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Abstract: Demand response programs allow consumers to participate in the operation of a smart elec-
tric grid by reducing or shifting their energy consumption, helping to match energy consumption with
power supply. This article presents a bio-inspired approach for addressing the problem of colocation
datacenters participating in demand response programs in a smart grid. The proposed approach allows
the datacenter to negotiate with its tenants by offering monetary rewards in order to meet a demand
response event on short notice. The objective of the underlying optimization problem is twofold. The
goal of the datacenter is to minimize its offered rewards while the goal of the tenants is to maximize
their profit. A two-level hierarchy is proposed for modeling the problem. The upper-level hierarchy
models the datacenter planning problem, and the lower-level hierarchy models the task scheduling
problem of the tenants. To address these problems, two bio-inspired algorithms are designed and com-
pared for the datacenter planning problem, and an efficient greedy scheduling heuristic is proposed for
task scheduling problem of the tenants. Results show the proposed approach reports average improve-
ments between 72.9% and 82.2% when compared to the business as usual approach.
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1. Introduction

The smart grid paradigm is the current state-of-the-art for intelligent electricity networks [1]. It pro-
poses the use of information and communication technologies for developing improved management
and operation models that may account for planned demand growth, new energy sources, smart energy
storage, and other relevant features of nowadays electric systems. Demand response is one of the main
features of the smart grid paradigm. This feature enables customers to actively participate in the op-
eration of the electric grid by reducing or rescheduling their energy consumption to match the power
demand with the available power supply in exchange for some financial incentive. Demand response
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contributes to improving the economic operation and reliability of the electric system. Hence, these
strategies are recognized as some of the most useful strategies in the active demand side theory [2].

Demand response relies on the flexibility of large energy consumers to defer some of their consump-
tion in order to match an energy reduction target issued by the grid operator. This capability allows
the grid operator to cope with energy demand and supply fluctuations by reshaping the demand curve
of the whole electrical system. This enables the grid operator to flatten peaks of energy demand and
deal with unexpected short-lived energy outages like the ones typically produced by renewable energy
sources. Datacenters are a specific case of large consumers that can help the system by participating
in demand response programs. This is because most datacenters can plan their activities beforehand
by deferring the execution of some computational tasks and adjusting their energy consumption to
contribute in demand response events [3].

A colocation datacenter is a widely used business model for datacenters in which the datacenter
operator provides housing to third-party computing and networking equipment. In this model, each
tenant rents ancillary services from the datacenter operator such as power, cooling and communication,
and shares the datacenter facility with other tenants. The participation of a colocation datacenter in
a demand response program presents a challenging problem since the datacenter operator does not
control the actual computing equipment nor the execution of the computational tasks. Hence, the
underlying control and planning problem must be modeled as a negotiation, focused on obtaining
the best (i.e., most profitable) schedule for operation, considering the conflicting interests of different
business actors such as the grid operator, datacenter operator and datacenter tenants.

In this line of work, this article presents an agent-based approach to address the problem of the
smart operation of colocation datacenters to participate in the electricity market as active actors, with
the role of providing services to meet demand response events. The problem is modeled considering
a two-level hierarchy. On the one hand, the upper-level hierarchy addresses the datacenter planning
problem modeling the interaction between the datacenter operator and its tenants. A Stackelberg evolu-
tionary game is applied for modeling this interaction and two bio-inspired approaches are designed for
minimizing the economic cost for the datacenter operator. On the other hand, the lower-level hierarchy
addresses the tenant scheduling problem modeling the task execution schedule for each tenant. An
efficient greedy scheduling heuristic is proposed for maximizing the economic profit of each tenant.

This article extends our previous work [4] by proposing a piece-wise demand response event. In
this model, the time horizon of each demand response event is divided in several time intervals with
different energy reduction targets. This provides the grid operator with a more adaptable and potent
approach than our previous model. Furthermore, two mathematical formulations are proposed, one
for each hierarchy, and two bio-inspired approaches to address the datacenter planning problem. The
proposed bio-inspired approaches are validated and compared with each other over a realistic set of
instances. The main results show that our proposed approach is effective and is able to reduce the
economic cost for the datacenter operator by up to 82% when compared to a BaU approach.

This article is organized as follows. Next section presents a review of related works. The demand
response planning problem for datacenters and its mathematical formulation are described in Section 3.
The proposed bio-inspired approaches for addressing the datacenter planning problem are presented in
Section 4 and the proposed efficient greedy scheduling heuristic for addressing the tenant scheduling
problem is presented in Section 5. The experimental analysis is presented in Section 6 and conclusions
and future work are presented in Section 7.
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2. Related work

Game theory and Stackelberg games have been proposed to model negotiation approaches under the
smart grid paradigm. Meng and Zeng [5] applied a Stackelberg game to model the interaction between
an electricity retailer company and its residential customers. The goal of the electricity company is
determining an appropriate pricing scheme in real time to maximize the profit. Customers are able
to manage their energy consumption by planning the use of household appliances. The leader of the
Stackelberg game is the electricity company, which applies a genetic algorithm for profit maximiza-
tion, whereas for customers a linear programming model is applied for optimizing (i.e., minimizing)
the electricity costs. Experimental results were reported for a neighbourhood with 1000 residential
customers, each one having eight electric appliances, served by one electricity provider. Appliances
were modeled using three categories: shiftable (i.e., admit planning), non-shiftable (i.e., do not admit
planning), and curtailable (i.e., their consumption level can be reduced). Real time prices from Illinois
power company from March 2012 were used. Results demonstrated that customers applying the pro-
posed smart grid planning schemata were able to reduce the cost of the energy bill, when compared
to users applying a BaU operation. These results were confirmed for different energy consumption
patterns. Alshehri et al. [6] applied a non-cooperative Stackelberg game to model a scenario of multi-
period demand response management in smart grid, considering several competitive agents. Authors
proved that the proposed game has a unique Stackelberg equilibrium, where agents set prices to max-
imize profit and users accept prices to maximize benefits. In turn, the multi-period approach is more
attractive than the single one, for users to participate in the game. Numerical computations were re-
ported for different scenarios, modeling power availability for each agent, and results confirmed the
previous findings about the convenience of the multi-period approach.

