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Abstract: In the context of the theory of multi-agent systems, the shepherding problem refers to
designing the dynamics of a herding agent, called a sheepdog, so that a given flock of agents, called
sheep, is guided into a goal region. Although several effective methodologies and algorithms have been
proposed in the last decade for the shepherding problem under various formulations, little research has
been directed to the practically important case in which the flock contains sheep agents unresponsive
to the sheepdog agent. To fill in this gap, we propose a sheepdog algorithm for guiding unrespon-
sive sheep in this paper. In the algorithm, the sheepdog iteratively applies an existing shepherding
algorithm, the farthest-agent targeting algorithm, while dynamically switching its destination. This
procedure achieves the incremental growth of a controllable flock, which finally enables the sheepdog
to guide the entire flock into the goal region. Furthermore, we illustrate by numerical simulations that
the proposed algorithm can outperform the farthest-agent targeting algorithm.
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1. Introduction

The control of artificial objects has been studied extensively in conjunction with the development
of control engineering centered on feedback control [1]. Moreover, it has been widely applied to the
control of transportation machinery [2], industrial processes [3], epidemic processes [4], and pest man-
agement [5]. On the contrary, controlling the swarm motion of non-artificial objects such as a herd of
animals is not necessarily an easy task because of the difficulty of modeling animal dynamics, individ-
ual differences, and nonlinearities. Nevertheless, many research and development systems have already
been proposed to control non-artificial objects due to their potential applications in various situations.
Examples include guiding sheep with unmanned robots [6], guiding crowds during evacuations [7, 8],
developing a swarm of unmanned aircraft to keep birds away from runways to prevent bird strikes [9]
and the collection of oil spilled from tankers [10].
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In the context of multi-agent systems [11, 12], the shepherding problem [13] refers to a problem of
guiding a flock of agents from an initial location to an objective area by fewer external entities and have
been widely studied due to its several potential applications such as robotic agents to herd sheep and
crowd control. In the shepherding problem, a single or multiple sheepdogs guide a group of agents,
called sheep, to a destination. The sheep move according to their own dynamics, and the sheepdog is
required to have an advanced movement law to guide the flock to the destination. Following some early
pioneering works (see, e.g., [14, 15]) motivated by real sheepdogs and sheep, emerging attention has
been paid to the shepherding problem in recent years (see the survey [13] and the references therein).
For example, Vaughan et al. [16] proposed a movement law for a sheepdog to approach the center of
gravity of a flock of sheep and conducted an actual experiment using a robot to guide a flock of ducks.
Strombom et al. [17] proposed a movement law that switches between two modes of collection and
guidance and showed that the law could explain the behavior of a sheepdog on an actual farm. Tsunoda
et al. [18] proposed a movement law that approaches the sheep farthest from the goal in the flock, and
showed its superiority to the movement laws of Vaughan et al. and Strombom et al. by simulation.

We can find a further increasing amount of research effort on the shepherding problem in the recent
literature. As for the shepherding model, Yaxley et al. [19] examined the behavioral and physiological
response of real sheep to drones for establishing a plausible mathematical model of the shepherding
problem. Also, El-Fiqi et al. [20] presented a preliminary study for improving the shepherding model
by Strombom et al. [17]. In the context of robotics, Ordaz-Rivas et al. [21] proposed a shepherding
algorithm taking into account the kinematics of the steering agent, and demonstrated its effectiveness
with experiments. Furthermore, Song et al. [22] proposed a caging type shepherding algorithm and
demonstrated its efficacy with experiments. We can also find research works on the shepherding prob-
lem in various directions. For example, Ko and Zuazua [23] investigated the shepherding problem
for the flock of evaders trying to escape from the goal region, and proposed a feedback strategy sta-
bilizing the direction of evaders. Nguyen et al. [24] have demonstrated the potential scalability in
the perceptron-based design of shepherding algorithm. The simulations by Goel et al. [25] suggests
the superiority of the guidance by the shepherding model over the one by a leader model. Campbell
et al. [26] proposed various consensus-based shepherding algorithms and thoroughly compared their
performances with numerical simulations.

