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Abstract: The neuropsychiatric systemic lupus erythematosus (NPSLE), a severe disease that can
damage the heart, liver, kidney, and other vital organs, often involves the central nervous system and
even leads to death. Magnetic resonance spectroscopy (MRS) is a brain functional imaging technology
that can detect the concentration of metabolites in organs and tissues non-invasively. However, the per-
formance of early diagnosis of NPSLE through conventional MRS analysis is still unsatisfactory. In
this paper, we propose a novel method based on genetic algorithm (GA) and multi-agent reinforcement
learning (MARL) to improve the performance of the NPSLE diagnosis model. Firstly, the proton mag-
netic resonance spectroscopy (1H-MRS) data from 23 NPSLE patients and 16 age-matched healthy
controls (HC) were standardized before training. Secondly, we adopt MARL by assigning an agent
to each feature to select the optimal feature subset. Thirdly, the parameter of SVM is optimized by
GA. Our experiment shows that the SVM classifier optimized by feature selection and parameter opti-
mization achieves 94.9% accuracy, 91.3% sensitivity, 100% specificity and 0.87 cross-validation score,
which is the best score compared with other state-of-the-art machine learning algorithms. Furthermore,
our method is even better than other dimension reduction ones, such as SVM based on principal com-
ponent analysis (PCA) and variational autoencoder (VAE). By analyzing the metabolites obtained by
MRS, we believe that this method can provide a reliable classification result for doctors and can be
effectively used for the early diagnosis of this disease.
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1. Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disease that manifests remarkable clinical
heterogeneity. This disease affects multiple organs with variable severity [1–3], including joints, lungs,
heart, skin, and blood cells [4–6]. Furthermore, it may cause serious organ complications, such as lupus
nephritis (LN) [7, 8]. Neuropsychiatric systemic lupus erythematosus (NPSLE), as the most unknown
manifestation of SLE, has severe effects on the central nervous system (CNS), peripheral nervous
system (PNS), and autonomous nervous system (ANS) [9,10]. The nomenclature of NPSLE published
by the American College of Rheumatology (ACR) includes 12 CNS and 7 PNS manifestations, which
is widely used in clinical practice and facilitates research [11].

Although recent studies have made great progress in understanding the pathogenesis of NPSLE [12,
13], the early diagnosis of NPSLE is still challenging due to the lack of gold standards. To date, re-
searchers usually diagnosis NPSLE through clinical manifestations and a set of tests to make assess-
ments, including brain magnetic resonance imaging (MRI) [2, 14, 15]. Due to MRI being widely used,
it is the choice of clinical evaluation of the work-up of NPSLE, which can reveal lesions in the brain
tissue of the patients [16]. However, almost half of the clinically active NPSLE patients with the ab-
sence of MRI abnormalities because of the lack of remarkable imaging manifestations, which shows
the limitation of MRI in the NPSLE diagnosis [17].

Magnetic resonance spectroscopy (MRS) is an alternative method for detecting the concentration
of metabolites non-invasively in NPSLE. Although previous work based on MRS has devoted massive
efforts, there is still a long way to improve the accuracy of early diagnosis of NPSLE. Firstly, due to the
data collected by MRS usually being sample-limited, it is challenging to build a robust model in this
condition. Besides, the distribution of samples on these metabolic characteristics is high dimensional
and nonlinear, affecting the model’s accuracy significantly. Recently, deep learning have been widely
used in many domains, such as traffic flow forecasting [18,19], medical image processing [20,21], and
intelligent systems [22, 23]. Note that the deep learning technology requires high quality and a large
amount of high-quality data [24]. In this paper, we employ multi-voxel proton MRS (MVS) instead of
the standard single-voxel proton MRS (SVS) for more accurate diagnosis, considered 13 metabolites
in 9 brain regions concurrently, and combined a total of 117 metabolic features in total. It is easy to
fall into the local minimum value, so we believe this method does not apply to our dataset.

