CAVS and normal control in the enrichment pathway, suggesting that it has a greater correlation
with multiple immune pathways (Figure 1A). After the integration of GSE12644 and GSE51472
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microarray matrix standardization and removal of batch effects, 266 DEGs (164 up-regulated genes,
102 down-regulated genes) were obtained, and 71 significant DEIRGs were obtained through
integration with immune genes (60 up-regulated genes and 11 down-regulated genes). The volcano
map shows the differences in genes. The DEIRGs related to immunity are marked by black circles.
The names of some DEIRGs of interest are also marked (Figure 1B).
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Figure 1. GSVA analysis results and differential genes. (A) GSVA analysis of gene sets.
(B) DEGs and DEIRGs expression volcano graphs of CAVS and normal controls.

3.2. Pathway and function enrichment analysis

GO enrichment found that the biological processes (BP) mainly focused on reactive oxygen
species, oxidative stress, cellular response to oxidative stress, and decreased oxygen levels. Cell
component (CC) is mainly related to various components of the synaptic membrane. Molecular
function (MF) is mainly related to receptor activity and enzyme binding (Figure 2A). DO found that
cardiovascular diseases such as arteriosclerotic cardiovascular disease, arteriosclerosis, atherosclerosis,
coronary artery disease, and myocardial infarction were significantly enriched. In addition, it includes
lung disease, obstructive lung disease, kidney disease, and so on (Figure 2B). GSEA found that two
immune-related pathways, Cytokine-cytokine receptor interaction and Chemokine signaling pathway
were significantly enriched. It may be related to the immune-related pathways of CAVS (Figure 2C).

Mathematical Biosciences and Engineering Volume 19, Issue 4, 3787-3802.



3792

ubiquitin-like protein ligase binding { lung disease
ub\qlumn protein ligase binding 1 . .
RNA polymerase |l transcription factor binding 1 arteriosclerosis
steroid h‘?‘mﬁa"aﬁ ;gggg{g; ggmg arteriosclerotic cardiovascular disease
& protei led ami hentﬂe bigtqintg- atherosclerosis
rotein-coupled amine receptor activi : :
P B 2 atachalamine binding urinary system disease ]
histone kinase activity kidney disease
adrenergic receptor activity e
b k .:dreglqn hepatitis
membrane microdomain 1 i i 1
membrane raft ONTOLOGY obstructive lung disease

coronary artery disease

nuclear transcription factor complex 1 ONTOLOGY

£ RNA polymerase |l transcription factor complex { . BP £ . . :

£ = J
@ imri;sic component of synaptic membran W cc @ chronic obsiructive pulmonary disease Do

integral component of synaptic membran mouth disease

intrinsic component of presynaptic membrane | ' .
integral component of presynaptic membran tooth disease ]
protein kinase complex periodontal disease §

response to lipopolysaccharide §

myocardial infarction

hepatitis C
demyelinating disease

multiple sclerosis

periodontitis
hypersensitivity reaction type IV di:

response to oxidative stress{
response to oxygen levels

cellular response to drug 1

response to steroid hormané 1
response to xenabiotic stimulus 1
response to decreased oxygen levels
cellular resp to oxid stress
response to reactive oxygen species
response to ketone 1

(1]

o
o
[X]
=1
w
o

0 5 10 15 20 25

Count Count

Chemokine signaling pathway === Cytokine-cytokine receptor interaction

C

0.64

Enrichment
Score

Ranked list
metric

0 5000 10000

Rank in ordered dataset

15000 20000

Figure 2. Pathway and function enrichment analysis results. (A) Enrichment results of BP,
CC, and MF. (B) Results of DO analysis. (C) Two immune-related pathways of CAVS.

3.3. Machine learning to screen key immune signals

According to the LASSO method, the optimal lambda.min is set as 0.007915132 based on the
amount of gene expression. The 6 immune signals screened out are Angiotensin II Receptor Type
1(AGTRI), C-X-C Motif Chemokine Ligand 16 (CXCLI6), Leptin Receptor (LEPR), Phospholipid
Transfer Protein (PLTP), Secretogranin II (SCG2), Secretory Leukocyte Peptidase Inhibitor (SLPI)
(Figure 3A). After screening using SVM-RFE, the first 50 variables were screened by 5x cross-check,
and the first 4 immune signals were Angiotensin II Receptor Type 1(4AGTR1), Phospholipid Transfer
Protein (PLTP), Secretogranin II (SCG2), and Tenascin C (TNC) (Figure 3B). Integrating the two
results, AGTR1, PLTP, and SCG?2 are considered by us to be the key immune signals of CAVS (Figure
3C). The external validation data set GSE83453 verified it and found that the three key immune signals
distinguished well between CAVS and normal control (Figure 3D). The areas under the ROC curve
were AGTRI (AUC =0.917), PLTP (AUC = 0.875), and SCG2 (AUC = 0.917), with high diagnostic
value (Figure 3E).
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Figure 3. Key immune signals and verification. (A) LASSO. (B) SVM-RFE. (C) 3 key
immune signals integrated. (D) Verify the expression of key immune signals in the data set.
(E) ROC curve.

