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Abstract: Obesity and type 2 and diabetes mellitus (T2D) are two dual epidemics whose shared 

genetic pathological mechanisms are still far from being fully understood. Therefore, this study is 

aimed at discovering key genes, molecular mechanisms, and new drug targets for obesity and T2D by 

analyzing the genome wide gene expression data with different computational biology approaches. In 

this study, the RNA-sequencing data of isolated primary human adipocytes from individuals who are 

lean, obese, and T2D was analyzed by an integrated framework consisting of gene expression, protein 

interaction network (PIN), tissue specificity, and druggability approaches. Our findings show a total 

of 1932 unique differentially expressed genes (DEGs) across the diabetes versus obese group 
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comparison (p≤0.05). The PIN analysis of these 1932 DEGs identified 190 high centrality network 

(HCN) genes, which were annotated against 3367 GO terms and functional pathways, like response to 

insulin signaling, phosphorylation, lipid metabolism, glucose metabolism, etc. (p≤0.05). By applying 

additional PIN and topological parameters to 190 HCN genes, we further mapped 25 high confidence 

genes, functionally connected with diabetes and obesity traits. Interestingly, ERBB2, FN1, FYN, 

HSPA1A, HBA1, and ITGB1 genes were found to be tractable by small chemicals, antibodies, and/or 

enzyme molecules. In conclusion, our study highlights the potential of computational biology methods 

in correlating expression data to topological parameters, functional relationships, and druggability 

characteristics of the candidate genes involved in complex metabolic disorders with a common 

etiological basis. 

Keywords: obesity; diabetes mellitus; DEGs; PPI; gene network 

 

1. Introduction  

Obesity and T2D are two chronic metabolic and endocrine abnormalities that are on the rise all 

over the world. High body mass index ratio is known to contribute to β-cell function decline and 

inadequate insulin secretion, which ultimately leads to T2D [1,2]. The development of insulin 

resistance in obese individuals is due to the elevated levels of non-esterified fatty acids (NEFAs), 

cytokines, hormones, and inflammatory substances. The NEFAs secreted from adipose tissue in obese 

individuals are the key molecular etiologic factors connecting impaired β-cell function and insulin 

resistance to the risk of T2D.  Obesity-related T2D may further increase the risk of developing 

comorbidities like cardiovascular diseases, hypertension, neurological and neuropsychiatric illness, 

and autoimmune diseases [3–6]. No effective therapy for T2D caused by obesity is available, except 

the adoption of disease management strategies aimed at controlling blood glucose levels and 

secondary complications.  

Molecular studies have reported the aberrant expression patterns of different genes in adipose 

tissues and blood samples of obese subjects [7] and also in blood samples of diabetics [8]. Although, 

several unique markers for these metabolic conditions have been identified, but they share only few 

disease genes like PPARG [9] and UCP3 [10], ENPP1 [11] and FTO [12] between them. The critical 

genes and mechanisms linked to obesity and T2D are still far from being fully understood. Therefore, 

identifying key molecular mechanisms between obesity and T2D may not only advance our 

understanding about the pathophysiology of these common health conditions, but also contribute to 

developing new treatment strategies. 

In recent times, next generation sequencing methods like RNAseq have provided an advantage to 

perform the unbiased molecular interrogation of several genes in studying complex diseases [13]. 

NCBI hosted Gene Expression Omnibus (GEO) database consists of high-quality transcriptomics data 

generated both from microarrays and RNAseq. The enormous amount of publicly resource gene 

expression data provides a valuable opportunity to identify potential key genes contributing to obesity 

and T2DM. Furthermore, in recent years, gene network-based bioinformatics assessment of 

differentially expressed gene signatures is gaining attention as a valuable tool in studying molecular 

drug targets and to uncover many druggable genes [14]. Exploring the novel therapeutic targets or 

molecular pathways for the existing drugs could also help in patient subgrouping and developing 
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personalized treatment [15].  

Owing to the sparse data available, the objective of present study was to evaluate the shared genes, 

gene networks, molecular pathways, and drug targets between obese and T2D subjects. In this pursuit, 

this study has analyzed the RNAseq transcriptomic data of adipocytes of obese, lean, and diabetic 

subjects with the help of differential gene expression, integrated protein interaction networking, and 

molecular drug target identification strategies. The potential genetic markers identified among obese 

individuals at risk of developing T2D may have the potential to develop targeted therapies in the future.   

