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Abstract: The segmentation and extraction of brain tissue in magnetic resonance imaging (MRI) is a 

meaningful task because it provides a diagnosis and treatment basis for observing brain tissue 

development, delineating lesions, and planning surgery. However, MRI images are often damaged by 

factors such as noise, low contrast and intensity brightness, which seriously affect the accuracy of 

segmentation. A non-local fuzzy c-means clustering framework incorporating the Markov random 

field for brain tissue segmentation is proposed in this paper. Firstly, according to the statistical 

characteristics that MRF can effectively describe the local spatial correlation of an image, a new 

distance metric with neighborhood constraints is constructed by combining probabilistic statistical 

information. Secondly, a non-local regularization term is integrated into the objective function to 

utilize the global structure feature of the image, so that both the local and global information of the 

image can be taken into account. In addition, a linear model of inhomogeneous intensity is also built 

to estimate the bias field in brain MRI, which has achieved the goal of overcoming the intensity 

inhomogeneity. The proposed model fully considers the randomness and fuzziness in the image 

segmentation problem, and obtains the prior knowledge of the image reasonably, which reduces the 

influence of low contrast in the MRI images. Then the experimental results demonstrate that the 

proposed method can eliminate the noise and intensity inhomogeneity of the MRI image and 

effectively improve the image segmentation accuracy. 

Keywords: Magnetic resonance imaging; brain tissue segmentation; fuzzy c-means clustering; 

Markov random field; non-local constraints 
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1. Introduction  

In the clinical diagnosis and treatment, to analyze the brain development and describe the lesion, 

it is necessary to segment the brain magnetic resonance imaging (MRI) accurately, so as to provide 

the necessary support for further treatment plan [1–3]. However, during the image acquisition 

process, affected by the performance of the imaging device, the inhomogeneity of radio field (RF) 

intensity and postural change of the patients, there are many problems in MRI image, such as noise, 

intensity distribution heterogeneity (also known as bias field) and low contrast, which cause some 

interference in the process of brain tissue segmentation [4,5]. 

Fuzzy c-means clustering (FCM) is a data partition method based on fuzzy set theory. As one of 

the machine learning algorithms, FCM has become an effective means of image segmentation [6–8], 

and its success is attributed to its fuzzy nature, which can get more image features from the image. 

However, the FCM usually performs well on noise-free images, when the image to be processed is 

disturbed by noise, inhomogeneous intensity or artifacts, the segmentation result is not satisfactory. 

Since only the non-robust Euclidean distance is used as the similarity metric in the objective function 

of the FCM, the similarity between neighboring pixels in the image is neglected. To this end, many 

scholars have proposed different improvement schemes. Pham et al. proposed a robust fuzzy c-means 

(R-FCM) model [9], which introduces a local spatial regularization term in the objective function to 

eliminate the improbable classification results of pixels in images. Cui et al. [10] designed a model of 

fuzzy energy minimization. Firstly, the objective function of local FCM clustering around each 

center pixels is defined. Then, the objective function is combined with the center pixel of the 

neighborhood to construct global fuzzy energy, and the results are obtained by minimizing the energy 

function. Although the aforementioned methods overcome the influence of noise to some extent, the 

image details and edge processing effect are not satisfactory. Markov random field (MRF) has been 

widely used as a spatially constrained probability statistical model [11–13]. For images, MRF can 

fully consider the relationship between pixels in the spatial domain and effectively describe the 

neighborhood of an image. Chen et al. [14] proposed a modified FCM method by integrating the 

advantages of fuzzy clustering and the hidden MRF, the novel clustering algorithm has a special 

ability to incorporate spatial information by using a random field model and meanwhile overcomes 

the disadvantages of noise sensitivity of the traditional FCM algorithms. This algorithm is named 

FCMRF, and it has good immunity against noise and artifacts. However, it also increases the 

computational complexity of implementation procedures. 

In this paper, a non-local FCM algorithm combined with Markov random field (NL-FCMRF) 

for brain tissue segmentation is proposed. To eliminate the interference of noise in MRI images, a 

non-local regularization item is integrated into the fuzzy c-means clustering, at the same time, we 

also utilize local spatial correlation of MRF to enhance the robustness to noise, and then the linear 

model of bias field is fused into the objective function to realize effective estimation of intensity 

inhomogeneity. 

The remainder of this paper is arranged as follows. Section 2 introduces the work related to our 

algorithm. The rationale of the proposed NL-FCMRF algorithm is described in detail in Section 3. 

