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Abstract: Myocarditis is the form of an inflammation of the middle layer of the heart wall which is 
caused by a viral infection and can affect the heart muscle and its electrical system. It has remained 
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one of the most challenging diagnoses in cardiology. Myocardial is the prime cause of unexpected 
death in approximately 20% of adults less than 40 years of age. Cardiac MRI (CMR) has been 
considered a noninvasive and golden standard diagnostic tool for suspected myocarditis and plays an 
indispensable role in diagnosing various cardiac diseases. However, the performance of CMR depends 
heavily on the clinical presentation and features such as chest pain, arrhythmia, and heart failure. 
Besides, other imaging factors like artifacts, technical errors, pulse sequence, acquisition parameters, 
contrast agent dose, and more importantly qualitatively visual interpretation can affect the result of the 
diagnosis. This paper introduces a new deep learning-based model called Convolutional Neural 
Network-Clustering (CNN-KCL) to diagnose Myocarditis. In this study, we used 47 subjects with a 
total number of 98,898 images to diagnose myocarditis disease. Our results demonstrate that the 
proposed method achieves an accuracy of 97.41% based on 10 fold-cross validation technique with 4 
clusters for diagnosis of Myocarditis. To the best of our knowledge, this research is the first to use deep 
learning algorithms for the diagnosis of myocarditis. 

Keywords: myocarditis; diagnosis; convolutional neural network; biomedical machine learning, 
cardiac MRI; prediction 
 

1. Introduction  

Cardiovascular diseases (CVD) are among the most important causes of mortality around the 
world [1]. Atherosclerosis is the leading cause of CVD referring to the build-up of different substances 
including cholesterol and fat in and on the walls of the arteries. The flow of blood is constrained in such 
a situation which in turn affects the whole body. CVDs due to atherosclerosis include cerebrovascular 
disease (e.g. stroke), ischemic heart disease (e.g. heart attack), and hypertensive heart disease. Other 
CVDs embrace rheumatic heart disease, inflammatory heart disease, congenital heart disease, cardiac 
arrhythmias, and heart failure [1,2].  

Inflammation of the heart muscles is clinically termed myocarditis [3]. In Figure 1, discrimination 
of normal and myocarditis affected heart can be seen. The inflammation of heart muscles is evident in 
myocarditis-affected heart as shown in Figure 1. The symptoms of myocarditis include chest pain or 
mild dyspnea. Common viral infections such as hepatitis B and C, parvovirus, and the recent one, 
COVID-19 may also cause myocarditis. Other specific forms of myocarditis include sarcoidosis, 
giant-cell myocarditis, hypersensitivity drug reactions, toxic or pathogens that may occur less 
commonly [4]. Patients that are diagnosed with myocarditis should be referred to the heart specialist 
for endomyocardial biopsy. The endomyocardial biopsy enables the clinicians to check the presence 
of premorbid in the patients of myocardial inflammation. Myocardial is the prime cause of unexpected 
death approximately 20% in adults less than 40 years old [5]. Although it had been centuries since the 
recognition of this enigmatic disease, effective treatment strategies are yet to develop because of 
several issues such as insensitivity to diagnostic tests, complex relations between maladaptive and 
adaptive immune responses [4]. A recent development in the genetic basis of immune-mediated heart 
disease and studies in animals provided key information in treating the disease. 
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Figure 1. Demonstration of myocarditis (on the right) and normal heart (on the left). 
As shown here, the inflammation of the heart muscles is evident in the myocarditis-
affected heart. 

Early detection of heart diseases is crucial for decreasing the mortality rate [6]. The screening 
methods such as electrocardiograms, echocardiograms, or magnetocardiogram help physicians 
diagnose the disease at an early stage. However, factors such as fatigue and excessive workload of the 
physician as well as other factors such as the presence of various noises in the images, or the presence 
of a mass or lesion that are not visible can cause misdiagnosis [7]. To address this problem, computer-
aided diagnosis (CAD) can help clinicians in diagnosing the diseases in their early stages [8]. Using 
CAD as a machine learning methodology is deployed to predict and analyses different disease-related 
issues [9]. One of the most advanced algorithms for analyzing large numbers of images collected from 
patients is the deep learning-based method. In fact, for deep learning-based methods, the more the 
input data increases, the more they become accurate and efficient [10]. 

To the best of our knowledge, there is no scientific literature related to deep learning-based studies 
on the detection and diagnosis of myocarditis disease. This is the first step towards such a study. We, 
therefore, systematically reviewed the literature based on cardiomyopathy oriented diseases. The rest 
of the paper is organized as follows: Section 2 describes the literature review; Section 3 presents the 
Z-Alizadeh Sani myocarditis dataset; Section 4 represents the method while Section 5 describes 
experimental results which are followed by Section 6 that presents the conclusion and future work. 

2. Literature review 

Baeßler et al. [11] examined whether machine learning-based techniques might be utilized for the 
recognition of myocardial tissue alterations in hypertrophic cardiomyopathy (HCM) on T1-
weighted non-contrast cardiac magnetic resonance (CMR) images using texture analysis (TA). In 
this study, texture feature selection and step-wise dimension reduction were explored for feature 
selection and identification of myocardial tissue alterations on non-contrast T1-weighted CMR 
images in HCM patients.  

In another study, Ovreiu and Simon [12] investigated the diagnosis of cardiomyopathy in its two 
common forms: hypertrophic and dilated via P wave features. They applied a novel evolutionary 
technique dubbed biogeography-based optimization (BBO) and developed a neuro-fuzzy network. 
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They demonstrated that cardiomyopathy could be successfully diagnosed by applying a neuro-fuzzy 
model. Later Ali et al. presented a computerized framework for the detection of cardiomyopathy 
diseases utilizing a multilayered perceptron (MLP) neural network [13]. In this study, the high-
frequency noise removal method was employed using moving and median average filters at the 
preprocessing stage.  

More recently Alis et al. [14] exploited a machine learning approach for texture feature analysis 
of cardiac magnetic resonance imaging (MRI) for examining the incidence of ventricular 
tachyarrhythmia (VT) in hypertrophic cardiomyopathy patients. Similarly, Borkar et al. [15] proposed 
a machine learning approach for the automatic detection of Atrial Septal Defect (ASD) and dilated 
cardiomyopathy (DCM) diseases. Their dataset comprised of the ultrasound videos of DCM, ASD, and 
normal cases. In another study, Sengupta et al. [16] designed a machine learning algorithm based on 
an associative memory classifier using echocardiographic and clinical records of 44 patients with 
restrictive cardiomyopathy and 50 patients with constrictive pericarditis. To discriminate constrictive 
pericarditis from restrictive cardiomyopathy, they normalized the speckle tracking echocardiography 
images concerning 47 controls with no structural heart disease and evaluated the diagnostic area under 
the ROC curve of the associative memory classifier. 

At the same time, Begum et al. [17] developed an automated diagnostic system for 
cardiomyopathy disease using feed-forward backpropagation neural network and SVM classifiers. 
They utilized an online PTB diagnostic ECG database and preprocessed it for baseline correction and 
noise cancellation. They then proposed four time-based features and classified them using artificial 
neural networks and SVM [18]. More recently, Green et al. [19] studied the echocardiograms and 
photoplethysmography data from a control cohort of 64 healthy volunteers and 19 HCM patients with 
left ventricular outflow tract obstruction (oHCM). In another study, Tsai and Kojima [20] utilized four 
texture features of ultrasonic images for heart disease classification. Their proposed method took as 
input the heart images that measured texture features by generating a gray-level co-occurrence matrix.  

