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Abstract: Background: Calcific aortic valve stenosis (CAVS) is a crucial cardiovascular disease facing 
aging societies. Our research attempts to identify immune-related genes through bioinformatics and 
machine learning analysis. Two machine learning strategies include Least Absolute Shrinkage 
Selection Operator (LASSO) and Support Vector Machine Recursive Feature Elimination (SVM-RFE). 
In addition, we deeply explore the role of immune cell infiltration in CAVS, aiming to study the 
potential therapeutic targets of CAVS and explore possible drugs. Methods: Download three data sets 
related to CAVS from the Gene Expression Omnibus. Gene set variation analysis (GSVA) looks for 
potential mechanisms, determines differentially expressed immune-related genes (DEIRGs) by 
combining the ImmPort database with CAVS differential genes, and explores the functions and 
pathways of enrichment. Two machine learning methods, LASSO and SVM-RFE, screen key immune 
signals and validate them in external data sets. Single-sample GSEA (ssGSEA) and CIBERSORT 
analyze the subtypes of immune infiltrating cells and integrate the analysis with DEIRGs and key 
immune signals. Finally, the possible targeted drugs are analyzed through the Connectivity Map 
(CMap). Results: GSVA analysis of the gene set suggests that it is highly correlated with multiple 
immune pathways. 266 differential genes (DEGs) integrate with immune genes to obtain 71 DEIRGs. 
Enrichment analysis found that DEIRGs are related to oxidative stress, synaptic membrane 
components, receptor activity, and a variety of cardiovascular diseases and immune pathways. 
Angiotensin II Receptor Type 1(AGTR1), Phospholipid Transfer Protein (PLTP), Secretogranin II 
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(SCG2) are identified as key immune signals of CAVS by machine learning. Immune infiltration found 
that B cells naïve and Macrophages M2 are less in CAVS, while Macrophages M0 is more in CAVS. 
Simultaneously, AGTR1, PLTP, SCG2 are highly correlated with a variety of immune cell subtypes. 
CMap analysis found that isoliquiritigenin, parthenolide, and pyrrolidine-dithiocarbamate are the top 
three targeted drugs related to CAVS immunity. Conclusion: The key immune signals, immune 
infiltration and potential drugs obtained from the research play a vital role in the pathophysiological 
progress of CAVS. 

Keywords: calcific aortic valve stenosis; immune cell; machine learning; differentially expressed 
genes; pathways 
 

1. Introduction  

Calcific aortic valve stenosis (CAVS) is a continuous global progressive disease that causes 
stenosis and contraction of the left ventricular outflow tract in the later stage of the disease, causing 
destructive damage to the heart that affects hemodynamics [1]. Several epidemiological studies have 
shown that 2.8% of the elderly (over 75 years old) have varying degrees of CAVS, and as many as 25% 
of the community population over 65 years old have risk factors for valve sclerosis. Older men, high 
triglyceride levels, smoking time limit, and early aortic valve replacement have been determined to be 
associated with the progression of CAVS [2]. A calcified aortic valve often leads to aortic valve stenosis. 
Inflammatory cell infiltration, lipid accumulation, and tissue fibrosis play a leading role in the initial 
stage of the mechanism of CAVS [3]. Therefore, exploring the pathophysiological process of CAVS is 
essential for the diagnosis and treatment of this complex disease with a poor prognosis. 

The immune and inflammatory response is a key link in the pathological process of CAVS [4]. A 
variety of inflammatory markers such as Toll-like receptor (TLR), interleukin-37, interleukin-6, 
transforming growth factor-β1 are closely related to aortic valve stenosis caused by calcified aortic 
valve Related [5,6]. Amyloid P Component Serum (APCS), Heat Shock Protein 90 (HSP90), Protein 
Disulfide Isomerase Family A Member 3 (PDIA3), Annexin A2 (ANXA2), Toll Like Receptor 7 (TLR7) 
and other immune-related genes (IRGs) also suggest that they have therapeutic effects in the process 
of CAVS fibrosis [7,8]. Immune cell infiltration is also closely related to CAVS. CD8 T lymphocytes, 
macrophages, and regulatory T lymphocytes (Tregs) appear in the pathophysiological process of 
CAVS [9–11]. In addition, statin anti-inflammatory therapy affects CAVS and maybe a drug target for 
the prevention of related diseases [12,13]. 