3.4. CIBERSORT and ssGSEA immune infiltration analysis

Two methods of CIBERSORT and ssGSEA were used to analyze the immune infiltration of CAVS
and normal controls. The relative percentages of the 22 immune cells evaluated by CIBERSORT are
displayed in a bar graph (Figure 4A). Correlation analysis between immune cells found that NK cells
resting and T cells regulatory (Tregs) were positively correlated, and the correlation reached 0.81. The
highest negative correlation between Mast cells resting and Mast cells activated, T cells gamma delta
and T cells regulatory (Tregs) reached 0.77(Figure 4B). The violin chart shows that B cells naive (P <
0.01), Macrophages M0 (P <0.01), Macrophages M2 (P <0.01) have a higher degree of discrimination
between CAVS and normal controls. B cells naive and Macrophages M2 are less in CAVS, while
Macrophages MO is more in CAVS (Figure 4C). The PCA chart also shows that CAVS is well
distinguished from normal controls (Figure 4D). The correlation results between immune-related
differential genes (DEIRGs) and immune infiltrating cells produced by the two methods are
represented by heat maps (Figure 5A,B). ssGSEA found that most DEIRGs are positively correlated
with more immune cells, while CIBERSORT shows that B cells memory, Macrophages.M2, and NK
cells activated are negatively correlated with DEIRGs.
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Figure 5. Correlation heat map of DEIRGs with CIBERSORT and ssGSEA immune cell
subtypes. (A) Correlation of immune cells was obtained by DEIRGs and CIBERSORT
analysis. (B) Correlation of immune cells obtained by DEIRGs and ssGSEA analysis.

3.5. The connection of key immune signals with specific immune pathways and immune infiltrating
sub-cells

Among the three key immune signals of CAVS, AGTRI is negatively correlated with the immune
pathway of interest in MSigDB, while PLTP and SCG2 are positively correlated (Figure 6A—C). There
is a high degree of positive correlation between most immune pathways. Among the 28 immune cells
analyzed by ssGSEA, AGTRI was negatively correlated with most, while PLTP and SCG2 were
positively correlated with most (Figure 6D—F). The correlation among 28 kinds of immune cells is
shown in the correlation heat map. Among the 22 immune cells analyzed by CIBERSORT, the most
significant is that AGTRI is positively correlated with NK cells activated (r =0.83, P=1.32E-08), and
NK cells resting is negatively correlated (r = -0.63, P = 0.000194) (Figure 6G). PLTP had the most
significant positive correlation with Neutrophils (r = 0.69, P = 3.89E-05), and the most significant
negative correlation with B cells naive (r = -0.36, P = 0.045151) (Figure 6H). SCG2 had the most
significant positive correlation with Macrophages.M0 (r = 0.68, P = 2.63E-05), and the most
significant negative correlation with Macrophages.M2 (r = -0.56, P = 0.001529) (Figure 61).
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Figure 6. Key immune signals and specific immune pathways, immune infiltration subcellular
correlation. (A) The correlation between AGTRI and immune pathways. (B) The correlation
between PLTP and immune pathways. (C) The correlation between SCG2 and immune pathways.
(D) The correlation between AGTR1 and immune cell infiltration of ssGSEA. (E) The correlation
between PLTP and immune cell infiltration of ssGSEA. (F) The correlation between SCG2 and
immune cell infiltration of ssGSEA. (G) The correlation between AGTRI and CIBERSORT
immune cell infiltration. (H) The correlation between PLTP and CIBERSORT immune cell
infiltration. (I) The correlation between SCG2 and CIBERSORT immune cell infiltration.

3.6. Analysis of potential drug effects of CMap
CMap analysis found that isoliquiritigenin, parthenolide, pyrrolidine-dithiocarbamate, radicicol,

RITA, roscovitine, securinine, midazolam, mitomycin-c, and colforsin are the top ten targeted drugs
related to CAVS immunity (Figure 7A). The scores of isoliquiritigenin, parthenolide, and pyrrolidine-
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dithiocarbamate were 92.40, 88.23, and 84.24. The first three drugs isoliquiritigenin, parthenolide, and
pyrrolidine-dithiocarbamate were analyzed by the drug MoA and found to be related to the NFkB
pathway inhibitor, Immunostimulant, etc (Figure 7B-D).
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Figure 7. Drug CMap and MoA analysis. (A) Top ten drugs and scores. (B) MoA analysis
of isoliquiritigenin. (C) MoA analysis of parthenolide. (D) MoA analysis of pyrrolidine-
dithiocarbamate.