More recently, Narula et al. [21] examined the potential for a machine learning system that 
integrated speckle-tracking echocardiographic recordings for discrimination of HCM from 
physiological hypertrophy seen in athletes (ATH). Similarly, Rahman et al. [22] proposed an HCM 
patient classifier utilizing standard 12-lead and 10-seconds ECG signals. They derived 504 temporal 
and morphological features including both newly-developed and commonly used ones from ECG 
signals for heartbeat classification.  

Recently, Shao et al. [23] examined whether TA parameters on magnetic resonance T1 mapping 
could be applied for the diagnosis of DCM. In this study, modified look-locker inversion recovery 
(MOLLI) sequence at a 3.0 T MR scanner was used to acquire T1 maps. The epicardium and 
endocardium were strained on the short-axis slices of the T1 maps by a skilled radiologist. Most 
recently, Capture et al. [24] performed plasma proteomics and exploratory myocardial screens and 
consequently devised a multiplexed targeted liquid chromatography-tandem/mass spectrometry-based 
assay to examine 26 peptide biomarkers to recognize novel plasma biomarkers for patients with HCM.  

Ali et al. [25] predicted heart disease utilizing a smart healthcare system applying feature fusion 
and ensemble deep learning methodologies. Conventional methods fail to diagnose heart diseases as 
they cannot tackle high-dimensional data. Hence, a smart framework using deep learning strategies is 
effective in such cases. In different electronic health records (EHR) from hospitals, there are lots of 
features, and the distribution of such features is also very unbalanced. Baccouche et al. [26] devised 
an ensemble framework based on deep learning to handle the unbalanced heart disease dataset issue. 
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A substantial amount of human effort is needed as machine learning approaches rely on rules and 
dictionaries and the integration of data-driven and knowledge-driven techniques. The simplicity of 
deep learning models comes to the rescue on detection of heart-related diseases and their risk factors 
compared to feature-engineered hybrid methods. The authors [27] designed a deep learning 
architecture from EHR records to evaluate the risk factors for heart disease. Early detection of heart-
related issues is possible when heart disease systems are integrated into the Internet of Medical Things. 
Su et al. [28] utilized deep learning methods on the internet of medical things for the detection of 
valvular heart disease. The author [29] proposed deep learning modified neural network (DLMNN) 
using IoT for assisting heart disease diagnosis and this patient monitoring approach achieved a 
competitive outcome. Morris et al. [30] introduced a deep learning method to diagnose congenital heart 
disease in the fetus, the most lethal and common birth defect. Correct prediction of heart disease can 
save lives while incorrect one can be fatal. The authors [31] applied a deep learning approach to predict 
the occurrence of heart disease in diabetic patients. They used two models-gated recurrent unit (GRU) 
and long short-term memory (LSTM). GRU outperformed the LSTM in such prediction. Bharti et 
al. [32] integrated machine learning techniques with deep learning models to predict heart disease. 
They used the UCI Machine Learning Heart Disease dataset and their technique yielded promising 
accuracy. The authors [33] proposed an echocardiography-based mortality deep learning prediction 
model for heart patients. They validated their model using the areas under the receiver operating 
characteristic curve (AUROC) and showcased superior performance. Sharma et al. [34] deployed a 
deep neural network (DNN) model for the prediction of heart disease and they observed that Talos 
optimization recorded state-of-the-art performance. Poplin et al. [35] predicted the cardiovascular risk 
factors from analyzing retinal images such as major adverse cardiac events, systolic blood pressure, 
smoking status, gender, and age. Hence, deep learning approaches are crucial in diagnosing and 
detection of various heart diseases from different sources related to patients.  

As is highlighted in the literature review, no deep learning-based method has been used for 
diagnosing myocarditis so far. In this study, we propose a new deep learning model (called CNN-KCL) 
that is build based on the combination of deep convolutional neural network (CNN) and k-means 
clustering to solve this problem. Our results demonstrate that CNN-KCL can significantly enhance the 
prediction performance compared to previous studies found in the literature. 

3. Z-Alizadeh Sani myocarditis dataset 

Cardiac MR Imaging is considered the noninvasive and diagnostic golden standard of 
myocarditis in the absence of biopsy. CMR provides the possibility of anatomical and functional 
imaging and accurate assessment of the heart. In this respect, its ability for tissue characterization 
is even more important [36]. Three diagnostic targets for the three recommended Cardiac MRI 
criteria are myocardial edema, hyperemia/capillary leak, and scar which is known as Lake Louise 
Criteria (LLC) [37]. The existence of contrast enhancement (CE-GD) affirms myocardial injury (i.e. 
scar, fibrosis) while T2-weighted images show interstitial edema, known as an integral part of the 
inflammatory response. The pre-and post-contrast T1-Weighted image indicates the presents of 
hyperemia/capillary leak in myocardial tissue. The LLC has been accepted beyond clinical criteria and 
Endomyocardial biopsy. Two out of three “Lake Louise Criteria” have 80.0% accuracy for a correct 
diagnosis of acute myocarditis [38]. In this study, we developed a model to diagnose myocarditis based 
on three indexes of Lake Louise Criteria (LLC). 
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3.1. CMR imaging protocols 

This study was performed from September 2018 to September 2019 at the CMR department of 
OMID hospital in Tehran, IRAN1. The total number of images in this study is 98,898 including 37,564 
images from healthy individuals and 61,334 images from individuals with Myocarditis issues. The study 
was approved by the local ethical committee of the OMID hospital. CMR examination was performed 
using a 1.5-T system (MAGNETOM Aera Siemens, Erlangen Germany) [39]. All patients were scanned 
with dedicated body coils in the standard supine position. The CMR protocols are as follows: 

We performed CINE-segmented images and pre-contrast T2-weighted (trim) images in short and 
long-axis views. Pre contrast T1-Weighted relative images were acquired in axial views of the 
myocardium. Immediately after gadolinium injection (DOTAREM 0/1 mmol/kg), the T1-weighted 
relative sequence was repeated and after 10-15 minutes, Late Gadolinium Enhancements (LGE- 
high-resolution PSIR) sequences in short and long-axis views were performed. Table 1 shows the 
parameters and details of CMR sequences. In addition, the main characteristics of our dataset are 
presented in Table 2. 

Table 1. Z-Alizadeh Sani myocarditis dataset description. 

Protocols &  
Parameters 

TE 
(ms) 

TR 
(ms) 

Segment
Slice 
thickness 
(mm) 

Concatenation 
and 
Slice number 

NEX 

Breath-
hold 
time 
(s) 

CINE_segmented (true 
FISP) Long Axis (LAX):

1.15 33.60 15 7 3 1 8 

CINE_segmented (true 
FISP) Short Axis (SAX):

1.11 31.92 15 7 15 1 8 

T2-Weighted (TIRM) 
LAX, pre-contrast 

52 800 
Non-
cine 

10 3 1 9 

T2-Weighted (TIRM) 
SAX, pre-contrast 

52 800 
Non-
cine 

10 5 1 10 

T1 Relative-Weighted 
TSE (Trigger)- AXIAL- 
dark blood 
pre- and post-contrast 

24 525 
Non-
cine 

8 5 1 7 

Late-GD Enhancement 
LGE (high-resolution 
PSIR) SAX and LAX 

3.16 666 
Non-
cine 

8 1 1 7 

Note: TE: Time Echo, TR: Time Repetition, Segment: Numbers of frames (Segmented acquisition to produce 

a series of images that can be displayed as a movie of cardiac function (cine)), Slice Thickness: How thick the 

slices are, Concatenation: Distribution of the slices to be measured over multiple TR, NEX: Number of 

Excitations (How many times each line of k-space data is acquired during the scan), Breath-hold time: Duration 

of time that the patient should hold his/her breath to avoid chest motion artifacts. 