Although most of the previous works on the shepherding problem assume that the agents (or sheep)
are qualitatively the same, this homogeneity assumption does not necessarily hold in realistic scenar-
10s [27,28]. Specifically, in the context of the control of non-artificial objects, it is not easy to ensure
the homogeneity of agents to be controlled, unlike in the case of artificial objects [29]. Furthermore, as
will be illustrated in this paper via simulations, the shepherding algorithms based on the homogeneity
assumption do not necessarily perform well for heterogeneous flocks. This gap between the reality
and the current results in the literature suggests the necessity of exploring the problem of shepherding
flocks having heterogeneity.

In this paper, we first propose a mathematical model of a heterogeneous flock consisting of the
following two types of agents; responsive agents (agents that respond well to the sheepdog agent) and
unresponsive agents (agents that do not respond well to the sheepdog). This scenario is motivated
by crowd evacuation in disasters, in which crowds are under panic and tend to follow other people
without their individuality [30]. This scenario could also be found in the context of swarm robotics;
a malfunction or a failure in its communication devices can make robots lose their ability to follow
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direction from an external sheepdog robot. However, it can be easily expected and confirmed that
several existing algorithms for shepherding do not work well in this scenario.

Motivated by the aforementioned gap lying in the current literature, we then present an algorithm
that can guide both responsive and unresponsive sheep by leveraging the attraction of unresponsive
sheep to responsive sheep. Specifically, in the algorithm, the sheepdog iteratively applies an existing
shepherding algorithm, the farthest-agent targeting algorithm, while dynamically switching its desti-
nation. This procedure achieves the incremental growth of a controllable flock, which finally enables
the sheepdog to guide the entire flock into the goal region.

The effectiveness of the proposed algorithm is evaluated in comparison with existing methods by
simulation. First, we consider a flock in which some sheep agents do not respond to the sheepdog agent
at all. The total number of sheep, the number of unresponsive sheep, and the initial density of sheep
placement are varied. We find that the proposed algorithm outperforms the farthest-agent targeting
algorithm in success rates of shepherding. In addition, the time required for successful induction is
compared by varying the degree to which the sheep that do not respond to the sheepdog respond.
From this numerical simulation, we confirm the robustness of the proposed method with respect to the
degree.

This paper is organized as follows. In Section 2, we describe the proposed model of the shepherding
problem. In Section 3, we describe our proposed guidance method using the flock properties. In
Section 4, we compare the proposed algorithm with existing methods by simulation. We conclude the
paper and mention open research directions in Section 5.

2. Proposed model

In this section, we describe the proposed model of the shepherding problem. We first state the
dynamical model of the agents called sheep in Subsection 2.1. Then, in Subsection 2.2, we describe
the heterogeneity of the agents. After formulating the shepherding problem in Subsection 2.3, in
Subsection 2.4 we discuss and illustrate the potential limitation of an existing shepherding algorithm
called the farthest-agent targeting algorithm [18].

2.1. Sheep dynamics

We consider the situation where there exist N agents called sheep and one herder agent called
sheepdog. As in the literature [17, 18]. The sheep and sheepdog are assumed to automatically and
dynamically move on the two-dimensional plane R? in discrete-time steps based on the well-known
Boids model. For alli € {1,...,N} and k > 0, we let x;(k) € R? denote the position of the ith sheep at
time k. Then, the update law of the position of the sheep is described as

X,‘(k + 1) = .X,'(k) + V,‘(k), (21)
where v;(k) € R? denotes the movement vector of the ith sheep at time k and is constructed as

vi(k) = Ky vi(k) + K, v2(k) + K,v3(k) + Ky, v} (k), (2.2)

271 371

in which the vectors v; (k), vi(k), and v’ (k) € R? are the movement vectors corresponding to the sep-
aration, union, and alignment in the Boids model, respectively. Also, the vector v}(k) represents the
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repulsion force applied from the sheepdog. Furthermore, the nonnegative numbers K, K;,, Kj,, and
K, are the constants for determining the weights of each of the vectors.