Yu and Hong [7] applied the Stackelberg game model for demand response in smart grids. The
model considered one electricity company and several users. The main goal of the problem was bal-
ancing supply and demand, while smoothing the aggregated load in the electricity system. Optimal
strategies within the proposed game are devised by solving optimization problems for each agent. The
approach includes a theoretical pricing function for the regulation of real time prices. In turn, the
applied pricing function is supposed to encourage users to participate in the game. The Stackelberg
equilibrium is computed applying an iterative algorithm started by the electricity company. The algo-
rithm is based on communicating proposed prices and updating their values according to the demands
determined by users. Users are sequentially polled at each iteration, thus the computed prices depends
on the order considered for polling. The iteration ends when all users converge to the same strategy
(the equilibrium was achieved). The model was evaluated through simulations for a small case study
considering one electricity company and three users, and a planning period of 24 hours divided in 24
time slots. Different generation costs were considered. Results showed that the proposed algorithm
was able to adapt the demand, flatten peak consumption, and shifting load to valleys, thus properly
matching electricity supply and demand. Scalability analysis for scenarios with 20 to 200 users were
performed.

Dai et al. [8] studied real time pricing schemes for demand response to reduce both user and grid
operating costs. A non-competitive Stackelberg game approach was proposed considering several
retailers and multiple residential users. The coordination problem among residential users was modeled
as an evolutionary game considering private information. The Lyapunov method was applied to find
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the evolutionary equilibrium of the replicator dynamics (i.e., convergence to a state where selections
do not modify the population). In turn, a distributed algorithm was proposed to find the corresponding
equilibrium of the Stackelberg game, assuming that retailers do not know any information about each
other. The proposed model and algorithms were evaluated on a scenario considering two retailers and
five residential users, and planning on a period divided into 24 time slots. Numerical results showed
the convergence of both proposed algorithms for the case study. Furthermore, the proposed demand
response model was effective when compared with a fixed pricing scheme, allowing residential users
to benefit from reduced costs, thus encourage them to participate in the demand response program. No
further scenarios were considered.

Regarding demand response for datacenters, Wang et al. [9] proposed a model to shift the com-
putation loads to take advantage of either cheaper electricity or available renewable sources, under
the cloud computing paradigm. A sequential Stackelberg game formulation was introduced to model
the interaction between the smart grid operator and the datacenter operator considering two pricing
schemes (real time and time ahead). The datacenter operator performs resource allocation over sev-
eral distributed locations to maximize profit, whereas the smart grid operator aims at improving profit
and guaranteeing a proper load balancing. For the optimization under power-dependant pricing, an
iterative heuristic procedure was proposed, combining a resource allocation phase and a request dis-
patch phase. Both phases involve linear programming problems that can be solved within polynomial
time complexity and are iteratively solved until reaching convergence. For the time-ahead pricing vari-
ant, a sub-optimal solution was computed by a two-step optimization method using heuristics and a
Simulated Annealing metaheuristic to compute the price vectors. The experimental evaluation consid-
ered two systems with four and six datacenters. Results showed that the Stackelberg game model was
effective to improve the profit and to reduce the risk of overflow in the power system.

In the work by Chen et al. [10], the datacenter operator negotiates with tenants the reduction of their
energy consumption while tenants aim at maximizing their profits. An on-site generator is available
for using when it is not possible to meet the target reduction with the reduction from tenants alone.
The strategy used by the datacenter for negotiating with tenants consists in an iterative evaluation of
a supply function mechanism, where the same monetary incentive per energy unit that is reduced is
offered to all tenants equally. In each step of the iteration, the price is adjusted according to the tenants
reduction until the target reduction is covered. The authors modeled the tenant monetary penalty
function using a queuing theory model and considered a single reduction interval for the planning
horizon. The minimization objective is the cost of using the on-site generator plus the monetary penalty
incurred by the tenants in order to meet the energy reduction target. The authors proved that under
convexity assumption of the tenant cost function, and assumptions about the cost of using the on-site
generator, the proposed mechanism achieves the optimal solution. A case study of one datacenter with
three tenants is presented. Results showed that the mechanism achieves solutions close to optimal.

Nguyen et al. [11] studied the demand response problem in colocation datacenters under the model
of incentive tenants to reduce their electricity consumption. The interactions were modeled as a Stack-
elberg game with separated stages: finding an appropriate compensation cost by the demand response
provider, determining the best strategy for each datacenter operator, and optimizing the energy reduc-
tions by tenants. For the first stage, efficient heuristics such as bisection and branch-and-bound were
proposed and a theoretical quadratic cost function was considered to model the use of other energy
generation sources. For the second stage, exact and approximate methods were proposed, based on
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algebraic formulations and a sequential optimization approach to find the optimum of the correspond-
ing Stackelberg game. Finally, tenants reductions were computed according to a theoretical supply
function that takes into account the energy surplus.