2. Materials and methods 

The overview of methods used in the present study is represented in the Figure 1. 

2.1. Clinical Samples and RNASeq Expression 

The gene expression datasets, comprised of adipocyte mRNA expression profiles from lean (6 

samples), obese (6 samples) and T2D (6 samples) subjects, were obtained from the gene expression 

omnibus (GEO) under the accession number GSE133099 [16]. The information about samples is given 

in the Supplementary File (Supplementary File S1). The details of the original experiment, including 

RNA isolation, library preparation, sequencing, and data analysis, are yet to be published. The 

RNASeq reactions of the clinical samples were performed using an Illumina HiSeq 2500 machine. 

2.2. RNASeq Data analysis 

The GEO expression data had been quality checked using FastQC [17] followed by 

Trimmomatic [18] methods for removing adaptor contents and low quality reads with a Phred Score 

of <20. High quality reads were aligned to the hg38 reference genome using STAR [19], and mapped 

reads were counted by Feature Counts [20]. The genes that had zero counts were removed from the 

analysis. Later on, the differential expression analysis was performed using DESeq2 [21] based on the 

Wald test scores followed by the Benjamini-Hochberg procedure for removing false positives in the 

data. The genes that had an absolute fold change (FC) of ≥ 1.5 and an adjusted p value of ≤ 0.05 were 

screened as differentially expressed genes (DEGs). The heatmap and volcano plots representing DEGs 

were created using r packages like pheatmap [22] and Enhanced Volcano [23], respectively. 

2.3. Construction of the Protein Interaction Network 

The protein interaction data was retrieved from the Human Integrated Protein-Protein Interaction 

Reference (HIPPIE) database [24, 25]. HIPPIE collects the experimentally confirmed interactions from 

various sources, which include HPRD, BioGrid, IntAct, DIP, MINT, MIPS, and BIND. All the protein 

interactions of DEGs obtained from the RNAseq analysis were extracted with a default association 

score of ≥ 0.4 to create the protein interaction network (PIN). Visualization and calculation of 

topological parameters of PIN were performed using Cytoscape [26] (version 3.8.2). To generate the 

topological parameters, the PIN was analyzed with the help of Cytoscape plugins like 

NetworkAnalyzer and CytoNCA [27]. 
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Figure 1. Flowchart showing the systems biology approach adopted in this study for 

identifying the potential candidate genes shared between diabetes and obesity.   

2.4. Identification of key genes in the network 

The local topological parameter degree [28] and global topological parameters like 

betweenness [29], closeness [30] and eigenvector [31] centralities were used to identify the most 

influential nodes in the network.  

2.4.1. Selection of hubs 

The genes with high degree of connectivity were considered as hubs. The following formula [32], 

was used for identifying hub genes, where SD denotes their standard deviation. 

𝐻𝑢𝑏𝑠 = 𝑀𝑒𝑎𝑛(𝐷𝑒𝑔𝑟𝑒𝑒) + [2 × 𝑆𝐷(𝐷𝑒𝑔𝑟𝑒𝑒)]  (Formula 1)   

2.4.2. Selection of bottlenecks 

Using the node betweenness, closeness and eigenvector distribution, genes positioned in the top 

90th quantile were scaled as bottlenecks. The formula for calculating each parameter is as follows: 

2.4.3. Betweenness centrality 
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  𝐵𝐶 (𝑛) = ∑ [
𝜎𝑠𝑡(𝑛)

𝜎𝑠𝑡
]𝑠≠𝑛≠𝑡      (Formula 2) 

where ‘𝑠’ and ‘𝑡’ are nodes in the network other than ‘𝑛’. 𝜎𝑠𝑡 represents the number of shortest paths 

from ‘𝑠’ to ‘𝑡’, and 𝜎𝑠𝑡(𝑛) is the number of shortest paths from 𝑠 to 𝑡 that ‘𝑛’ lies on [33]. 