 
1 https://www.kaggle.com/danialsharifrazi/cad-cardiac-mri-dataset 
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Table 2. Some of the characteristics of the Z-Alizadeh Sani myocarditis dataset. 

4. Methods 

In this section, we present our proposed method in detail. 

4.1. Background knowledge 

In this study, we use convolutional neural network (CNN) and k-means clustering to build our 
proposed model. Here, CNN is selected as one of the most powerful methods among deep learning 
algorithms for image analysis [40−42]. K-means is also selected because of heterogeneity among our 
input data. Having different viewpoints, light conditions, etc. have a negative impact on the 
classification performance. Hence, before classification, we use the k-means algorithm to cluster the 
images. In this way, similar images are categorized in the same cluster which potentially helps in 
enhancing the performance and overcoming heterogeneity in our input data. 

4.1.1. Convolutional neural network (CNN) 

One of the well-known deep learning techniques for image processing is convolutional neural 
network (CNN) that takes an image as input, allocates importance (biases and learnable weights) 
to different objects/aspects in the image, and then classify them [43]. CNN requires much lower 
pre-processing compared to the other deep learning architectures. Generally, filters are hand-
engineered in primitive methods while CNN can learn these characteristics/filters. The 
connectivity pattern of neurons in the human brain and the architecture of CNN are analogous. 
CNN is developed based on the organization of the visual cortex. A CNN is comprised of an input 
layer, multiple hidden layers, and an output layer. The hidden layers of CNN are typically created 
with convolutional layers that convolve with others [44]. The activation function is usually a 
rectified linear units (ReLU) layer and additional convolutions such as normalization layers, fully 
connected layers, and pooling layers are consequently followed [45]. There are various 
architectures of CNNs that are extensively used in the deep learning domain. Some of such 
architectures are LeNet [46], AlexNet [47], VGGNet [48], GoogleNet [49], and ResNet [50]. CNN 
is widely used in many different areas of research including computer vision, medical image 
analysis, recommendation system, financial time series, natural language processing, image, and 
video recognition, and classification [51,52]. CNN has been applied successfully in detection and 
diagnosis of various diseases using various image modalities [40,44,53–57]. 

 (Mean ± STD) of 

Number Age (Year) Height (cm) Weight (Kg) 

Myocarditis 39.51 ± 18.77 174.67 ± 6.13 77.70 ± 15.14 32 

Normal  37.27 ± 18.10 167.10 ± 6.02 68.27 ± 16.67 15 
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4.1.2. K-means clustering 

K-means clustering is one of the popular and simplest unsupervised techniques used in the 
machine learning domain [58]. It is based on vector quantization that aims to partition n observations 
into k clusters. Each observation belongs to a cluster with the nearest mean value (cluster centroid or 
cluster centers). The Euclidean distance (or any other distance metrics) is usually utilized to generate 
k groups [59]. Each item is categorized to its closest mean and the mean’s coordinates are updated as 
the averages of the items categorized in that cluster so far. 

4.2. Proposed method 

In this section, the proposed method is described in two parts. At first, the CNN-KCL scheme and 
then its structure is explained in detail. 

4.2.1. Proposed CNN-KCL scheme 

The block diagram of the proposed method namely convolutional neural network-clustering 
(CNN-KCL) is shown in Figure 2, which includes the steps of data entry, clustering, classification, and 
final prediction.  

 

Figure 2. The block diagram of the proposed CNN-KCL method. 
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According to Figure 2, the implementation steps are shown briefly: 
 Step 1: In the first step, the proposed dataset is entered into the system. 
 Step 2: The second step is related to the initial pre-processing. All dataset images are on a gray 
level. Hence, there is no need to delete the image channels. Dataset images are available in a variety 
of sizes. For this purpose, all images are resized to a size of 100 × 100. After resizing the images in the 
data pre-processing step, the image normalization operation is performed. Normalization of images 
transforms the light intensity of all image pixels to the range of zero and one (0 and 1).  
 Step 3: Due to the great variety of image sections, clustering is used in this step. There are 
different methods for clustering data. In this research, the k-means method is used to cluster images. 
It is important to note that the k-means algorithm is not capable of clustering two-dimensional 
images. For this reason, all images are reshaped into the vector of pixels, and then these are used in 
the k-means algorithm. 
 Step 4: In this step, the data is divided into 2, 4, 10, and 24 clusters by the k-means algorithm. 
 Step 5: In this step, the data are classified using CNN separately. Convolution layers are used for 
feature extraction and fully connected layers act as classifiers in this network.  
 Step 6: In step 6, the results of the classification of 2, 4, 10, and 24 clusters are displayed separately. 
 Step 7: Finally, the results of the classification of clustered images performed by k-means and 
CNN algorithms are compared. 

In this study, we have studied different values for K starting from 2 to find the optimal number of 
clusters, experimentally. Initially, the Z-Alizadeh Sani myocarditis dataset was given to the CNN-KCL 
model with two classes of healthy and Myocarditis (2 clusters). Due to a great variety in the employed 
dataset and the existence of images taken from different viewpoints, the initial accuracy of CNN-KCL 
was low. For this reason, the data was divided into more clusters to represents the data with a more 
distinctive pattern. To test other values for K, we divided each healthy and sick people into 2 clusters 
(a total of 4 clusters (K = 4)). This way, input images should be classified by CNN-KCL into 4 classes. 
We also increased the number of clusters to 10 (5 clusters for sick people and 5 clusters for healthy 
people). As a result, a total of 10 clusters or 10 classes (K = 10) were created to identify healthy and 
sick people as the output of CNN-KCL. Finally, the number of clusters was increased to 24 (K = 24). 
An input image is classified as healthy if it is categorized in one of the healthy clusters. The 
performance was tested based on 10 fold-cross validation technique (i.e. 90% of the data for training 
and 10% of the data for testing). However, the results almost monotonically decreased. As the result, 
at K = 24 which produced the lowest results, we stopped increasing the number of clusters.  

4.2.2. Recommended CNN-KCL architecture 

The proposed CNN-KCL architecture is shown in Figure 3. CNN-KCL includes input layers, 
convolution (32 kernels), Maxpooling (2 × 2), Dropout, re-convolution layers (64 kernels), 
Maxpooling (2 × 2), and Dropout. It also has the Flatten layer, fully connected, and the dropout layer, 
and finally the desired output. The list of hyperparameters optimization of the proposed CNN-KCL is 
described in detail in Table 3. 
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Table 3. The list of hyperparameters settings of the proposed method. 
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Figure 3. The general architecture of CNN-KCL. 

