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Abstract: Breast cancer is the most common type of cancer in women. Its mortality rate is high due
to late detection and cardiotoxic effects of chemotherapy. In this work, we used the Support Vector
Machine (SVM) method to classify tumors and proposed a new mathematical model of the patient
dynamics of the breast cancer population. Numerical simulations were performed to study the behavior
of the solutions around the equilibrium point. The findings revealed that the equilibrium point is stable
regardless of the initial conditions. Moreover, this study will help public health decision-making as
the results can be used to minimize the number of cardiotoxic patients and increase the number of
recovered patients after chemotherapy.
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1. Introduction

Breast cancer is a malignant tumor of mammary gland [1]. In other words, it is a cancer that
originates in the cell units whose function is to secrete milk, the ductal-lobular units of the breast,
mainly in women. Eight out of ten breast cancers occur after the age of 50.

According to Ly et al. [2], breast cancer is the most frequent cancer in women. As reported by the
World Health Organization (WHO) [3], there were 2.3 million women diagnosed with breast cancer
and 685 000 deaths in 2020. In addition, as of december 2020, there were 7.8 million women alive
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who were diagnosed with breast cancer in the past 5 years. It is among the four most common cancers
in the world and is the leading cause of death among women in developed countries and the second
leading cause of death in developing countries [4]. Breast cancer affects more women than men. It
occurs earlier in black women and is often diagnosed at a complicating stage. It is the second most
common cancer after cervical cancer in women in sub-Saharan Africa [2].

In Benin, according to the registry of the National Hospital and University Center of Cotonou
christened CNHU-HKM (Centre National Hospitalier Universitaire Hubert Koutoukou MAGA), breast
cancer represents more than 32.5% [5] of registered patients and the mortality rate related to this disease
is very high, particularly due to late diagnosis. Although screening for this disease is easy, its technique
is still not well known by the Beninese population.

There is no single cause of breast cancer. Various factors, both genetic and environmental, can influ-
ence the onset and development of breast cancer. Scientists estimate that 5–10% of breast cancer cases
are linked to inherited genetic mutations [6]. Age is another risk factor for developing the disease [7].
Other risk factors for breast cancer are being female, exposure to ionising radiation before the age of
35, obesity, nulliparity (absence of pregnancy), hormone replacement therapy after the menopause,
having had a first breast cancer, absence of breastfeeding would also favor this cancer [8–10]. There
are two methods of early detection: early diagnosis and screening. Timely diagnosis allows to detect
the earliest signs and symptoms in the population and facilitate treatment, reduce the likelihood of
cancer spread and increase the chances of a complete cure [11]. Screening is systematic in presumed
asymptomatic populations, with the aim of identifying individuals with possible cancerous abnormali-
ties in the mammary gland as early as possible [12]. Screening methods include mammography, which
is the only one that has proven to be effective, and breast self-examination [13].

Through screening, some tumors can be discovered before symptoms of cancer appear. This is
the purpose of screening: to detect cancer through a systematic examination before the first signs of
cancer appear. This is essential because a cancer that is detected early will be better treated and the
chance of recovery increases. For the detection of the tumor during diagnosis, several techniques are
used and have already proven their effectiveness. To help doctors in this decision making, scientists
have studied this issue and decided to use artificial intelligence (AI) for detection with a high accuracy.
In this paper [14], it is about an AI that is superchampion in the detection of breast cancer. This
proves the maximum reduction of diagnostic errors thanks to the use of Machine Learning. Others
have also performed detection analyses using existing algorithms such as KNN (K-nearest neighbors),
SVM, naive Bayes classification. Consequently they have performed tumor classification to help in
decision making. According to [15], the KNN algorithm is a supervised learning method. It can be
used for regression as well as for classification. According to [16], support vector machines (SVMs)
are a set of supervised learning techniques and are particular linear classifiers which are based on
the margin maximization principle. They performed structural risk minimization, which improves the
complexity of the classifier with the aim of achieving excellent generalization performance. The SVM
accomplishes the classification task by constructing, in a higher dimensional space, the hyperplane that
optimally separates the data into two categories. It is mostly used in classification problems [17]. Thus,
thanks to these existing algorithms, a classification with a percentage of accuracy going in the order of
96%-97% has been achieved. They used R and Python to perform the analysis. The highest accuracies
were obtained with the naive Bayes classification algorithm. All this information is available on [18].
Principal component analysis was performed with a much greater focus on model accuracy.
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Cancer stages determine cancer severity. The method used by physicians to describe the stage of
cancer is the TNM (Tumor, Node, Metastasis) system. This system uses three criteria to determine
the stage of cancer: tumor size, spread to lymph nodes and spread to other organs (metastasis) [19].
The process of curing breast cancer is easy if the cancer is detected at an early stage. The higher the
stage, the lower the chances of cure. There are many treatments available to fight breast cancer: surgery,
chemotherapy, radiotherapy, targeted treatments. The treatment’s choice is made by a multidisciplinary
team, depending on the stage of the breast cancer. In Benin, radiotherapy is not yet used, hormone
therapy is targeted and excessively expensive, and finally chemotherapy is the most commonly used
cancer treatment [5]. The latter is used to eliminate cancer cells or prevent cancer cells from receiving
signals for cell division [20]. Chemotherapy is a cancer treatment that uses several drugs, unfortunately
having adverse effects on the body of those with a health history [21]. This can lead to heart problems
and even death.