This study conducted bioinformatics and machine learning analysis of IRGs in CAVS and 
explored potential regulatory methods and functional differences related to IRGs. Compared with 
traditional models, machine learning models show superior performance in disease classification and 
prediction [14]. The use of machine learning models is a novel method for disease diagnosis and 
prediction [15–17]. We use Single-sample GSEA (ssGSEA) and CIBERSORT to explore the 
relationship between differential immunity-related genes (DEIRGs) and the level of immune 
infiltration of cell subsets. In addition, to better understand the immune mechanism of CAVS, the 
potential connection between key immune signals and immune cell subsets was studied. The flow chart 
of this research analysis is shown in Supplementary Figure 1. 
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2. Materials and methods 

2.1. Patient sample collecting and data preprocessing 

Download the micro data set from Gene Expression Omnibus (GEO) 
(https://www.ncbi.nlm.nih.gov/geo/). The following are the screening criteria: 1) Select tissue samples 
including CAVS patients and normal controls; 2) Exclude samples from mitral and tricuspid valves; 3) 
No other organic diseases. The data set GSE12644 and GSE51472 of the GPL570 platform ([HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array) were selected as the training data set, 
and the data set GSE83453 of the GPL10558 platform (Illumina HumanHT-12 V4.0 expression 
beadchip) was selected as the verification. GSE12644 includes 10 calcified aortic valve samples and 
10 normal controls (10 CAVS vs 10 NC). GSE51472 includes 5 calcified aortic valve tissues and 5 
normal controls (5 CAVS vs 5 NC). GSE83453 includes 9 aortic valve tissues with stenosis and 
calcification and 8 normal controls (9 CAVS vs 8 NC). All tissue sample data undergoes background 
correction and de-batch effect. 

2.2. Gene set variation analysis (GSVA) pathway analysis and identification of DEIRGs 

Use GSVA to analyze the data set to find pathways with significant differences between samples, 
analyzing genes more biologically meaningful [18]. The Benjamini & Hochberg method was used for 
multiple testing calibrations. The score value > 0.5 and adjust P-value < 0.05 is the cutoff value of 
pathway enrichment. The Limma package [19] (Version 3.44.3) in the R software (Version 4.0.2; 
https://www.r-project.org/) is used to screen differentially expressed genes (DEGs). The screening 
criteria for significant differences are P-value < 0.05, | log2 (Fold Change) | ≥ 1. A total of 2483 IRGs 
were obtained from the ImmPort (https://www.immport.org/) database, and DEIRGs were identified 
by matching IRGs and DEGs. The ggplot2 package [20] (Version 3.3.5) draws bar graphs of GSVA 
and volcano graphs of DEIRGs. 

2.3. Pathway enrichment analysis of DEIRGs 

Enrichment analysis of pathways and functions of DEIRGs to discover possible immune 
pathways and functions. Gene Ontology (GO) and Disease Ontology (DO) enrichment analysis are 
sorted by adjust P-value < 0.05 and Count value. We use the ggplot2 package (Version 3.3.5) of R 
software to visualize the plot. The Molecular Signatures Database (MSigDB) library is a collection of 
annotated gene sets. We can perform a series of analyses on the predefined gene set in the MSigDB 
library. Gene Set Enrichment Analysis (GSEA) uses “c2.cp.kegg.v7.2.symbols.gmt” under MSigDB 
(https://www.gsea-msigdb.org/gsea/msigdb/) [21] as the reference gene set, and the cutoff value is set 
to adjust P-value < 0.05.  