According to Figure 3, images are reshaped to a size of 100 × 100 into the CNN network. As the 
first part of the network, a convolution layer with a 3 × 3 kernel size, a Max-pooling layer with a 2 × 2 
kernel size, and a dropout layer with a size of 0.2 has been selected. In this network, the convolution 
layer is used to extract the feature from the dataset. The dropout layer is used to randomly remove a 
number of neurons to avoid overfitting in the network. The combination of these three layers with the 
activation function on CNN is usually referred to as one layer. The proposed CNN network consists of 
three layers with the mentioned features. The numbers of filters in the first, second, and third 
convolution layers are 32, 64, and 64, respectively. After passing the data through these three layers, 
the Flatten layer is used to change the form of the data from two-dimensional to one-dimensional mode. 
Then, the Fully Connected layer is used to classify the network. After the fully connected layer, the 
dropout layer is used again to avoid the network overfit. As the output layer, there is a vector with the 
number of neurons equal to the number of clusters, i.e., 2, 4, 10, and 24. 



2391 

Mathematical Biosciences and Engineering  Volume 19, Issue 3, 2381−2402. 

5. Experimental results 

In this section, the results of applying the proposed algorithm on the Z-Alizadeh Sani myocarditis 
dataset are reported. We used Python programming language and Tensorflow to implement CNN-KCL. 
In each of the K values (2, 4, 10, and 24), CNN-KCL networks were executed and the results were 
obtained based on 10 fold-cross validation technique and shown in Figures 4 and 5. The figures 
represent Accuracy [60–62] and LOSS [63–65]. 

a b 

c d 

Figure 4. Accuracy of CNN-KCL for different numbers of clusters based on 10 fold cross-
validation technique. a) 2 clusters b) 4 clusters. c) 10 clusters d) 24 clusters. 

Figure 4 shows the accuracy based on 10 fold-cross validation technique. In each of these two 
figures, the results with 2, 4, 10, and 24 clusters are shown and the blue and orange lines represent the 
training and validation process over 30 epochs, respectively. In Figure 4, with 2 clusters, the CNN-
KCL network is not well trained and had low accuracy. While in 4-cluster, 10-cluster, and 24-cluster 
modes, the training and validation processes are almost pretty similar with the same accuracy. As 
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shown in these figures, the best results are achieved using CNN-KCL while the number of clusters (K) 
is set to 4.  

Figure 5 shows the loss of CNN-KCL for a different number of clusters. As shown in Figure 5, in 
the case of 2 clusters, the loss increases dramatically, and in the cases of 4, 10, and 24 clusters, the loss 
decreases based on 10 fold cross-validation technique. In the case of 4 clusters, we observe the least 
loss. We also observe similar results in 4, 10, and 24 clusters in Figure 5. 

a b 

c d 

Figure 5. Loss of CNN-KCL for a different number of clusters based on 10 fold cross-
validation technique. a) 2 clusters. b) 4 clusters. c) 10 clusters. d) 24 clusters. 

According to Table 4, we investigated various evaluation criteria including precision, accuracy, 
recall, specificity, F1-Score, and AUC. When there are 2 clusters, by dividing the data set into 90% 
for training and 10% for testing or 10-fold cross-validation technique, the values of accuracy, precision, 
recall, specificity, F1-score, and AUC are 95.24, 94.6, 92.7, 96.78, 93.8, and 94.75%, respectively. 
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Meanwhile, the best performances are achieved when the CNN-KCL algorithm is used while K is set 
to 4 in the k-means algorithm.  

Table 4. The achieved classification results using CNN-KCL based on a 10-fold cross-
validation technique for the different number of clusters. 

Number of 
clusters 

Accuracy  
(%) 

Precision 
(%) 

Recall  
(%) 

Specificity 
(%) 

F1-score 
(%) 

AUC 
(%) 

2 clusters 95.24 94.6 92.7 96.78 93.8 94.75 

4 clusters 97.41 97.6 95.7 98.56 96.5 97.05 

10 clusters 97.04 97.8 94.5 98.71 95.9 96.51 

24 clusters 96.98 98.3 93.7 99 96.1 96.34 

To investigate the effectiveness of CNN-KCL, we compare it with several state-of-the-art traditional 
machine learning models such as bayesian network (BN) [18,66,67], decision tree (DT) [67−69], logistic 
regression (LR) [67,70,71], and random forest (RF) [67,71,72]. The above methods are described below. 
1) Bayesian network 

The BN classifier is the probability-based multiclass method and maximum likelihood computing. 
In other words, the NB classifier generates a conditional probability model, based on the use of the 
Bayes theorem that predicts the probability of a patient. Indeed, the supervised learning classifier 
accepts that the existence of a specific feature in a class is irrelevant to the existence of other features.  
2) Decision tree 

The next supervised learning classifier is the rule-based decision tree that is utilized for medical 
cases. This classifier is with a tree structure, comprising a root node, branches, and leaf nodes. Using 
the DT classifier, the dataset is separated into categories according to low entropy measures. It 
separates the dataset into two or more homogeneous sets. This is done based on the most important 
independent variables to make as discrete categories as conceivable. The decision tree achieves 
effective results with good accuracy. 
3) Logistic regression 

The LR classifier is a probabilistic binary classification method. This classifier is amplified by 
the correlation amid the dependent and independent variables through a linear separating line. The best 
separating line is named the regression line. 
4) Random forest 

The RF classifier is a non-probabilistic multiclass classification method. This RF method is an 
ensemble method, incorporating the predictions returned by a large number of trees of decision trees 
through the utilization of a bootstrap aggregation method. Every decision tree within the ensemble is 
created by frequently splitting the training dataset into subsets, to increase the monotony of the subsets. 
Furthermore, the forest selects the classification considering the most votes for entirely the trees. 

As it is specified earlier, to the best of our knowledge, CNN-KCL is the first deep learning-based 
method that has been used for this task. The results of this comparison are illustrated in Table 5. As 
shown in Table 5, CNN-KCL outperforms all the other traditional machine learning models. CNN-
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KCL is the first machine learning model to achieve over 90% in terms of Accuracy, Precision, and 
Recall. It also achieves over 0.9 F1-score.  

Table 5. The comparison results between the proposed CNN-KCL with 4 clusters and 
some other classification methods through the 10-fold cross-validation technique. 

Methods Accuracy  
(%) 

Precision  
(%) 

Recall  
(%) 

Specificity 
(%) 

F1-score 
(%) 

AUC  
(%) 

BN 54.11 44 77.3 39.94 56.2 58.59 

DT 91.99 89.1 90 93.37 89.4 91.55 

LR 89.52 86.9 85.1 92.2 86.1 88.68 

RF 94.4 92.9 92.3 95.7 92.7 94 

CNN-KCL 97.41 97.6 95.7 98.56 96.5 97.05 

Table 6. The accuracies and STD based on the 10-fold cross-validation. 