We assume that each sheep interacts with not all the sheep on the plane but with the sheep suffi-
ciently close to itself. Specifically, we assume that the ith sheep receives forces from all the sheep
located in an open disc S;(k) ¢ R? with center x;(k) and radius R > 0. Let N;(k) denote the set of
indices of the sheep located in the region S ;(k) at time k; i.e., let us define

Nik) ={je{l,....,N}\ {i} | x;(k) € Si(k)}. (2.3)
Then, the movement vectors v, (k), v2(k), v?(k), and v}(k) in Eq (2.2) are defined as follows:
1 x (k) — x;(k)
Yk = ———— J , 2.4
Vi IN;(F)l je%:‘k) llx;(k) — xi(OIIP (24)
1 vilk—1)
2(k) = J : 2.5
Vi |N;i(K)| jezvzi;k) [lv;(k = D (2)
1 xi(k) — x;(k)
S(k) = / : 2.6
Vi NGO &) 1K) = xi(K)I] (20)
4 Xk - Xk
= m - @I @7

where x4(k) € R? denotes the position of the sheepdog at time k, and ||| denotes the Euclidean norm
of a vector. We remark that the equations in the defin itions (2.4)—(2.6) are ill-defined if the set N;(k) is
empty; to avoid this potential undecidablility, we let v} (k) = vZ(k) = v}(k) = 0 when N;(k) is empty.

2.2. Sheep heterogeneity

We describe the heterogeneity within the sheep flock that we consider in this paper. Among various
types of heterogeneity that we can introduce in the flock, in this paper, we focus on the responsiveness
of sheep to the sheepdog, as we can consider the responsiveness to be one of the most critical factors
for shepherding. Therefore, we consider the situation in which the sheep flock consists of the following
two types of individuals: one is the sheep that respond well to the sheepdog (called responsive sheep),
and the other is the sheep that do not respond well to the sheepdog (called unresponsive sheep).

We mathematically model the aforementioned situation in the following manner. Let us assume
that there exist K < N unresponsive sheep within the flock. We assign the indices 1,2,..., K to the
unresponsive sheep without loss of generality. Therefore, the remaining N — K sheep are assumed to be
responsive, and are indexed as K + 1,..., N. It is supposed that both the responsive and unresponsive
sheep follow the dynamics specified by Eqs (2.4)—(2.7). Their difference is encoded as the difference
in the value of the coefficient K, on the repulsion force v} from the sheepdog. In this paper, we let
this coefficient of unresponsive sheep be denoted by K*. Under this notation, the dynamics of an
unresponsive sheep i is now described as

vi(k) = Ky v} (k) + K, v2(k) + K, v; (k) + K, v} (k). (2.8)

N

The unresponsiveness is realized by setting the coefficient K, smaller than the one Kj, of the re-
sponsive sheep. Hence, we assume the relationship

0<K, <K,,. (2.9)
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In the extreme case of K, = 0 within the unresponsive sheep, an unresponsive sheep completely
ignores the presence of the sheepdog. We call such an unresponsive sheep as a non-reacting sheep.
We finally remark that the value of the coefficient K, is assumed to be common within the responsive
sheep, and so is Kj,. In other words, we do not consider the heterogeneity within the flock of responsive
and unresponsive sheep.

2.3. Shepherding problem

We can now state the problem studied in this paper. As briefly described in the beginning of Sub-
section 2.1, we assume that there exists one and only one sheepdog. Furthermore, we assume that
the sheepdog knows 1) the global positions of all sheep at each time step and 2) the type of each of
the sheep (i.e., responsive or unresponsive). We place these assumptions because the objective of this
research is not in the real-world implementation of the algorithm but in clarifying the possibility of
shepherding a heterogeneous flock of sheep with an appropriately designed shepherding algorithm.
Therefore, we leave as a future work the investigation of the practicability of the algorithm to be pro-
posed.

The objective of the sheepdog is set to be herding all the sheep into a goal region G C R? within a
specified time 7 > 0. In this paper, we suppose that the goal region G is an open disk with center x* €
R? and radius RS > 0; therefore,

G = {x e R? | ||lx - x*|| < R®}. (2.10)

2.4. Farthest-agent targeting algorithm

One natural candidate algorithm that could solve the above-stated shepherding problem in the het-
erogeneous setting would be the farthest-agent targeting algorithm proposed in [18]. This algorithm
is a method of guiding a flock of sheep by approaching the sheep farthest from the destination and is
numerically illustrated in [18] to be superior to other typical shepherding algorithms such as the target
switching algorithm presented in [17].