2.4. Key immune signal screening and external verification 

The obtained DEIRGs were further screened using machine learning methods to obtain key 
immune signals. Two machine learning methods—Least Absolute Shrinkage Selection Operator 
(LASSO) [22] and Support Vector Machine Recursive Feature Elimination (SVM-RFE) [23] perform 
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feature screening for differences in gene expression values to obtain more accurate screening 
predictions. LASSO is an analysis method that can perform feature selection on research models. 
After screening, it aims to enhance the prediction accuracy and reliability of the model. SVM-RFE 
adopts the risk minimization principle and the experience error minimization principle. It can be 
used to improve learning performance to filter models. We use the glmnet package [24] (Version 4.1) 
and e1071 package [25] (Version 1.7) of the R software to execute the LASSO and SVM-RFE 
algorithms. Afterward, the external verification data set GSE83453 was verified against the selected 
key immune signals. 

2.5. Evaluation of tissue-infiltrating immune cells 

ssGSEA [26] and CIBERSORT [27] are two tools for analyzing immune infiltrating cell subtypes. 
CIBERSORT analyzes the infiltration of immune cells between CAVS and normal controls. 
Subsequently, the relationship between the DEIRGs of CAVS and the subtypes of immune infiltrating 
cells was established. At the same time, the key immune signals obtained by machine learning 
screening are correlated with the immune infiltrating cells obtained by two analysis methods. Finally, 
in the MSigDB library “c5.all.v7.4.symbols.gmt” uses “IMMUNITY” as the keyword to find the 
immune pathway of interest, calculate the pathway enrichment score and analyze the key immune 
signals found and their correlation. Spearman correlation analysis was used for the correlation. We used 
the corrplot package [28] (Version 0.9) of R software to make a related heat map. The pheatmap [29] 
package (Version 1.0.12) constructs a heat map of immune cells. The vioplot package [30] (Version 0.3.7) 
is used to compare the levels of immune cells between the two groups. 

2.6. Potential drug analysis of immune-related genes 

The Connectivity Map (CMap) (https://www.broadinstitute.org/connectivity-map-cmap) [31] is 
a database that analyzes the relationship between genes and their possible targeted drugs. Use CLUE 
(https://clue.io/) to predict the targeted drugs for CAVS immunotherapy on the 150 most significant 
up-and down-regulated immune genes in the data set. At the same time, use the Touchstone module to 
analyze the mechanism of actions (MoA) of the drug of interest and explore potential modes of action. 

2.7. Statistical analysis 

All statistical analysis uses R software (Version 4.0.2). Use Student’s t test for normally 
distributed variables and Mann-Whitney U test for abnormally distributed variables to compare the 
differences between the two groups. 

3. Results 

3.1. GSVA results and DEIRGs 

Use non-parametric unsupervised GSVA for gene sets to find the difference between the gene set 
in CAVS and normal control in the enrichment pathway, suggesting that it has a greater correlation 
with multiple immune pathways (Figure 1A). After the integration of GSE12644 and GSE51472 
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microarray matrix standardization and removal of batch effects, 266 DEGs (164 up-regulated genes, 
102 down-regulated genes) were obtained, and 71 significant DEIRGs were obtained through 
integration with immune genes (60 up-regulated genes and 11 down-regulated genes). The volcano 
map shows the differences in genes. The DEIRGs related to immunity are marked by black circles. 
The names of some DEIRGs of interest are also marked (Figure 1B). 

 

Figure 1. GSVA analysis results and differential genes. (A) GSVA analysis of gene sets. 
(B) DEGs and DEIRGs expression volcano graphs of CAVS and normal controls. 

3.2. Pathway and function enrichment analysis 

GO enrichment found that the biological processes (BP) mainly focused on reactive oxygen 
species, oxidative stress, cellular response to oxidative stress, and decreased oxygen levels. Cell 
component (CC) is mainly related to various components of the synaptic membrane. Molecular 
function (MF) is mainly related to receptor activity and enzyme binding (Figure 2A). DO found that 
cardiovascular diseases such as arteriosclerotic cardiovascular disease, arteriosclerosis, atherosclerosis, 
coronary artery disease, and myocardial infarction were significantly enriched. In addition, it includes 
lung disease, obstructive lung disease, kidney disease, and so on (Figure 2B). GSEA found that two 
immune-related pathways, Cytokine-cytokine receptor interaction and Chemokine signaling pathway 
were significantly enriched. It may be related to the immune-related pathways of CAVS (Figure 2C).  
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Figure 2. Pathway and function enrichment analysis results. (A) Enrichment results of BP, 
CC, and MF. (B) Results of DO analysis. (C) Two immune-related pathways of CAVS. 