The experimental results of NL-FCMRF with the state-of-the-art models and qualitative and 

quantitative comparison and evaluation are demonstrated in Section 4. Finally, a conclusion is 

summarized in Section 5. 
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2. Related works 

2.1. Markov radom field 

Let Z={Z1, Z2, ꞏꞏꞏ, Zn} be a family of random variables defined in set S, in which each random 

variable Zi takes a value zi in Λ, zi is called a realization of Zi, Λ denotes the configuration space of zi, 

and the random variable family Z can be regarded as a random field. Ni denotes the neighborhood set 

of zi and satisfies Ni⊂S. Let the probability of Zi taking the value zi can be expressed as P(Zi=zi), 

abbreviated P(zi), and the joint probability can be expressed P(Z=z)=P(Z1=z1, ꞏꞏꞏ, Zn=zn) 
and 

abbreviated P(z). Let neighborhood set of the position of a site i is Ni, if the random field Z can 

satisfy the following two conditions: 

𝑃(𝑧) > 0, ∀𝑧 ∈ 𝛬 (1) 

𝑃(𝑧𝑖|𝑧(𝑖)) = 𝑃(𝑧𝑖|𝑧𝑁𝑖
),  ∀𝑧 ∈ 𝛬,  𝑖 ∈ 𝑆 (2) 

The random field Z is a Markov random field [15], where z(i) denotes all the pixels except zi in 

the image, and zNi denotes the pixels in the neighborhood set. The conditional probability in Eq (2) is 

limited by the consistency condition in the process of solving, so it is difficult to solve. Fortunately, 

Hammersley and Clifford proposed the Hammersley-Clifford theorem and pointed out the 

equivalence between MRF and Gibbs distribution [16]. Therefore, a joint probability method for 

dealing with specified MRF is provided in mathematics. 

Gibbs distribution is a representation of the joint probability in configuration space Λ, which 

can be defined by a set of potential functions V={VC, C S}. Let the energy function associated with 

a particular implementation of the random field be defined as 

𝑈(𝑧) = − ∑ 𝑉𝐶(𝑧)𝐶⊂𝑆  (3) 

Joint probability density P(z) can be written as 

𝑃(𝑧) =
1

𝑊
𝑒𝑥𝑝 {−

1

𝑇
𝑈(𝑧)} (4) 

where T is a temperature constant, generally set to 1, W is a standardized constant called partition 

function, its expression is 

𝑊 = ∑ 𝑒𝑥𝑝 {−
1

𝑇
𝑈(𝑧)}𝑧∈𝛬  (5) 

Energy function U(z) can be written by using first-order and second-order neighborhoods 

𝑈(𝑧) = ∑ 𝑉1(𝑧𝑖){𝑖}∈𝐶1
+ ∑ 𝑉2(𝑧𝑖,  𝑧𝑗){𝑖, 𝑗}∈𝐶2

 (6) 

Using the properties of the Gaussian Markov random field (GMRF) model [17], the local 

conditional probability 𝑃(𝑧𝑖|𝑧𝑁𝑖
) can be written as 

𝑃(𝑧𝑖|𝑧𝑁𝑖
) =

𝑒
−[𝑉1(𝑧𝑖)+∑ 𝑉2(𝑧𝑖, 𝑧𝑗)𝑗∈𝑁𝑖

]

∑ 𝑒
−[𝑉1(𝑧𝑖)+∑ 𝑉2(𝑧𝑖, 𝑧𝑗)𝑗∈𝑁𝑖

]
𝑧𝑖∈𝛬

 (7) 
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Potts model is the most widely used model in the case of multi-label [18], which can prevent the 

edges of objects from being over-smoothed. Generally, Potts model only considers the binary 

potential function in the form of 

𝑉2(𝑧𝑖,  𝑧𝑗) = {
0,   𝑧𝑖 = 𝑧𝑗

𝛼,  𝑧𝑖 ≠ 𝑧𝑗
 (8) 

where α is the corresponding clique potential parameter. The local probability of the Potts model is 

𝑃(𝑧𝑖|𝑧𝑁𝑖
) =

𝑒−[𝛼𝑛𝑖(𝑧𝑖)]

∑ 𝑒−[𝛼𝑛𝑖(𝑧𝑖)]
𝑧𝑖∈𝛬

 (9) 

where ni(zi) denotes the number of neighboring sites of elements that are not equal to zi in the 

neighborhood set of the position of a site i. 

Based on the former research, Ribes et al. proposed a framework for automatic segmentation of 

breast MRI images [19]. Firstly, the image is preprocessed by anisotropic filtering and then 

segmented by the MRF model. All parameters can be updated automatically, and the partial volume 

effect problem in MRI images is solved to some extent. However, the image is smoothed, and some 

important edge information is easy to be ignored because of the filtering preprocessing. 