Let us first briefly describe the detail of the farthest-agent targeting algorithm. In this algorithm the
sheepdog focuses on the sheep farthest from the destination. First, the position of the sheepdog x¢ is
updated from time k to time k + 1 as in the following equation:

Xk + 1) = x(k) +v/(k), (2.11)
where v¥(k) € R? denotes the movement vector of the sheepdog and is constructed as
vi(k) = Ky v' (k) + Ky v* (k) + Ky (k). (2.12)

On the right-hand side of this equation, K;,, K;,, and K, are nonnegative constants. The movement
vectors v!(k), v2(k), and v (k) are constructed using the sheep farthest from the destination as follows.
For each time k, let t(k) € {1,..., N} denote the index of the sheep farthest from the destination; i.e.,
let us define

t(k) = argmax ||x;(k) — x*||. (2.13)

I<i<N

Mathematical Biosciences and Engineering Volume 19, Issue 4, 3509-3525.



3514

t=40

O

—50 4

—100 A

-100 =50 0 50 100

Figure 1. A typical situation in which the farthest-agent targeting algorithm fails to achieve
shepherding. Red circle represents the sheepdog. Yellow triangle represents the farthest and
unresponsive sheep. The sheepdog keeps trying to herd the unresponsive sheep, from which
the situation does not change.

We remark that, if there exist multiple indices i maximizing the term ||x;(k) — x8||, then we take the
smallest one. Then, the movement vectors v!(k), v*(k), and v}(k) in Eq (2.12) are defined by

x4(k) = xyq (k)

Yk , 2.14
YR = R e Wl 14

o) Xd(k) - xt(k)(k)

k - , 2.15
vk 1390 — x0 (RIF (15)
x4(k) — x8

3 ——

VO = ST (2.16)

which represent the gravitational force from the sheep #(k) to the sheepdog, the repulsive force from the
sheep #(k) to the sheepdog, and the repulsive force from the destination to the sheepdog, respectively.
Although the farthest-agent targeting algorithm is known for its superiority to some other algorithms
including the one presented in [17] under homogeneous situations, the algorithm is not necessarily
able to solve the heterogeneous shepherding problem stated in Subsection 2.3 effectively because the
method does not assume the heterogeneity. The specific reason for this limitation is that, once an
unresponsive sheep becomes the farthest agent, the algorithm would slow down because the sheepdog
needs to herd the unresponsive sheep. This phenomenon can be fatal when the unresponsive and
farthest sheep is non-reacting; in this case, we can easily expect that the algorithm becomes stuck in
the middle. To confirm this qualitative argument, we perform the shepherding of a heterogeneous flock
with the farthest-agent targeting algorithm. As is discussed, the algorithm becomes stuck in the middle
as shown in Figure 1, where the sheepdog tries to chase a non-reacting sheep. From several numerical
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simulations with various settings, we have confirmed that this phenomenon is not an exception.

Motivated by the potential limitation of the farthest-agent targeting algorithm, we propose another
algorithm for shepherding with potentially higher success rates and shorter shepherding times in the
next section.

3. Proposed algorithm

In this section, we describe the algorithm for solving the shepherding problem. We start by giving
an overview of the proposed algorithm. The proposed algorithm can be divided into two stages, which
we call operations a and b summarized as follows:

a. Collect all responsive sheep around an unresponsive sheep.
b. Guide all sheep to the goal area.

In operation a, an unresponsive sheep is set as the temporal destination, and the farthest-agent
targeting algorithm is used to collect the responsive sheep around the temporal destination. This pro-
cedure creates a controllable flock consisting of all the responsive sheep and one unresponsive sheep.
Although the unresponsive sheep does not well-react to the sheepdog, it still heads toward the center of
the flock due to its union force Eq (2.6). Therefore, we expect that the entire flock can now be guided
by the farthest-agent targeting algorithm.

The above process is repeated for the number of unresponsive sheep, i.e., K times. Thus, for each
iteration of the process, one unresponsive sheep will be merged into the controllable flock, which
leads to its incremental growth. Therefore, once the operation a is completed, the controllable flock
would consist of all the responsive and unresponsive flock. Hence, applying the farthest-agent targeting
algorithm to the controllable flock would allow the sheepdog to guide all the sheep into the goal region.