2.4.4. Closeness centrality 

The measure of how quickly information flows from a given node to other reachable nodes in the 

network is given by closeness centrality (CC). The CC of a node n is the reciprocal of the average 

shortest path length and is computed as follows: 

CC(n)=1/avg(L(n,m)),                      (Formula 3) 

where L(n,m) is the length of the shortest path between two nodes n and m. 

2.4.5. Eigenvector centrality 

    𝐸(n)=𝛼𝑚𝑎𝑥(n),                       (Formula 4) 

𝛼𝑚𝑎𝑥 is the eigenvector corresponding to the largest eigenvalue of the adjacency matrix 𝐴. 

2.5. Downstream analysis of key gene signatures 

2.5.1. Functional enrichment analysis 

To find out gene ontologies, pathways and diseases associated with the key genes, we filtered 

them based on topological parameters using the ToppGene [34] suite with a threshold of q value of ≤ 

0.05. ToppGene uses gene expression, protein domains, protein interactions, ontologies, pathways, 

phenotypes, and text mining to identify functional enrichment of the input gene list. 

2.5.2. Tissue Specific Analysis 

Tissue specific functional gene network modules were constructed using HumanBase [35]. This 

tool presents genome-wide functional interactions of gene networks using Bayesian methodology that 

is driven by the integrated data of diverse experiments spanning tissue and disease states. We have 

queried the key gene list derived from topological parameters (hubs, bottlenecks, closeness, and 

Eigenvalue) in HumanBase to find out their changing functional roles across adipose and pancreatic 

tissues, at a default q-value threshold of ≤ 0.05. 

2.5.3. Druggability analysis of hub and bottleneck genes 

The potential of the drug targets among the hub and bottleneck genes has been analyzed in Open 

Target Platform [36]. A ≥ 0.1 cutoff association score was used to detect the expression status of 

druggable molecular targets in the adipose tissues of individuals with obese and T2D conditions. 

3. Results 

3.1. Analysis of differentially expressed genes 
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The analysis of raw count data yielded the expression profiles of 34328 molecular biotypes, 

including protein coding mRNAs, miRNA, lincRNA, etc., from, which only protein coding (17222) 

genes were retained for further analysis. Differential expression of genes was performed using DEseq2 

to identify the DEGs from ‘obesity vs lean’ and ‘T2D Vs lean’ sample comparisons. DESeq2 employs 

a negative binomial distribution to pick statistically significant differentially enriched genes from an 

over dispersed data, as is often the case with biological count data. The volcano plot distinguishing 

significant DEGs in each comparison are represented in Figure 2 A and B. The T2D and lean group 

analysis identified 1381 DEGs (FC ≥ |1.5|, adj p-value of ≤ 0.05), comprising of 680 upregulated and 

701 downregulated genes (Figure 2C). On the other hand, for the obese vs lean comparison, 1281 

DEGs (FC > |1.5|, adj p-value of ≤ 0.05) including 759 up and 522 down regulated genes were 

identified (Figure 2C). The list of the top 10 differentially regulated genes in each category is given in 

Tables 1 and 2. The comparison of DEGs across T2D and obesity conditions, has revealed the shared 

expression pattern of 730 (430 up- and 300 down- regulated) genes (Figure 2D). Interestingly, these 

730 shared genes presented similar expression patterns, i.e. either up or down regulated in both 

conditions, underlining the potential molecular connections between T2D and obesity.  

 

Figure 2. Differential expression analysis of protein coding genes. A) Volcano plot of the 

genes that differ in expression between obesity and lean samples. B) Volcano plot of genes 

that differ in expression between T2D and lean samples. C) Number of DEGs and their up 

and down regulated status in obese and T2D samples. D) Shared DEGs between Obesity 

and T2D samples 
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Table 1. Top 10 differentially expressed genes in T2D.  Top 5 genes from each up- and 

down- regulated groups with their fold change and p-values. 