Mathematical modeling can be used to study the dynamics of a disease. The history of mathematical
modeling of cancer has been explained in numerous papers [22–24]. Mathematical modeling of cancer
continues to develop to date. Dixit et al. [25] discussed the mathematical model of chemotherapy for
cancer treatment. The model consists of tumor cells and energy specific to Adriamycin (chemotherapy
drugs), while the energy of tumor cells depends on various tumor cells. Schättler et al. [26] proposed
a mathematical model with minimal parameters for low-dose chemotherapy. They took into account
angiogenic signals between tumors and the vasculature as well as tumor inhibitory effects from tumor-
immune system interactions. Jordaõ et Tavares [27] constructed a deterministic mathematical model
that is derived from biochemical models of a human cell in two distinct cases, for comparison: healthy
cells and cancer cells. Mahlbacher et al. [28] used mathematical modeling for experimental investiga-
tion that is suggested to measure and predict interactions between tumor and immunity. Some studies
specifically dealing with mathematical models of breast cancer are as follows. A mathematical model
of breast cancer development, local treatment and recurrence, by Enderling et al. has been established
in [29]. The breast cancer model uses intermediate cell clonal expansion growth rates and mutation
rates as parameters and constructs two and six-step models to fit the age-specific incidence of breast
cancer in the Surveillance, Epidemiology, and End Results Registry (SEER) by Zhang, X. et al. [30].
The cancer treatment model of radiation and chemotherapy was discussed by Liu et Yang [31]. The
breast cancer model focuses on its heterogeneity and the role of mathematical modeling and simulation
in revealing the underlying biophysical processes by Simmons et al. [32]. Segun Isaac Oke et al. [33]
discussed about a mathematical model of breast cancer governed by a system of ordinary differential
equations in the presence of chemotherapy treatment and ketogenic diet. In previous studies, Fathoni
et al. [34] presented a mathematical model of breast cancer at the patient population level. This study
deals with mathematical models at the population level of cancer patients. The model designed is a
mathematical model of breast cancer staging analysis with side effects on the heart of chemotherapy
patients. The model includes subpopulations of stage 1 and 2 (A), stage 3 (B), stage 4 (C), disease free
(D) and cardiotoxic (E). In this study, given data from Benin, we constructed the model by separating
subpopulation A into two subpopulations A1 (stage 1) and A2 (stage 2), making six subpopulations.

In this paper, we used the Support Vector Machine and improved its accuracy compared to previous
works and thus achieved a better classification and output of decision probabilities. The classification
prediction performance with SVM in some earlier studies has been presented in the discussion. In
addition, we used the compartmental model applied to Benin data by building a new six-compartmental
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model. The six subpopulations are modeled by forming a system of differential equations. Equilibrium
and stability point analysis were used to determine the dynamics of the six populations as a function
of time. Numerical simulations were carried out to visualize the dynamic analysis results.

2. Materials and methods

2.1. Materials

2.1.1. Materials for tumor classification

In this work, it will be an analysis on the breast cancer dataset. The data used are diagnostic data
from Wisconsin patients. We collected them on [18]. We used these data because we do not have data
on these tumor characteristics from Benin patients.

The features are calculated from a scanned image of a fine needle aspiration (FNA) of a breast
mass. They describe the characteristics of the cell nuclei present in the image. The three-dimensional
space is the one described in Robust linear programming discrimination of two linearly inseparable
sets [35]. This database is available on the UCI (University of California Irvine) Machine Learning
Repository [18].
Attribute information:

1. Identification number
2. Diagnosis (M = malignant, B = benign)

Ten real-valued features are calculated for each cell nucleus: radius (average of distances between cen-
ter and perimeter points), texture (standard deviation of gray scale values), perimeter, area, regularity
(local variation in radius lengths), compactness (perimeter2/area − 1.0), concavity (severity of con-
cave portions of the contour), concave points (number of concave portions of the contour), symmetry,
fractal dimension (approximation of coastline - 1).

The mean, standard error, least and greatest (average of the three largest values) of these features
were calculated for each image, resulting in 30 features.
Missing attribute values : none
Class distribution: 357 benign, 212 malignant. The description of the variables is presented in Table 1.

The SVM analysis process is summarized in Figure 1.