Let us describe the details of the proposed shepherding algorithm. For each time k, we let J (k)
denote the set of indices in the controllable flock. We initialize

I(0)={K+1,...,N}, (3.1)

i.e., we put all the responsive sheep into the set Z7(0). The objective of operation a is to expand 7 so
that the controllable flock eventually contains all the sheep. To describe the operation, we prepare the
variable n(k), which represents the index of the unresponsive sheep set as the temporal destination. We
initialize the index as
n(0) = argmin [|x* — x;(0)]], (3.2)
i¢1(0)
i.e., the sheepdog first tries to guide all the responsive sheep around the position of the unresponsive
sheep closest to the goal region.
After the initialization, at each time k, the sheepdog tries to collect all the sheep indexed by (k) to
the temporal destination x,)(k). This collection is terminated when the following inequality is satisfied

lxi(k) = Xy (I < r, i € L(k). (3.3)

Once this inequality is satisfied, we regard that the sheep n(k) is included into the controllable flock
and update the set 7 (k) as
I(k+1)=1(k)U{n(k)}. (3.4)
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Algorithm 1 proposed algorithm

procedure PROPOSED ALGORITHM
Initialize:
I «—{K+1,...,N}
n « argmin||x® — x;|
igT
j<0
fork < 1,2,...,T do
if |x; — x,| < rfor all i € 1 then

append n to 7
n « argminl|x, — x;|
el
je—j+1
end if
if j < K then
Update(Z, x,)
else
Update(U, x*)
end if
end for

end procedure

procedure UprpaTE(G,X)

v! « attractive force from sheep i € G which is farthest from x

v? « repulsive force from sheep i € G which is farthest from x

v} « repulsive force from x
v~ Kyt + Kgv? + Ky V?

xd<—xd+vd

end procedure

We also choose the new unresponsive sheep as the next temporal destination by

n(k + 1) = argmin ||x,¢ (k) — x;(k)]|. (3.5
i¢ T(k)Uin(k)}

We repeat this process until all the unresponsive sheep are included in the controllable flock. The
feasibility of each step is supported by the effectiveness of the farthest-agent targeting algorithm ap-
plied to a flock of responsive sheep.

Once the index set J (k) becomes equal to the full index set {1,..., N}, we switch to operation b.
In this operation, the sheepdog applies to the entire flock the farthest-agent targeting algorithm and
tries to complete shepherding. Because unresponsive sheep are now all included in the controllable
flock, we expect this operation to result in successful shepherding. For the sake of completeness, we
summarize the proposed algorithm explained above in Algorithm 1, where for brevity, the dependence
of the variables on the time step & is omitted.

Mathematical Biosciences and Engineering Volume 19, Issue 4, 3509-3525.



3517

We close this section by providing a short analysis of the time complexity of the proposed algorithm.
Recall that operation a consists of K distinct processes, in which the number of unresponsive sheep not
belonging to the controllable flock decreases from K to 0. Foreachm = 1,..., K, we let ¢(m) denote
the number of time-steps required to merge the mth unresponsive sheep into the controllable flock. If
we denote by ¢(0) the number of time steps required for the operation b, then the total amount of the
time steps required in the proposed algorithm equals Zﬁ:o ¢(m). If we let ¢ = max(¢(0),...,d(K)),
then we obtain a rough estimate O(K¢) of the amount of the time steps, indicating the (at least) lin-
ear dependence on K of the time complexity of the proposed algorithm. The evaluation of the time
complexity of ¢ is not trivial and, therefore, is left as an open problem.

4. Evaluation

In this section, we illustrate the superiority of the proposed algorithm to the farthest-agent targeting
algorithm via several numerical simulations.

4.1. Parameters

In this subsection, we describe the relevant parameters of the simulations. As for the parameters of
the sheep, we set K, = 100, K, = 0.5, K, = 2, K;, = 500, and R = 20. These values coincide with
the ones used in the reference [18] except for K;,, which we set to be one-tenth of [18]. The reason for
setting a smaller value here in this simulation is to make the shepherding problem more challenging.
As for the parameters of the sheepdog, we set K;, = 10, K;, = 200, and K;, = 4 as in the reference [18]
but except for K;,, which is now set to be half of [18] for the same reason.

We then describe the initial conditions of the simulations. In the simulations, the N sheep are
randomly placed according to a uniform distribution in a region within a circle centered at the origin
and having the radius R;,;; > 0. We define the density of the initial placement in the circle as

N

= 2 .
R

p @.1)

The goal region is set to be the open disc having radius R = 15 and center x4 = (20,20). The
position of the sheepdog is initialized as x?(0) = (=30, —50). Finally, we require that the shepherding
task finishes within 7 = 10 000 discrete-time steps.