Support vector machine (SVM) [25] is naturally good at learning nonlinear dependencies with lim-
ited samples. Therefore, SVM is an ideal classifier to avoid the problem above. Unlike deep learning,
SVM is more suitable for small and mid-sized datasets because its hyperparameters are determined
by supported vectors. In theory, SVM can achieve the optimum solution in the global range. This
algorithm has been adopted in many fields, such as computer vision and machine learning. Zhu et
al. [26] combined SVM and YOLOv3 to grade food with an accuracy of 98.5% achieved by SVM
while the accuracy of YOLOv3 is 85.7%, and the overall accuracy is 96.4%. Cai et al. [27] introduced
a SVM-based ensemble learning framework for basketball outcomes prediction. Tan et al. [28] pro-
posed a hybrid GA-SVR to effectively forecast the short-term traffic flow in a large scale. However,
the application of SVM has shown that the appropriate selection of the kernel parameter γ and the
penalty factor C is the key to improving the learning ability and generalization ability of the SVM. In
this work, we employ the genetic algorithm (GA) to optimize the hyperparameters of SVM to learn the
nonlinear dependencies in features. Although there are many optimization methods on SVM, such as
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Kouziokas et al. [29] introduced an SVM Kernel, which combined the neural network weight vector
of particle swarm optimization (PSO) [30] with the SVM kernel of Bayesian Optimization for time
series problems. Faris et al. [31] proposed an approach based on a nature-inspired metaheuristic called
multi-verse optimizer (MVO) for selecting optimal features and optimizing the hyperparameters of
SVM simultaneously. These works have been combined with parameter optimization, but few letters
are available to analyze the NPSLE diagnosis.

In recent years, reinforcement learning (RL) has been widely used in the healthcare domain. Pe-
tersen et al. [32] used deep reinforcement learning (DRL) to find an adaptive and personalized treat-
ment of multi-cytokine mediation sepsis. Yu et al. [33] studied the integration of causal factors into
the RL process and proposed a causal policy gradient algorithm to obtain better dynamic treatment
regimes (DTRs) in HIV management. Maicas et al. [34] proposed a method based on DRL to detect
the breast lesions automatically from dynamic contrast-enhanced magnetic resonance volumes with
high accuracy and less detection time. Inspired by the powerful capacity of RL, we explore the possi-
bility of empowering RL to the early diagnosis of NPSLE to further improve the model’s classification
performance. In this paper, the multi-agent reinforcement learning (MARL) is used to find the optimal
feature subsets from the subset space. The central idea is to “assign” an agent to each feature, which
controls the individual features and decides whether the feature is included in the final feature subset.
Furthermore, feature selection is another effective technique for improving SVM classification. Some
of the features are noisy or irrelevant, which can increase the computation quantity or even reduce
the performance of the classifier [35].Therefore, effective feature selection is necessary to enhance
generalization ability, avoid overfitting, and provide a better explanation [36].

Existing reports mainly focus on optimizing the hyperparameters of SVM, selecting feature subset,
or applying it to other applications, for example, hospitalization expense modeling [37], land-cover
classification [38] and Polystyrene binding peptides (PSBPs) identification [39]. In the sample-limited
and high-dimensional situation, few studies related to the early diagnosis of NPSLE in the machine
learning field. The objective of this letter is to optimize the feature subset and SVM hyperparameters.
On the other hand, we explore whether the proposed method can improve the classification perfor-
mance of NPSLE early diagnosis.

The main contribution of this paper is summarized as follows:

• We employ the multi-agent reinforcement learning to find the optimal feature subset.
• We propose a genetic algorithm optimized support vector machine classification model for early

diagnosis of NPSLE.
• We conduct extensive experiments to demonstrate the feasibility of our model. The experimental

results show the superior performance of the proposed model to state-of-the-art models.

The rest organization of this paper is as follows. Section 2 describes the dataset used and the
background material related to this work. Next, we introduce and present the proposed model and its
details in Section 3. The outcomes of the experiments are elucidated in Section 4. The discussion and
conclusion are presented in Section 5.

2. Materials and methods

In this section, we first explain the details of the dataset. Then, we briefly introduce the meth-
ods employed in this paper, including support vector machines (SVM), genetic algorithm (GA) and
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reinforcement learning (RL).

