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Abstract: Camera devices are being deployed everywhere. Cities, enterprises, and more and more 
smart homes are using camera devices. Fine-grained identification of devices brings an in-depth 
understanding of the characteristics of these devices. Identifying the device type helps secure the 
device safe. But, existing device identification methods have difficulty in distinguishing fine-grained 
types of devices. To address this challenge, we propose a fine-grained identification method based on 
the camera devices’ inherent features. First, feature selection is based on the coverage and differences 
of the inherent features type. Second, the features are classified according to their representation. A 
design feature similarity calculation strategy (FSCS) for each type of feature is established. Then the 
feature weights are determined based on feature entropy. Finally, we present a device similarity model 
based on the FSCS and feature weights. And we use this model to identify the fine-grained type of a 
target device. We have evaluated our method on Dahua and Hikvision camera devices. The 
experimental results show that we can identify the device’s fine-grained type when some inherent 
feature values are missing. Even when the inherent feature “missing rate” is 50%, the average accuracy 
still exceeds 80%. 

Keywords: device identification; feature similarity calculation; fine-grained identification; inherent 
features; Internet of Things 
 

1. Introduction 

Camera devices are typical pieces of Internet of Things (IoT) equipment ubiquitously deployed 
in cyberspace and play an important role in maintaining safety in daily life and industrial operations. 
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However, camera devices are usually technically heterogeneous and geographically dispersed, and it 
is time-consuming for devices owners to test which cameras are online and whether they are 
functioning normally. Camera devices are becoming attractive targets of cyber-attacks lack of security 
management. In 2016, up to 1.5 million webcams were attacked by the Mirai malware. The 
compromised webcams launched a large-scale distributed denial-of-service (DDoS) attack against 
some high-profile network infrastructure, causing paralysis of half of the U.S. internet. Therefore, 
accurately identifying the fine-grained type of device is of great significance for asset management. 
Conducting cyberspace resource surveying and mapping [1], assessing the impact of equipment 
vulnerabilities [2], and improving the effectiveness of network device governance [3] also requires 
understanding the type of devices. 

Precise identification of camera devices is helpful for asset management, vulnerability assessment, 
and patch upgrading and thus is the groundwork for security management. Concurrently, there are two 
main kinds of methods for device identification, traffic-based, and web search-based methods—
described as follows. 

Traffic-based identification approaches can be classified into two main areas: active probing and 
passive monitoring. 

Active Traffic Probing. A server sends a request message to a remote host using a specific 
application protocol (such as HTTP, FTP, POP3, etc.) via an IP address and extracts features from the 
response. Features match with a pre-established device fingerprint to establish the identification of the 
device. Shodan [4] is the world’s first search engine for networked devices based on this technology. 
It uses Nmap [5] to periodically perform port scans on approximately 600 million devices around the 
world and returns banner information through processing to identify specific devices. Scholars at the 
University of Michigan used the self-developed Zmap [6] scanning tool to build the Censys [7] system 
to search for devices. In addition, ZoomEye, FoFa, and Oshadan  are examples of the implementation 
of active probing [8], which has strong scalability. For new device types, a fingerprint is added to the 
fingerprint database to establish identification. 

This method can customize the request packet to obtain a specific response message text, feature 
data are easy to obtain. However, with the enhancement of security protection strategies, more and 
more devices no longer respond to request messages. In this case, the response data is not obtained 
and the device identification is invalid. 

Passive Traffic Monitoring. This technique monitors network traffic without sending any 
messages. First, it extracts various characteristics such as protocol parameters, packet fingerprints, or 
communication patterns from the traffic. Second, it establishes an appropriate identification model 
leveraging machine learning theory is established. Finally, it identifies the device types using the 
identification model.  

Y. Meidan et al. [9] took a quadruple composed of a source IP, destination IP, port number, and 
flag bits (SYN, FIN, ACK, etc.) in the TCP session data as characteristics. They used several machine 
learning approaches to classify and identify IoT devices. 

Miettinen M et al. [10] extracted a total of 23 features (e.g., the protocol types of each layer of 
the packet, source, and destination port number) from network traffic. They built the SENTINEL 
system by using the random forest method to classify IoT devices. 

Arunan Sivanathan et al. [11] extracted features such as flow duration, port number, domain 
name, and cipher suite. They built a multistage classification model based on naive Bayes and 
random forest methods. 
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Cheng et al. [12] took the differences among the device file headers in traffic as features and used 
classification algorithms such as a backpropagation neural network [13], support vector machine [14], 
and k-nearest neighbors [15] to identify device types. 

Yang et al. [16] took advantage of the characteristics of device network protocols at different open 
systems interconnection layers and neural network algorithms to generate the fingerprints of IoT 
devices for device identification. 

Arunan et al. [17] used traffic characteristics obtained at the network level for IoT device 
classification. They presented insights into the underlying network traffic characteristics using 
statistical attributes such as activity cycles, port numbers, signaling patterns, and cipher suites. The 
work developed a multistage machine learning-based classification algorithm to identify specific 
IoT devices. 

Sakthi et al. [18] proposed GTID, a wireless device identification technique based on traffic 
measurement metrics using the Ping and iPerf tools. They collect the interarrival time (IAT) of 
messages from the switch as features to create a unique and reproducible device signature and use 
artificial neural networks (ANNs) for classification. 

This type of method circumvents the problem of non-responsive messages due to security policies, 
but it also limits the acquisition of high-value features and reduces the accuracy of device classification 
and identification. 