2.2. Fuzzy c-means clustering 

FCM is a data classification method proposed by Dunn [20] and developed by Bezdek [21]. 

This algorithm partitions unlabeled data samples by the objective function based on some norm and 

clustering prototype. Let X = {x1, x2, ∙∙∙, xN}⊂Rc denotes a given sample set, which is the grayscale 

set of each pixel in an image. c(c>1) is the dimension of sample space, N is the number of image 

pixels. c is the number of clusters that partition X. FCM calculates the fuzzy membership matrix U = 

{uki} satisfying the following constraints: 

∑ 𝑢𝑘𝑖
𝑐
𝑘=1 = 1, ∑ 𝑢𝑘𝑖

𝑁
𝑖=1 > 0, 1 ≤ 𝑘 ≤ 𝑐, 1 ≤ 𝑖 ≤ 𝑁 (10) 

𝑢𝑘𝑖 ∈ [0,1], 1 ≤ 𝑘 ≤ 𝑐, 1 ≤ 𝑖 ≤ 𝑁 (11)

 
The objective function of FCM is 

𝐽𝐹𝐶𝑀(𝑈, 𝑉) = ∑ ∑ 𝑢𝑘𝑖
𝑚𝑁

𝑖=1
𝑐
𝑘=1 𝑑𝑘𝑖

2  (12) 

In Eq (12), m (m>1) is called fuzzy index, U={uki} is a matrix called fuzzy membership matrix, 

where uki is the fuzzy membership of pixel xi, V = {v1, v2, ∙∙∙, vN } is a N × c matrix composed of c 

clustering center vectors, dki = ||xi-vk|| 
denotes the distance measure from the pixel xi to the cluster 

center vk. There are many ways to express distance measure, and the most used measure is Euclidean 

distance. Next, the extreme value of the objective function JFCM is obtained by the Lagrange 

multiplier method, which leads to Eqs. (13) and (14). 

𝑣𝑘 =
∑ 𝑢𝑘𝑖

𝑚𝑥𝑖
𝑁
𝑖=1

∑ 𝑢𝑘𝑖
𝑚𝑁

𝑖=1

, 1 ≤ 𝑘 ≤ 𝑐 (13) 

𝑢𝑘𝑖 =
1

∑ (
𝑑𝑘𝑖
𝑑𝑙𝑖

)

2
𝑚−1𝑐

𝑙=1

,     1 ≤ 𝑘 ≤ 𝑐, 1 ≤ 𝑖 ≤ 𝑁

 (14)
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3. Non-local fuzzy c-means clustering combined with MRF 

MRF is used to state the spatial constraints between local pixels of an image, and then the image 

is segmented by the maximum a posterior (MAP) criterion. This is one of the better methods to 

achieve effective segmentation of texture images [22–24]. However, the method has the problem of 

"hard partition" as deciding the classifications of pixels. For these problems such as noise, 

overlapping regions and low contrast in medical images, MRF seems to be inadequate. Therefore, the 

fusion of fuzzy theory (soft partition) and MRF theory and comprehensive utilization of the 

advantages of the two methods can significantly improve the accuracy of segmentation and 

overcome noise interference and low contrast in MRI images [25,26]. 

3.1. Distance measure fused MRF 

In FCM, distance measure dki plays an important role in evaluating the difference between 

different sample points and the cluster center. However, dki only uses the grayscale distance between 

pixels without involving the influence of spatial distance between pixels. Therefore, we study the 

improvement strategy combined Eq (9) for dki and design a new distance measure Dki, as shown in 

Eq (15). 

𝐷𝑘𝑖 =
𝑑𝑘𝑖

𝑠𝑞𝑟𝑡(𝑃(𝑧𝑖=𝑘|𝑧𝑁𝑖
))

 (15) 

where dki is the Euclidean distance, zNi
 
denotes the coordinate label of the neighborhood set of the 

site i, and P(zi = k|zNi) denotes the prior probability that the pixel point belongs to the k-th cluster 

under the condition that the neighborhood site label is known. The new distance measure Dki includes 

both gray-scale distance between pixels and the influence of the classification label of local 

neighborhood pixel on the objective pixel classification. In terms of an image, the gray-scale 

correlation between local neighboring pixels is generally high. If the probability of the neighboring 

pixels being labeled as the k-th cluster is high, the probability of the objective pixel being labeled as 

the k-th cluster also increases, and it is inversely proportional to the spatial distance dki. The prior 

probability P(zi=k|zNi) can be calculated using Potts model of MRF, and the formula is as follows: 

𝑃(𝑧𝑖|𝑧𝑁𝑖
) =

𝑒
−𝛾 ∑ 𝛿(𝑧𝑖,𝑧𝑗)𝑗∈𝑁𝑖

∑ 𝑒
−𝛾 ∑ 𝛿(𝑧𝑖,𝑧𝑗)𝑗∈𝑁𝑖𝑧𝑖∈𝛬

 (16) 

where 𝛿(𝑧𝑖, 𝑧𝑗) = {
1,   𝑧𝑖 = 𝑧𝑗

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, γ is the clique potential parameter. 