Chi et al. [12] studied an auction mechanism between a datacenter operator and its tenants and
proposed a mixed-integer nonlinear programming problem for minimizing the social wellfare cost of
the energy consumption. The authors propose to follow the Vickrey-Clarke-Groves reverse auction
mechanism to guarantee the truthfulness of the proposal. According to this mechanism, the datacenter
operator is the buyer and its tenants are the sellers, allowing each tenant to bid just one offer. The
formulation considers an auxiliary on-site energy storage system and the energy consumption of the
cooling system of the datacenter. The main variables of the proposed optimization problem correspond
to the selection or rejection of each tenant offer and the amount of energy used from the on-site energy
storage. The authors designed an approximation algorithm for addressing the problem. The proposed
model was evaluated using real-world workloads and homogeneous servers, and its performance was
compared with two approaches recently proposed by Zhang et al. [13] and Chen et al. [14]. The
mechanism proposed by Chi et al. outperformed these two approaches, reducing the social welfare
cost of the energy consumption by up to 28.34%.

Celik et al. [15] proposed a GA for energy management of a datacenter, that allows the participation
in a time-of-use plan. Unlike emergency demand response events, where the start of the reduction in-
tervals is known at short notice, Time-of-use plans have fixed reduction intervals in the year. However,
similar strategies can be applied to reduce or delay energy consumption. The optimization problem
minimizes the execution cost of the workload for the datacenter considering a scheduling horizon with
high and low energy cost intervals. The authors consider workloads that include deferrable and non-
deferrable tasks. Non-deferrable tasks are not schedulable. Hence, the optimization problem consists in
scheduling the deferrable tasks. The energy consumption model for each server considers CPU usage
alone and the cooling system is not modeled. Time-varying energy prices from two utility companies
and workloads were generated for the experimental evaluation using traces from real cloud datacenters.
Authors archived up to 11.58% cost reduction when compared to BaU.

Our previous articles [4, 16] proposed a two-level planning approach for the participation of colo-
cation datacenters in demand response programs. Specifically, our previous research contribute by
defining a market mechanism for the active participation of tenants, integrating a realistic function
for computing the energy consumption of modern computing servers, and defining a simple thermal
model for taking into account the energy consumed by the coolying system of the datacenter. This
work extends our previous work by considering a piece-wise demand response event with multiple
energy reduction targets. This provides the grid operator with a more adaptable and potent approach
than our previous model. On top of that, a mathematical formulation is proposed for each level of
the hierarchy and two bio-inspired metaheursitics algorithms are designed for guiding the optimization
process.

To the best of our knowledge, this work includes several contributions to the state of the art. Re-
garding the datacenter modeling, a realistic model is incorporated to this work to evaluate the schedul-
ing strategies of the tenants, considering the datacenter simulator proposed by Muraina and Nesmach-
now [17]. On top of this, we incorporate the realistic energy consumption model introduced by Murafia
et al. [18] to estimate the energy consumption of the computing servers. This model differentiates from
the models presented in the related works by considering both CPU- and memory-intensive tasks in
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order to compute an accurate energy consumption prediction. Finally, the energy consumption of the
cooling system is also taken into consideration unlike similar approaches proposed by Chen et al. [10]
and Celik et al. [15]. These characteristics enable our proposed datacenter model to accurately simulate
a real-world scenario.

Regarding the formulation of the optimization problem, multiple reduction intervals in the schedul-
ing horizon are introduced in this work. This is a novel approach, since none of the reviewed works
consider this characteristic for emergency demand-response programs. Considering multiple reduction
intervals empowers the grid operator by enabling a fine-grainer reshaping of the energy demand curve.
Furthermore, we propose an open bid mechanism with several bidding rounds, enabling multiple op-
portunities for tenants to change their energy reduction offer and compete with each other, potentially
lowering the reduction cost for the datacenter. This contrasts with simpler mechanisms like the one
proposed by Chi et al. [12], where tenants only bid once, and the operator selects the best offers in just
one bidding round.

Finally, regarding the algorithmic approach, this work proposes two eflicient upper-level bio-
inspired metaheursitcis, one based on a genetic algorithm and the other based on particle swarm op-
timization (PSO). This approach proved to be accurate wihout requiring any assumption about the
convenxity of the tenant cost function like the one proposed by Chen et al. [10].

3. Problem description and formulation

This section introduces the general problem description and presents the detailed problem formula-
tion for each hierarchy in our proposed model.

3.1. Problem description

The proposed problem addresses the operation planning of a colocation datacenter participating
in a demand response program. Colocation datacenters house servers and other IT equipment from
different owners that are simply co-located in the same datacenter. That is, owners of IT equipment
rent housing space and infrastructure services from the datacenter, such as cooling, connectivity and
uninterruptible power supply. From here on, these owners will be referred as fenants.

This work considers the datacenter to be participating in an emergency demand response program.
In such program, participants must cope with unplanned demand response events on short notice in
order to address issues such as inaccurate generation forecast, extreme weather and problems in gen-
eration stations, among others. Events are notified as little as 10 minutes ahead and may span from a
few minutes up to a few hours. Each event consists of several reduction intervals, each interval with
an energy reduction target. Participants are obliged to fulfill the issued reduction target for each of the
reduction intervals.

Colocation datacenters usually participate in emergency demand response programs by relying on
in their on-site generators to reduce energy consumption from the grid and meet their energy reduction
target [19]. This is considered to be the BaU strategy. However, fully relying on on-site generators is
not cost-effective nor environmentally friendly.

This work considers an alternative strategy in which the datacenter operator offers monetary rewards
to their tenants for them to willingly reduce their energy consumption during a demand response event.
This strategy introduces the problem of how to effectively and efficiently negotiate with a set of tenants
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to reduce their energy consumption while minimizing the offered reward. Figure 1 presents the overall
schema of the considered negotiation strategy.
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Figure 1. Schema of the proposed model for demand response planning in colocation data-
centers.