3.3. Machine learning to screen key immune signals 

According to the LASSO method, the optimal lambda.min is set as 0.007915132 based on the 
amount of gene expression. The 6 immune signals screened out are Angiotensin II Receptor Type 
1(AGTR1), C-X-C Motif Chemokine Ligand 16 (CXCL16), Leptin Receptor (LEPR), Phospholipid 
Transfer Protein (PLTP), Secretogranin II (SCG2), Secretory Leukocyte Peptidase Inhibitor (SLPI) 
(Figure 3A). After screening using SVM-RFE, the first 50 variables were screened by 5x cross-check, 
and the first 4 immune signals were Angiotensin II Receptor Type 1(AGTR1), Phospholipid Transfer 
Protein (PLTP), Secretogranin II (SCG2), and Tenascin C (TNC) (Figure 3B). Integrating the two 
results, AGTR1, PLTP, and SCG2 are considered by us to be the key immune signals of CAVS (Figure 
3C). The external validation data set GSE83453 verified it and found that the three key immune signals 
distinguished well between CAVS and normal control (Figure 3D). The areas under the ROC curve 
were AGTR1 (AUC = 0.917), PLTP (AUC = 0.875), and SCG2 (AUC = 0.917), with high diagnostic 
value (Figure 3E). 
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Figure 3. Key immune signals and verification. (A) LASSO. (B) SVM-RFE. (C) 3 key 
immune signals integrated. (D) Verify the expression of key immune signals in the data set. 
(E) ROC curve. 

3.4. CIBERSORT and ssGSEA immune infiltration analysis 

Two methods of CIBERSORT and ssGSEA were used to analyze the immune infiltration of CAVS 
and normal controls. The relative percentages of the 22 immune cells evaluated by CIBERSORT are 
displayed in a bar graph (Figure 4A). Correlation analysis between immune cells found that NK cells 
resting and T cells regulatory (Tregs) were positively correlated, and the correlation reached 0.81. The 
highest negative correlation between Mast cells resting and Mast cells activated, T cells gamma delta 
and T cells regulatory (Tregs) reached 0.77(Figure 4B). The violin chart shows that B cells naïve (P < 
0.01), Macrophages M0 (P < 0.01), Macrophages M2 (P < 0.01) have a higher degree of discrimination 
between CAVS and normal controls. B cells naïve and Macrophages M2 are less in CAVS, while 
Macrophages M0 is more in CAVS (Figure 4C). The PCA chart also shows that CAVS is well 
distinguished from normal controls (Figure 4D). The correlation results between immune-related 
differential genes (DEIRGs) and immune infiltrating cells produced by the two methods are 
represented by heat maps (Figure 5A,B). ssGSEA found that most DEIRGs are positively correlated 
with more immune cells, while CIBERSORT shows that B cells memory, Macrophages.M2, and NK 
cells activated are negatively correlated with DEIRGs. 
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Figure 4. CIBERSORT immune infiltration analysis. (A) Percentage of immune cells. (B) 
Correlation between immune cells. (C) Immune cell difference between CAVS and normal 
control. (D) PCA chart of CAVS and normal control.  
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Figure 5. Correlation heat map of DEIRGs with CIBERSORT and ssGSEA immune cell 
subtypes. (A) Correlation of immune cells was obtained by DEIRGs and CIBERSORT 
analysis. (B) Correlation of immune cells obtained by DEIRGs and ssGSEA analysis. 