2.1. Materials

We analyzed proton magnetic resonance spectroscopy (1H-MRS) data from twenty-three NPSLE
patients and nineteen age-matched volunteers as healthy controls (HCs) who were admitted to the
2nd Affiliated Hospital of Shantou University Medical College and Shantou Central Hospital. All
volunteers had no history of hypertension or diabetes and no head trauma, neurological, psychiatric,
metabolic diseases, or other systemic diseases that may affect the nervous system. All patients met
the classification standard of American College of Rheumatology (ACR) criteria [3] SLE in 1997 and
the 1999 ACR definitions for NPSLE. Because of the ethical implications, routine drug therapy for
NPSLE patients was not discontinued in the case group during the study period. The mean age of
NPSLE patients is 31.71 while the one of HC is 29.5; there is no statistical difference in age between
the two groups (p = 0.765). This study is reviewed and approved by the Ethics Committee of Shantou
University Medical College. All subjects voluntarily participated in the study and signed the informed
consent.

In order to evaluate the changes of metabolites in different brain regions of patients with NPSLE,
a 3.0T MRI with MRS was performed in these subjects. Nine areas of metabolic data were collected,
including right posterior cingulate gyrus (RPCG), left posterior cingulate gyrus (LPCG), right dorsal
thalamus (RDT), left dorsal thalamus (LDT), right lentiform nucleus (RLN), left lentiform nucleus
(LLN), right posterior paratrigonal white matter (RPWM), and left posterior paratrigonal white matter
(LPWM), and right insula (RI) in all subjects. And obtained thirteen metabolic features from each brain
region, include Creatine (Cr), Phosphocreatine (PCr), Cr + PCr, NAA, N-Acetylaspartylglutamate
(NAAG), NAA + NAAG, NAA + NAAG / Cr + PCr ratio, myo-Inositol (mI), mI / Cr + PCr, Glyc-
erophosphocholine (GPC / Cho) + Phosphocholine (Pch), Cho + Pch / Cr + PCr, Glutamate (Glu) +
Glutamine (Gln), and Glu + Gln / Cr + PCr. Nine brain regions and thirteen metabolic characteristics
were combined into 117 metabolic characteristics used as features in the dataset and set HC as 0 and
NPSLE as 1 as the dataset’s labels.

2.2. Support vector machine

Support vector machine (SVM) is a powerful tool for binary and multi-class classification model
developed by Vapnik and Cortes [25]. The learning strategy of SVM is to maximize the interval, which
can be formalized as the regularized hinge loss function minimization problem. The basic idea of the
SVM classifier is to find a hyperplane with the largest geometric interval between two groups that can
correctly divide the data set. This is a small sample learning strategy with a solid theoretical foundation.
The final decision function is only determined by a few support vectors. The computational complexity
depends on the number of support vectors instead of the dimension of samples, which avoids the “curse
of dimensionality” [40] in a sense.

In this paper, we present the dataset illustrated in Section 2.1 by D = {(xi, yi)}i=1,...,N , where xi ∈ RM,
RM is the sample space, yi ∈ {0, 1} are the corresponding labels. N, and M are the number of samples
and features, respectively. For each groundtruth yi, SVM model is to predict the corresponding result
ŷi = f (xi) according to xi. f (x) is the classification function of SVM , which is defined as Eq (2.1).
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f (x) = ωT · x + b, (2.1)

where ωT is the weight vector of nonlinear mapped metabolic characteristics, and b is a constant bias
term. The target of SVM is to find the optimal hyperplane that is explained in Eq (2.1). The objective
function is shown in Eq (2.2).

min
ω,b

1
2
||ω||2 +C

N∑
i=1

ξi

s.t.
{

yi(ωT xi + b) ≥ 1 − ξi, i = 1, 2, · · · ,N
ξi ≥ 0

,

(2.2)

where 1
2 ||ω||

2 is the regularization term that minimizes the L2 norm of the weight vector ω, and
C
∑N

i=1 ξi is the training loss. Sepcifically, C is a penalty parameter of the training loss, ξi =
max (0, 1 − yi(ω · xi + b)) is the slack variable.

The dataset we produced is high-dimensional (117 features) with limited samples (39 samples).
SVM is good at handling small and medium-sized, nonlinear, and high-dimensional classification and
regression problems and has succeeded in many practical applications. To this end, a reliable classifi-
cation model based on SVM is naturally used to diagnose NPSLE.