3.2. Problem formulation

This section presents the formulation for the datacenter planning problem and the tenant scheduling
problem. Both formulations consider a discrete-time and rolling-horizon approach.

3.2.1. Datacenter planning problem

The goal of this problem is to plan the operation of a colocation datacenter to minimize its budget
in order to meet a demand response event in a smart grid environment. The proposed formulation
considers the monetary incentive offered to tenants, the cost of operating the cooling system, and the
cost of using the on-site diesel generator. The proposed formulation is as follows:

e T, asetof time steps ¢ € T in the scheduling horizon.

e ], a collection of time intervals such that | J/ C T and (1 = 0.

e «, the energy that must be reduced when compared to BaU operation by request of the electric
market. This reduction must be attained at every time step of each interval.

e Let d; be the power generated by the on-site diesel generator during time interval I; € I, D its
maximum energy generation capacity, and y the monetary cost per unit of energy per time step of
using the generator.

e C, aset of tenants and 0 < r{ < y X |[;| a monetary incentive offered to tenant ¢ € C for each
energy unit reduced on interval [; € I.

o f:CxIXR" — R* models the energy a tenant is willing to reduce when compared to BaU
on a time interval given a certain monetary incentive. Function f models the tenant scheduling
problem, described in the next subsection.

e g : R* X I — R* models the budget saved by the cooling system given the energy consumption
reduced by a tenant on a time interval.
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The objective function is defined in Egs (1)—(3).

min »° 3" (1 = g(f(e, 1), 1)) + ) (di x 111 x ) (1)

liel ceC L€l
Subject to:
a< di+ Z fle, I, i)V el )
ceC
di< DVI el €))

The objective presented in Eq (1) is to minimize the monetary cost for the datacenter operator while
meeting the energy reduction target. The first term in Eq (1) corresponds to the reward offered to
tenants minus the budget saved by the cooling system due to tenants usage reduction. The second
term in Eq (1) corresponds to the cost of using the on-site diesel generator to further reduce the energy
consumed from the grid to meet the reduction target. Constraint Eq (2) states the total energy reduction
must be at least « for all time interval [; € I. Finally, constraint Eq (3) states the energy generated by
the on-site generator must not exceed its maximum capability.

3.2.2. Tenant scheduling problem

In order to address the proposed datacenter planning problem, each tenant must address its own
scheduling problem. The tenant scheduling problem is an underlying problem which consists in mini-
mizing the energy consumption of a tenant given a certain monetary incentive offered by the datacenter
operator.

The tenant scheduling problem is defined considering the following elements:

e T, asetof time steps ¢ € T in the scheduling horizon.

e ], a collection of time intervals such that | J/ C T and (1 = 0.

e 7;, a monetary incentive offered to the tenant by the datacenter operator for each energy unit
reduced on each interval [; € I.

e W, a workload (or set) of sequential and uninterruptible tasks. Each task w € W is described
by: number of computing operations required for its completion w; (i.e. its length), arrival time
w, € T, due date w; € T and the monetary penalty the tenant must pay if the task due date is not
met w),.

e §, a set of homogeneous multi-core servers comprised of ¢ processing cores. Each processing
core is capable of performing 6 computing operations each time step and is able to execute one
task at a time.

e [: S xT — N, indicates the number of tasks w € W executing in server s € § at time stept € T.

e m:S XT — R*, indicates the energy reduced by server s € S at time step ¢ € T when compared
to BaU.

o/ :W > Sandh' : W — T, are the scheduling functions that determine the execution server
s € § and starting time ¢ € T of each task w € W.

e v: W — {0,1}, the due date violation function such that viw € W) = 0 iif 2" (w) + % < w,.
Otherwise, its value is 1.
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The objective of the tenant scheduling problem is to maximize the profit of the tenant Eqs (4) and

(5).

max Z 7 X (rglln Z m(s, t)) — Z Wy X V(W) 4
' seS

Liel weWw

Subject to:

¢ l(s,Hh)VseS VteT 5)

Equation (4) proposes maximizing the monetary profit of the tenant. The first term in Eq (4) cor-
responds to the profit earned by the tenant for reducing its energy consumption. The second term in
Eq (4) corresponds to the monetary penalties paid by the tenant because of due dates not met.

4. Bio-inspired algorithms for datacenter planning on the smart grid

This section describes the proposed bio-inspired approach to plan the operation of a datacenter for
participating in a demand response program.

4.1. Overall description of the resolution methodology

This work compares two bio-inspired algorithmic models to solve the datacenter planning problem.
Both approach apply game theory to model the interactions between the datacenter operator and tenants
and evolutionary computation to solve the optimization problem related to the negotiation.

The main concepts of game theory have been proved to explain the evolution of biological interac-
tions [20]. In turn, evolutionary game theory is a branch of evolutionary theory particularly applicable
for studying interactions between agents. Evolutionary game theory applies concepts of Darwinian
evolution, competition based on natural selection, and transmission of hereditary characters between
related individuals.

In the proposed resolution methodology, the overall negotiation scheme follows the Stackelberg
game approach. The Stackelberg game, also referred as Stackelberg leadership model, is a market
model from economics, applicable when a distinguished agent (the leader) is in such a position within
the business model that allows him to perform an initial offer or move, and the rest of agents (the
followers) react accordingly [21].