Web-search-based. Web-search-based device identification method acquires knowledge of IoT 
devices—i.e., IoT devices and related vendors, products, and models—to build a device information 
repository or establish annotation rules. 

Zou et al. [19] proposed an IoT device recognition framework based on web searches, which 
identified the brand and model of IoT devices by matching their protocol banners with a product 
attributes database established by crawling specific electronic business websites. 

Feng [20] proposed an ARE engine that extracts relevant terms from the response data as search 
query crawl websites. They used an association algorithm to generate rules for IoT device annotations 
based on vendors, products, and models. 

Agarwal et al. [21] developed a tool named WID that captures the web pages of IoT devices and 
performs device type classification by analyzing the source code of the web pages. 

This type of approach does not need manual construction of fingerprints or training data to 
identify device types, but the accuracy relies on the reliability of Internet resources and requires the 
design of very complex rules for matching attribute information, which limits the accuracy and recall 
of the algorithm. 

In addition, there is a device type identification method based on clock deviation [22–27]. This 
type of method uses the deviation that still exists after each device is calibrated by the network time 
protocol (NTP) to classify IoT devices. However, the clock deviation of a device is very difficult to 
measure, and it is difficult to distinguish the difference in the clock deviation among devices from the 
same manufacturer. This method of identifying the specific type of device can cause large errors. 

The above methods have high accuracy in identifying coarse-grained device types. However, it 
is a challenge to accurately identify fine-grained types of devices. We propose a fine-grained camera 
device identification method based on the inherent features of devices. Inherent features represent 
characteristics of the device itself, such as device-specific parameters, geometric shapes, physical 
properties, and technical parameters. There are few research studies based on inherent features for 
classifying and identifying devices. 
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We believe that inherent features can be used to effectively identify the fine-grained device. When 
distinguishing a device, our method determines the weight of each feature based on the coverage and 
differences of the inherent features. We develop a feature similarity calculation strategy (FSCS) based 
on the manifestation of an inherent feature value. Based on each weight and the FSCS, we build a 
device identification model to establish the fine-grained identification of a device type. The detailed 
contribution of work is given below: 

1) We propose a new feature weight determination strategy. The method proposed in this paper 
selects features based on the coverage of inherent attributes. The greater the feature differences among 
different types are, the better the distinction of the features. For the inherent selection characteristics, 
we calculate a feature entropy value based on the feature differences, use the feature entropy value to 
determine a feature weight, and provide a feature weight determination strategy based on a theoretical 
foundation. 

2) We design a more reasonable feature similarity calculation rule. The inherent characteristics 
are classified into “phrase type”, “numerical value”, “interval type”, and “collection type” according 
to the expression form. Similarity calculation rules are developed for each type of inherent 
characteristic. Compared with a strategy that uses a single calculation rule to calculate all types of 
similarity, the classification similarity calculation rule is more concise, and the calculation cost is lower. 

3) We construct a fine-grained camera equipment type identification model based on inherent 
characteristics. Based on the feature weights and similarity calculation rules, we design a device type 
identification model using the idea of weighted average. This model can recognize fine-grained types 
of target devices with high accuracy even when some inherent feature values are missing, and it has 
good applicability in a real environment. 

The rest of the paper is as follows: Section 2 introduces the detailed methodology and steps of 
the method. The rationality and reliability analysis of the method is given in Section 3. Section 4 
presents the experimental results and analysis. In the end, Section 5 concludes our paper and discusses 
future work. 

2. Methodology 

In this section, we explain our proposed method in detail. We first present the basic framework, 
and we explain the notations of our algorithm. Then, we analyze the FSCS. Finally, we build the device 
identification model. Our proposed basic framework is shown in Figure 1, which includes three phases 
described as follows. 

Extracting the inherent features. For data about the inherent attributes (e.g., size, weight, 
parameter, etc.) of a device 𝑓௜,௡ in various types of equipment, we select the inherent attributes with 
large differences and wide coverage as the inherent features. 

Building the identification model. First, we design the calculation rules of feature similarity using 
the manifestation of the inherent features. Then, the feature weights are determined from the 
information entropy of the features in the dataset. Finally, we construct the identification model 
according to the calculation rules of feature similarity and the weights of the features. 

Identifying the device type. Based on the inherent features of the target device, the similarity 
between the target device and known devices is calculated to identify the type of the target device, and 
the device model with the largest similarity value is considered as the model of the target device. 
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Figure 1. Framework of fine-grained device identification based on inherent features. 

2.1. Notations 

The notations used to describe our proposed approach and the means of evaluating them are 
summarized below. 

𝑓: An inherent feature of the device. 𝑓௜,௡ is the nth feature of the ith device. 
𝐹: A collection of all inherent features of the device, and the inherent features of the ith device are 

𝐹௜ ൌ ൛𝑓௜,ଵ, 𝑓௜,ଶ, … , 𝑓௜,௡ൟ 
𝑇௜: The type of device 𝐼. 𝑇௡௢ indicates the unknown device type; that is, if the type of device 𝑖 is 

unknown, then 𝑇௜ ൌ 𝑇௡௢. 
𝑑𝑒𝑣௜: A two-tuple composed of the inherent features and type of device 𝑖, 𝑑𝑒𝑣௜ ൌ൏ 𝐹௜, 𝑇௜ ൐. 
𝐷௕௔௦௘ : A knowledge set defined as the collection of all known types of devices, 𝐷௕௔௦௘ ൌ

ሼ൏𝐹௕௔௦௘,ଵ, 𝑇௕௔௦௘,ଵ ൐, ൏ 𝐹௕௔௦௘,ଶ, 𝑇௕௔௦௘,ଶ ൐, … , ൏ 𝐹௕௔௦௘,௡, 𝑇௕௔௦௘,௡ ൐ൟ, Fbase,n is the feature set of the nth device 
in the Dbase database and Tbase,n is the type of the nth device in the Dbase database. 𝑇௕௔௦௘,௜ ്
𝑇௡௢ሺ1 ൑ 𝑖 ൑ 𝑛ሻ. 