In order to illustrate the above parameters as well as the proposed algorithm, we here run the pro-
posed algorithm for the case of N = 10 sheep, K = 4 non-reacting sheep (i.e., K;, = 0), and den-
sity p = 8 x 10™*. We show some snapshots in Figure 2. We can observe that the algorithm allows the
sheepdog to grow the controllable flock one by one, and successfully guide all the sheep into the goal
region G eventually, despite the presence of non-reacting sheep.

4.2. Non-reacting sheep

In this subsection, we thoroughly compare the performance of the proposed algorithm and the
farthest-targeting algorithm in the scenario when the unresponsive sheep are non-reacting (i.e., K, =
0). For the comparison, we employ the following two performance indices:

e Shepherding success rate: The number of simulations of 100 different initial arrangements of
sheep that resulted in guiding the flock to the destination by time 7.
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t=0 =227 t=309

=497 t=551 t=638

Figure 2. An instance of the proposed algorithm for N = 10 sheep with K = 4 non-reacting
sheep. Blue, yellow, and blue markers represent the sheepdog, the sheep targeted by the
sheepdog, and the unresponsive sheep set as the temporal destination.

e Shepherding time: The time required to complete the simulation upon successful completion of
the guidance.

We evaluate these two indices for various values of the total number N of the sheep, the number K
of unresponsive sheep, and the initial density p of the sheep. Specifically, as for the total number
of the sheep, we consider the following three scenarios: N = 10, 30 and 50. As for the number
of unresponsive sheep, we start from K = 1 and increase it to K = N — 1. Therefore, the trivially
uncontrollable case of K = N is excluded. Finally, the initial density was chosen from p = 6 x 1074,
8 x 107, and 10 x 107*. For the total of 2 X 3 x 87 = 522 scenarios, we randomly generate 100
different initial configurations and then perform both the proposed algorithm and the farthest-targeting
algorithm. We then finally compute the success rate of shepherding.

In Figure 3, we illustrate how the success rate depends on the number of non-reacting sheep for
all the possible pairs of (N, p). We observe that the proposed algorithm outperforms the farthest-agent
targeting algorithm regardless of the number of non-reacting sheep for any of the scenarios N = 10,
30, and 50. In the farthest-agent targeting algorithm, the success rate decreases almost linearly as
K increases. Although we can observe a decrease in the proposed algorithm as well, its amount is
relatively small except for large K. The decrease for large K could be attributed to the increased
traveling distance of the sheepdog to collect unresponsive sheep, which could have caused the shortage
of time for shepherding.

The results in Figure 3 suggest the robustness of the proposed algorithm against the increase in
the number of unresponsive sheep. In order to quantify this robustness, let us introduce the following
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Figure 3. Shepherding success rate of the proposed algorithm and the farthest-agent targeting
algorithm.
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Table 1. Robustness index 7.

@N=10
p = 0.0006 p = 0.0008 p =0.0010
Farthest-agent targeting algorithm 1 2 3
Proposed algorithm 8 8 8
()N =30
p = 0.0006 p = 0.0008 p =0.0010
Farthest-agent targeting algorithm 1 2 3
Proposed algorithm 27 28 28
)N =50
p = 0.0006 p = 0.0008 p =0.0010
Farthest-agent targeting algorithm 1 2 2
Proposed algorithm 19 32 42
quantity:
n = max{K | r(K) > r for all K < K}, 4.2)

where r(K) denotes the success rate of shepherding with K unresponsive sheep, and r > 0 denotes the
minimum required rate of success that needs to be specified by ourselves. Using the value r = 0.5,
we compute the robustness index 7 for both the farthest-agent targeting and the proposed algorithms
and show their values in Table 1. From Table 1, we quantitatively confirm the high robustness of the
proposed algorithm compared with the farthest-agent targeting algorithm.

Remark 1. To ensure consistency with the original paper [18], we have used the farthest-agent targeting
algorithm in its original form. Therefore, the sheepdog may choose as its target an unresponsive sheep.
If we allow the algorithm to be modified to better deal with the heterogeneous situation studied in
this paper, then one possible modification would be to enable the algorithm to choose only responsive
sheep as the farthest agent and avoid choosing unresponsive sheep. However, we can infer that the
modified algorithm still underperforms the proposed algorithm. For example, consider the situation in
which an unresponsive sheep is the farthest agent and is initially far away enough to any responsive
sheep as in Figure 1. Although we can expect that the proposed algorithm can deal with this situation,
the unresponsive sheep will be neither driven by the sheepdog agent nor be attracted to any responsive
sheep even with the modified algorithm. Further investigation of the performance of the modified
algorithm is left for future research.