No. 
Fold 

STD 
for 
train 
data 

STD 
for 
test 
data 

Accuracy of 
CNN 

Accuracy of CNN-
KCL (4 clusters) 

Accuracy of 
CNN-KCL (10 
clusters) 

Accuracy of CNN-
KCL (24 clusters) 

1 53.1
117 

52.95
48 

0.950654888
8212001 

0.96192506853487
67 

0.8192913080
123563 

0.92175180518163
59 

2 53.0
759 

53.27
71 

0.954817747
9947203 

0.67296172200223
37 

0.8573154699
973061 

0.92701883562471
27 

3 53.0
820 

53.22
31 

0.951416387
4928655 

0.67755609706569
2 

0.8766169213
30699 

0.91813891582022
3 

4 53.0
538 

53.47
48 

0.952883834
2810723 

0.79973090982940
7 

0.8094333984
036449 

0.92199348459197
3 

5 53.0
985 

53.07
49 

0.951462225
8326564 

0.80125406173842
41 

0.8315800248
753433 

0.92157884931099
5 

6 53.0
937 

53.11
80 

0.946283509
3419983 

0.50538180341186
02 

0.8023659715
702822 

0.92093997176927
24 

7 53.1
087 

52.98
24 

0.952020714
8659626 

0.50652416734362
3 

0.8103980613
277755 

0.93005772943326
27 

8 53.1
396 

52.70
29 

0.956539398
8627132 

0.67404549142192
96 

0.8223497238
128191 

0.92636408605389
63 

9 53.1
058 

53.00
85 

0.953543866
7749797 

0.50667648253452
48 

0.8931458209
899265 

0.92249697262828
28 

10 53.0
914 

53.13
87 

0.954203899
268887 

0.96778533712428
92 

0.8318643470
685914 

0.92383396262371
09 
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According to the results shown in Table 5, our method performance is in the first rank. RF, SVM, 
and LR are in the next ranks, respectively. DT and BN are at the end of this list. 

In addition, the accuracies and standard deviation (STD) have been achieved based on the 10-fold 
cross-validation that is described in Table 6.  

For more comparison, the results of statistical tests were obtained for methods. These tests have 
been assigned in Table 7.  

Table 7. The results of statistical tests for methods. 

CNN-KCL (4 clusters) and CNN (without clustering) t_statistics: -4.435183828438278 

degree of freedom: 18 

critical value: 1.7340636066175354 

p_value:0.0003196116199775112 

CNN-KCL (4 clusters) and CNN-KCL (10 clusters) t_statistics: -2.283893609489031 

degree of freedom: 18 

critical value: 1.7340636066175354 

p_value:0.03474105191887733 

results for CNN-KCL (4 clusters) and CNN-KCL (24 
clusters) 

t_statistics: -3.9105542487284772 

degree of freedom: 18 

critical value: 1.7340636066175354 

p_value:0.0010250233862463265 

6. Conclusions and future works 

Myocarditis which remains one of the most challenging diagnoses in cardiology can affect the 
heart muscle and its electrical system. The most common cause of myocarditis is viral infection but 
other potential causes include Bacteria, Parasites, Fungi, Medications, or illegal drugs that might cause 
an allergic or toxic reaction, chemicals, or radiation [73]. Patients might present with a wide variety of 
symptoms like palpitations, dizziness, or syncope, serious ventricular arrhythmia, and angina-like 
chest pain [4]. Sudden cardiac death and acute coronary syndrome in healthy young adults can be 
caused by heart failure or severe arrhythmia [74].  

Nowadays, the application of machine learning techniques to identify uncover hidden 
healthcare patterns has been increased, dramatically. Thanks to the advent of technology, diagnostic 
possibilities have expanded and improved but there is still room for additional modifications and 
improvements [75]. Endomyocardial biopsy (EMB) as the invasive gold standard for diagnosis of 
myocarditis is subject to sampling error, false negative, false-positive results, procedural risks, or lack 
of local expertise therefore due to these limitations is infrequently performed [76]. Among non-
invasive methods, Electrocardiogram (ECG) and echocardiography are the primary diagnostic tools 
for heart diseases which are applicable for excluding other causes of cardiomyopathy. They can 
help to document disease development because temporal changes in systolic function, chamber size, 
and thickness can be evaluated regularly. However, they do not provide determined signs for 
myocarditis [77]. Cardiac MRI (CMR) has been considered a noninvasive and golden standard 
diagnostic tool for suspected myocarditis and plays an indispensable role in diagnosing various 
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cardiac diseases. CMR provides the possibility of anatomical and functional imaging and accurate 
assessment of the heart. However, in this respect what is more important is its ability of tissue 
characterization [36,75].  

Based on our experimental results, the convolutional neural network demonstrates promising 
performance for detecting and classifying images. However, to the best of our knowledge, no 
studies have used deep learning-based methods to diagnose myocarditis so far. We also used the k-
means clustering method to reduce the impact of heterogeneity among the input samples. Here, at 
first, we used the Elbow method (explained in detail in Appendix) to identify the optimal number 
of clusters [78]. However, in our case, this method was not able to provide us with the best results. 
Therefore, we used an alternative experimental approach to identify the optimal number of clusters 
for the k-means algorithm. In this study, clustering the data was used to overcome heterogeneity in 
the input data. After that, a novel hybrid CNN-KCL method was used to diagnose and classify 
myocarditis on the Z-Alizadeh Sani myocarditis dataset. The data set was divided into 90% for 
training and 10% testing based on a 10-fold cross-validation technique. We demonstrated our results 
using various evaluation criteria including accuracy, precision, specificity, F1-score, recall, and AUC. 
As shown in Table 4, CNN-KCL with K = 4 achieved 97.41, 97.6, 98.56, 96.5, 95.7, and 97.05% in 
terms of accuracy, precision, recall, specificity, F1-score, and AUC, respectively. In addition, we 
compared our proposed method with the most popular traditional classification algorithms (Table 5). 
The result of this comparison demonstrated that CNN-KCL can significantly outperform other 
traditional machine learning algorithms for this task. 

As for future works, we aim at using semi-supervised methods, reinforcement learning, and 
supervised methods such as recurrent neural networks (RNNs) to enhance the prediction performance. 
We also aim at using explainable AI and case-based reasoning (CBR). 

Conflict of interest 

The authors declare no competing financial and non-financial interests. 

Coda and dataset availability 

The scripts and dataset are available at: https://www.kaggle.com/danialsharifrazi/myocardit-
dataset-code. 

References 

1. J. H. Joloudari, E. H. Joloudari, H. Saadatfar, M. Ghasemigol, S. M. Razavi, A. Mosavi, et al., 
Coronary artery disease dagnosis; ranking the significant features using a random trees model, Int. 
J. Environ. Res. Public Health, 17 (2020), 731. https://doi.org/10.3390/ijerph17030731. 

2. M. Aazam, E. N. Huh, Fog computing micro datacenter based dynamic resource estimation and 
pricing model for IoT, in 2015 IEEE 29th International Conference on Advanced Information 
Networking and Applications, IEEE, (2015), 687–694. https://doi.org/10.1109/AINA.2015.254. 

3. W. Cooper, S. Hernandez-Diaz, P. Arbogast, Myocarditis, N. Engl. J. Med., 354 (2006), 
2443−2451. https://doi.org/10.1056/NEJMoa055202. 



2397 

Mathematical Biosciences and Engineering  Volume 19, Issue 3, 2381−2402. 

4. L. A. Blauwet, L. T. Cooper, Myocarditis, Prog. Cardiovasc. Dis., 52 (2010), 274–288. 
https://doi.org/10.1016/j.pcad.2009.11.006. 

5. A. M. Feldman, D. McNamara, Myocarditis, N. Engl. J. Med., 343 (2000) 1388−1398. 
https://doi.org/10.1056/NEJM200011093431908. 