3.2. Non-local framework  

Potts model is introduced into distance measure, and image neighborhood information is 

considered, which can improve the robustness of FCM clustering. In brain MR images, the 

neighborhood structure of one pixel may appear similarly in the neighborhood of other pixels of the 

same image. To use the global structure information of the image [27,28], non-local constraints can 

be added to the model. Therefore, a weighted measure Sij is introduced and its expression is 
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𝑆𝑖𝑗 =
1

𝐸𝑖
𝑒

(
−‖𝑥(𝑁𝑖)−𝑥(𝑁𝑗)‖

2,𝜎

2

ℎ
) (17) 

where h is a constant proportional to the noise variance, which adjusts the attenuation degree of the 

similar measure Sij and satisfies 0<Sij <1 and ∑ 𝑆𝑖𝑗𝑗∈𝑤𝑖
𝑢 = 1. u

iW  is a search window with radius u 

around xi, x(Ni) and x(Nj) denote the gray-scale vectors in neighborhood window Ni and Nj of radius s 

around xi and xj, respectively. ‖𝑥(𝑁𝑖) − 𝑥(𝑁𝑗)‖
2,𝜎

2

 
is a 2-norm representing the distance between x(Ni) 

and x(Nj). Ei is a normalized constant and its expression is 

𝐸𝑖 = ∑ 𝑒
(

−‖𝑥(𝑁𝑖)−𝑥(𝑁𝑗)‖
2,𝜎

2

ℎ
)

𝑗∈𝑤𝑖
𝑢

 (18) 

Sij is a weighted Gaussian distance. This factor can utilize the global structure information of the 

image without any prior knowledge, and it is very helpful for the label classification of pixels. Based 

on R-FCM algorithm, an energy function combined Markov random field with non-local constraints 

is designed (called NL-FCMRF). The energy function is 

𝐽𝑚 = ∑ ∑ 𝑢𝑘𝑖
𝑚𝐷𝑘𝑖

2𝑁
𝑖=1

𝑐
𝑘=1 +

𝛽

2
∑ ∑ 𝑢𝑘𝑖

𝑚 ∑ 𝑆𝑖𝑗 ∑ 𝑢𝑗𝑙
𝑚

𝑙∈𝐿𝑘𝑗∈𝑤𝑖
𝑢

𝑁
𝑖=1

𝑐
𝑘=1  (19) 

where β is an adjustment factor, and it controls the balance between the former term and the non-

local regular term in the energy function. The value of β can be set by the cross-validation 

method [9]. 

Combined with the constraint ∑ 𝑢𝑘𝑖 = 1𝑐
𝑖=1 ,   0 ≤ 𝑢𝑘𝑖 ≤ 1and m>1, according to Lagrange's 

optimal criterion, let 

𝐿(𝑢𝑘𝑖, 𝑣𝑘 , 𝜆𝑖, 𝛽) = ∑ ∑ 𝑢𝑘𝑖
𝑚𝐷𝑘𝑖

2𝑁
𝑖=1

𝑐
𝑘=1 +

𝛽

2
∑ ∑ 𝑢𝑘𝑖

𝑚 ∑ 𝑆𝑖𝑗 ∑ 𝑢𝑗𝑙
𝑚

𝑙∈𝐿𝑘𝑗∈𝑤𝑖
𝑢

𝑁
𝑖=1

𝑐
𝑘=1 + ∑ 𝜆𝑖(1 −𝑁

𝑖=1

∑ 𝑢𝑘𝑖
𝑐
𝑘=1 ) (20) 

Calculating the partial derivatives of Eq (20) with respect to uki and λi, respectively, and let 

𝜕𝐿

𝜕𝑢𝑘𝑖
= 0 and 

𝜕𝐿

𝜕𝜆𝑖
= 0, as shown in Eqs. (21) and (22). 