3.5. The connection of key immune signals with specific immune pathways and immune infiltrating 
sub-cells 

Among the three key immune signals of CAVS, AGTR1 is negatively correlated with the immune 
pathway of interest in MSigDB, while PLTP and SCG2 are positively correlated (Figure 6A–C). There 
is a high degree of positive correlation between most immune pathways. Among the 28 immune cells 
analyzed by ssGSEA, AGTR1 was negatively correlated with most, while PLTP and SCG2 were 
positively correlated with most (Figure 6D–F). The correlation among 28 kinds of immune cells is 
shown in the correlation heat map. Among the 22 immune cells analyzed by CIBERSORT, the most 
significant is that AGTR1 is positively correlated with NK cells activated (r = 0.83, P = 1.32E-08), and 
NK cells resting is negatively correlated (r = -0.63, P = 0.000194) (Figure 6G). PLTP had the most 
significant positive correlation with Neutrophils (r = 0.69, P = 3.89E-05), and the most significant 
negative correlation with B cells naive (r = -0.36, P = 0.045151) (Figure 6H). SCG2 had the most 
significant positive correlation with Macrophages.M0 (r = 0.68, P = 2.63E-05), and the most 
significant negative correlation with Macrophages.M2 (r = -0.56, P = 0.001529) (Figure 6I). 
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Figure 6. Key immune signals and specific immune pathways, immune infiltration subcellular 

correlation. (A) The correlation between AGTR1 and immune pathways. (B) The correlation 

between PLTP and immune pathways. (C) The correlation between SCG2 and immune pathways. 

(D) The correlation between AGTR1 and immune cell infiltration of ssGSEA. (E) The correlation 

between PLTP and immune cell infiltration of ssGSEA. (F) The correlation between SCG2 and 

immune cell infiltration of ssGSEA. (G) The correlation between AGTR1 and CIBERSORT 

immune cell infiltration. (H) The correlation between PLTP and CIBERSORT immune cell 

infiltration. (I) The correlation between SCG2 and CIBERSORT immune cell infiltration. 

3.6. Analysis of potential drug effects of CMap 

CMap analysis found that isoliquiritigenin, parthenolide, pyrrolidine-dithiocarbamate, radicicol, 
RITA, roscovitine, securinine, midazolam, mitomycin-c, and colforsin are the top ten targeted drugs 
related to CAVS immunity (Figure 7A). The scores of isoliquiritigenin, parthenolide, and pyrrolidine-
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dithiocarbamate were 92.40, 88.23, and 84.24. The first three drugs isoliquiritigenin, parthenolide, and 
pyrrolidine-dithiocarbamate were analyzed by the drug MoA and found to be related to the NFkB 
pathway inhibitor, Immunostimulant, etc (Figure 7B–D). 

 

Figure 7. Drug CMap and MoA analysis. (A) Top ten drugs and scores. (B) MoA analysis 
of isoliquiritigenin. (C) MoA analysis of parthenolide. (D) MoA analysis of pyrrolidine-
dithiocarbamate. 

4. Discussion 

Calcific aortic valve stenosis is the most prevalent valve disease in the world. It exists in large 
numbers in the elderly, and the disease has caused severe damage to the patients [32]. Once the clinical 
symptoms of severe CAVS appear, the prognosis is poor without intervention. Although there is still a 
lack of precise molecular insights into the pathophysiological process of CAVS, early intervention of 
the disease has become more realistic. More evidence shows that aortic valve calcification is closely 
related to immune inflammation [33,34]. Therefore, we tried to find DEIRGs and explore the possible 
role of immune cell infiltration in CAVS. 71 DEIRGs (60 up-regulated genes, 11 down-regulated genes) 
were identified as biomarkers of CAVS, and the potential enrichment function of DEIRGs was further 
studied. GO enrichment revealed that DEIRGs are associated with the immune inflammatory response. 
DO enrichment analysis found that DEIRGs are mainly closely related to cardiovascular diseases. 
GSEA enrichment revealed that two immune-related pathways, Cytokine-cytokine receptor interaction 
and Chemokine signaling pathway were significantly enriched. Two machine learning methods, 
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LASSO and SVM-RFE, are used to confirm that AGTR1, PLTP, and SCG2 are the key immune signals 
of CAVS. 