2.1.2. Materials for modeling cardiotoxicity

This part of the work is based on the study ”Management of Breast Cancer in Visceral Surgery of
CNHU-HKM of Cotonou in Benin [5]. A complete census of breast cancer patients admitted to the
university visceral surgery clinics A and B of CNHU-HKM during the study period was conducted.
The sample was exhaustive, taking into account all breast cancer cases. Patients with pathologically
confirmed breast cancer; advanced breast tumor with all clinical features of malignancy; or those who
had a complete medical record were included in this study. Patients with benign breast tumors and
patients with incomplete medical records were excluded.
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Table 1. Description of variables used in SVM.
Variables Description
Diagnosis Diagnosis of breast tissues (M = malignant, B = benign)
Radius mean Mean of distances from center to points on the perimeter
Texture mean Standard deviation of gray-scale values
Perimeter mean Mean size of the core tumor
Area mean Average area of central tumor
Smoothness mean Mean of local variation in radius lengths
Compactness mean (mean o f perimeter2)

area−1,0
Concavity mean Mean of severity of concave portions of the contour
Concave points mean Mean of number of concave portions of the contour
Symmetry mean Mean of the symmetries with respect to the central tumor
Fractal dimension mean Mean for ”coastline approximation” - 1
Radius se Standard error for the mean of distances from center to points on the perimeter
Texture se Standard error for standard deviation of gray-scale values
Perimeter se Standard error for central tumor size
Area se Standard error for central tumor area
Smoothness se Standard error for local variation in radius lengths
Compactness se Standard error for (mean o f perimeter2)

area−1,0
Concavity se Standard error for severity of concave portions of the contour
Concave points se Standard error for number of concave portions of the contour
Symmetry se Standard error for symmetry values relative to the central tumor
Fractal dimension se Standard error for ”coastline approximation” - 1
Radius worst ”Worst” or largest mean value for mean of distances from center to points on the perimeter
Texture worst ”Worst” or largest mean value for standard deviation of gray-scale values
Perimeter worst ”Worst” or largest mean for central tumor size
Area worst ”Worst” or largest mean value for central tumor area
Smoothness worst ”Worst” or largest mean value for local variation in radius lengths
Compactness worst ”Worst” or largest mean for (mean o f perimeter2)

area−1,0
Concavity worst ”Worst” or largest mean value for severity of concave portions of the contour
Concave points worst ”Worst” or largest mean value for number of concave portions of the contour
Symmetry worst ”Worst” or largest mean value for symmetries with respect to the central tumor
Fractal dimension worst ”Worst” or largest mean value for ”coastline approximation” - 1

It is assumed that there were no healthy patients on first arrival at the hospital. At the time of the
first medical record, patients are classified into subpopulations of stage 1, stage 2, stage 3 or stage 4.
During the treatment process in the hospital, all cancer patients are assumed to receive chemotherapy
treatment. Patients will experience changes in the severity of their cancer over time, so each sub-
population will experience changes in numbers. There are patients whose disease worsens, others who
recovered (disease free) and others who experienced cardiotoxic effects during chemotherapy. The
changes in the population dynamics of these subpopulations are represented in a diagram called the
compartment diagram (Figure 2).

The model is constructed from six compartments representing subpopulations of breast cancer pa-
tients. Each sub-population is represented by the variables A1, A2, B, C, D and E. Subpopulation A1

represents patients with stage 1 cancer. Subpopulation A2 represents patients with stage 2A and 2B
cancer. Subpopulation B represents patients with stage 3A and 3B cancer. Subpopulation C represents
patients with stage 4 cancer. Subpopulation D represents patients without disease after chemotherapy.
In the absence of disease, the cancer is no longer visible on observation. Subpopulation E represents
cancer patients with cardiotoxicity.
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Figure 1. SVM Process diagram.

2.1.3. Methods for modeling cardiotoxicity

The rate of change of each subpopulation is expressed in a system of differential equations as
in Eq 2.1. Be the set defined by Ω = {(A1, A2, B,C,D, E) | A1 > 0, A2 > 0, B > 0,C >

0,D > 0, E > 0}. That is, all solutions satisfy (A1(t), A2(t), B(t),C(t),D(t), E(t)) for any t if
(A1(0), A2(0), B(0),C(0),D(0), E(0)).

Figure 2. Compartment diagram.
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2.2. Methods

2.2.1. Methods for tumor classification

Before performing the tumor classification, we will first look at the correlation between the
variable Diagnosis and the other variables to see which ones are correlated with the latter to re-
fine the model. Then we will have to use the SVM model to perform the classification. The SVM
model will allow us to classify into two categories by drawing a hyper plane to separate the two classes.

SVM model
Consider the pattern classifier, that uses a hyperplane to separate two classes of patterns based on the
given examples {(xi, yi)}, i = 1, ..., n, where (xi, yi) ∈ Rn × {−1, 1}. SVM is a machine learning method
that classifies binary groups by finding and using a class boundary [36]. The training data samples
along the hyper planes near the class boundary are called support vectors, and the margin is the distance
between the support vectors and the class boundary hyperplanes. The SVM is based on the concept
of decision planes that define decision boundaries. A decision plane is one that separates the assets
of objects having different class memberships. SVM is a useful technique for data classification. A
classification task usually involves training and testing data. Each instance in the training set contains
one “target value” (class label) and several “attributes” (features).