𝜕𝐿

𝜕𝑢𝑘𝑖
= 𝑚𝑢𝑘𝑖

𝑚−1 (𝐷𝑘𝑖
2 + 𝛽 ∑ 𝑆𝑖𝑗 ∑ 𝑢𝑗𝑙

𝑚
𝑙∈𝐿𝑘𝑗∈𝑤𝑖

𝑢 ) − 𝜆𝑖 = 0 (21) 

𝜕𝐿

𝜕𝜆𝑖
= 1 − ∑ 𝑢𝑘𝑖

𝑐
𝑘=1 = 0 (22) 

where the factor of 1/2 on β vanishes because the partial derivative operation results in a product 

term of uki and its neighbors, plus a reverse product term of the neighbors and uki. Setting this partial 

derivative to zero can be obtained from Eq (21). 

𝑢𝑘𝑖 = (
𝜆𝑖

𝑚(𝐷𝑘𝑖
2 +𝛽 ∑ 𝑆𝑖𝑗 ∑ 𝑢𝑗𝑙

𝑚
𝑙∈𝐿𝑘𝑗∈𝑤𝑖

𝑢 )
)

1/(𝑚−1)

 (23) 



1897 

Mathematical Biosciences and Engineering  Volume 19, Issue 2, 1891–1908. 

Bring Eq (23) into Eq (22), yielding 

(
𝜆𝑖

𝑚
)

−1/(𝑚−1)

=
1

∑ (𝐷𝑘𝑖
2 +𝛽 ∑ 𝑆𝑖𝑗 ∑ 𝑢𝑗𝑙

𝑚
𝑙∈𝐿𝑘𝑗∈𝑤𝑖

𝑢 )𝑐
𝑘=1

−1/(𝑚−1) (24) 

Bring Eq (24) into Eq (23), yielding 

𝑢𝑘𝑖 =
(𝐷𝑘𝑖

2 +𝛽 ∑ 𝑆𝑖𝑗 ∑ 𝑢𝑗𝑙
𝑚

𝑙∈𝐿𝑘𝑗∈𝑤𝑖
𝑢 )

−1/(𝑚−1)

∑ (𝐷𝑡𝑖
2 +𝛽 ∑ 𝑆𝑡𝑗 ∑ 𝑢𝑗𝑙

𝑚
𝑙∈𝐿𝑘𝑗∈𝑤𝑖

𝑢 )𝑐
𝑡=1

−1/(𝑚−1) (25) 

Similarly, computing the partial derivative of L about vk and setting   kL v = 0  yields 

𝜕𝐿

𝜕𝑣𝑘
= ∑ (

𝑢𝑘𝑖
𝑚

𝑃(𝑧𝑖=𝑘|𝑧𝑁𝑖
)
) (𝑥𝑖 − 𝑣𝑘)𝑁

𝑖=1 = 0 (26) 

Obtained from Eq (26) 

𝑣𝑘 =
∑ (

𝑢𝑘𝑖
𝑚

𝑃(𝑧𝑖=𝑘|𝑧𝑁𝑖
)
)𝑥𝑖

𝑁
𝑖=1

∑
𝑢𝑘𝑖

𝑚

𝑃(𝑧𝑖=𝑘|𝑧𝑁𝑖
)

𝑁
𝑖=1  

(27) 

3.3. The implementation of NL-FCMRF 

The detailed implementation steps of the NL-FCMRF is as shown in Table 1. 

Table 1. The pseudo code of NL-FCMRF. 

Algorithm 1 NL-FCMRF 

Begin 

Input: 

the brain MRI images 

Initialization: 

  number of cluster c=4, fuzzy coefficient m=2 and parameters u=8; 

iterations number t =0 and stop iteration ε=0.001; 

cluster prototype V(1) and fuzzy membership 𝑢𝑘𝑖
(0)

 randomly 

Process: 

compute the prior probability P(zi=k|zNi) and non-local distance measure Sij according 

to Eqs (16) and (17); 

while | V(t+1) − V(t)| < ε 

update fuzzy membership degree 𝑢𝑘𝑖
(𝑡)

; 

update cluster prototype V(t); 

t= t+1 

Output: 

segmentation results 

End 
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4. Experimental results and analysis 

Two types of brain MRI images are selected as experimental samples: one is the T1-weighted 

synthetic brain MRI images acquired from the Brainweb [29], and the other is the real brain MRI 

image acquired from the IBSR (Internet Brain Segmentation Repository) [30]. In the experiments, 

the tested samples are divided into four parts: white matter (WM), gray matter (GM), cerebrospinal 

fluid (CSF) and background. The computer configuration when all experiments are implemented is 

as follows: Core i5-7300 CPU, 4GB RAM, the corresponding operating system is Windows 10, and 

the programming software is MATLAB 2015b. 