 

Gene Name Fold Change Regulation p-value 

RSPO1 R-spondin 1 7.61 Up 6.23E-04 

CSF2 Colony stimulating factor 2 5.58 Up 1.29E-03 

ANKRD1 Ankyrin repeat domain 1 5.27 Up 1.69E-08 

LRRTM4 

leucine rich repeat transmembrane 

neuronal 4 5.09 Up 6.96E-04 

NALCN 

Sodium leak channel, non-

selective 4.94 Up 1.54E-04 

MYBPH Myosin binding protein H -5.27 Down 1.23E-06 

SECTM1 Secreted and transmembrane 1 -3.86 Down 1.38E-03 

PRSS35 Serine protease 35 -3.74 Down 9.46E-05 

CHI3L1 Chitinase 3 like 1 -3.64 Down 2.44E-05 

RORB RAR related orphan receptor B -3.54 Down 5.70E-07 

Table 2. Top 10 differentially expressed genes in obesity. Top 5 genes from each up- and 

down- regulated groups with their fold change and p-values. 

Gene Name Fold Change Regulation p-value 

CSF2 Colony stimulating factor 2 7.33 Up 3.50E-03 

COL4A3 Collagen type IV alpha 3 chain 6.61 Up 3.38E-02 

COL4A4 Collagen type IV alpha 4 chain 5.80 Up 1.09E-03 

NALCN 

Sodium leak channel, non-

selective 5.21 Up 7.22E-03 

ANKRD1 Ankyrin repeat domain 1 4.70 Up 3.00E-04 

PRSS35 Serine protease 35 -3.75 Down 9.08E-03 

VNN3 Vanin 3 -3.75 Down 2.28E-02 

MYBPH Myosin binding protein H -3.68 Down 8.88E-03 

CHI3L1 Chitinase 3 like 1 -3.64 Down 3.73E-03 

P3H2 Prolyl 3-hydroxylase 2 -3.24 Down 8.56E-04 

3.2. The protein interaction network 

The experimentally validated protein interaction network downloaded from the HIPPIE database 

was used to make the protein interaction network of T2D and obesity. All the 1932 non-redundant 

DEGs obtained from both T2D, and obesity conditions were queried in the HIPPIE database to 

generate their molecular interactome. From the protein network outputs generated by the HIPPIE 

database (Figure 3A), we have chosen ≥ 0.4 as the cut-off score to generate protein interaction 

networks (PIN) (Figure 3B). The constructed PIN entailed 1203 nodes and 3211 edges, where nodes 

indicate proteins and edges indicate the interaction among the proteins. The mean degree of the 

network was 5.34, and the standard deviation was 7.88. 
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Figure 3. PPI Network parameters and their correlation. A) Distribution of association 

score among protein-protein interactions. B) Protein Interaction Network with 1203 nodes 

and 3211 edges. C) Correlation between centrality parameters betweenness and closeness. 

D) Correlation between centrality parameters Eigen vector and closeness. 

Table 3. The top 10 hubs that are common between obesity and T2D.  Nodes were 

selected based on highest network parameters such as degree, betweenness, closeness, and 

Eigen vector.  

Gene Name Degree BC CC EV 

FN1 Fibronectin 1 76 0.10 0.35 0.22 

FYN FYN proto-oncogene, Src family tyrosine kinase 47 0.06 0.33 0.06 

ERBB2 erb-b2 receptor tyrosine kinase 2 45 0.05 0.32 0.06 

HIST1H3H H3 clustered histone 10 45 0.02 0.34 0.19 

CHD3 Chromodomain helicase DNA binding protein 3 41 0.03 0.34 0.17 

HSPA1A Heat shock protein family A 34 0.02 0.34 0.15 

ARRB1 Arrestin beta 1 33 0.03 0.31 0.08 

HIST1H2BE H2B clustered histone 5 32 0.02 0.32 0.10 

HIST1H1B H1.5 linker histone, cluster member 28 0.03 0.31 0.09 

FUS FUS RNA binding protein 27 0.02 0.31 0.08 

Note: #BC = Betweenness Centrality, CC = Closeness Centrality, EV = Eigen Vector 

3.3.  Accessing Network Centrality parameters of the protein interaction network 

The network visualization and the calculation of topological parameters were performed in 

Cytoscape. Local parameters like degree of network and global parameters like betweenness, 

closeness, and eigenvector centrality were considered to filter the DEGs from the PIN. The nodes with 
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a threshold degree of ≥ 21 were considered hubs based on the mean and standard deviation values of 

the degree of the network. For global parameters, nodes that were in the 90th percentile were screened. 