Given a training set of instance label pairs (xi, yi), i = 1, ..., n, where (xi, yi) ∈ Rn × {−1, 1}, the SVM
requires the solution of the following optimization problem:

min
w⃗,b

1
2
∥w⃗∥2 + c

n∑
i=1

ϵi

subject to yi(w⃗.ϕ(xi) + b > 1 − ϵi
for all 1 ⩽ i ⩽ n, b ∈ R and ϵi ⩾ 0

Here training vectors xi are mapped into a higher dimensional space by the function ϕ. Then SVM
finds a linear separating hyper plane of the equation w⃗.x⃗ + b = 0 ; w⃗ ∈ Rn, b ∈ R (learns from
the training data set and then applies its knowledge to classify the unknown data) with the maximal
margin in this higher dimensional space and a penalty parameter of the error term ϵ. Furthermore,
k(xi, x j) = ϕ(xi)ϕ(x j) is called the kernel function. There are a number of kernels that can be used
in SVM models. These include linear polynomial, Radial Basis Function (RBF) and sigmoid. In our
case, we use RBF classifiers k(xi, x j) = exp(−γ|xi − x j|

2) from [36].
The SVM is the maximum margin hyper plane that lies in some space. The original SVM is a

linear classifier. For SVMs, using the kernel trick makes the maximum margin hyper plane fit in a
feature space. The feature space is a nonlinear map from the original input space, usually of much
higher dimensionality than the original input space. In this way, nonlinear SVMs can be created.
Support vector machines are an innovative approach to constructing learning machines that minimize
the generalization error [36]. They are constructed by locating a set of planes that separate two or
more classes of data. Constructing these planes, the SVM discovers the boundaries between the input
classes; the elements of the input data that define these boundaries are called support vectors. The
kernel is then modified in a data dependent way by using the obtained support vectors. The modified
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kernel is used to get the final classifier.

Implementation in R software
The package that we used for implementing SVM algorithm in R is e1071. The function used is svm().
First, we create the training and testing data sets. The function used is CreateDataPartition(). We use
80% for training and 20% for test in our study. Second, we train the model on our training dataset. The
target function is svm(). Third, we use our trained model to make a prediction based on our testing data.
In R, we use te function predict(). The function attr(pred svm, ”probabilities”) allows to output the
probabilities. To see the performance, we compute the confusion matrix. The main SVM parameters
used are in Tables 2, 3, 4.

Table 2. Description of variables of CreateDataPartition() function.

Parameters Description Values
y A vector of outcomes Diagnosis variable in patients data
Times The number of partitions to create 1
p The percentage of data that goes to

training
0.8

list Logical – should the results be in a list
(TRUE) or a matrix with the number
of rows equal to p*length(y) and times
columns

False

Table 3. Description of variables of svm() function.

Parameters Description Values
train The training set as a data.frame train data
labels Class labels of the training set
gamma The gamma parameter (if a vector, cross-

over validation is used to choose the best size
2(−3:3): default in R

cost The cost parameter (if a vector, cross-over
validation is used to choose the best size

2(−3:3): default in R

Kernel Kernel type Radial

Table 4. Description of variables of predict() function.

Parameters Description Values
Object A model object for which prediction is desired Test data
Model Model used svm()
Probability Allow to show probabilities of prediction of object TRUE

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1697–1720.
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

dA1
dt = θ1 − µA1A2 A1 − µA1DA1

dA2
dt = θ2 − µA2BA2 − µA2DA2

dB
dt = θ3 − µA2BA2 − µBC B − µBDB − µBE B − γ2B + µDBD
dC
dt = θ4 + µBC B − µCDC − µCEC − γ3C + µDCD
dD
dt = µA1DA1 + µA2DA2 + µBDB + µCDC − µDCD − µDBD − µDED
dE
dt = µBE B + µCEC + µDED − µDBD − γ1E

(2.1)

The parameters in Eq (2.1) are assumed to have positive values and are described in Table 5.
Patients who received treatment for the first time and were diagnosed with stage 1 cancer are in-

cluded in subpopulation A1 with rate θ1. Patients in subpopulation A1 who underwent chemotherapy
have two possibilities, namely recovery (disease-free) with rate µA1D or worse with rate µA1A2 .

Patients whose tumor size already exceeds 2 cm but not more than 5 cm have been diagnosed with
stage 2 cancer and are included in the A2 subpopulation of θ2 rate. Patients in subpopulation A2 who
have undergone chemotherapy have two possibilities, namely recovery (disease free) with rate µA2D or
worse with rate µA2B.

The patients who were treated for the first time in the hospital were mostly suffering from stage
3 cancer, so they were grouped in subpopulation B with rate θ3. The axillary lymph nodes become
increasingly enlarged and the cancer becomes inflammatory. Patients in subpopulation B may have
died of cancer with a rate of γ2. Patients in this subpopulation, after undergoing chemotherapy, may
become disease free with µBD and may also get worse with µBC. Subpopulation B with more intensive
chemotherapy than subpopulations A1 and A2 may cause cardiotoxicity in patients with µBE.