In order to map our nonlinear dataset to high-dimensional space, we use kernel functions. In this
letter, the radial basis kernel function (RBF) kernel is selected because it can classify data with high
dimensions, unlike the linear kernel. Besides, the RBF kernel function has fewer parameters to define
than the sigmoid kernel and the polynomial kernel. Specifically, it only has one hyperparameter γ that
affects the “spread” of the kernel [38].

2.3. Genetic algorithm

The Genetic Algorithm (GA) is to find the global optimal solution in the search space of complex
problems, which is a computational model simulating the natural selection and genetic mechanism of
Darwin’s theory of biological evolution [41]. The genetic algorithm is simple to implement without a
complex problem-solving process. Figure 1 shows the process of the genetic algorithm.

Firstly, designing a scheme to encode the given information into the specific bit string encoding
and setting the random initial starting point as the “parents”. The encoding improves the convergence
speed of the algorithm. Then, constructing the fitness function and obtaining each individual’s fitness.
Thirdly, creating the next generation through genetic operations, including natural selection, crossover,
and mutation, as shown in Figure 2. After a certain amount of reproduction, GA can get acceptable
individuals that satisfy the termination criteria. Due to the survival struggle, the best choice of high
probability population will reach the overall optimal level [42].

2.4. Reinforcement learning

The basic model of reinforcement learning (RL) is the interaction between individual and environ-
ment [43], as shown in Figure 3. The individual/agent is the part that can take a series of actions and
expect to get a higher reward r. The other part related to this called the environment. The whole pro-
cess is divided into different time steps. At each moment, the environment and the agent will have the
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Figure 1. Genetic algorithm.
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Figure 2. Genetic operations.

corresponding interaction. The agent can take certain actions, which are imposed on the environment.
After receiving an agent’s action, the environment will feedback the current state of the agent’s envi-
ronment and the reward generated by the previous action. The goal of RL is to get more rewards in the
long term.

Figure 3. The flowchart of the reinforcement learning.
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There is a mapping between state and action, generally expressed by π; that is, a = π(s), which
means a state s can correspond to an action a. The agent executes the action at in the state st and then
transfers to the next state st+1 with the probability T (st, at, st+1). At this moment, it receives the reward
rt from the environment with a discount coefficient γ. So the sum of reward from the beginning of t
time to the training end T is Rt =

∑T
t′=t γ

t
′
−trt′ . γ ∈ [0, 1] is the discount coefficient, representing every

moment’s reward obtained in the future will be reduced. In order to estimate the cumulative reward
Rπ obtained by strategy π in the future, the value functions including state value function V(s) and
state-action pair value function Q(s, a) are used to quantify the cumulative reward in reinforcement
learning.

Vπ(s) = E[Rt|st = s, π], (2.3)

Qπ(s, a) = E[Rt|st = s, at = a, π], (2.4)

if the expected reward of a strategy is greater than or equal to the expected reward of other strategies,
then it is the optimal strategy π∗. The optimal state value function V∗(s) and the optimal state-action
pair value function Q∗(s, a) can be defined according to the optimal strategy π∗ as follows:

V∗(s) = max
π

E[Rt|st = s, π], (2.5)

Q∗(s, a) = max
π

E[Rt|st = s, at = a, π], (2.6)

in the process of RL training, the optimal strategy π∗ is found by solving the value functions V∗(s) and
Q∗(s, a).

3. Proposed method

First, we design MARL to select the optimal feature subset and then use the selected features to
train the classifier optimized by GA. In general, GA for parameter optimization is related to chromo-
some design, fitness function construction, and system processing. GA designs a suitable chromosome
through binary encoding, then computes the fitness value and evaluates it by the system architecture.

3.1. MARL for feature selection

We transfer the feature selection into multi-agent reinforcement learning by assigning an agent to
each feature. Figure 4 illustrates the structure of feature selection based on MARL. The structure
consists of agents, environment, actions, state, reward and reward assignment strategy.