Finally, 36 hubs, 121 high betweenness, 121 high closeness, and 120 high eigenvector nodes from the 

network were obtained. There were common nodes among the nodes generated from global parameters 

due to the higher correlation between the global parameters (Table 3). The plot representing the higher 

correlation among global parameters is represented in figures 3C and 3D. A total of 190 genes 

remained after filtering them based on topological parameters and removing the duplicates. Among 

190 genes, 70 genes (36.84%) were shared between T2D and obesity. The common genes in each 

topological parameter are represented in figures 4A and 4B. The top 10 hubs in shared genes based on 

degree are represented in Table 3. As shown in the heatmap (Figure 5), the pattern of expression of 

filtered genes was similar in both T2D and obesity but had a clear distinction from the lean samples. 

 

Figure 4. The bar and dot graph of up- and down- DEGs A) The relationship between 

obesity and T2D-related genes that are significantly differentially expressed. B) The 

number of influential genes and their shared association with obesity and T2D as measured 

by topological parameters such as degree, betweenness, closeness, and eigen vector. 

Response to lipid, regulation of cell death, regulation of cell differentiation, regulation of insulin, 

regulation of phosphorylation, fatty acid transport, response to hormone, glutamate receptor binding, 

response to glucose (p < 0.05) were the enriched terms for T2D and obesity genes. Functional 

enrichment indicates major deregulation in insulin and glucose-related metabolism. Obesity has a 

significant impact on insulin-sensitive tissues, such as adipose tissue and the pancreas, at both 

biomolecular and functional levels. 

The tissue based functional modules in the pancreas and adipose tissue have identified 6 and 8 

modules, respectively (Figure 7). The modules detected in adipose tissue with a significant p-value of 

<0.05 were enriched in different biological processes such as glyceraldehyde-3-phosphate metabolic 

processes, cholesterol biosynthetic processes, steroid metabolic processes, and lipid biosynthetic 

processes. Similarly, the modules of pancreatic tissue were enriched in triglyceride metabolic 

processes, amyloid precursor protein metabolic processes, and regulation of lipid metabolic and 

biosynthetic processes. Tissue level enrichment has shown major deregulation of glucose, lipid, and 

cholesterol related metabolic pathways, which equally contribute to obesity and T2D [37]. 
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Figure 5. Heatmap of differentially expressed genes shared between T2D and Obesity 

representing similar expression pattern among obesity and T2D when compared to 

lean samples. 

 

 

Figure 6. Overview of functional enrichment. A) Topological parameters were used to 

identify total ontologies among the filtered genes. B) Total ontologies identified among 

obesity and T2D shared genes. C) A summary of gene ontologies enriched in biological 

processes, molecular functions, and cellular components. 
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Figure 7. The number of modules generated based on the enrichment analysis in each 

tissue, where A) adipose, and B) pancreatic tissue. 

3.4. Ranking the key genes based on topological analysis  

The genes that were filtered based on protein interaction network and topological parameters like 

degree, betweenness, closeness, and eigen vector have shown their relatedness to metabolic disorders 

like T2D and obesity. We next categorized the genes into four categories: Q1, Q2, Q3, and Q4. If a 

gene is filtered by all four topological parameters, it is categorized as Q1. Similarly, Q2, Q3, and Q4 

were assigned according to the number of topological parameters used to filter it. Of all the 4 

categories, we focused on Q1 (TGM2, HIST1H1B, HIST1H3H, MEOX2, HIST1H2BE, ARRB1, 

HSPA1A, FUS, CHD3, FYN, ERBB2 and FN1) and Q2 (HBA1, EEF1A2, FASN, ACACA, HSPA6, 

IRS1, SVIL, PFN2, ITGB1, SIPA1L1, NCOA3, PLAUR, HP) gene sets for further analysis as they had 

higher confidence since they fall under multiple topological parameters.  