Patients who are being treated for the first time may also fall into subpopulation C because the
cancer has metastasized to other parts of the body (distant metastases), such as bone, liver, lung or
brain. This is also known as metastatic breast cancer. In this condition, it is unlikely that chemotherapy
treatment can cure the cancer, so the rate towards a disease-free state with a rate of µCD is assumed
to be the least compared to µA2D and µBD. Conversely, the µCE rate towards cardiotoxicity is assumed
to be of high value as the patient undergoes very intensive chemotherapy. This subpopulation also
experienced cancer death with a γ3 rate.

The absence of disease in subpopulation D can be increased in patients in subpopulations A1, A2,
B and C. The condition of this disease benefit may last indefinitely or only briefly. If it lasts only
for a while, then patients in subpopulation D may revert to subpopulations of B and C with their
respective rates of µDB and µDC. A prolonged period of subpopulation D may also experience direct
cardiotoxicity to a level of µDE. Patients with cardiotoxicity or in subpopulation E may experience
cardiac death with γ1.

2.2.2. Object of merging the two methods

The SVM classification will allow decision makers to do better in the diagnosis of breast cancer.
With this classification, we can determine if the tumor noticed is malignant or benign. When the
tumor is malignant, a pathological examination is done to identify if the cells are cancerous or not.
If these cells are identified as cancerous, the stage of cancer is detected and treatment is started. The
treatment often used is chemotherapy which is the cause of cardiotoxicity in some patients due to their
health history. The analysis of the population dynamics will allow us to understand the effect of this
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chemotherapy on the heart of certain patients. Thus, the screening being negative, the decision makers
would take adequate measures so that once the cancer is noticed and the stage of this cancer also, a
health check-up would be requested from this patient to identify his history of disease and genetic
diseases related to the heart. After this assessment, chemotherapy treatment can be started based on
this assessment to avoid cardiotoxic effects that can lead to death.

Table 5. Parameters description for cardiotoxicity mathematical modeling.

Parameter Description
θ1 Number of new patients diagnosed with stage 1 cancer
θ2 Number of new patients diagnosed with stage 2 cancer
θ3 Number of new patients diagnosed with stage 3 cancer
θ4 Number of new patients diagnosed with stage 4 cancer
µA1A2 Passage rate from stage 1 to stage 2 (progressive disease)
µA1D Rate of stage 1 patients who achieve a complete response
µA2B Rate of passage from stage 2 to stage 3 (progressive disease)
µA2D Rate of stage 2 patients who experience a complete response
µBC Increased rate of passage from stage 3 to stage 4 (progressive disease)
µBD Rate of stage 3 patients who achieve a complete response
µBE Rate of stage 3 cancer chemotherapy patients who experience cardiotoxic
µCD Rate of stage 3 patients who experience a complete response
µCE Rate of stage 4 cancer chemotherapy patients who experience cardiotoxic
µDB Rate of disease-free patients who relapse back to stage 3
µDC Rate of disease-free patients who relapse back to stage 4
µDE Rate of disease-free patients who experience cardiotoxic
γ1 Death rate of cardiotoxic patients
γ2 Death rate of stage 3 cancer patients
γ3 Death rate of stage 4 cancer patients

The purpose of merging these two methods is to make doctors think of creating a system based on
the health assessment of the individual. After screening and noticing that the tumor is malignant and
the cells of the tumor are cancerous, physicians will be able to prescribe an adequate chemotherapy
treatment that will not cause a cardiotoxicity based on the health assessment of the individual. Thus,
they will save time.

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1697–1720.
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3. Results

3.1. Tumor classification

Figure 3. Correlation matrix.

From the correlation matrix (Figure 3), we notice that some variables are more correlated with the
variable Diagnosis than others. We are going to run the learning test with a SVM model which has the
particularity to draw a hyperplane that tries to divide the two categories of tumors as well as possible
and make the classification possible. First, we did this on all variables and obtained the following
results:

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1697–1720.
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Confusion Matrix and Statistics

Reference

Prediction B M

B 69 0

M 2 42

Accuracy : 0.9823

95% CI : (0.9375, 0.9978)

No Information Rate : 0.6283

P-Value [Acc > NIR] : <2e-16

Sensitivity : 1.0000

Specificity : 0.9718

Pos Pred Value : 0.9545

Neg Pred Value : 1.0000

Prevalence : 0.3717

Detection Rate : 0.3717

Detection Prevalence : 0.3894

Balanced Accuracy : 0.9859

We note that the model can make this prediction with a confidence level of 98.23%. A doctor
can with the help of the machine predict 98% that the tumor is malignant or benign. Now, let us put
ourselves in the position of a doctor who has received a patient and wants to diagnose and has obtained
the different characteristics of the tumor. Suppose that he gets the following characteristics:
Tumor characteristics 1

M B

0.0016686210 9.983314e-01

In this case, the doctor will be able to tell the patient that her tumor is 99.83% benign and that if she
wishes to remove, it will be possible.
Tumor characteristics 2

M B

0.9998388423 1.611577e-04

Thus, in this case, he will be able to tell the patient 99.98% of the time that her tumor is malignant and
that she should start treatment.
Tumor characteristics 3

M B

0.5131059859 4.868940e-01

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1697–1720.