6. R. Alizadehsani, M. H. Zangooei, M. J. Hosseini, J. Habibi, A. Khosravi, M. Roshanzamir, et al., 
Coronary artery disease detection using computational intelligence methods, Knowl. Based Syst., 
109 (2016), 187–197. https://doi.org/10.1016/j.knosys.2016.07.004. 

7. E. Nasarian, M. Abdar, M. A. Fahami, R. Alizadehsani, S. Hussain, M. E. Basiri, et al., Association 
between work-related features and coronary artery disease: A heterogeneous hybrid feature 
selection integrated with balancing approach, Pattern Recognit. Lett., 133 (2020), 33–40. 
https://doi.org/10.1016/j.patrec.2020.02.010. 

8. R. Alizadehsani, M. Roshanzamir, M. Abdar, A. Beykikhoshk, A. Khosravi, S. Nahavandi, et al., 
Hybrid genetic-discretized algorithm to handle data uncertainty in diagnosing stenosis of coronary 
arteries, Expert Syst., 2020. https://doi.org/10.1111/exsy.12573. 

9. R. Alizadehsani, M. Roshanzamir, M. Abdar, A. Beykikhoshk, M. H. Zangooei, A. Khosravi, et 
al., Model uncertainty quantification for diagnosis of each main coronary artery stenosis, Soft 
Comput., 24 (2020) 10149−10160. https://doi.org/10.1007/s00500-019-04531-0. 

10. H. Greenspan, B. Van Ginneken, R. M. Summers, Guest editorial deep learning in medical imaging: 
overview and future promise of an exciting new technique, IEEE Trans. Med. Imaging, 35 (2016), 
1153–1159. https://doi.org/10.1109/TMI.2016.2553401. 

11. B. Baeßler, M. Mannil, D. Maintz, H. Alkadhi, R. Manka, Texture analysis and machine 
learning of non-contrast T1-weighted MR images in patients with hypertrophic cardiomyo
pathy−Preliminary results, Eur. J. Radiol., 102 (2018), 61–67. https://doi.org/10.1016/j.ejra
d.2018.03.013. 

12. M. Ovreiu, D. Simon, Biogeography-based optimization of neuro-fuzzy system parameters for 
diagnosis of cardiac disease, in Proceedings of the 12th Annual Conference on Genetic and 
Evolutionary Computation, (2010), 1235–1242. https://doi.org/10.1145/1830483.1830706. 

13. M. Ali, M. F. Rani, A. H. Jahidin, M. F. Saaid, M. Z. H. Noor, Identification of cardio
myopathy disease using hybrid multilayered perceptron network, in 2012 IEEE Internatio
nal Conference on Control System, Computing and Engineering, IEEE, (2013), 23–27. htt
ps://doi.org/10.1109/ICCSCE.2012.6487109. 

14. D. Alis, A. Guler, M. Yergin, O. Asmakutlu, Assessment of ventricular tachyarrhythmia in patients 
with hypertrophic cardiomyopathy with machine learning-based texture analysis of late 
gadolinium enhancement cardiac MRI, Diagn. Interv. Imaging, 101 (2020), 137–146. 
https://doi.org/10.1016/j.diii.2019.10.005. 

15. S. Borkar, M. N. Annadate, Supervised machine learning algorithm for detection of cardiac 
disorders, in 2018 Fourth International Conference on Computing Communication Control and 
Automation (ICCUBEA), IEEE, (2018), 1–4.. https://doi.org/10.1109/ICCUBEA.2018.8697795. 

16. P. P. Sengupta, Y. M. Huang, M. Bansal, A. Ashrafi, M. Fisher, K. Shameer, et al., Cognitive 
machine-learning algorithm for cardiac imaging, Circ. Cardiovasc. Imaging, 9 (2016), e004330. 
https://doi.org/10.1161/CIRCIMAGING.115.004330. 

17. R. Begum, M. Ramesh, Detection of cardiomyopathy using support vector machine and 
artificial neural network, Int. J. Comput. Appl., 133 (2016), 29–34. 
https://doi.org/10.5120/ijca2016908178. 



2398 

Mathematical Biosciences and Engineering  Volume 19, Issue 3, 2381−2402. 

18. J. H. Joloudari, H. Saadatfar, A. Dehzangi, S. Shamshirband, Computer-aided decision-making 
for predicting liver disease using PSO-based optimized SVM with feature selection, Inf. Med. 
Unlocked, 17 (2019), 100255. https://doi.org/10.1016/j.imu.2019.100255. 

19. E. M. Green, R. Van Mourik, C. Wolfus, S. B. Heitner, O. Dur, M. J. Semigran, Machine learning 
detection of obstructive hypertrophic cardiomyopathy using a wearable biosensor, NPJ Digit. 
Med., 2 (2019), 57. https://doi.org/10.1038/s41746-019-0130-0. 

20. D. Y. Tsai, K. Kojima, Measurements of texture features of medical images and its ap
plication to computer-aided diagnosis in cardiomyopathy, Measurement, 37 (2005), 284–
292. https://doi.org/10.1016/j.measurement.2004.11.015. 

21. S. Narula, K. Shameer, A. M. Salem Omar, J. T. Dudley, P. P. Sengupta, Machine-learning 
algorithms to automate morphological and functional assessments in 2D echocardiography, J. 
Am. Coll. Cardiol., 68 (2016), 2287. https://doi.org/10.1016/j.jacc.2016.08.062. 

22. Q. A. Rahman, L. G. Tereshchenko, M. Kongkatong, T. Abraham, M. R. Abraham, H. Shatkay, 
Utilizing ECG-based heartbeat classification for hypertrophic cardiomyopathy identification, 
IEEE Trans. Nanobiosci., 14 (2015), 505–512. https://doi.org/10.1109/TNB.2015.2426213. 

23. X. Shao, Y. Sun, K. Xiao, Y. Zhang, W. Zhang, Z. Kou, et al., Texture analysis of magnetic 
resonance T1 mapping with dilated cardiomyopathy: A machine learning approach, Medicine, 97 
(2018), e12246. https://doi.org/10.1097/MD.0000000000012246. 

24. G. Captur, W. Heywood, C. Coats, S. Rosmini, V. Patel, L. R. Lopes, et al., Identificati
on of a multiplex biomarker panel for hypertrophic cardiomyopathy using quantitative pr
oteomics and machine learning, Mol. Cell. Proteomics, 19 (2020), 114. https://doi.org/10.1
074/mcp.RA119.001586. 

25. F. Ali, S. El-Sappagh, S. R. Islam, D. Kwak, A. Ali, M. Imran, et al., A smart healthcare monitoring 
system for heart disease prediction based on ensemble deep learning and feature fusion, Inf. Fusion, 
63 (2020), 208–222. https://doi.org/10.1016/j.inffus.2020.06.008. 

26. A. Baccouche, B. Garcia-Zapirain, C. Castillo Olea, A. Elmaghraby, Ensemble deep learning 
models for heart disease classification: A case study from Mexico, Information, 11 (2020), 207. 
https://doi.org/10.3390/info11040207. 

27. T. Chokwijitkul, A. Nguyen, H. Hassanzadeh, S. Perez, Identifying risk factors for heart disease 
in electronic medical records: A deep learning approach, in Proceedings of the BioNLP 2018 
Workshop, (2018), 18–27. https://doi.org/10.18653/v1/W18-2303. 