An equilibrium is achieved in the game (i.e., the market), when all agents agree on defining the
best strategy for themselves, considering the strategies of the other agents. Thus, every player reaches
a Nash equilibrium for the corresponding subgame between him and the leader. The model assumes
perfect information for all agents and the profit maximization of each follower is based on the fact that
the selected strategy do not affect the decisions of other followers. In those scenarios where the leader
is firmly established, an equilibrium situation can be achieved after the negotiation lapse, in which all
agents seek their profit maximization. In the considered Stackelberg game, the datacenter operator is
the leader, since its actions guide the negotiation procedure, by defining proper incentives for tenants to
reduce their power consumption. No altruism or social behaviour is considered, the behavior of agents
is guided by selfishness, as the main criterion for strategic decisions. No strategy or procedure that
does not tend to self-benefit is applied.
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4.2. Bio-inspired methods for planning

Two bio-inspired metaheuristics are proposed for addressing the datacenter planning problem. Both
are based on well-known metaheuristics. The first one is based on evolutionary algorithms (EAs)
and the other on PSO. This section introduces some fundamental concepts about EAs and PSO, and
presents the proposed planning algorithms.

4.2.1. Evolutionary algorithms

EAs are a set of non-deterministic optimization methods that emulate the evolutionary process of
species in nature. The application of evolutionary approaches and self-replication for problem solv-
ing was suggested by pioneers in computer science in the decade of 1960, and the methodology was
formalized and popularized between 1980 and 1990 [22].

In the last 30 years, EAs have been largely applied by the research community to solve complex
real-world design and optimization problems in many areas. The most popular variant of EA are
genetic algorithms (GA).

A GA 1is an iterative stochastic technique (according to the analogy with natural evolution, each
iteration is called a generation). The optimization procedure works by applying stochastic operators
on a set of candidate solutions (the population), in order to improve the fitness of solutions, a metric
that evaluates how good each solution is to solve the considered problem, related to the function to
optimize. The initial population is generated by either a randomized approach or by seeding the pop-
ulation using a randomized heuristic procedure or including problem-dependent knowledge. Different
variation operators are applied to generate new candidate solutions. The canonical GA includes as
main variation operators the recombination of solutions and random changes (mutations) in their con-
tents, which are applied for building new solutions during the iterative cycle. The procedure is guided
by a selection-of-the-best technique to tentative solutions of higher quality along the generations. The
exploration of new solutions is iteratively applied until reaching a predefined stopping criterion, usu-
ally a fixed number of generation or a time limit. The following characteristics are considered of the
proposed GA.

Solution representation In memory candidate solutions are represented as a vector ¥ € RI™/ Vec-
tor X represents the monetary incentive offered by the datacenter operator to each tenant on each time
interval for each unit of energy reduced. That is, x; = r{' is the incentive offered to ¢; € C during
Lel x= ,,;1 is the incentive offered to ¢; € C during I, € I, and so on.

Variation operators Well-known variation operators are applied to guide the evolution of the pop-
ulation. For the recombination of solutions the SBX crossover operator [23] is applied, while for the
mutation operator the Polynomial mutation operator [24] is applied. These operators are randomly
applied to solution selected from the population using the Binary tournament selection operator [25].

4.2.2. Particle swarm optimization

PSO is a computational method that mimics the movement in group of animals (e.g., a flock of
birds, a swarm of insects, a shoal of fish, etc.) [26]. PSO was originally proposed for simulating social
behavior in swarms, which has also been proved to model the movement of cells in the human body
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and other relevant natural phenomena. The main concept behind PSO is modeling and taking advan-
tage of swarm intelligence, i.e., the collective behavior of decentralized, self-organized systems [27].
The collective behavior of agents interacting with one another and also with the environment, allows
building a powerful global intelligence approach for solving complex problems.

PSO is an iterative technique intended to improve a set of candidate solutions (the swarm). The
quality of each solution (particle) is evaluated by a given function. Particles are iteratively modified by
movement operators that allows exploring the neighborhood of the search space. Movement operators
are defined by simple mathematical formulas defined over the particle attributes (position and velocity).
The movement of particles is also affected by already computed best positions for other particles in the
swarm. The defined procedure guides the swarm towards the exploration and exploitation of better
solutions in the search space.

In memory candidate solutions for PSO are represented exactly as for GA, i.e., a vector ¥ € RI/
representing the monetary incentives offered to tenants. The variation operators of the PSO imple-
mented in this article follows the standard PSO 2011 implementation by Zambrano-Bigiarini et al. [28].

Formally, given a D-dimensional search space, the position and velocity of particlei = 1,2, ..., N are
defined as )?, = {x;1, X, ..., X;p} and ‘7, = {vi1, vi2, ..., Vip}, respectively. On top of this, the best previous
position of particle i and the best found position for the neighborhood of each particle are defined
as 131 = {pa, pi2, ..., pip} and L= {L, b, ..., Ip}. Standard PSO 2011 proposes to compute a center of
gravity (G_),-), as shown in Eq (8), where t = 1,2, ..., T are the iteration steps of the PSO algorithm, ®
is the element-wise multiplication of vectors, ¢, is the cognitive coefficient, c; is the social coefficient,
and U’ | and UZ are random uniformly distributed vectors in [0, 1]°-space [29].

pi=X+c U ®(P -X) (6)
=X +cU o (- X) (7
L X +p+l

— i i i (8)

Finally, velocity and position of particle i are updated as shown in Eqs (9) and (10), where
H; (G;, IG; - X! II) is a hyperspherical distribution with center G' and radius [|G — X||.

VI = WV (G IGE - X)) - X ©)

X+ = Xt 4y (10)

The resulting search, using the center of gravity for velocity and position update, is less biased than
the standard search and does not depend on the system of coordinates used. Thus, the approach is
suitable for solving complex optimization problems such as the one addressed in this article, especially
when no information about the fitness landscape of the optimization problem is available.