1709

In this case, the two probabilities are almost equal. The doctor will not be able to make decisions and
refer to other diagnoses.
These cases are rare. With this model, the diagnosis will be made with a saving of time. According to
the correlation matrix 3, let us try to select the variables that best explain the variable Diagnosis. The
results obtained from this model are as follows:

Confusion Matrix and Statistics

Reference

Prediction B M

B 48 21

M 23 21

Accuracy : 0.6106

95% CI : (0.5144, 0.7009)

No Information Rate : 0.6283

P-Value [Acc > NIR] : 0.6889

Sensitivity : 0.5000

Specificity : 0.6761

Pos Pred Value : 0.4773

Neg Pred Value : 0.6957

Prevalence : 0.3717

Detection Rate : 0.1858

Detection Prevalence : 0.3894

Balanced Accuracy : 0.5880

’Positive’ Class : M

It can be seen that the percentage accuracy decreases. Thus keeping the variables would increase
the accuracy of the model. Therefore it is better to keep the data so that the classification is better. We
could also try to do a treatment of these data to look for a way to increase the percentage of accuracy
while reducing the number of variables. With the tumor determined to be malignant, we can move on
to the second part of the analysis of the effect of chemotherapy on the patient’s heart by cancer stage.

3.2. Modeling of cardiotoxicity

The dynamic analysis using the system of Eq (2.1) includes the calculation of equilibrium points and
stability analysis. The study of equilibrium and stability points were used to determine the dynamics of
the six subpopulations over time. In the stability analysis of the equilibrium point, the Routh Hurwitz
criterion is used. The Routh Hurwitz criterion determines the conditions for the polynomial roots of
the left half plane (LHP) and cannot be used directly to study the stability of discrete time systems.
The characteristic equation of this system is :

anλ
n + an−1λ

n−1 + an−2λ
n−2 + · · · + a1λ + a0 = 0 (3.1)
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For a polynomial of degree n, the Rough Hurwitz table is a matrix C with n + 1 rows and at least n+1
2

columns. 

λn C1,1 C1,2 C1,3 · · ·

λn−1 C2,1 C2,2 C2,3 · · ·

λn−2 C3,1 C3,2 C3,3 · · ·
...

...
...

. . .

λ0 0 0 0 0


(3.2)

The first line of the table, indexed by λn, contains the coefficients an, an−2, ... i.e., C1, j = an+2−2 j.
The second row of the table, indexed by λn−1, contains the coefficients an−1, an−3, ..., a0 i.e., C1, j =

an+1−2 j, j = 1, ...
For the line i, indexed by λn−i, the elements satisfy the following recurrent relation:

Ci+1, j =
Ci−1, j+1Ci,1 −Ci−1,1Ci, j+1

Ci,1
(3.3)

Necessary condition: all coefficients are positive or have the same sign. If one of the coefficients is
zero or negative, and at least one other coefficient is positive, there is at least one imaginary root with
a positive real part.
Sufficient condition: the system is stable when all Ci,1 in the rough table are positive or of the same
sign. If there is a change of sign, the system is unstable.
The second aspect of the Rough Hurwitz criterion is that the real parts of the solutions obtained must
all be less than 0.
Theorem: The equilibrium point X∗ = (X∗1, X

∗
2, ...X

∗
n) is said to be asymptotically stable if the real parts

of the eigenvalues are strictly negative.
X∗ asymptotically stable⇔ Re(λi) < 0 ∀i.
Equilibrium point: Assume that:



dA1

dt
= 0

dA2

dt
= 0

dB
dt
= 0

dC
dt
= 0

dD
dt
= 0

dE
dt
= 0

(3.4)

It is assumed that the equilibrium point exists. From the system of equations, we obtain an equilibrium
point, which is (A∗1, A

∗
2, B

∗,C∗,D∗, E∗), with A∗1, A
∗
2, B

∗,C∗,D∗ and E∗ given in the equations below. To
obtain the equilibrium point, the following correspondence table (Table 6) has been made to shorten
the parameters.
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Table 6. Parameters correspondences.