28. Y. S. Su, T. J. Ding, M. Y. Chen, Deep learning methods in internet of medical things f
or valvular heart disease screening system, IEEE Internet Things J., 99 (2021), 1. https://
doi.org/10.1109/JIOT.2021.3053420. 

29. S. S. Sarmah, An efficient IoT-based patient monitoring and heart disease prediction system using 
deep learning modified neural network, IEEE Access, 8 (2020), 135784–135797. 
https://doi.org/10.1109/ACCESS.2020.3007561. 

30. S. A. Morris, K. N. Lopez, Deep learning for detecting congenital heart disease in the fetus, Nat. 
Med., 27 (2021), 764–765. https://doi.org/10.1038/s41591-021-01354-1. 

31. S. Narmadha, S. Gokulan, M. Pavithra, R. Rajmohan, T. Ananthkumar, Determination of various 
deep learning parameters to predict heart disease for diabetes patients, in 2020 International 
Conference on System, Computation, Automation and Networking (ICSCAN), IEEE, (2020), 1–6. 
https://doi.org/10.1109/ICSCAN49426.2020.9262317. 



2399 

Mathematical Biosciences and Engineering  Volume 19, Issue 3, 2381−2402. 

32. R. Bharti, A. Khamparia, M. Shabaz, G. Dhiman, S. Pande, P. Singh, Prediction of heart disease 
using a combination of machine learning and deep learning, Comput. Intell. Neurosci., 2021 
(2021), 8387680. https://doi.org/10.1155/2021/8387680. 

33. J. M. Kwon, K. H. Kim, K. H. Jeon, J. Park, Deep learning for predicting in‐hospital mortality 
among heart disease patients based on echocardiography, Echocardiography, 36 (2019), 213–218. 
https://doi.org/10.1111/echo.14220. 

34. S. Sharma, M. Parmar, Heart diseases prediction using deep learning neural network mod
el., Int. J. Innovative Technol. Explor. Eng., 9 (2020), 2278–3075. https://doi.org/10.35940
/ijitee.C9009.019320. 

35. R. Poplin, A. V. Varadarajan, K. Blumer, Y. Liu, M. V. McConnell, G. S. Corrado, et al., Prediction 
of cardiovascular risk factors from retinal fundus photographs via deep learning, Nat. Biomed. 
Eng., 2 (2018) 158–164. https://doi.org/10.1038/s41551-018-0195-0. 

36. M. Chetrit, M. G. Friedrich, The unique role of cardiovascular magnetic resonance imagi
ng in acute myocarditis, F1000Research, 7 (2018), 1153. https://doi.org/10.12688/f1000res
earch.14857.1. 

37. M. D. Cornicelli, C. K. Rigsby, K. Rychlik, E. Pahl, J. D. Robinson, Diagnostic performance of 
cardiovascular magnetic resonance native T1 and T2 mapping in pediatric patients with acute 
myocarditis, J. Cardiovasc. Magn. Reson., 21 (2019), 40–48. https://doi.org/10.1186/s12968-019-
0550-7. 

38. M. A. G. M. Olimulder, J. Van Es, M. A. Galjee, The importance of cardiac MRI as a diagnostic 
tool in viral myocarditis-induced cardiomyopathy, Neth. Heart J., 17 (2009), 481–486. 
https://doi.org/10.1007/BF03086308. 

39. C. Moenninghoff, L. Umutlu, C. Kloeters, A. Ringelstein, M. E. Ladd, A. Sombetzki, et al., 
Workflow efficiency of two 1.5 T MR scanners with and without an automated user interface for 
head examinations, Acad. Radiol., 20 (2013), 721–730. https://doi.org/10.1016/j.acra.2013.01.004. 

40. M. Khodatars, A. Shoeibi, N. Ghassemi, M. Jafari, A. Khadem, D. Sadeghi, et al., Deep learning 
for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review, 
Comput. Biol. Med., 139 (2021). https://doi.org/10.1016/j.compbiomed.2021.104949. 

41. N. Q. K. Le, Q. T. Ho, E. K. Y. Yapp, Y. Y. Ou, H. Y. Yeh, DeepETC: a deep convolutional neural 
network architecture for investigating and classifying electron transport chain’s complexes, 
Neurocomputing, 375 (2020), 71–79. https://doi.org/10.1016/j.neucom.2019.09.070. 

42. J. N. Sua, S. Y. Lim, M. H. Yulius, X. Su, E. K. Y. Yapp, N. Q. K. Le, et al., Incorp
orating convolutional neural networks and sequence graph transform for identifying multil
abel protein lysine ptm sites, Chemom. Intell. Lab. Syst., 206 (2020), 104171. https://doi.
org/10.1016/j.chemolab.2020.104171. 

43. N. Ghassemi, H. Mahami, M. T. Darbandi, A. Shoeibi, S. Hussain, F. Nasirzadeh, et al., Material 
recognition for automated progress monitoring using deep learning methods, preprint, 
arXiv:2006.16344. 

44. A. Shoeibi, M. Khodatars, N. Ghassemi, M. Jafari, P. Moridian, R. Alizadehsani, et al., Epileptic 
seizure detection using deep learning techniques: a review, Int. J. Environ. Res. Public Health, 18 
(2021), 5780. https://doi.org/10.3390/ijerph18115780. 

45. L. Fu, B. Lu, B. Nie, Z. Peng, H. Liu, X. Pi, Hybrid network with attention mechanism for 
detection and location of myocardial infarction based on 12-lead electrocardiogram signals, 
Sensors, 20 (2020), 1020. https://doi.org/10.3390/s20041020. 



2400 

Mathematical Biosciences and Engineering  Volume 19, Issue 3, 2381−2402. 

46. Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, et al., Handwritten 
digit recognition with a back-propagation network, in Proceedings of the 2nd International 
Conference on Neural Information Processing, (1990), 396–404. Available from: 
https://papers.nips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-Paper.pdf. 

47. A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural 
networks, Adv. Neural Inf. Process. Syst., 25 (2012), 1097–1105. https://doi.org/10.1145/3065386. 

48. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, 
Comput. Sci., preprint, arXiv:14091556. 

49. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., Going deeper with 
convolutions; in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 
(2015), 1–9. https://doi.org/10.1109/CVPR.2015.7298594. 

50. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in 2016 IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 770–778. 
https://doi.org/10.1109/CVPR.2016.90. 

51. S. Lawrence, C. L. Giles, T. Ah Chung, A. D. Back, Face recognition: a convolutional 
neural-network approach, IEEE Trans. Neural Networks, 8 (1997), 98–113. https://doi.org/
10.1109/72.554195. 

52. R. Alizadehsani, M. Roshanzamir, S. Hussain, A. Khosravi, A. Koohestani, M. H. Zangooei, et al., 
Handling of uncertainty in medical data using machine learning and probability theory techniques: 
A review of 30 years (1991-2020), Ann. Oper. Res., (2021), 1–42. https://doi.org/10.1007/s10479-
021-04006-2. 

53. H. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, et al., Deep convolutional neural networks 
for computer-aided detection: CNN architectures, dataset characteristics and transfer learning, 
IEEE Trans. Med. Imaging, 35 (2016), 1285–1298. https://doi.org/10.1109/TMI.2016.2528162. 