𝐷௧௔௥௚௘௧: The target set is defined as the set consisting of all types of devices to be identified, 
𝐷௧௔௥௚௘௧ ൌ ൛൏ 𝐹௧௔௥௚௘௧,ଵ, 𝑇௡௢ ൐, ൏ 𝐹௧௔௥௚௘௧,ଶ, 𝑇௡௢ ൐, … , ൏ 𝐹௧௔௥௚௘௧,௦, 𝑇௡௢൐ሽ. 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦൫𝑓௜,௞, 𝑓௝,௞൯: The similarity of the 𝑘-th inherent feature between 𝐹௝ and 𝐹௜. At this time, 𝑓௜,௞ 
is called the benchmark feature, and 𝑓௝,௞  is the target feature (note: 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦൫𝑓௜,௞, 𝑓௝,௞൯  is not 
necessarily equal to 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦൫𝑓௝,௞, 𝑓௜,௞൯). 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦ሺ𝐹௜, 𝐹௝ሻ : The similarity of the feature set 𝐹௜  and  𝐹௝ . At this time, 𝐹௜  is called the 
benchmark feature set, and 𝐹௝ is the target feature set (note: 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦ሺ𝐹௜, 𝐹௝ሻ is not necessarily equal 
to 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦൫𝐹௝, 𝐹௜ሻ). 

2.2. Feature Similarity Calculation Strategy (FSCS) 

Different inherent features are usually expressed in different forms. For example, the size of a 
device is usually “length × width × height” or “bottom radius × height”, and the shape of a device is 
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usually “square”, “cylindrical” or “spherical”. Therefore, it is necessary to design different feature 
similarity calculation rules for the features of different expressions. Analyzing the manifestation of the 
inherent features of the camera devices resulted in the division of the manifestation of the inherent 
features into four types: “phrase type”, “numerical value”, “interval type” and “collection type”. We 
design similarity calculation rules for these four manifestations. 

For “phrase type”, when the feature phrases are the same, the feature similarity is 1; otherwise, it 
is 0. Considering the 𝑘-th feature of the inherent feature vectors 𝐹௕௔௦௘ and 𝐹௜ as a “phrase type” feature, 
the similarity calculation strategy between the target feature 𝑓௜,௞ and the benchmark feature 𝑓௕௔௦௘,௞ is 
shown in Eq (1). 
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For the “numerical type”, the size of the feature value and the measurement error   of the feature 
value are comprehensively considered. If the kth feature of the inherent feature vectors 𝐹௕௔௦௘ and 𝐹௜ is 
a “numerical type” feature, we can obtain the similarity calculation strategy between the target feature 
𝑓௜,௞ and the benchmark feature 𝑓௕௔௦௘,௞ described as Eq (2). 
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 (2) 

For “interval type”, the calculation strategy is designed based on an interval inclusion relationship. 
If the kth feature of the inherent feature vectors 𝐹௕௔௦௘ and 𝐹௜ is an “interval type” feature, then the 
similarity calculation strategy between the target feature 𝑓௜,௞  and the benchmark feature 𝑓௕௔௦௘,௞  is 
constructed as Eq (3). 

  , ,
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, ,

1,      
,

0,     
i k base k

base k i k
i k base k

if f f
Similarity f f

if f f


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                                      (3) 

For “collection type”, the benchmark feature is used as a reference. The target feature and the 
benchmark feature are vectorized, and the cosine similarity is used to measure the feature similarity. 
If the kth feature of the inherent feature vectors baseF   and iF   is a “collection type” feature, where 

 , ,1 ,2 ,, , ,base k base base base nf e e e    represents the benchmark feature and  , ,1 ,2 ,, , ,i k i i i mf e e e    represents 

the target feature, suppose the vectorization of the benchmark feature is expressed as 

 , ,1 ,2 ,, , ,base k base base base nV a a a   , and the vectorization of the target feature is expressed as 

 , ,1 ,2 ,, , ,i k i i i nV b b b  . Then, the vectorization process is as follows: for ,base kV , r Z   ,  1 r n  , then 

, 1base ra   ; for ,i kV  , r Z    ,  1 r n   . If , ,base r i ke f  , then , 1i rb   . After vectorization, the similarity 

calculation strategy is expressed as Eq (4).  



3773 

Mathematical Biosciences and Engineering  Volume 19, Issue 4, 3767-3786. 

 
,

,
1

, ,
,

2
, ,

1

,

fi k

i r
r

base k i k
fi k

base k i r
r

b
Similarity f f

f b













                                                    (4) 

where ,i rb  is the vectorization result of the r-th feature of the i-th device. 

2.3. Identification model 

According to the differences in the inherent features, an entropy value of a feature is calculated 
as the weight value. By using the FSCS combined with the inherent feature weights, the device 
identification model is constructed. The determination strategy of the inherent feature weight is as 
follows. 