3.5.  Mapping the traits of the signature genes 

The Q1 (12 genes) and Q2 (13 genes) class genes were queried in Open Targets platform to map 

the reported traits. In both T2D and obesity conditions, we discovered that 18/25 (72%) genes were 

functionally correlated. The snapshot of the association of these 18 genes and GWAS traits related to 

T2D and diabetes is shown in Figure 8. Genes like ACACA, FASN, FUS, HBA1, HSPA1A, NCOA3, 

TGM2, EEF1A2, HIST1H1B and HIST1, H2BE were known for their association with body mass index 

(p ≤ 0.05). The additional associations observed are as follows; IRS1 and ERBB2 in triglyceride levels; 

SIPA1L1 in bone mineral density (p≤0.05); ARRB1, ERBB2, IRS1, and NCOA3 in HDL cholesterol 

levels (p≤0.05); CHD3, FN1 and HIST1, H2BE in LDL cholesterol (p≤0.05). Moreover, the association 

of ACACA, EEF1A2, HBA1, HSPA1A, IRS1, MEOX2 and PFN2 genes with Type 2 Diabetes (p≤ 0.05), 

FUS with obesity, and CHD3, EEF1A2, HIST1, H2BE, HSPA1A and PFN2 with hypertension (p≤ 

0.05) was also reported. The genes screened  based on the topological parameters have shown close 

association of the traits related to T2D and obesity. 
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Figure 8. The GWAS trait network of Q1, and Q2, based on the topological parameters. 

Nodes from the Q1 and Q2 categoriesare highlighted in red color. 

3.6. Druggability analysis 

Druggability analysis in the Open Target database of the hubs and bottleneck genes (Q1 and Q2 

categories) selected from the topological analysis found 15/25 (60%) genes with a genotype-phenotype 

association score of >0.1. Six of these 15 genes (ERBB2, FN1, FYN, HSPA1A, HBA1, ITGB1) were 

targeted by small chemicals, antibodies, and/or enzyme molecules (Table 4). The ERBB2 gene had the 

highest number of known drugs, followed by FYN (6) and FN1 (5) (Supplementary File S2). 

The ERBB2 gene has 36 known drugs, of which 11 receptor protein-tyrosine kinase inhibitor 

molecules (Afatinib, Afatinib Dimaleate, Dacomitinib, Lapatinib, Tucatinib, Lapatinib Ditosylate, 

Vandetanib, Neratinib Maleate, Dacomitinib, Neratinib) are currently in phase 4 clinical trials. For the 

FYN gene, Dasatinib, a small molecule inhibitor, is currently under phase IV trials for different 

phenotypes. For the FN1 gene, Ocriplasmin, a fibronectin proteolytic enzyme, is currently undergoing 

phase IV clinical trials. For the ITGB1 gene, there are ongoing clinical trials with Volociximab 

antibody (an Integrin alpha-5/beta-1 antagonist) in phase 1 and with Firategrast small molecule 

inhibitor (Integrin alpha-4/beta-1 antagonist) in phase 2.  

The Open Target analysis identified six hub genes that are druggable. These genes, in total, have 

52 known drugs in the market. Currently, some more compounds targeting them are undergoing 

clinical trials for an assortment of disease indications. After studying their efficacy in vitro and in vivo 

experiments, 52 known drugs can be repurposed to manage T2D and obesity. Drug repurposing is a 

rapid process to develop revolutionary treatments because the new indication is based on already 

accessible safety, pharmacokinetic, and manufacturing data.   



2322 

Mathematical Biosciences and Engineering  Volume x, Issue x, 1-X Page. 

Table 4. The Open Target drug prediction of DEGs. Open target disease association, 

tractability, and known drugs of the hub and bottleneck genes. 

 

Gene G-P:A1 Known 

Drugs2 

Tractability3 

Small 

Molecule 

clinical 

Precedence 

Antibody  

clinical 

Precedence 

Other 

modalities  

Small 

Molecules 

Predicted 

Tractable  

Antibodies 

Predicted 

Tractable 

ERBB2 29 36 Phase 4 Phase 4 - ++ ++ 

FN1 34 5 - Phase 2/3 Phase 4 + ++ 

FUS 10 - - - - - - 

FYN 18 6 Phase 4 - - + + 

HSPA1A 3 1 - - Phase 2/3 - - 

TGM2 19 - - - - ++ ++ 

ACACA 8 - - - - ++ - 

FASN 4 - - - - ++ ++ 

HBA1 16 2 - - - - - 

HP 41 - - - - - + 

IRS1 85 - - - - + ++ 

ITGB1 7 2 Phase 1/2 Phase 1/2 - + ++ 

NCOA3 4 - - - - + - 

PFN2 5 - - - - ++ - 

PLAUR 23 - - - - + ++ 

1Genotype-Phenotype:Association (GP-A) Open Target Genetic Association Score of <0.1;  

2 Clinical precedence for drugs with investigational or approved indications targeting genes according to their 

mechanism of action (Source: ChEMB). 