54. U. R. Acharya, H. Fujita, S. L. Oh, Y. Hagiwara, J. H. Tan, M. Adam, et al., Deep convolutional 
neural network for the automated diagnosis of congestive heart failure using ECG signals, Appl. 
Intell., 49 (2019), 16–27. https://doi.org/10.1007/s10489-018-1179-1. 

55. U. R. Acharya, H. Fujita, O. S. Lih, M. Adam, J. H. Tan, C. K. Chua, Automated detection of 
coronary artery disease using different durations of ECG segments with convolutional neural 
network, Knowl. Based Syst., 132 (2017), 62–71. https://doi.org/10.1016/j.knosys.2017.06.003. 

56. J. H. Tan, Y. Hagiwara, W. Pang, I. Lim, S. L. Oh, M. Adam, et al., Application of sta
cked convolutional and long short-term memory network for accurate identification of CAD
ECG signals, Comput, Biol. Med., 94 (2018), 19–26. https://doi.org/10.1016/j.compbiomed.
2017.12.023. 

57. A. Shoeibi, N. Ghassemi, R. Alizadehsani, M. Rouhani, H. Hosseini-Nejad, A. Khosravi, et al., A 
comprehensive comparison of handcrafted features and convolutional autoencoders for epileptic 
seizures detection in EEG signals, Expert Syst. Appl., 163 (2021), 113788. 
https://doi.org/10.1016/j.eswa.2020.113788. 

58. K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl, Constrained k-means clustering with background 
knowledge,  (2001), 577–584. Available from: http://www.litech.org/~wkiri/Papers/wagstaff-
kmeans-01.pdf. 

59. A. K. Jain, Data clustering: 50 years beyond K-means, Pattern Recognit. Lett., 31 (2010), 651–
666. https://doi.org/10.1016/j.patrec.2009.09.011. 



2401 

Mathematical Biosciences and Engineering  Volume 19, Issue 3, 2381−2402. 

60. R. Alizadehsani, M. Roshanzamir, M. Abdar, A. Beykikhoshk, A. Khosravi, M. Panahiazar, et 
al., A database for using machine learning and data mining techniques for coronary artery 
disease diagnosis, Sci. Data, 6 (2019), 227. https://doi.org/10.1038/s41597-019-0206-3. 

61. G. Muhammad, M. S. Hossain, COVID-19 and non-COVID-19 classification using multi-layers 
fusion from lung ultrasound images, Inf. Fusion, 72 (2021), 80–88. 
https://doi.org/10.1016/j.inffus.2021.02.013. 

62. S. Hussain, G. Hazarika, Educational data mining model using rattle, Int. J. Adv. Comput. Sci. 
Appl., 5 (2014). https://doi.org/10.14569/IJACSA.2014.050605. 

63. E. Haghighat, R. Juanes, Sciann: A keras/tensorflow wrapper for scientific computations and 
physics-informed deep learning using artificial neural networks, Comput. Methods Appl. Mech. 
Eng., 373 (2021), 113552. https://doi.org/10.1016/j.cma.2020.113552. 

64. R. Kumar, W. Wang, J. Kumar, T. Yang, A. Khan, W. Ali, et al., An integration of blockchain 
and AI for secure data sharing and detection of CT images for the hospitals, Comput. Med. 
Imaging Graph., 87 (2021), 101812. https://doi.org/10.1016/j.compmedimag.2020.101812. 

65. R. Yamashita, J. Long, A. Saleem, D. L. Rubin, J. Shen, Deep learning predicts postsurgical 
recurrence of hepatocellular carcinoma from digital histopathologic images, Sci. Rep., 11 (2021), 
2047. https://doi.org/10.1038/s41598-021-81506-y. 

66. F. V. Jensen, F. Jensen, An introduction to Bayesian networks, Springer, 2014. 
https://doi.org/10.1007/978-3-642-54157-5_5. 

67. H. M. Afify, M. S. Zanaty, Computational predictions for protein sequences of COVID-19 virus 
via machine learning algorithms, Med. Biol. Eng. Comput., 59 (2021), 1723–1734. 
https://doi.org/10.21203/rs.3.rs-34004/v2. 

68. F. Gorunescu, Data Mining: Concepts, models and techniques, Springer, 2011. https://doi.
org/10.1007/978-3-642-19721-5. 

69. J. H. Joloudari, E. H. Joloudari, H. Saadatfar, M. GhasemiGol, S. M. Razavi, A. Mosavi, et al., 
Coronary artery disease diagnosis; ranking the significant features using a random trees model, 
Int. J. Environ. Res. Public Health, 17 (2020), 731. https://doi.org/10.3390/ijerph17030731. 

70. I. Ruczinski, C. Kooperberg, M. LeBlanc, Logic regression, J. Comput. Graph. Stat., 12 (2003), 
475–511. https://doi.org/10.1198/1061860032238. 

71. G. Jones, J. Parr, P. Nithiarasu, S. Pant, A proof of concept study for machine learning 
application to stenosis detection, Med. Biol. Eng. Comput., 2021. 
https://doi.org/10.1007/s11517-021-02424-9. 

72. L. Breiman, Random forests, Mach. Learn., 45 (2001), 5−32. https://doi.org/10.1023/A:1010
933404324. 

73. I. Kindermann, C. Barth, F. Mahfoud, C. Ukena, M. Lenski, A. Yilmaz, et al., Update on 
myocarditis, J. Am. Coll. Cardiol., 59 (2012), 779. https://doi.org/10.1016/j.jacc.2011.09.074. 

74. T. S. Kafil, N. Tzemos, Myocarditis in 2020: advancements in imaging and clinical management, 
JACC Case Rep., 2 (2020), 178–179. https://doi.org/10.1016/j.jaccas.2020.01.004. 

75. A. Roos, Diagnosis of myocarditis at cardiac MRI: the continuing quest for improved tissue 
characterization, Radiology, 292 (2019), 618–619. https://doi.org/10.1148/radiol.2019191476. 

76. F. Dominguez, U. Kühl, B. Pieske, P. Garcia-Pavia, C. Tschöpe, Update on myocarditis and 
inflammatory cardiomyopathy: reemergence of endomyocardial biopsy, Revista Española 
Cardiología, 69 (2016), 178–187. https://doi.org/10.1016/j.rec.2015.10.015. 



2402 

Mathematical Biosciences and Engineering  Volume 19, Issue 3, 2381−2402. 

77. C. Buttà, L. Zappia, G. Laterra, M. Roberto, Diagnostic and prognostic role of electrocardiogram 
in acute myocarditis: A comprehensive review, Ann. Noninvasive Electrocardiol., 1 (2020), 1–10. 
https://doi.org/10.1111/anec.12726. 

78. P. Bholowalia, A. Kumar, EBK-means: A clustering technique based on elbow method and k-
means in WSN, Int. J. Comput. Appl., 105 (2014), 17–24. https://doi.org/10.5120/18405-9674. 

Appendix 

In order to find the best number of clusters, the Elbow method was used. In this method, different 
values of K (from 1 to 30) were investigated. Figure A.1 shows the result to identify the optimal K. As 
shown in this figure since we did not observe a sharp elbow, the exact amount of the best K was not 
determined using this method. 

 

Figure A.1. Results for elbow method for different values of K. 
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