• Agents. For the dataset described in Section 2.1 with 117 features, we create 117 feature agents
that decide to discard or select the corresponding feature.
• Environment. We regard the selected features, that is, feature subset, as the environment.
• Actions. Action “0” means that the feature is disabled and will be excluded in the feature subset

while action “1” means the feature is included in the feature subset. Note that we employ the
ϵ-greedy [44] to balance the exploration and exploitation. Specifically, the agent chooses the best
action based on what it already knows at most of the time while it moves randomly with the
probability ϵ.
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• State. We extract the mutual-statistic information as the state of the environment. Assuming that
the dataset after feature selection is the matrix F = (Fi j)N×n, n is the length of the selected fea-
tures, and N is the number of samples in our dataset, here is 39. We first extract the statistical
information of F, including mean, median, standard deviation, maximum, and minimum, to con-
struct matrix F s = (F s

i j)5×n. Next, we extract five types of statistical representation of each line in
F s, obtaining the mutual-statistic information Fms. The dimension of the Fms is 5 × 5.
• Reward. For our task, it is essential to boost the model’s classification performance, here is

accuracy Acc, and decrease the number of the feature subset n. To solve this issue, we define the
overall reward function as follows:

R(a) =
{

Acc i f n ≤ b
Acc · b/n i f n > b

, (3.1)

where b is the upper bound of the size of selected features, and a is the joint action. The above
global reward function balance the size of the selected subset and the performance of the model.
• Reward allocation. In this paper, the problem extends to multiple agents, where each agent acts

simultaneously. We need to coordinate the cooperation and competition between agents [45]. The
communication between features is planned by reward allocation. Specifically, if an agent i does
not change its action at the current iteration, it will be excluded when allocating reward. The
reward R is assigned equally to the agent that participates in the current iteration.

Q-learning is a prevalent reinforcement learning algorithm. At the time stamp t, an agent performs
an action at in the state st, then the state of the environment turns into st+1, the corresponding reward rt

is sent to this agent. In Q-learning, Q-value Q(st, at) is the maximum long-term reward after acting at

in the state st, which observes the following rules:

Q(st, at) = rt + γmax Q(st+1, at+1), (3.2)

where γ ∈ [0, 1] is the discount coefficient. The pseudocode of feature selection based on MARL is
detailed in Algorithm 1. After that, we obtain the feature subset F that be sent to GA-optimized SVM.

3.2. Chromosome design

The first step of GA is individual gene designing and coding. In optimizing the combination of
the two SVM hyperparameters, the kernel function parameter C and the error penalty factor γ are real
numbers. We adopt binary coding to transfer them into bit strings, encoding the binary string of l1 and
l2 bits. The gene string structure is shown in Figure 5. By combining the binary code of l1 and l2 bits,
the gene string is obtained.

Because the data input to SVM should be decimal, we need to decode it into a phenotype according
to Eq 3.3

p = minp +
maxp − minp

2m − 1
dv, (3.3)

where p is the bit string, minp and maxp are the minima and maximum values of the parameter respec-
tively, dv is the decimal value of the bit string and m is the length of the bit string.
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Algorithm 1: The pseudocode for feature selection based on MARL.
Data: threshold ϵ, ϵ decay rate rϵ , upper bound of the feature subset b, discount coefficient γ,

max iteration Imax, raw dataset D = (Di j)N×M

Result: feature subset F
1 Iteration I = 0;
2 while I ≤ Imax do
3 for agent=1 to count agents M do
4 generate random number α ∈ (0, 1);
5 if α ≥ ϵ then
6 execute greedy (online) action ai ∈ {0, 1};
7 else
8 execute ϵ-greedy action ai ∈ {0, 1};
9 end

10 end
11 get joint action a;
12 consider only the ”on” actions to obtain the subset F;
13 get the size of F: n;
14 if n ≤ b then
15 R(a) = Accuracy(F);
16 else
17 R(a) = Accuracy(F) · b/n;
18 end
19 for agent=1 to count agents M do
20 rt =

R(a)
n ;

21 Update Q(st, at) = rt + γmax Q(st+1, at+1);
22 end
23 reduce ϵ by using rϵ;
24 I = I + 1;
25 end
26 return F;

3.3. Fitness function building

The goal of GA is to optimize the performance of SVM, which helps SVM get better generalization
ability. The training samples are divided into two parts, training data, and testing data. Because our
data samples are very scarce and difficult to collect, we use k-fold cross-validation to prevent over-
fitting. We choose the mean score of cross-validation as the objective function to be optimized, using
Eq 3.4

CV(k) =
1
k

n∑
i=1

MS Ei, (3.4)

where k = 10. Mean squared error (MSE) can evaluate the change degree of the data. The smaller
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Figure 4. The framework of feature selection based on MARL.