3 Open Target druggability assessment ++ = High Confidence; + = medium confidence; - = low or Not available 

4. Discussion 

Obesity and type 2 diabetes mellitus are the most common progressive metabolic disorders with 

complex molecular pathology involving defective lipid metabolism, insulin resistance, and beta-cell 

functioning. Although previous investigations have reported various potential molecular markers 

linked with the progression of obesity and type 2 diabetes mellitus, the key common genes, the 

molecular mechanisms underlying its pathogenicity remain elusive [38]. In this study, by using RNA-

sequencing data, we identified 1932 unique genes expressed across two comparisons (a) diabetes vs 

lean healthy control (680 up-and 701 down-regulated genes) and (b) obese vs lean healthy control (759 

up and 522 down regulated genes) groups. In recent years, some studies have performed gene 

expression analysis of obesity [7,8] and diabetes [39]. But variability in study objectives, datasets, 

experimental platforms, statistical measures, and a broad range of bioinformatics methods has added 

more complexity to data analysis and interpretation [7, 40–42]. 

 Network biology provides an excellent platform for investigating the dynamic interactions that 

exist between different genes [43]. Network biology implements graph theory to reveal molecular 

interactions and enrichment patterns that are otherwise not solvable by univariate analysis. In this study, 
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the PIN of 1932 genes entailed 1203 nodes and 3211 edges, where nodes indicate proteins and edges 

indicate the interaction among the proteins. It is important to study the topological changes in 

biological networks as they are context-specific and dynamic. A divergence from normal regulatory 

network topology could indicate the pathogenic mechanism, and the genes with the highest network 

topological changes could be used as biomarkers for disease or as targets for drug development or 

therapeutic intervention [44]. A differential network analysis approach was effectively used to identify 

15 potential key players or disease markers in hepatocellular carcinomas [45]. By applying different 

local and global centrality parameters (degree, betweenness, closeness, and eigen vector), we identified 

10 hub genes (FN1, FYN, ERBB2, HIST1H3H, CHD3, HSPA1A, ARRB1, HIST1H2BE, HIST1H1B, 

and FUS) shared between obesity and T2D. Functional enrichment of hub genes represented their 

involvement in insulin, fatty acid and glucose metabolism, supporting the findings from other 

studies [46]. A recent computational study has identified the differential expression of CEBPD, TP73, 

ESR2, TAB1, MAP3K5, FN1, UBD, RUNX1, PIK3R2 and TNF genes in tissue samples of obese 

samples by employing different methods like DEGs, GO and reactome pathway enrichment analysis 

and transcription factor mapping [47].  

Human diseases are caused mainly by the disordered balance of tissue-specific processes, and the 

actual function of genes is heavily dependent on their tissue context [35]. Recently, tissue-specific 

functionally interacting network modules have been developed to discover phenotype-relevant 

network modules enriched in gene expression networks [48]. In this study, we identified the enrichment 

of network modules connected to different biological processes such as the glyceraldehyde-3-

phosphate metabolic processes, cholesterol biosynthetic processes, steroid metabolic processes, and 

lipid biosynthetic processes in adipose tissue. Whereas the modules reported in pancreatic tissue were 

enriched in triglyceride metabolic processes, amyloid precursor protein metabolic processes, and 

regulation of lipid metabolic and biosynthetic processes. Our tissue based functional enrichment of the 

biological network underscores the disturbances of lipid and energy metabolism in both diabetes and 

obesity. These findings are supported by other studies [49]. 