Regarding parameters, the proposed implementation considers an adaptive random topology of size
K applied for computing L, the inertia weight w is set to 1/(2 X [n(2)), and both ¢; and ¢, are set to
1/2 + In(2), following suggestions by Zambrano-Bigiarini et al. [28]. Furthermore, different values for
parameters K and N are studied in the experimental evaluation reported in Section 6.4.
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5. Efficient greedy heuristic for task scheduling for each tenant

The proposed heuristic follows a dynamic scaling approach for smart energy management [30,
31] and works iteratively by constraining the maximum relative number of computing cores that are
usable on each interval for a given tenant. The rationale of this is that constraining the number of
usable computing cores may reduce energy consumption, depending on the computing demand of the
scheduled tasks. From now on, the maximum relative number of usable computing cores on each
interval will be referred as the processing level of each interval. It is defined by vector p, with p; being
the processing level of interval ;. For example, lets consider a scenario where |I| = 3 and a tenant
with p = (50, 30, 100). Then at most 50% of the computing cores of the tenant will be used during
interval 7, at most 30% will be used during interval I, and all the cores may be used during interval
I5. This means that 50% of the computing cores will be idle during interval I; and 70% will be idle
during interval 1.

The proposed heuristic optimizes one interval at a time aiming to find the processing level that
maximizes the total profit Eq (4). Initially, a vector p is constructed such that p; = 100 for all /; € I.
On each iteration of the heuristic, the processing level of interval /; is optimized by considering a pre-
defined set of candidate processing levels, L. Hence, a total number of |L| different candidate p’ are
constructed by setting different values for p! while the processing levels of the rest of the intervals
are left unchanged, ie., p; = p;¥j # i. After that, a simple list scheduling strategy is applied to
evaluate each vector p''“!! by computing a task-to-core assignment for all the intervals, subject to the
processing level constraint of each vector. The list scheduling strategy sorts the queue of pending tasks
(i.e. arrived but not yet executed) in order of decreasing monetary penalty, w,. This way, tasks with
the most monetary penalty for the tenant are prioritized. The energy consumption of the schedule
is computed using the server energy model proposed in our previous work [18] taking into account
the type of each task (i.e. CPU-bound or Memory-bound). Finally, the value p; is updated with the
most profitable value of p’!H for I;. Next, the heuristic starts a new iteration for optimizing /;,; and
keeps iterating until there are no more intervals to optimize. The schema of the proposed heuristic is
presented in Algorithm 1.

6. Experimental analysis

This section presents the set of realistic problem instances created for the experimental evaluation
and the execution and development infrastructure. After that, the parameter calibration study and the
experimental analysis are presented.

6.1. Problem instances

A total of ten realistic problem instances of different sizes were generated to evaluate the pro-
posed planning algorithms. A scheduling horizon of 60 minutes is considered for every instance. The
considered demand-response event consists of 3 energy reduction intervals of 10 minutes such that
I, =[5,14], I, = [25,34] and I; = [45, 54].

Table 1 shows the characteristics of the generated instances. One small-sized instance was gener-
ated for calibrating the proposed algorithms and three medium-, large- and huge-sized instances were
generated for evaluating the proposed algorithms. For each instance, the number of tasks and number

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2403-2423.



2415

Algorithm 1 Schema of the proposed greedy heuristic for task scheduling

1: max_profit < —co

2: p «[100, 100, 100, ..]

3: I'pess < compute scheduling for processing level vector p
4: for I;in I do

5: for L;in L do

6 pillil < L;

7: I' < compute scheduling for processing level vector p
8 profit «<— compute profit for schedule I
9: if profit > max_profit then

10: max_profit « profit

11: It < T

12: end if

13: end for

14: end for

15: M < compute energy reduced by 'y,

16: return M

Table 1. Characteristics of the realistic problem instances generated for this work.

Size # Tenants # Tasks per tenant # Servers per tenant Energy reduction (kW) ||
Small 9 3500-5500 20-30 6 50
Medium 27 3500-5500 20-30 18 50
Large 18 7000-11000 40-60 36 50
Huge 54 7000-11000 40-60 108 10

of servers per tenant were chosen randomly on the specified range, following a uniform distribution.
Column |L| describes the size of the set L considered in the proposed greedy heuristic for task schedul-
ing. Each processing level [; € Lis [ =i X % withi=1,2,..|L]|

Servers are comprised of 24 computing cores, each capable of 3000 million of instructions per
seconds (MIPS). Workloads of tasks for tenants were generated based on real workloads from the
parallel workloads archive (PWA) [32]. These workloads were adapted to the model proposed in this
work. To create a workload W for the proposed model the following procedure is preformed. First,
a task w is randomly chosen from the PWA workload with uniform distribution and W is created
considering the desired number of consecutive tasks from the PWA workload starting with w.

Arrival time for each task w is adjusted to the desired planning horizon, 7. Let ay,,, and a.,; be
the PWA arrival time of the first and last tasks selected for W, then the arrival time of task w € W is
computed as w, = % X |T|, with W, being the PWA arrival time of w. Length of task w € W is
computed considering the CPU time (in seconds) of the task in the PWA workload, w,. Since processor
speed is 1000 MIPS according to the PWA workload, the length of task w in millions of instructions is
computed as w; = W, X 1000. Due date of task w is computed randomly as wy = % X (1 + R), where

R €[0.1, 1] is a random value with uniform distribution.
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In order to compute the energy consumption, each task is classified in a certain type: CPU-bound or
memory-bound. This classification is computed according to the memory-usage information from the
PWA workload. If the memory usage of the task is greater or equal to 200 MB, the task is considered
to be memory-bound, otherwise is CPU-bound. The monetary penalty w), of a task is chosen randomly
with a Poisson distribution with 4 = 3.