Given a feature, for each distinct value v of the feature, let v be the number of occurrences of v 
in the knowledge set, and let f = v/N be the frequency of occurrence of v, where N is the size of the 
knowledge set. If we approximate f as the probability of v, we can calculate the entropy of the feature 
as Eq (5). 

 logk i iH p p                                                                  (5) 

where ip  represents the probability function of the ith value of the feature kf . 

After calculating the entropy 1 2, , , nH H H  of all features, the weight value 1 2, , , nw w w  of each 

feature is calculated as Eq (6). 
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According to the similarity calculation strategy and the weight of each feature, a feature set 
similarity model is constructed as Eq (7). 

   , ,
1

, ,
Fbase

base i base k i k k
k

Similarity F F Similarity f f w

                                      (7) 

The identification model is used to calculate the similarity between the target device and the 
known devices. In the process of device type identification, the device type with the largest similarity 
is considered the device type of the target device, so the device type identification is as Eq (8). 

    , , , , ,, max , , ,i base k base k i base j i base j base j baseT T Similarity F F Similarity F F F T D        (8) 

3. Method analysis 

In this section, we’ll analyze the effectiveness of the inherent feature based device identification 
and the rationality of the FSCS. 
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3.1. Effectiveness analysis of inherent feature-based device identification 

Devices of different models are usually different in inherent features. For example, as shown in 
Table 1, camera devices of different models are different in some inherent features such as appearance. 
size, weight. and so on. So, it’s sound and feasible to distinguish devices by their inherent features. We 
should avoid identifying devices just by one single inherent feature since the measurement process 
of the value of an inherent feature may introduce deviation, as many as inherent features should be 
used instead. 

Table 1. Differences in some inherent attributes of camera devices. 

Table 1 shows that almost all devices of different types have different values of the “weight” 
inherent attribute, but it should be noted that in the actual classification process, the value of the 
“weight” inherent attribute is measured, and deviations are prone to occur during the measurement 
process. Using only the “weight” attribute as an inherent feature to identify devices results in large 
errors. It is necessary to use multiple inherent features to identify a camera device. Therefore, the use 
of multiple inherent features in this method can more effectively identify a device. 

3.2. Rationality analysis of the FSCS 

There are 4 types of inherent features: “phrase”, “numerical”, “interval” and “collection”, and 
each has a corresponding FSCS respectively. 
A. Phrase  

The inherent features of the “phrase” type are described by one or more words. For example, the 
inherent feature of the shape of a camera device may be described by words like “dome”, “bullet”, or 
“barrel”. The FSCS of inherent features of the “phrase” type is determined by whether the phrases are 
the same, so it’s reasonable to use Eq (1) to calculate the similarity of two features of the “phrase” type. 
B. Numerical  

For inherent features of the “numerical” type, the similarity depends on numerical differences, 
and the smaller the numerical difference between two features is, the larger the similarity. Suppose that 
the kth feature of the vectors baseF  and iF  are both of “numerical” type, a naive calculation strategy for 

the similarity between the target and benchmark feature would be expressed as Eq (9). 

Camera device model Appearance Size (mm) Weight (g) 
Imaging component 

(inches) 

Compression rate 

(bps) 

Dahua DH-IPC-HDBW2230R-AS Dome φ122 × 89 406 CMOS,1/2.7 6K-8 M 

Dahua DH-IPC-HDBW4636R-AS Dome φ122 × 89 444 CMOS,1/2.9 73K-10 M 

Dahua DH-IPC-HDBW4833R-ZAS Dome φ122 × 88.9 494 CMOS,1/1.8 16K-14.75 M 

Dahua DH-IPC-HFW4433F-ZAS Bullet 186 × 87 × 85 772 CMOS,1/3.0 8K-10 M 

Hikvision DS-2CD1311D Dome φ127 × 97.5 570 CMOS,1/3.0 32K-16 M 

Hikvision DS-2CD3345P1 Dome φ127.3 × 103.7 340 CMOS,1/3.0 32K-16 M 

Hikvision DS-2CD3646F Barrel 191.4 × 97.9 × 93.5 1260 CMOS,1/2.7 32K-8 M 

Hikvision DS-2CD3726F Dome 153.3 × 153.3 × 111.6 840 CMOS,1/2.7 32K-8 M 
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Note that the impact of , ,base k i kf f  is relevant to the absolute value of ,base kf  or ,i kf , so  Eq (9) 

should be revised as Eq (10). 
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Practically, values of inherent features of the “numerical” type are acquired by measurement. Due 
to the precision of measurement tools and human errors during the measurement process, there might 
be a deviation between the real value and measured value of a feature. So, we introduce an error 
tolerance 𝜀 into Eq (10) and obtain Eq (2). 
C. Interval  

For inherent features of the “interval” type, the similarity is determined by the relationship 
between intervals. If the interval value of the benchmark feature is the same as the one of the target 
feature, the benchmark feature and the target feature are considered the same, and vice versa. Thus, 
suppose that the kth feature of the inherent feature vectors baseF  and iF  are both of “interval” type, a 

naive calculation strategy for the similarity between the target feature ,i kf  and the benchmark feature 

,base kf  would be described as Eq (11). 
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Practically, the interval of a benchmark feature is usually complete, and the interval of a target 
feature is often a subset of the interval of the benchmark feature, so it might be a fault to calculate 
similarity using Eq (11). We think it’s reasonable to use Eq (3) for evaluating the similarity of features 
of the “interval” type. When a target feature interval is a subset of the benchmark feature interval, the 
two features are similar, and vice versa. Note that when an interval value is numeric (denoted by a), 
the numeric value a should be regarded as an interval [a, a]. 
D. Collection 

Features of the “collection” type contain multiple elements, and the similarity between features 
can be determined by the inclusion relationship between collections, or by cosine similarity between 
vectors after collection vectorization.  