Computational network biology measures like hubs are proven to aid in discovering novel drug 

targets as they can link complex molecular interactions [50]. The Open Target Platform identified 6 

genes (ERBB2, FN1, FYN, HSPA1A, HBA1, ITGB1) as tractable targets by small chemical, antibody, 

and/or enzyme molecules. The ERBB2 gene encodes the HER2 receptor, which is related to diabetes 

and insulin resistance through fatty acid synthase (FASN) activity [51]. ERRB2 has also been suggested 

to play a role in preadipocyte differentiation and obesity [52]. The second tractable target, 

fibronectin, encoded by the FN1 gene, is an  extracellular matrix protein that binds to integrins and 

plays a major role in cell adhesion, growth, migration, and differentiation. Previous research has 

revealed that fibronectin in adipose tissue regulates adipocyte-specific gene expression and may play 

a pathophysiological role in obesity-related comorbidities in humans [53]. Furthermore, endothelial 

dysfunction causes insulin resistance, which leads to FN1 gene overexpression and, eventually, an 

increase in fibronectin levels in the blood [54]. Fyn is a tyrosine kinase that promotes the interaction 

of PIKE-A and STAT5a, thereby regulating insulin signaling and adipogenesis [55]. Fyn knockout 

(Fyn/--) mice have a lean phenotype, which links this kinase to obesity development [56]. Fyn 

inhibition has been shown to prevent the maturation of 3T3-L1 preadipocytes into fully mature 

adipocytes [57] and to increase in vivo fat loss by improving insulin sensitivity and modulating AMPK 

activity via LKB1 function [58]. HSPA1A is a stress inducible protein with functions ranging from cell 

signaling, immune response, and chronic conditions. Extracellular HSPA1A levels (eHSP70) were 

https://en.wikipedia.org/wiki/Extracellular_matrix
https://en.wikipedia.org/wiki/Integrins
https://en.wikipedia.org/wiki/Cell_adhesion
https://en.wikipedia.org/wiki/Cell_growth
https://en.wikipedia.org/wiki/Cell_migration
https://en.wikipedia.org/wiki/Cellular_differentiation


2324 

Mathematical Biosciences and Engineering  Volume x, Issue x, 1-X Page. 

found to be higher in obese patients with T2DM when compared to non-obese T2DM patients [59]. In 

type 2 diabetes, pharmacological (e.g., the hydroxylamine derivative BGP-15, which is currently 

undergoing clinical trials) and physiological (hyperthermic) treatments have begun to be viewed as 

promising therapeutic options to target the HSPA1A gene [60]. Therefore, the 6 drug targets identified 

in this study, are in line with previous reports indicating their potential drug tractability for obesity 

and/or T2D.  

 Our approach, however, has certain limitations. The number of samples that we analyzed here is 

low, and the samples were from the female population (lean, obese, and T2D with obesity). But, given 

that we used the secondary data downloaded from GEO, and our lack of control over the study design, 

this is an unrealistic limitation. We agree that analysis of more samples will help in reducing the 

background noise and reducing the standard error of the effect fraction, but it may not significantly 

change the conclusion of this study. Many sex hormone responsive pathways and gene networks are 

known to undergo gene expression changes between sexes, especially in adipocyte function, 

inflammation, which leads to differential adipose tissue remodeling [61]. We recognize the female only 

study may be biased significantly towards these gene network differences. To overcome these 

limitations to some extent, we have used very stringent thresholds for the downstream analysis in the 

study to remove noise in the data. Furthermore, all the statistical analysis of the data hosted in public 

databases was carried out on a global scale, irrespective of any ethnic population.  

5. Conclusions 

This paper lays forth a comprehensive bioinformatics method for identifying the most important 

key signatures shared between obesity and T2D from the experimentally validated Protein Interaction 

Network. A rigorous parametric downstream analysis based on biological insights reveals 10 candidate 

hub genes (FN1, FYN, ERBB2, HIST1H3H, CHD3, HSPA1A, ARRB1, HIST1H2BE, HIST1H1B, FUS) 

shared between obesity and T2D that could be regarded as new genetic biomarkers for T2D and obesity. 

All these hub genes are involved in insulin regulation, glucose response, triglyceride transport, and 

fatty acid transport. Additionally, we identified six genes (ERBB2, FN1, FYN, HSPA1A, HBA1 and 

ITGB1) as tractable targets by small chemicals, antibodies, and/or enzyme molecules. The exact 

functional role of these potential genes can be biologically validated by implementing suitable in vitro 

and in vivo experimental approaches. Overall, by implementing a broad range of computational 

biology methods, our study highlights the potential of correlating gene expression to topological 

parameters, functional relationships, druggability, and the identification of candidate genes involved 

in the metabolic disorders with common etiological basis.   
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