4.1. Results on synthetic brain MRI image 

BrainWeb is a brain MRI image database, which provides synthetic brain MRI data with 

different modes and parameters including T1-weighted, T2-weighted and proton density (PD) images. 

The 3D image slice has an anatomical ground truth, and the database also provides the classification 

label for each intracranial voxel. In the experiments, T1-weighted images with 1 mm slice thickness 

are used, and the 2D images are acquired from 3D images sliced by three directions: axial, sagittal 

and coronal, respectively. Before segmentation, the unnecessary cranial tissues were removed. 

Markov random field adopts a second-order neighborhood system, and the search radius of non-local 

constraints is u = 8. 

4.1.1. Image segmentation of noisy brain MRI 

Firstly, four groups of brain MRI slice images with 9% noise are selected and they are extracted 

from axial slice images indexed to 45, 60, 93 and 113. These images have been preprocessed and the 

skull, muscle and blood vessels are removed. The segmentation results of standard FCM, R-FCM [9], 

MICO [31], ARKFCM [32], FCMRF [14] and NL-FCMRF are compared under the same 

experimental conditions, as shown in Figure 1. 

In Figure 1, the first column is a group of noisy 2D sliced images with 9% noise level, the 

second column is the ground truth, and columns 3–8 are the experimental results after the 

implementation of six algorithms. By analyzing the segmentation results in Figure 1, we can get the 

following conclusions: (1) FCM and MICO are very sensitive to noise. (2) R-FCM can eliminate part 

of the influence of noise interference, but the segmentation accuracy is not high. (3) Segmentation 

accuracy of ARKFCM and FCMRF have been greatly improved, however, it is still unsatisfactory for 

edge and some details of the image. (4) The segmentation results of NL-FCMRF are the closest to 

ground truth, and the details and edge of the brain tissues are also very clear. In order to show the 

segmentation results more clearly, the second row of Figure 1 is magnified three times locally, as 

shown in Figure 2. It can be seen from the local details in Figure 2 (b)–(g) that the NL-FCMRF 

algorithm can more accurately separate individual brain tissues from noisy images. 
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Figure 1. The segmentation results by six models for noisy MRI. (a) The original brain 

MRI slice, (b) ground truth, (c) FCM, (d) R-FCM, (e) MICO, (f) ARKFCM, (g) FCMRF 

and (h) NL-FCMRF. 

 

Figure 2. The comparison of local enlarged image. (a) Noisy image, (b) FCM, (c) R-

FCM, (d) MICO, (e) ARKFCM, (f) FCMRF and (g) NL-FCMRF. 

In order to quantitatively evaluate the experimental results, misclassification rate (MCR) is used 

to compare the performance of the six segmentation methods. The formula for computing MCR is as 

shown in Eq (28). Eight groups of brain MRI images with different noise levels (from 5% to 35%) 

are selected and segmented by FCM, R-FCM, MICO, ARKFCM, FCMRF and NL-FCMRF, 

respectively. The average MCR values of the six methods are counted, and the statistical results are 

shown in Figure 3. 

𝑀𝐶𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
 (28) 
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It can be seen from MCR change curve of WM, GM and CSF segmentation results in Figure 3. 

As the noise level increases, the MCR of the six algorithms also increases, and the MCR of NL-

FCMRF is significantly lower than the other five algorithms. However, when the noise intensity is 

high, the magnitude of the MCR of all algorithms for images changes slightly. Fortunately, for real 

brain MRI, the intensity of the noise contained therein will not be as high as 35%. 

 

(a) 

 

(b)                                                                        (c) 

Figure 3. MCR values comparison of segmentation results for noisy MR images. (a) 

MCR values of WM, (b) MCR values of GM and (c) MCR values of CSF. 

4.1.2. Brain MRI image segmentation of with bias field 

In the second experiment, the brain MRI slice images are selected from three different 

directions, and these images are corrupted by 100% intensity inhomogeneity without noise. A 

mathematical model can be established to estimate the intensity inhomogeneity according to its 

smoothly and slowly changing properties [33], and the model is shown in Eq (29). 

𝑋 = 𝑏𝑋0 + 𝑁 (29) 

where X denotes the observed image, X0 denotes the corrected image, and b and N denote the bias 

field and noise existing in the observed image, respectively. An extended objective function can be 

obtained after taking Eq (29) into Eq (19), as shown in Eq (30). 