Parameter Correspondence
µA1A2 a

µA1D b

µA2B c

µA2D d

µBC e

µBD f

µBE g

µCD h

µCE i

µDB j

µDC k

µDE l

a + b k1
c + d k2

e + f + g + γ2 k3
h + i + γ3 k4
k + j + l k5
γ1 k6
c

k2 m
b
k1 n
d
k2 o

−θ3 + mθ2 s

−nθ1 − oθ2 t

After various calculations, we obtain the equilibrium point:



A∗1 =
θ1
k1

A∗2 =
θ2
k2

B∗ = −
h × k × s − j × k4 × t − k4 × k5 × s + h × j × θ4

f × j × k4 + h × k × k3 − k3 × k4 × k5 + h × j × e

C∗ =
f × k × s + k × k3 × t + f × j × θ4 − k3 × k5 × θ4 + j × t × e + k5 × s × e

f × j × k4 + h × k × k3 − k3 × k4 × k5 + h × j × e

D∗ =
f × k4 × s + k3 × k4 × t − h × k3 × θ4 + h × s × e
f × j × k4 + h × k × k3 − k3 × k4 × k5 + h × j × e

E∗ =
h × l × s × e + i × j × t × e + i × k5 × s × e + f × i × k × s − g × h × k × s + f × l × k4 × s

k6 × ( f × j × k4 + h × k × k3 − k3 × k4 × k5 + h × j × e)

+
g × j × k4 × t + i × k × k3 × t + g × k4 × k5 × s + l × k3 × k4 × t + f × i × j × θ4 − g × h × j × θ4

k6 × ( f × j × k4 + h × k × k3 − k3 × k4 × k5 + h × j × e)

−
h × l × k3 × θ4 − i × k3 × k5 × θ4

k6 × ( f × j × k4 + h × k × k3 − k3 × k4 × k5 + h × j × e)

(3.5)
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Stability
Next, we look for the stability of the equilibrium point. To determine the stability of the equilibrium

point, the equation is first given in matrix form.

F = KG + Θ (3.6)

With :

F =



Ȧ1

Ȧ2

Ḃ

Ċ

Ḋ

Ė


; K =



−k1 0 0 0 0 0
0 −k2 0 0 0 0
0 −µA2B k3 0 µDB 0
0 0 µBC −k4 µDC 0
µA1D µA2D µBD µCD −k5 0

0 0 µBE µCE µDE −k6


; G =



A1

A2

B

C

D

E


and Θ =



θ1

θ2

θ3

θ4

0
0





Ȧ1

Ȧ2

Ḃ

Ċ

Ḋ

Ė


=



−k1 0 0 0 0 0
0 −k2 0 0 0 0
0 −µA2B k3 0 µDB 0
0 0 µBC −k4 µDC 0
µA1D µA2D µBD µCD −k5 0

0 0 µBE µCE µDE −k6





A1

A2

B

C

D

E


+



θ1

θ2

θ3

θ4

0
0


(3.7)

We will use the Rough-Hurwitz criterion to determine the stability of the system. The matrix K is a
matrix of coefficients. The characteristic equation is calculated using det(K − λI). We have:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−k1 − λ 0 0 0 0 0
0 −k2 − λ 0 0 0 0
0 −µA2B k3 − λ 0 µDB 0
0 0 µBC −k4 − λ µDC 0
µA1D µA2D µBD µCD −k5 − λ 0

0 0 µBE µCE µDE −k6 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.8)

The resulting polynomial is tabulated as follows (Table 7):
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Table 7. Resulting characteristic polynomial.

Monomes Coefficients Separator

λ6 1 +

λ5 k1 + k2 + k3 + k4 + k5 + k6 +

λ4 −µBD × µDB − µCD × µDC + k1 × k2 + k3 × k4 + k3 × k5 + k3 × k6 + k4 × k5 + k4 × k6 + k5 ×
k6 + (k1 + k2) × (k3 + k4 + k5 + k6)

+

λ3 (k1+ k2)× (−µBD × µDB − µCD × µDC + k3× k4+ k3× k5+ k3× k6+ k4× k5+ k4× k6+ k5×
k6) + k1 × k2 × (k3 + k4 + k5 + k6) − µBC × µCD × µDB − µBD × µDB × k4 − µBD × µDB × k6 −
µCD × µDC × k3− µCD × µDC × k6+ k3× k4× k5+ k3× k4× k6+ k3× k5× k6+ k4× k5× k6

−

λ2 (k1 + k2) × (µBC × µCD × µDB + µBD × µDB × k4 + µBD × µDB × k6 + µCD × µDC × k3 + µCD ×

µDC × k6 − k3 × k4 × k5 − k3 × k4 × k6 − k3 × k5 × k6 − k4 × k5 × k6) − k1 × k2 × (−µBD ×

µDB − µCD × µDC + k3 × k4 + k3 × k5 + k3 × k6 + k4 × k5 + k4 × k6 + k5 × k6) + µBC × µCD ×

µDB × k6 + µBD × µDB × k4 × k6 + µCD × µDC × k3 × k6 − k3 × k4 × k5 × k6

−

λ1 (k1 + k2) × (µBC × µCD × µDB × k6 + µBD × µDB × k4 × k6 + µCD × µDC × k3 × k6 − k3 × k4 ×
k5 × k6) + k1 × k2 × (µBC × µCD × µDB + µBD × µDB × k4 + µBD × µDB × k6 + µCD × µDC ×

k3 + µCD × µDC × k6 − k3 × k4 × k5 − k3 × k4 × k6 − k3 × k5 × k6 − k4 × k5 × k6)

−

λ0 k1×k2× (µBC ×µCD×µDB×k6+µBD×µDB×k4×k6+µCD×µDC ×k3×k6−k3×k4×k5×k6)

We will use the second aspect of the Rough Hurwitz criterion which is that the real parts of the
eigenvalues of K are all less than 0. Thus, we set this obtained polynomial equal to 0 and determine
the eigenvalues

det(K − λI) = 0 (3.9)

We noticed after calculation that the real part of the eigenvalues is always less than 0. We deduce
that the system is stable.