Figure 5. The gene string structure.

the MSE value is, the better the accuracy of the prediction model to describe the experimental data is,
which can be calculated by Eq 3.5

MS E =
S S E

n
=

1
n

m∑
i=1

wi(yi − ŷ)2, (3.5)

where y is the groundtruth, and ŷ is the predicted label.

3.4. Selection operator

To ensure the evolution to the direction of optimization, we use the wheel-roulette selection opera-
tor, which is based on an individual’s fitness value. The higher fitness it has, the higher probability it
can be selected.

3.5. Crossover operator

The crossover operator is used to select individuals selected by the selection operator to reproduce
the next generation. Two different chromosomes exchange genes at the exact location to create a new
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chromosome. The crossover operator includes two steps: random pairing and crossover. This paper
uses a two-point crossover method; two crossover points are set in a single code string, and then
partial gene exchange is performed. Take the second coding bit in the gene string as the first crossover
point. Then, randomly generate a crossover point in the remaining binary code part, and exchange the
corresponding gene fragments between the two crossover points. Figure 6 is an example describes the
two-point crossover.

1 0 0 1 0 1

1 1 1 0 1 0

1 0 1 0

01 1 0 1

0 1

1

Parent chromosomes Offspring chromosomes

Crossover points

𝑋𝐴 𝑘

𝑋𝐵 𝑘

𝑋𝐴 𝑘 + 1

𝑋𝐵 𝑘 + 1

Figure 6. Schematic diagram of two-point crossover operation. Assuming l1 + l2 = 6, two
individual gene strings XA(k) = [100101], XB(k) = [111010], two individual gene strings
XA(k + 1), XB(k + 1) of K + 1 generation are obtained by two-point crossing.

3.6. Mutation operator

The mutation operator increases the ability of the genetic algorithm to find the global optimal so-
lution. The mutation operator randomly changes the value of a position in the string with a certain
probability. Specifically, converting the value of the binary-coded gene string from 0 to 1, or 1 to 0.

3.7. System processing

The structure of the SVM classifier based on MARL and GA is presented in Figure 7, and the
detailed steps are described below:

1) Assign a feature for each agent and perform action “save” or “discard” through executing the
optimal policy to select the optimal feature subset;

2) Initialize the population to generate a number of individuals, including the SVM hyperparameters
(C, γ);

3) The two hyperparameters (C, γ) are substituted into SVM to train classifier;
4) Compute the fitness of each individual. The average score of cross-validation is taken as the

objective function to be optimized, and C and γ are taken as decision variables;
5) Judge whether the ending condition is met. If the termination condition is met, exit the cycle and

finish the genetic optimization to get the optimized hyperparameter combination(C, γ). Otherwise, go
to step 6;

6) The individual with a high fitness will be chosen and maintained in the next generation;
7) After the selection, crossover, and mutation operator are executed to form a new generation of

individuals, return to step 3 to continue.
Furthermore, to reduce the influence of large numerical features on the experiment, we scale the

data before the first step, or the model may perform poorly. Here we use the robustS caler, which is
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defined as follows

v
′

i =
vi − median

IQR
, (3.6)

where vi is a sample value, median is the sample’s median, and IQR is the interquartile distance of
samples. To overcome the disadvantage of limited samples, we use stratified sampling five times.
Compared with K-Fold, it can ensure that the proportion of samples in the training set and test set is
the same as that in the original data set.

Start

Initial individuals 

generated by group(C, γ)

Meeting the 

ending 

condition

Counting individual 

fitness with SVM

Genetic operations 

(selection. mutation, 

crossover)

New population

Training set Testing set

Training SVM 

classifier

Trained SVM 

classifier

Fitness evaluation

Optimized parameters(C, γ)

Ending

C, γ

(Replace)

No

Yes

GA

Raw dataset

Agent

Delete feature Save feature

Feature subset

MARL

Figure 7. The main process of NPSLE early diagnosis model.

4. Experiment

We use MARL for feature selection to eliminate features that may be irrelevant or redundant, then
we obtain 27 features, as shown in Table 1. Table 2 lists the initial parameters of the GA. Choosing
these parameter values is based on the highest fitness value of the population.
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Table 1. The selected metabolic features.