4. Discussion

Calcific aortic valve stenosis is the most prevalent valve disease in the world. It exists in large
numbers in the elderly, and the disease has caused severe damage to the patients [32]. Once the clinical
symptoms of severe CAVS appear, the prognosis is poor without intervention. Although there is still a
lack of precise molecular insights into the pathophysiological process of CAVS, early intervention of
the disease has become more realistic. More evidence shows that aortic valve calcification is closely
related to immune inflammation [33,34]. Therefore, we tried to find DEIRGs and explore the possible
role of immune cell infiltration in CAVS. 71 DEIRGs (60 up-regulated genes, 11 down-regulated genes)
were identified as biomarkers of CAVS, and the potential enrichment function of DEIRGs was further
studied. GO enrichment revealed that DEIRGs are associated with the immune inflammatory response.
DO enrichment analysis found that DEIRGs are mainly closely related to cardiovascular diseases.
GSEA enrichment revealed that two immune-related pathways, Cytokine-cytokine receptor interaction
and Chemokine signaling pathway were significantly enriched. Two machine learning methods,
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LASSO and SVM-RFE, are used to confirm that AGTR 1, PLTP, and SCG?2 are the key immune signals
of CAVS.

The protein encoded by AGTR1 is part of the renin-angiotensin system and is used to regulate the
balance of blood and body fluids. This gene may play a role in the production of arrhythmia after
reperfusion after ischemia or infarcted myocardial blood flow is restored. A study showed that the
AGTRI gene has a moderate level of evidence that may be related to the risk of CAVS [35]. At the
same time, the pathogenesis of some cardiovascular diseases is also related to AGTRI [36,37]. PLTP
is one of the lipid transfer proteins, which binds to Apolipoprotein A1(ApoA) [38]. Several studies
have shown that ApoA is related to calcification and stenosis of the aortic valve. It is mostly located in
its fibrous tissue and co-localizes with the calcified area [39—41]. In addition, studies in mice have
shown that PLTP deficiency can reduce plasma total cholesterol and triglycerides and prevent the
progression of arterial calcification [42]. SCG2 is a member of the granulin family. Studies have found
that SCG?2 is present in mouse myocardium [43]. In addition, a study also found that SCG?2 plays a key
role in the development of aortic valve calcification [44]. However, the specific mechanism of SCG2
and CAVS remains to be studied.

CIBERSORT and ssGSEA analyzed the subtypes of CAVS immune infiltrating cells and found
that B cells naive (P < 0.01) and Macrophages M2 (P < 0.01) were less in CAVS, while Macrophages
MO (P <0.01) were more in CAVS. ssGSEA and CIBERSORT found that most DEIRGs are positively
correlated with immune cells, and DEIRGs are more negatively correlated with B cells memory,
Macrophages.M2, and NK cells activated. Among the three key immune signals of CAVS, AGTRI is
negatively correlated with the immune pathway of interest in MSigDB, while PLTP and SCG2 are
positively correlated. Analysis of the key immune signals and immune cell subtypes of the three CAVS
showed that among the 28 immune cells obtained from ssGSEA, AGTRI was negatively correlated
with the majority, while PLTP and SCG2 were positively correlated with the majority. Among the 22
immune cells analyzed by CIBERSORT, the most significant is that AGTRI is positively correlated
with NK cells activated, and NK cells resting is negatively correlated. PLTP is positively correlated
with Neutrophils and negatively correlated with B cells naive. SCG2 is positively correlated with
Macrophages.M0 and negatively correlated with Macrophages.M2.

Finally, we performed CMap analysis on immune genes in the dataset to find possible related
drugs. Isoliquiritigenin, parthenolide, pyrrolidine-dithiocarbamate, radicicol, RITA, roscovitine,
securinine, midazolam, mitomycin-c, and colforsin are the top ten targeted drugs related to the immune
mechanism of CAVS. At the same time, it was found that the top three drugs isoliquiritigenin,
parthenolide, and pyrrolidine-dithiocarbamate are related to NFkB pathway inhibitor and
Immunostimulant. Based on these results, AGTRI, PLTP, and SCG2 seem to play a key role in CSVA
by regulating immune infiltration.

5. Conclusions

In this study, we obtained 266 DEGs in CAV'S and normal controls, and 71 DEIRGs were obtained
through integration with immune genes. Enrichment analysis found that DEIRGs are related to
oxidative stress, synaptic membrane components, receptor activity, and a variety of cardiovascular
diseases and immune pathways. Two machine learning algorithms identified AGTR 1, PLTP, and SCG2
as the key immune signals of CAVS. Immune infiltration found that B cells naive and Macrophages
M2 are less in CAVS, while Macrophages MO is more in CAVS. At the same time, AGTRI, PLTP,
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SCG2 are highly correlated with a variety of immune cell subtypes. CMap analysis found that
isoliquiritigenin, parthenolide, and pyrrolidine-dithiocarbamate are the top three targeted drugs related
to CAVS immunity. Our findings will help improve the understanding of CAVS disease and explain
new molecular mechanisms and potential targets.
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