𝐽𝑚 = ∑ ∑ 𝑢𝑘𝑖
𝑚 (

‖𝑥𝑖−𝑏𝑖𝑣𝑘‖2

𝑃(𝑧𝑖=𝑘|𝑧𝑁𝑖
)
)𝑁

𝑖=1
𝑐
𝑘=1 +

𝛽

2
∑ ∑ 𝑢𝑘𝑖

𝑚 ∑ 𝑆𝑖𝑗 ∑ 𝑢𝑗𝑙
𝑚

𝑙∈𝐿𝑘𝑗∈𝑁𝑖

𝑁
𝑖=1

𝑐
𝑘=1  (30) 
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where bi is the estimated bias field of the i-th pixel. This method assumes that the spatial grayscale of 

each brain tissue varies independently throughout the image. Therefore, the Lagrange multiplier 

optimization criterion can be used to estimate bi in Eq (30), so that the extended NL-FCMRF can 

eliminate the influence of the bias field, and the experimental results are shown in Figure 4. Column 

1 is the observed brain MRI slice images with intensity inhomogeneity, and column 2 to column 7 

are the segmentation results of FCM, R-FCM, MICO, ARKFCM, FCMRF and NL-FCMRF, 

respectively, where FCM, R-FCM, ARKFCM and FCMRF do not consider correcting the bias field, 

and so these algorithms are difficult to suppress effectively for intensity inhomogeneity because each 

cluster center is assumed to be stationary in the whole image without effective iterative updates. The 

MICO algorithm uses a linear combination of a set of basis functions to model the bias field and can 

achieve high-accuracy bias field estimation when there are enough basis functions. Therefore, the 

segmentation results of MICO model are hardly affected by intensity inhomogeneity, and can 

accurately segment each brain tissue. Further, the non-local framework in NL-FCMRF can also greatly 

improve the segmentation effect of WM, GM and CSF, and update the cluster center effectively. 

 

Figure 4. The segmentation results for MR images with intensity inhomogeneity. (a) 

Brain MR slice images, (b) FCM, (c) R-FCM, (d) MICO, (e) ARKFCM, (f) FCMRF and 

(g) NL-FCMRF. 

Similarly, we still use MCR as an objective evaluation index to analyze the performance of six 

segmentation algorithms, and 12 brain MRI slice images are used as test objects. The MCR values of 

WM, GM, and CSF are compared when the intensity inhomogeneity level varied from 10% to 90% 

for the MRI slices with free noise, and the various curves of MCR values are drawn in Figure 5. It 

can be seen from Figure 5 that FCM, R-FCM, ARKFCM and FCMRF algorithms are greatly affected 

by the bias field, and the MCR value gradually increases with the increase of the non-uniform 

intensity level. However, the MCR values of the MICO and NL-FCMRF algorithms hardly change 

with the change of the intensity inhomogeneity level, which shows that the two algorithms are little 

affected by the bias field, reflecting the robustness of the NL-FCMRF algorithm to the bias field of 

the images. 
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(a) 

 

(b)                                                                                    (c) 

Figure 5. The variety curves of MCR values for brain MRI slices with different intensity 

level. (a) WM, (b) GM and (c) CSF. 

4.1.3. Image segmentation with noise and intensity inhomogeneity 

In the third experiment, the brain MRI images with noise and bias field are selected as the tested 

objects. These images are still sliced from the 3D brain MRI in three different directions: axial, 

sagittal and coronal, respectively, and they are corrupted by 70% intensity inhomogeneity and 7% 

noise level, as shown in the first row of Figure 6. The first column is the original brain MRI slice 

images, the second column is the ground truth, and the segmentation results of six algorithms (FCM, 

R-FCM, FCMRF, MICO, ARKFCM and NL-FCMRF) are shown in columns 3–8. By comparing the 

results, it can be seen that NL-FCMRF can still achieve better segmentation results. 

Dice similarity coefficient (DSC) is often used to objectively evaluate different segmentation 

algorithms, which is defined as follows 

𝜌(𝑆1, 𝑆2) =
2|𝑆1∩𝑆2|

|𝑆1|+|𝑆2|
                                                   (31) 

where S1 and S2 respectively denote the image segmented by the algorithm to be evaluated and 

ground truth, and || denotes the number of pixels after correlation operation. ρ∈[0, 1], the greater 

the value of ρ, the better the segmentation performance. To compare segmentation results when the 

noise level varied from 3% to 33% for the MRI images with 100% intensity inhomogeneity level, we 

still tested 12 brain MRI slice images, extracted three brain tissues: WM, GM and CSF, and 
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compared the segmentation results of six algorithms. The experimental results are shown in Figure 7. 

It can be clearly seen from the changes of the data curve in Figure 7 that NL-FCMRF algorithm can 

effectively overcome the dual effects of noise and bias field, and the segmentation effect is the best 

compared with the other five algorithms. 