Brain region Metabolite

LDT Cr
LDT PCr
LDT NAA
LDT Ins/Cr + PCr
LDT GPC + PCh
LDT GPC + PCh/Cr + PCr
RDT Ins
LPCG Cr
LPCG PCr
LPCG NAA + NAAG
LPCG Ins/Cr + PCr
RPCG Cr
RPCG PCr
RPCG GPC + PCh
RPCG Glu + Gln/Cr + PCr
RPCG NAA + NAAG/Cr + PCr
LLN Ins
LLN NAA + NAAG/Cr + PCr
RLN NAAG
RLN GPC + PCh
LFWM Ins
LFWM Cr + PCr
LFWM Ins/Cr + PCr
RFWM NAAG
RFWM NAA + NAAG
RFWM NAA + NAAG/Cr + PCr
RI Glu + Gln/Cr + PCr

Except for cross-validation score, sensitivity, specificity, and accuracy are used to evaluate the per-
formance of these classifiers, which are defined in Table 3. We compare the performance of the SVM
and other models, including Decision Tree, Bagging, AdaBoost, SVM and their combinations with
PCA, SVM based on VAE, SVM based on GA, and the combination of SVM, MARL and GA. As
shown in Table 4, the sensitivity, specificity, accuracy, and cross-validation scores of SVM are 73.9%,
75.0%, 74.4% and 0.754, respectively, while the corresponding metrics of our proposed method are
91.3%, 100%, 94.9% and 0.870, respectively, which are much higher than others and achieve the best
results. In addition, Figure 8 presents the receiver operating characteristic (ROC) curves of different
methods. In the case of SVM based on GA and MARL, the area under the curve (AUC) is 0.969,
which is much higher than the AUC of other models, including other deep learning methods, such as
the combination of VAE and SVM. The AUC of SVM and SVM based on PCA are only 0.854 and
0.867, respectively.
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Table 2. Initial parameters of GA used.

GA Parameters Setting

C 2−7

γ 29

Generations Number 100
Population Size 40
Selection Type Wheel-roulette
Crossover Type Two-point Crossover
Crossover Rate 0.7
Mutation Rate 0.02

Table 3. Evaluation metrics. TP, TN, FP, FN, FP are the true positive, true negative, false
positive, false negative, respectively.

Measure Formula

Sensitivity S ensitivity = T P
T P+FN

Specificity S peci f icity = T N
T N+FP

Accuracy Accuracy = T P+T N
T P+T N+FP+FN

Figure 8. Receiver operating characteristic curves of different methods.

Figure 9 shows the changes of optimal individual’s fitness and the average fitness of the whole
population. At the 18th generation, the population stops evolution because the optimal individual
reaches the judgment threshold that stops the algorithm. In the final evaluation phase, the fitness value
of the optimal individual has risen to 0.87.

In addition, we compare genetic algorithm with grid search, a popular parameter selection method.
Through GA, we get the optimal value of C, and γ are 240.37, 0.0078, respectively. There-
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Figure 9. The change of optimal individual fitness and overall fitness.

fore, we set the values of C to be selected are [240.30, 240.37, 240.40], and the ones of γ are
[0.0075, 0.0078, 0.0080]. We explore the optimal parameter combination through grid search, and
the result displayed in Table 5.

By taking different values of C and γ, we can explore the optimal combination of hyperparameters.
However, this method can be time-consuming, especially when there are many hyperparameters that
need to search. Besides, we set the value of C and γ above in the condition that we get the optimal
hyperparameters through GA. If the range of values we set manually is unreasonable or the interval
between different values is too large, it will be challenging to find the optimal value. By contrast, GA
can search the optimal parameters automatically.

Table 4. The comparison of the performance between the proposed model and other ones in
NPSLE diagnosis.

Algorithms Sensitivity Specificity Accuracy Cross-validation score

Bagging 69.6% 43.8% 59.0% 0.587
Decision Tree 73.9% 50.0% 64.1% 0.643
SVM 73.9% 75.0% 74.4% 0.754
AdaBoost 87.0% 56.3% 74.4% 0.761
PCA+AdaBoost 78.3% 75% 76.9% 0.763
VAE+SVM 82.6% 75% 79.5% 0.798
PCA+Decision Tree 82.6% 81.3% 82.1% 0.827
PCA+Bagging 87.0% 81.3% 84.6% 0.849
PCA+SVM 78.3% 93.8% 84.6% 0.852
GA+SVM 91.3% 93.8% 92.3% 0.864
MARL+GA+SVM 91.3% 100.0% 94.9% 0.870
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Table 5. The results of grid search.