The calculation strategy of cosine similarity is considered to be more accurate than the strategy 
of inclusion relationship. Taking the “image resolution” feature as an example, suppose that the 
benchmark and target features are { , }basef a b c d    , 1 { }f a b    and 2 { , }f a b c d    , when using 
calculation strategy of inclusion relationship, the similarity values of 1f   vs. basef   and 2f  vs. basef   are 
both 1.  however, when using calculation strategy of cosine similarity, the similarity value of 1f  vs.

basef  is 0.5 and value of 2f vs. basef  is 1. Obviously, the calculation strategy of cosine similarity gets a 

smaller error and is more reasonable. 
However, “interval type” features are difficult to vectorize due to the continuous elements, so it 
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is not suitable to use the cosine similarity to measure feature similarity. In contrast, the elements in the 
“collection type” feature are discrete, and the vectorization process is simple. It is undoubtedly a more 
reasonable choice to construct an FSCS based on the cosine similarity method with smaller errors. The 
above analysis shows that the inherent FSCS adopted in this method is reasonable. 

4. Experiment 

In this section, we conduct two experiments: 1) when the feature sets are complete, a device type 
identification experiment verifies the feasibility of the method; 2) when features are missing, a device 
type identification experiment verify the effectiveness of the method. 

4.1. Dataset 

We select 40 types of fine-grained devices each from Dahua and Hikvision camera products as 
the knowledge set of the experiment. The specific device types are shown in Table 2, while each device 
has a number for the convenience of recording and presentation. 

Table 2. Device list. 

No. Device model No. Device model 

T01 Dahua DH-IPC-HDBW1020R T21 Hikvision DC-2CD2T45 

T02 Dahua DH-IPC-HDBW2130R-AS T22 Hikvision DS-2CD1225 

T03 Dahua DH-IPC-HDBW2230R-AS T23 Hikvision DS-2CD1311D 

T04 Dahua DH-IPC-HDBW4636R-AS T24 Hikvision DS-2CD3310F-I 

T05 Dahua DH-IPC-HDBW4833R-ZAS T25 Hikvision DS-2CD3345P1 

T06 Dahua DH-IPC-HDPW4233-PT-SA-0360B T26 Hikvision DS-2CD3410FD-IW 

T07 Dahua DH-IPC-HFW4433F-ZAS T27 Hikvision DS-2CD3646F 

T08 Dahua DH-IPC-HFW4631K-AS T28 Hikvision DS-2CD3726F 

T09 Dahua DH-IPC-HFW8841K-ZRL-DS T29 Hikvision DS-2CD3935FWD-IWS 

T10 Dahua DH-IPC-PDBW4638-B270 T30 Hikvision DS-2CD3942F-I 

T11 Dahua DH-CA-DW48 T31 Hikvision DS-2CD3A20F-IS 

T12 Dahua DH-CA-FW19M-IR8 T32 Hikvision DS-2CD3T25-I5 

T13 Dahua DH-HAC-HDW2208E T33 Hikvision DS-2CD3T56WD-I5 

T14 Dahua DH-IPC-EW4431-ASW T34 Hikvision DS-IPC-E22H-IW 

T15 Dahua DH-IPC-HDBW4243E-ZFD T35 Hikvision DS-IPC-T12-I 

T16 ACTi ACM-3001 T36 TP-LINK TL-IPC223 

T17 ACTi ACM-5001 T37 TP-LINK TL-IPC313K-W10 

T18 ACTi ACM-3511 T38 TP-LINK TL-IPC43KZ 

T19 ACTi ACM-5601 T39 TP-LINK TL-IPC546H 

T20 ACTi ACM-7411 T40 TP-LINK TL-IPC646P-A4 

For each device, the device shape ( 1f ), size ( 2f ), weight ( 3f ), imaging component ( 4f ), resolution 
( 5f ), minimum illumination ( 6f ), lens parameters ( 7f ), compression code rate ( 8f ), electronic shutter 
time ( 9f ) and ambient temperature ( 10f ) are inherent features for device identification. The different 

inherent characteristic values of the different device types are shown in Table 3
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Table 3. Different intrinsic feature values of different fine-grained device types. 

No. f1 
f2 

(mm) 

f3 

(g) 
f4 (inch) f5 f6 (Lux) f7 f8 (bps) f9 (s) 

f10 

(℃) 