 

Figure 6. Segmentation results for MRI with intensity inhomogeneity and noise. (a) 

Brain MRI slice images, (b) ground truth, (c) FCM, (d) R-FCM, (e) MICO, (f) ARKFCM, 

(g) FCMRF and (h) NL-FCMRF. 

 

(a) 

 

(b)                                    (c) 

Figure 7. DSC comparison of three brain tissues segmentation results. (a) WM, (b) GM and (c) CSF. 
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4.2. Results on real brain MRI image 

The real brain MRI images selected from the IBSR database [30] are used in this section. In the 

experiment, six MRI images with blurred boundaries and low contrast of brain tissue are used as 

experimental samples for segmentation testing, and the size of these images is 256 × 205 pixels. 

 

 

Figure 8. Segmentation results of real brain MRI. (a) Brain MRI slice images and their 

serial numbers are 125, 135, 145, 155, 165 and 175, (b) ground truth, (c)FCM, (d) R-

FCM, (e) MICO, (f) ARKFCM, (g) FCMRF and (h) NL-FCMRF. 

Six algorithms, FCM, R-FCM, MICO, ARKFCM, FCMRF and NL-FCMRF, are still used to 

process these images. The parameters of NL-FCMRF are the same as those in the previous section, 

and the experimental results are shown in Figure 8. Column 1 is six real brain MRI images with 

different slice numbers, there are intensity inhomogeneity and noise in these images. At the same 

time, the contrast between different brain tissues is low, and there is overlap blur at the edge. Column 
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2 is the ground truth, and columns 3-8 are the segmentation results of six algorithms. From the 

segmentation results, NL-FCMRF demonstrates a more accurate segmentation, which can overcome 

the problems of bias field, noise and low contrast in brain MRI. To further quantitatively compare 

and analyze the performance of the six algorithms, another objective evaluation index Jaccard 

coefficient (JS) shown in Eq (32) is used, and the experimental results are shown in Figure 9. 

𝐽𝑆 =
|𝐴𝑖∩𝐵𝑖|

|𝐴𝑖∪𝐵𝑖|
 (32) 

where Ai denotes the pixel set belonging to i-th cluster identified by the evaluated algorithm, while Bi 

denotes the pixel set belonging to i-th cluster in the ground truth. As an index of similarity metric, the 

value of JS is bigger, the clustering performance is better, and vice versa. In Figure 9, the real brain 

MRI slices from three directions: axial, sagittal and coronal, respectively, and six algorithms in this 

paper are used to segment these slice images. The standard FCM has the worst robustness to noise. 

The ability against the noise of R-FCM and FCMRF is improved compared with FCM. However, R-

FCM is not satisfactory at image edge and detail processing, and FCMRF is prone to over-

segmentation. Compared with the above three algorithms, the robustness and detail preserve of NL-

FCMRF have improved significantly. Next, the quantitative mean and standard deviation of the 

Jaccard coefficient is indicated for different direction slice images using six segmentation models, as 

shown in Table 2. 

 

(a) 

 

(b)                                                                                     (c) 
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Figure 9. The comparison of segmentation results in axial, coronal and sagittal slices. (a) 

Comparison of JS values in the axial slice, (b) comparison of JS values in the coronal 

slice and (c) comparison of JS values in the sagittal slice. 

Table 2. Mean and Standard Deviation of Jaccard Coefficient. 

Model Axial slice Coronal slice Sagittal slice 

FCM 

R-FCM 

MICO 

ARKFCM 

FCMRF 

NL-FCMRF 

0.822±0.009 0.794±0.021 0.776±0.026 

0.899±0.013 

0.843±0.007 

0.927±0.010 

0.917±0.011 

0.938±0.008 

0.888±0.012 

0.823±0.023 

0.907±0.019 

0.898±0.008 

0.917±0.007 

0.882±0.014 

0.802±0.025 

0.904±0.021 

0.895±0.012 

0.914±0.013 

5. Conclusion 

Using the mathematical and statistical model to describe the relationship between the local 

neighborhood pixels of an image can depict the structural features of the image more clearly. 

Therefore, a fuzzy c-means clustering model combined with Markov random field is proposed in this 

paper. This model defines a new distance measure incorporated with local statistical features to 

restrain the influence of low contrast and noise. At the same time, a non-local regular term is 

integrated into the energy function to improve the robustness of the algorithm to noise. In addition, 

the intensity inhomogeneity model is also introduced into the energy function to estimate the bias 

field. NL-FCMRF can effectively overcome the inherent defects in brain MRI, and its validity is 

proved in the segmentation experiments of simulated and real brain MRI images. 
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