The protein encoded by AGTR1 is part of the renin-angiotensin system and is used to regulate the 
balance of blood and body fluids. This gene may play a role in the production of arrhythmia after 
reperfusion after ischemia or infarcted myocardial blood flow is restored. A study showed that the 
AGTR1 gene has a moderate level of evidence that may be related to the risk of CAVS [35]. At the 
same time, the pathogenesis of some cardiovascular diseases is also related to AGTR1 [36,37]. PLTP 
is one of the lipid transfer proteins, which binds to Apolipoprotein A1(ApoA) [38]. Several studies 
have shown that ApoA is related to calcification and stenosis of the aortic valve. It is mostly located in 
its fibrous tissue and co-localizes with the calcified area [39–41]. In addition, studies in mice have 
shown that PLTP deficiency can reduce plasma total cholesterol and triglycerides and prevent the 
progression of arterial calcification [42]. SCG2 is a member of the granulin family. Studies have found 
that SCG2 is present in mouse myocardium [43]. In addition, a study also found that SCG2 plays a key 
role in the development of aortic valve calcification [44]. However, the specific mechanism of SCG2 
and CAVS remains to be studied. 

CIBERSORT and ssGSEA analyzed the subtypes of CAVS immune infiltrating cells and found 
that B cells naïve (P < 0.01) and Macrophages M2 (P < 0.01) were less in CAVS, while Macrophages 
M0 (P < 0.01) were more in CAVS. ssGSEA and CIBERSORT found that most DEIRGs are positively 
correlated with immune cells, and DEIRGs are more negatively correlated with B cells memory, 
Macrophages.M2, and NK cells activated. Among the three key immune signals of CAVS, AGTR1 is 
negatively correlated with the immune pathway of interest in MSigDB, while PLTP and SCG2 are 
positively correlated. Analysis of the key immune signals and immune cell subtypes of the three CAVS 
showed that among the 28 immune cells obtained from ssGSEA, AGTR1 was negatively correlated 
with the majority, while PLTP and SCG2 were positively correlated with the majority. Among the 22 
immune cells analyzed by CIBERSORT, the most significant is that AGTR1 is positively correlated 
with NK cells activated, and NK cells resting is negatively correlated. PLTP is positively correlated 
with Neutrophils and negatively correlated with B cells naive. SCG2 is positively correlated with 
Macrophages.M0 and negatively correlated with Macrophages.M2. 

Finally, we performed CMap analysis on immune genes in the dataset to find possible related 
drugs. Isoliquiritigenin, parthenolide, pyrrolidine-dithiocarbamate, radicicol, RITA, roscovitine, 
securinine, midazolam, mitomycin-c, and colforsin are the top ten targeted drugs related to the immune 
mechanism of CAVS. At the same time, it was found that the top three drugs isoliquiritigenin, 
parthenolide, and pyrrolidine-dithiocarbamate are related to NFkB pathway inhibitor and 
Immunostimulant. Based on these results, AGTR1, PLTP, and SCG2 seem to play a key role in CSVA 
by regulating immune infiltration. 

5. Conclusions 

In this study, we obtained 266 DEGs in CAVS and normal controls, and 71 DEIRGs were obtained 
through integration with immune genes. Enrichment analysis found that DEIRGs are related to 
oxidative stress, synaptic membrane components, receptor activity, and a variety of cardiovascular 
diseases and immune pathways. Two machine learning algorithms identified AGTR1, PLTP, and SCG2 
as the key immune signals of CAVS. Immune infiltration found that B cells naïve and Macrophages 
M2 are less in CAVS, while Macrophages M0 is more in CAVS. At the same time, AGTR1, PLTP, 
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SCG2 are highly correlated with a variety of immune cell subtypes. CMap analysis found that 
isoliquiritigenin, parthenolide, and pyrrolidine-dithiocarbamate are the top three targeted drugs related 
to CAVS immunity. Our findings will help improve the understanding of CAVS disease and explain 
new molecular mechanisms and potential targets. 
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