T01 Dome 122×89 400 
CMOS, 

1/4.0 
{704×576;1280×720} 0.4;0.22; {6,F2.6,37;3.6,F2.5,59;2.8,F2.5,70.5} 5K->5M 1/3->1/10-5 -30->60 

T02 Dome 122×89 462 
CMOS, 

1/3.0 
{704×576;1280×960;1280×720;704×480} 0.01;0.001;0 

{8,F2.5,35.5;6,F2.1,47;3.6,F2.0,72.2;2.8,F2

.0,91.7} 
12K->6M 1/3->1/10-5 -40->60 

T03 Dome 122×89 406 
CMOS, 

1/2.7 
{704×576;1920×1080;704×480} 0.01;0.001;0 

{8,F2.2,42;6,F2.0,55;3.6,F2.0,90;2.8,F2.0,1

15} 
6K->8M 1/3->1/10-5 -40->60 

T04 Dome 122×89 444 
CMOS, 

1/2.9 

{2688×1520;704×576;2592×1944;1280×720;307

2×2048;704×480;2560×1440} 
0.002;0.0002;0 {6,F2.5,47.34;3.6,F2.2,70;2.8,F2.0,99} 73K->10M 1/3->1/10-5 -30->60 

T05 Dome 122×88.9 494 
CMOS, 

1/1.8 
{704×576;1920×1080;3840×2160;704×480} 0.002;0.0002;0 {12,F2.8,45.5;3.5,F1.9,110} 16K->14.75M 1/3->1/10-5 -40->55 

T06 Dome 124.6×82.3 265 
CMOS, 

1/2.8 
{704×576;1920×1080;1920×10801;704×480} 0.002;0.0002;0 {3.6,F1.6,87} 12K->10M 1/3->1/10-5 -20->50 

T07 Bullet 186×87×85 772 
CMOS, 

1/3.0 

{704×576;1280×720;704×480;2592×1520;2560×

1440} 
0.001;0.0001;0 {13.5,F3.13,27.7;2.7,F1.6,104.2} 8K->10M 1/3->1/10-5 -30->60 

T08 Bullet 194×96×89 640 
CMOS, 

1/2.9 

{2688×1520;704×576;2592×1944;1280×720;307

2×2048;704×480;2560×1440} 
0.002;0.0002;0 {6,F2.5,47.34;3.6,F2.2,70;2.8,F2.0,99} 73K->10M 1/3->1/10-5 -40->60 

T09 Bullet 221×109×101 1080 
CMOS, 

1/1.8 

{704×576;1920×1080;3840×2160;1704×576;704

×480} 
0.01;0.001;0 {2.7,F1.2,111} 32K->8M 1/3->1/10-5 -30->60 

T10 Dome 285.1×100.8 2600 
CMOS, 

1/2.8 

{704×576;1920×1080;1280×720;1280×960;704×

480} 
0.002;0.0002;0 {12,F2.7,44;2.7,F1.8,105} 16K->8M 1/3->1/10-5 -30->60 

T11 Dome 113.6×85.4 300 CCD, 1/1.3 {976×582} 0.001;;0 {2.8,F1.2,0} 16K->8M 1/50->1/10-5 -30->60 

T12 Bullet 194.4×96.6×89.5 400 
CMOS, 

1/3.0 
{1280×720} 0.01;; {3.6,F1.2,0} 16K->8M 1/25->1/10-5 -30->60 

T13 Dome 110×95 440 
CMOS, 

1/2.8 
{1920×1080;1280×720} 0.001;; {3.6, F1.2,0} 16K->8M 

1/1->1/3000

0 
-30->60 

        Continued on next page 
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No. f1 
f2 

(mm) 
f3 (g) f4 (inch) f5 f6 (Lux) f7 f8 (bps) f9 (s) f10 (℃) 

T14 Dome 126×37.7 500 
CMOS, 

1/3.0 
{2688×1520;704×576;1920×1080;1280×720} 0.001;; {1.6, F1.4,180} 14K->40M 1/3->1/10-5 -10->50 

T15 Dome 159.1×117.9 925 
CMOS, 

1/2.8 
{704×576;1920×1080;704×480} 0.002;0.0002;0 

{35,F1.8,13;13.5,F3.05,31;7,F1.4,36;2.7,F1

.6,110} 
16K->8M 1/3->1/10-5 -40->60 

T16 Dome 130×99 350 
CMOS, 

1/3.0 
{320×240;160×120;640×480} ;; {4.2,F1.8,0}  1/5->1/2000 0->40 

T17 Bullet 67×55 400 
CMOS, 

1/3.0 
{320×240;160×120;640×480} ;; {4.2,F1.8,0}  1/5->1/2000 0->50 

T18 Dome 130×99 380 
CMOS, 

1/3.0 

{320×240;160×112;640×480;1280×1024;1280×7

20} 
;; {3.3,F1.6,0}  1/5->1/2000 -10->45 

T19 Bullet 67×55×129.5 400 
CMOS, 

1/3.0 
{640×480;1280×720;1280×1024} ;; {4.2,F1.8,0}  1/5->1/2000 0->50 

T20 Dome 151.69×114.9 1040 
CMOS, 

1/3.0 
{640×480;1280×720;1280×1024} ;; {3.3,F1.4,0}  

1/10->1/200

0 
-30->50 

T21 Barrel 90×85×169 550 
CMOS, 

1/3.0 
{2560×1440} 0.1;; {1.68,F2.0,180} 32K->16M 1/3->1/10-5 -30->60 

T22 Bullet 100.5×88.1×157.3 600 
CMOS, 

1/4.0 
{1280×720} 0.01;; 

{12,F1.2,26;8,F1.2,39;6,F1.2,50;4,F1.2,76;

2.8,F1.2,95} 
32K->8M 1/25->1/10-5 -30->60 

T23 Dome 127×97.5 570 
CMOS, 

1/3.0 
{1280×960} 0.01;; 