Finally, regarding the datacenter. This work considers a simple linear function based on the power
usage effectiveness (PUE) [33] for modeling the cooling system. A PUE of 1.5 was considered for all
instances regarding the cooling system of the datacenter. This is a reasonable value according recent
studies [33]. Furthermore, the on-site diesel generator is considered to be capable to power the normal
operation of the datacenter during the whole demand-response event. Hence, the datacenter is always
capable to comply with the reduction target. The monetary cost per unit of energy per time step when
using the generator is 0.4 $/kWh for all instances. This cost considers realistic values for the price of
diesel fuel and fuel consumption of a standard diesel generator [10, 34].

6.2. Evaluation metrics

Several metrics are considered for evaluating the proposed approach. The proposed metrics take into
consideration the business perspective of both the datacenter and its tenants. The considered metrics
are the following:

e Datacenter cost improvement over BaU (AC) reports the relative improvement of the datacenter
cost comparing to the BaU strategy when participating in a demand-response event. Let C be the
best cost computed by the proposed method and Cp,; be the cost when applying BaU strategy,
then AC = Sz x 100.

e Tenants violated tasks over BaU (AVT) reports the relative increase of violated tasks when com-
paring to the BaU strategy. A task is considered to be violated when it does not finish its execution
before its due time, or it is not executed at all. Let W be the total number of tasks to be executed,
VT the number of violated tasks when applying the proposed method and VT, the number of
violated tasks when applying the BaU strategy, then AVT = %WTB“U x 100.

e Tenants non-executed tasks over BaU (ANT) reports the relative increase of non-executed tasks
when comparing to the BaU strategy. A non-executed task is a violated task that is not executed
at all. Let W be the total number of tasks to be executed, NT the number of non-executed tasks
when applying the proposed method and N7, the number of non-executed tasks when applying
the BaU strategy, then ANT = Mwﬂw x 100.

e Tenants tardiness over BaU (AT) reports the relative increase of tardiness of tasks when com-
paring to the BaU strategy. Tardiness is a well-known metric defined as the max(0,CT — DT),
where CT is the task completion time and DT is its due time. Let 7 be the sum of the tardiness
of all executed tasks when the proposed method is applied, 7'z, be the sum of the tardiness of all
executed tasks when the BaU strategy is applied, then AT = (T — Tg.v)/ T gav-

6.3. Execution and development infrastructure

All the proposed algorithms were implemented in Java. A datacenter simulator, introduced in our
previous work [17], is used to simulate the execution the tasks on the datacenter. The proposed meta-
heuristics were implemented using the jMetal framework [35], a Java-based framework for single- and
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multi-objective optimization with metaheuristics.
Experiments were executed in ClusterUY, a collaborative scientific HPC infrastructure in Uruguay.
Detailed infrastructure information is available at https://cluster.uy.

6.4. Parameter calibration study

The goal of the calibration study is to evaluate the accuracy of each metaheuristic with different
configuration of parameters in order to find the best configuration for each metaheuristic. A total of
9 configurations of parameters were studied for each metaheuristic. The parameter calibration study
was performed by addressing one small problem instance. A set of 30 independent executions for each
metaheuristic and for each combination of parameter values. The parameters evaluated for GA were
pe. = {1.0,0.9,0.8} for applying SBX crossover and p, = {0.1,0.05,0.01} for applying polynomial
mutation. Population size was configured as Ny, = 100. These are commonly suggested values for
the GA parameters [36,37]. The parameters calibrated for PSO were swarm size N, = {50, 75, 100}
and neighborhood size K = {3,5,7}. These are the suggested values for Standard PSO 2011 [26,
28]. Every combination of the proposed parameter values was evaluated for each metaheuristic with
a stopping condition of 25000 evaluations for every configuration. Figure 2a presents the datacenter
cost computed by GA for every combination of parameters while Figure 2c presents the datacenter cost
computed by PSO for every combination of parameters.

The Kruskal-Wallis H-test indicate results from GA and PSO do not originate from the same dis-
tribution with p-value < 0.001. After that, the best configuration is selected by performing a post hoc
analysis by applying the Dunn H-test for multiple comparisons of mean rank sums. Figure 2b shows
the post hoc analysis results for GA and Figure 2d for PSO.

Post hoc analysis shows (1.0,0.01) and (0.9,0.01) are the best configurations for GA since both
compute the lowest median cost and are significantly different from most of the other configurations.
However, (0.9,0.01) was able to compute a slightly lower median cost than (1.0,0.01). PSO post
hoc analysis clearly shows (100, 3) is the best configuration. Hence, from here onwards, (0.9,0.01)
configuration is used for GA and (100, 3) for PSO.

6.5. Main results and discussion

A total of 30 independent executions were performed for every problem instance for each meta-
heuristic with the best configuration for GA and PSO. Figure 3 presents the datacenter cost computed
by GA and PSO for every problem instance. Results show GA is more accurate in median than PSO
when addressing most instances, disregarding their size.

Table 2 presents the median and IQR comparison of the computed datacenter cost. The Kruskal-
Wallis H-test confirms GA is significantly more accurate than PSO for all instances. Overall, GA is
4.9% more accurate than PSO in average, and up to 9.3% more accurate than PSO.

The presented results show the proposed GA planning algorithm is significantly more accurate than
PSO from the datacenter operator point of view. However, it is fundamental to study the whole im-
pact of applying the proposed strategies from a business point of view. Hence, four different metrics
are proposed to evaluate the impact of the proposed strategies over BaU: (i) datacenter cost improve-
ment (AC), (ii) tenants violated tasks (AVT), (iii) tenants non-executed tasks (ANT) and (iv) tenants
tardiness (AT). Table 3 presents the results of the proposed metrics for GA and PSO. Results show
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Figure 2. Datacenter cost computed by GA ans PSO after 30 independent executions ad-
dressing a small-sized problem instance with every combination of configuration of parame-
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Figure 3. Datacenter cost computed by GA and PSO after 30 independent executions for
every problem instance referenced by (planning algorithm, instance number).
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Table 2. Median and interquartile range (IQR) comparison of the datacenter cost computed
by GA and PSO for every problem instance.