4.3. Reacting but unresponsive sheep

The under-performance of the farthest-agent targeting algorithm [18] in the previous simulations
is within expectation because the algorithm is not designed under the consideration of non-reacting
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Figure 4. Comparison of the time step take fro the execution of the algorithms. 7.: farthest-
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and, therefore, resulted in failure. The color of dots represent the number K of unresponsive
sheep.

sheep. Therefore, in this subsection, we consider the scenario in which unresponsive sheep are not
necessarily non-reacting. Therefore, we allow the coefficient Kj, to be strictly greater than 0 as in [18].
By performing this simulation, we aim to perform a more fair comparison of the two algorithms.

For simplicity, we fix the values of N and p to 30 and 8 x 107#, respectively. The values of K,
for the unresponsive sheep are set to be 50, 25, 5 and 0.5, while the coefficient K, for the responsive
sheep is still set to be 500 as in the previous simulations. Then, for all the possible pairs of K, and the
two algorithms, we randomly generate 100 different initial configurations. For each configuration, we
perform both the proposed algorithm and the farthest-targeting algorithm and obtain the total number
of time steps 7, and 7. by the proposed and farthest-agent targeting algorithm, respectively. In the
simulation, we restrict the number of unresponsive sheep K less than or equal to N/2 = 15.

We plot the pair (7., 7,) for each of the values of IZM and show the results in Figure 4. Let us
first focus on the case where the number of the unresponsive sheep is relatively small, ranging from
one to three. In this case, there is in average no significant change in the time required for successful
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shepherding by the proposed and the farthest-agent targeting algorithms. Let us then move to the case
where the number of unresponsive sheep is relatively large, ranging from 13 to (the maximum of) 15.
In this case, for relatively larger f(s4 = 50, both algorithms resulted in success, as most of the points
do not lie on the threshold lines 7. = 10,000 and 7, = 10,000. We even observe the trend that 7, is
relatively larger than 7. for more than half of the cases. This trend would be due to the iterative nature
of the proposed algorithm; although the farthest-agent targeting algorithm tries to guide the entire flock
of sheep from the beginning, the proposed algorithm gathers the unresponsive sheep one by one. This
observation suggests that, in the case of mild unresponsiveness, the farthest-agent targeting algorithm
can perform better than the proposed algorithm.

On the other hand, when I?M = 0.5 and, therefore, the unresponsive sheep are nearly non-reacting,
the farthest-agent targeting algorithm fails in most of the cases (i.e., 7. = T = 10,000 due to the
termination at the final time) as we observed in the previous section. From this observation, we argue
that the simulation results in the previous section for the case of K, = 0 qualitatively extends to the
case of nonzero but small K;, = 0. Specifically, the conclusion on the superiority of the proposed
algorithm in the previous section for non-reacting sheep can extend to the case of unresponsive sheep.

5. Conclusions

In this paper, we have presented an algorithm for the shepherding problem in which the sheep flock
contains both responsive and unresponsive individuals. In the algorithm, the sheepdog iteratively ap-
plies the farthest-agent targeting algorithm while dynamically switching its destination. This procedure
achieves the incremental growth of the controllable flock, which finally enables the sheepdog to guide
the entire flock into the goal region. The effectiveness of the proposed algorithm was first illustrated
with the simulations for the case of non-reacting sheep and then further supported with the ones for the
case of reacting but unresponsive sheep.

There are several research directions that should be further pursued. One such direction is theo-
retically analyzing the robustness of the proposed method, which was only empirically investigated in
the paper. Another research direction is the comprehensive comparison of the proposed method with
the algorithms in the literature. Although the superiority over the farthest-agent targeting method sug-
gests the potential effectiveness of the proposed algorithm, performing such a comprehensive analysis
is necessary to establish the efficacy of the proposed algorithm. Finally, performing statistical analysis
of the simulation results would be helpful to obtain a deeper understanding of the performance of the
proposed algorithm.
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