{16,F1.2,18;12,F1.2,22;8,F1.2,33;6,F1.2,50

;4,F1.2,69;2.8,F1.2,90} 
32K->16M 1/25->1/10-5 -30->60 

T24 Dome 114.6×89.4 670 
CMOS, 

1/3.0 
{1280×960} 0.01;; {4,F2.0,75.8} 32K->8M 1/3->1/10-5 -30->60 

T25 Dome 127.3×103.7 340 
CMOS, 

1/3.0 
{2560×1440} 0.01;; {4,F1.2,69;2.8,F1.2,90} 32K->16M 1/3->1/10-5 -10->40 

T26 Bullet 66×139.1×70.6 400 CCD, 1/3.0 {1280×920} 0.02;; {4,F2.0,75.8} 32K->16M 1/25->1/10-5 -25->60 

T27 Barrel 191.4×97.9×93.5 1260 
CMOS, 

1/2.7 
{2560×1440} 0.005;; {2.8,F1.2,105} 32K->8M 1/3->1/10-5 -30->60 

       Continued on next page 
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No. f1 
f2 

(mm) 
f3 (g) f4 (inch) f5 f6 (Lux) f7 f8 (bps) f9 (s) f10 (℃) 

T28 Barrel 153.3×153.3×111.6 840 
CMOS, 

1/2.7 
{1920×1080} 0.002;; {2.7,F1.2,103} 32K->8M 1/3->1/10-5 -30->60 

T29 Dome 119.9×41.2 600 
CMOS, 

1/2.8 
{1600×1200;1280×960;2048×1536} 0.005;;0 {1.16,F2.2,180} 32K->16M 1/3->1/10-5 -10->40 

T30 Dome 119.9×41.2 600 
CMOS, 

1/3.0 
{2048×1536} 0.01;;0 {1.6,F1.6,186} 32K->8M 1/25->1/10-5 -10->40 

T31 Barrel 134×116.1×293 2000 
CMOS, 

1/2.8 
{1920×1080} 0.01;;0 

{25,F1.2,12.4;16,F1.2,19.2;12,F1.2,24.6;8,

F1.2,40;6,F1.2,52;4,F1.2,85} 
32K->8M 1/3->1/10-5 -30->60 

T32 Bullet 
194.04×93.85×89.5

2 
1000 

CMOS, 

1/2.7 
{1920×1080;1280×960;1296×732;1280×720} 0.01;; {4,F1.2,80} 32K->8M 1/3->1/10-5 -30->60 

T33 Bullet 93.85×93.52×194.1 690 
CMOS, 

1/2.7 

{704×576;2560×1920;640×480;1280×720;2560×

1536;1920×1280;352×288} 
0.005;; {6,F1.2,55;4,F1.2,83} 32K->8M 1/3->1/10-5 -30->60 

T34 Barrel 175×89×75 340 
CMOS, 

1/2.7 
{1920×1080} 0.01;; 

{8,F1.2,43;6,F1.2,54.4;4,F1.2,89.1;2.8,F1.2

,114.8} 
32K->8M 1/3->1/10-5 -30->50 

T35 Dome 110×93.2 350 
CMOS, 

1/2.7 
{1920×1080} 0.01;; 

{8,F1.2,43;6,F1.2,54.5;4,F1.2,91;2.8,F1.2,1

14.8} 
32K->8M 1/3->1/10-5 -30->60 

T36 Dome 113×113×87 268 
CMOS, 

1/2.7 
{1920×1080} 0.1;0.1;0 {4,F2.1,0;6,F2.1,0} 64K->8M 1/25->1/10-5 -30->60 

T37 Barrel 173×83.4×84.2 390 
CMOS, 

1/3.0 
{1280×960} 0.1;0.1;0 {2.8,F2.1,0;4,F2.1,0;6,F2.1,0} 64K->4M 1/25->1/10-5 -10->60 

T38 Dome 120×120×129 328 
CMOS, 

1/2.7 
{2304×1296} 0.1;;0 {3.35,F2.4,0} 64K->2M 1/25->1/10-5 -30->50 

T39 Barrel 173×83.4×84.2 390 
CMOS, 

1/2.7 
{2560×1440} 0.01;; {4,F1.6,0;6,F1.6,0;8,F1.6,0;12,F1.6,0} 256K->6M 1/25->1/10-5 -30->60 

T40 Ball 230×177×188 930 
CMOS, 

1/3.0 
{2560×1440} 0.002;;0 {4,F1.6,0} 64K->6M 1/25->1/10-5 -30->60 
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In Table 3, f1 and f4 are “phrase type” inherent features; f2, f3, and f6 are “numerical value” inherent 
features; f8, f9 and f10 are “interval type” inherent features; and f5 and f7 are “collective type” inherent 
features. The elements in f6 represent the minimum illumination of the color camera, black-and-white 
camera, and infrared camera. For example, in the f6 value of T01, “0.4; 0.22; -” indicates that the lowest 
illuminance of the T01 color camera is 0.4 lux, the minimum illuminance of the black-and-white 
camera is 0.22 lux, and the infrared camera is not supported. Each set element of f7 includes the focal 
length, aperture, and horizontal field of view. For example, in the f7 value of T01, “6, F2.6, 37” 
indicates that the focal length is 6 mm, the aperture is F2.6, and the horizontal field of view is 37 degrees. 

From Eqs (5) and (6), we calculate the weight of each feature separately, and the results are 

1 0.09089w   , 2 0.11481w   , 3 0.11294w   , 4 0.09217w   , 5 0.11061w   , 6 0.10381w   , 7 0.11596w   , 

8 0.09915w  , 9 0.07682w  , and 10 0.08285w  . In Sections 4.2 and 4.3, we use the calculated feature 

weights. 