Instance GA PSO

p-value
number Median IQR Median IQOR
Medium-sized instances
0 0.84 0.038 0.88 0.024 < 0.001
1 0.78 0.028 0.86 0.019 < 0.001
2 0.67 0.031 0.71 0.018 < 0.001
Large-sized instances
0 1.97 0.082 2.05 0.037 < 0.001
1 1.86 0.047 1.94 0.049 < 0.001
2 1.64 0.071 1.70 0.041 < 0.001
Huge-sized instances
0 5.41 0.139 5.68 0.141 < 0.001
1 5.60 0.097 5.86 0.137 < 0.001
2 5.77 0.132 6.02 0.149 < 0.001

GA and PSO improve datacenter cost consistently over BaU for all instances, with improvements of
76.7 +2.9% and 75.4 + 2.8%, respectively.

For tenants, business impact varies depending on instance size. For medium-sized instances, the
number of additional affected tasks over BaU is around 2.1 + 1.0% for both GA and PSO. Affected
tasks do not produce a significant impact on tardiness, with increases of only 1.04 + 0.91 times and
1.11 £ 0.81 times over BaU for GA and PSO. Finally, considering the whole workload there are an
additional 2.4 + 1.1% of tasks that are not executed at all comparing to BaU when applying GA and
PSO. These tasks are either postponed to the following planning horizon or are definitely cancelled.
For large- and huge-sized instances, the impact is significantly higher than for medium-sized instances.
The number of additional affected tasks over BaU is around 4.9 + 0.6% for both GA and PSO. That is,
more than twice than medium-sized instances. Furthermore, affected tasks produce a significant impact
on tardiness, with increases of 6.0 + 3.8 times and up to 13.7 times over BaU for GA and PSO. This
introduces a significant delay on task execution with respect to BaU. Finally, considering the whole
workload there are an additional 3.3 + 0.9% of tasks that are not executed on the planned horizon when
comparing to BaU.

7. Conclusions and future work

This work studied the problem of a colocation datacenter participating in a smart grid emergency
demand-response program. The problem is divided hierarchically into two sub-problems, the dat-
acenter planning problem and the underlying fenant scheduling problem. A realistic mathematical

formulation is presented for both sub-problems, considering a discrete-time approach with a rolling
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Table 3. Datacenter cost improvement (AC), tenants violated tasks (AVT), non-executed
tasks (ANT) and tardiness (AT'), over BaU for medium-, large- and huge-sized instances.

Instance GA PSO

number AC AVT ANT AT AC AVT ANT AT
Medium-sized instances

0 T78% 28% 3.7% 2.01x 764% 2.8% 3.8% 1.97x
1 792% 27% 2.0% 0.22x 769% 27% 19% 0.35x
2 822% 1.0% 1.6% 0.88x 81.1% 1.0% 1.8% 0.97x
Large-sized instances

0 732% 6.1% 19% 13.52x 722% 68% 1.8% 13.68x
1 75.0% 43% 3.1% 3.43%x 73.8% 47% 3.8% 3.10x
2 782% 45% 4.7% 3.99x T772% 49% 43% 3.96x
Huge-sized instances

0 759% 47% 2.7% 3.98x T4.6% 4.6% 32% 4.16x
1 T47% 4.8% 3.8% 7.43%x 73.6% 49% 3.5% 6.59%x
2 T43% 47% 3.7% 4.35% 729% 4.6% 33% 3.98x

horizon.

Approximate algorithms were proposed for addressing the formulated problems. On the one hand,
two bio-inspired algorithms are proposed for addressing the datacenter planning problem. A GA that
is based on the natural evolution of the species and a PSO algorithm that is based on the movement
of a swarm of insects. Both algorithms consider the same in-memory representation for the problem
but apply a different algorithmic approach for computing a near-optimal problem solution. On the
other hand, an efficient greedy heuristic is proposed for addressing the tenant scheduling problem. The
proposed greedy heuristic is based on a simple but effective iterative constructive approach.

A total of ten realistic synthetic problem instances ranging from small to huge size were created
for evaluating the proposed algorithms. All problem instances were generated based on real tasks
workloads from the PWA [32] and include instances with more than 378,000 tasks.

Experimental analysis shows that the best results are computed for medium-sized instances. GA
and PSO achieve the highest improvement on datacenter cost while suffering the lowest impact on task
execution when addressing medium-sized instances. Large- and huge-sized instances are also prof-
itable for the datacenter. However, impact on task execution increases significantly when comparing
to medium-sized instances and tenants are more reluctant to reduce their energy consumption. Over-
all, results show the effectiveness of the proposed approach, reporting average improvements of the
datacenter cost over Business as Usual (BaU) of more than 75%.

The main lines of future work are the following. Construct additional realistic problem instances
considering a wider spectrum of scenarios. Design a diverse set of lower-level heuristics for address-
ing the tenant scheduling problem, taking into account the diversity of goals and priorities tenants
may have. Design improved upper-level bioinspired algorithms based on promising and recently pro-
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posed metaheuristics such as the flower pollination algorithm [38] and the Harris Hawks optimization
algorithm [39]. And finally, formulate and propose an algorithmic approach for addressing a true mul-
tiobjective problem, simultaneously considering the goals of the datacenter operator and the goals of
its tenants.
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