C γ Sensitivity Specificity Accuracy Cross-validation score

240.30
0.0080 82.6% 81.3% 82.1% 0.827
0.0078 87.0% 81.3% 87.2% 0.852
0.0080 91.3% 87.5% 89.7% 0.859

240.37
0.0075 91.3% 93.8% 92.3% 0.864
0.0078 91.3% 100.0% 94.9% 0.870
0.0075 87.0% 93.8% 92.3% 0.862

240.40
0.0075 87.0% 93.8% 89.7% 0.859
0.0078 82.6% 93.8% 87.2% 0.854
0.0080 82.6% 87.5% 84.6% 0.850

5. Discussion and conclusion

In this paper, we propose a method that combines the feature selection based on MARL and pa-
rameter optimization based on GA to improve the early diagnosis of NPSLE. The data obtained by
multivoxel proton magnetic resonance spectroscopy is high dimensional, sample-limited, and non-
linear. It is hard to meet the model’s requirements through traditional modeling methods or linear
dimensionality reduction. SVM is an ideal classifier for our study, which has an advantage at dealing
with small samples [46, 47] and high-dimensional datasets. Even if a limited training set produces
some bias, the model still has good generalization if we select appropriate parameters [48]. Besides,
since the original data contains a lot of redundant information, it is essential to select the proper subset
of features to avoid reducing the classifier’s performance and increasing the computation quantity.

The proposed approach results were compared with Bagging, Decision Tree, AdaBoost and SVM
without optimization to determine GA’s ability of optimizing SVM hyperparameters. Experimental
results show that the GA-SVM is significantly better than those classifiers just mentioned, achiev-
ing satisfactory sensitivity, specificity, and accuracy as 91.3%, 93.8% and 92.3%, respectively, while
the SVM with default parameters optimization only achieves 73.9% sensitivity, 75.0% specificity and
74.4% accuracy. We select the optimal feature subset of the data through MARL and optimize SVM
by GA. More remarkably, this method is compared with other dimension reduction ones, such as PCA
and the encoder of the VAE. Specifically, the SVM optimized by GA and MARL reached the 100%
specificity, 91.3% sensitivity, 94.9% accuracy and 0.870 cross-validation score, achieving the best
performance. In summary, the proposed method can improve the NPSLE diagnosis efficiently. In the
future, we plan to apply this method to practical medical diagnosis. In the application scenario, we will
evaluate the risk of information systems using this technology to prevent some incidents and ensure
patient safety [49]. Since this technology involves critical infrastructure (healthcare), it is necessary to
be regulated.

However, our study still has some limits. On the one hand, further studies and comparisons are
needed in patients with HCs, non-NPSLE and NPSLE. Previous studies have found that the cerebral
perfusion patterns of NPSLE and non NPSLE patients are different [50]. Besides, NPSLE is sig-
nificantly associated with CII and depression, fatigue and pain [51], while non-NPSLE patients and
controls don’t have it. On the other hand, we do not have sufficient data. We know the importance
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of abundant labeled data for obtaining good fitting of classifier models [52], but the data collection
process is complex, and the patients are limited. To address this issue, we use stratified sampling to
minimize sampling error and improve the model’s generalization ability. By contrast, K-fold cross-
validation does not consider the problem of label distribution. Furthermore, to effectively use limited
data and overcome overfitting, we use the stratified sampling strategy five times so that the evaluation
results can be as close as possible to the model’s performance on the test set. The results show that the
proposed model can perform well on the unknown data.

In conclusion, our model can perform well in the condition of limited samples with missing val-
ues of metabolic features, proving its robustness. Therefore, the proposed algorithm provides a new
perspective for early diagnosis and intervention for the NPSLE and reduces the deviation caused by
manual screening with more space for its potential development. For the next step, we prepare to col-
lect more samples and related data, including clinical case data and its corresponding medical images,
to develop a multimodal machine learning model.
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