4.2. Experiment on complete feature set 

To verify the effectiveness of identifying device types using the inherent features, we carry out a 
device identification experiment with each feature set complete and calculate the similarity between 
any two devices. 

We use the feature weights calculated in Section 4.1, set the error tolerance 1    for the 
“numerical type” features, and calculate the difference between any two devices in {T01, T02..., T20} 
using Eq (7). Figure 2 shows the confusion matrix of the device similarity. 

In Figure 2, “True Type” represents the actual fine-grained type of the device, and “Basic Type” 
represents the basic type. When “True Type” is “T02” and “Basic Type” is “T01”, the similarity is 
0.492, which means that the similarity between T02 and T01 is 0.492 in other words, 

 ,1 ,2, 0.492base targetSimilarity F F  . 

By using the 10 inherent characteristics described in Section 4.1, Figure 2 shows that the 
similarity between any two devices is less than 0.85 (the maximum value is 0.842), which can 
effectively distinguish the devices, in other words, it proves the effectiveness of inherent features in 
distinguishing devices type. The areas with greater similarity are T1-T15, T16-T20, T21-T25, T36-
T40, which indicates that the inherent features of the devices from the same manufacturer are more 
similar than the devices from different manufacturers. 

4.3. Experiment on incomplete features 

Our experiment simulates a situation with incomplete device features in an actual environment. 
We discard some features or elements of collective features with a certain probability and accomplish 
fine-grained device identification with incomplete features. 

The discarding probability of an inherent feature changes from 0 to 1 in increments of 0.01. At 
each discarding probability value, the target set with inherent missing features is generated using the 
knowledge set, and the similarity between each feature in the target set and the knowledge set is 
calculated separately, and the greatest similar device type is taken as the target device type. To ensure 
arbitrary discarding of probability values, the experiment is repeated 1000 times to obtain the average 
identification accuracy of each type of device. 
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Figure 2. Confusion matrix of device similarities. 

The increase of feature discard probability makes the similarity value between fine-grained device 
types decrease, which is because when a feature value of the target device is empty (i.e., no feature is 
acquired), the feature similarity between the target device and the knowledge device will be 0. When 
the target device has fewer non-empty feature values, the similarity value between it and the 
knowledge set device type will be less. Therefore, we set a similarity threshold in the experiment. 
When the maximum similarity is less than the threshold, device identification is considered to fail 
(even if the type corresponding to the maximum similarity is the correct type). When the threshold 
value is set to 0.5, the graph of the variation between the average recognition accuracy and the discard 
probability of each type of device is obtained as shown in Figure 3. 
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Figure 3. When the threshold value is 0.5, the relationship between the average 
identification accuracy and discarding probability. 

In Figure 3, when the discard probability is less than 0.25, the average identification accuracy of 
the fine-grained type of the device is greater than 90%. When the discard probability is greater than 0.2, 
the average identification accuracy decreases rapidly with the increase of discard probability. When 
the discard probability is 0.4, the average identification accuracy is approximately 60%. When the 
discard probability is 0.8, the average identification accuracy is close to 0. 

An increase in the discard probability inevitably leads to a decrease in the similarity value. While 
the similarity value of the correct device type decreases, the similarity value between other devices 
and the target device will also decrease. The strategy of setting the similarity threshold will directly 
lead to the failure of fine-grained type identification of the device when the discarding probability is 
large. Figure 4 shows the similarity matrix between the target set devices and the knowledge set 
devices during the 500th experiment when the discard probability is 0.5. 

Figure 4 shows that when the discarding probability of an inherent feature is 0.5, the maximum 
similarity value (i.e., T10, T19, etc.) is less than 0.5. However, the device type with the maximum 
similarity value is the correct device type. Therefore, when a feature is missing, a similarity threshold 
should not be set (or the threshold should be set to 0). 
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Figure 4. When the discarding probability is 0.5, the 500th result of the device similarity 
experiment between the target set and the knowledge set. 

Figure 5 shows that when there is no similarity threshold, the average identification accuracy of 
each device fine-grained type is still greater than 80% even if the discarding rate of inherent features 
is 50%. When the discard rate is 0.8, the average identification accuracy of each device is greater 
than 35%. This shows that the method proposed in this paper can still identify the fine-grained types 
of devices effectively when some inherent features are missing. 

In this section, the experimental results based on real data show that the method proposed in this 
paper to identify the fine-grained type of device based on inherent features is feasible and effective. In 
reality, the more inherent features of the target device are obtained, the more accurate the identification 
of the target device will be. When the “missing rate” of inherent features is 50%, the average accuracy 
to identify the fine-grained type of device still exceeds 80%. 
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Figure 5. When there is no similarity threshold, the relationship between the average 
identification accuracy and the discarding probability. 

5. Conclusions 

This paper develops an inherent feature-based device identification method to solve the current 
deficiency in fine-grained identification of types of camera devices. The method classifies devices 
inherent features into 4 types according to their expressive form, establishes a similarity calculation 
strategy (FSCS) for each type of inherent feature, assigns a weight value derived from information 
entropy for each inherent feature, and constructs a fine-grained device type identification model 
combining the FSCS and weight value. Experiment results show that the method proposed in this paper 
can recognize fine-grained types of devices in the partial absence of inherent features. Especially, when 
the “absence rate” of inherent features is 50%, the average accuracy is still more than 80%. In future 
work, finding more effective inherent features and combining them with network features may be an 
important direction to improve the accuracy of fine-grained device type identification. 
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