4. Numerical simulations

In this section, we verify the results of the analysis with numerical simulations. We performed them
using the values in Table 8.
Based on these parameters, we obtained the following equilibrium point: A∗1 = 14.15, A∗2 = 32.77, B∗ =
21.47,C∗ = 34.07,D∗ = 37.09, E∗ = 69.48.We will run the simulations with the initial values: A1(0) =
20, A2(0) = 14, B(0) = 30,C(0) = 20,D(0) = 10, E(0) = 10.
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Table 8. Parameters values.

Parameter Values Sources
θ1 15 [5]
θ2 39 [5]
θ3 43 [5]
θ4 12 [5]
µA1A2 0.46 Assumed
µA1D 0.60 Assumed
µA2B 0.56 [34]
µA2D 0.63 [34]
µBC 0.62 [34]
µBD 0.35 [34]
µBE 0.30 [34]
µCD 0.10 [34]
µCE 0.30 [34]
µDB 0.36 [34]
µDC 0.42 [34]
µDE 0.30 [34]
γ1 0.4 [34]
γ2 0.5 [34]
γ3 0.8 [34]

Figure 4. Simulation of the model with initial values.

Figure 4 shows that the steady state conditions occur from the 12th time period. The stage 1 sub-
population of the initial condition with 20 patients dropped to 14 patients in the steady state conditions.
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Figure 5. Simulation of the model with µDB = 0.1 et µDC = 0.1.

The stage 2 subpopulation of the initial condition with 14 patients rose to 33 patients in the steady state
conditions. Similarly, the stage 3 subpopulation of the original condition with 30 patients dropped to
22 in the steady state. The stage 4 subpopulation increased from 20 to 37 and the disease-free sub-
population from 10 to 37 under steady state conditions. The cardiotoxic subpopulation experienced a
significant increase in the initial number of 10 patients, rising dramatically to 69 patients under steady
state conditions. The results of this simulation are considered as the initial simulation.

For the second simulation, we will try to lower the relapse rates at stages 3 and 4 µDB, µDC.
It can be seen from Figure 5 that the cardiotoxic sub-population is increasing as well as the cured

sub-population. The results show that the disease-free sub-populations increased significantly by 76
patients. Although it managed to add people who recovered, the cardiotoxic subpopulation also in-
creased significantly. The cardiotoxic sub-population reached 89 patients in stable condition. The
subpopulations of patients in stages 1 and 2 are relatively identical to the initial simulation. The sub-
populations of stage 3 and 4 patients decreased by 4 and 9 respectively.

Let’s try to lower the cardiotoxicity rates µBE, µCE and µDE to 0.1.
Figure 6 shows that the cardiotoxic population decreases significantly to 31 patients. Another posi-

tive feature observed is that the disease-free population increased slightly to 49 patients. For the stage
3 sub-population, it has increased slightly from the initial simulation, and the stage 4 sub-population
has also increased to 49 patients. For the other sub-populations, it is relatively the same as in the initial
simulation.

5. Discussion

The principal target of this study is to use machine learning techniques and mathematical modeling
for decision-making regarding breast cancer.

In the results, we noticed that using a SVM model, we obtain the probabilities allowing the attending
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Figure 6. Simulation of the model with µBE = 0.1, µCE = 0.1 et µDE = 0.1.

doctor to know whether the tumor is malignant or benign. Moreover, the proposed mathematical
model shows the behavior of the number of patients in each subpopulation at time t. We obtained a
stable equilibrium point. Our findings related to SVM and mathematical model are quite similar to the
ones in [37, 38]. Table 9 shows the classification prediction performance with SVM in some previous
studies. Modeling in medicine is an important tool in the planning and evaluation of interventions [39].
A recent study [40] found that all breast cancer risk factors can be regrouped in two categories. The
first includes factors such as age, sex, race and genetic makeup. The second one is composed of diet
and life style.

Compartmental models have essential insights regarding the transmission dynamics of communica-
ble diseases [41]. Amani et al. in their work [42] have shown the influence of mathematical models on
public health policy. Hsiu-Chuan Wei has studied breast tumor growth using mathematical modeling,
which governs MCF-7 cell growth with interaction among different tumor cells [38]. Mkango et al.
in their recent publication [43] using mathematical modeling investigated the effects of the combined
radiotherapy and chemotherapy as a way to treat breast cancer in Tanzania.

The breast cancer in Benin is often deadly due to late diagnosis, and it is an evidence of the findings
in this work because the new mathematical model we proposed can help to minimize the number of
cardiotoxic patients and increase the number of recovered after chemotherapy.

In addition, this work outputs an explanation of how the combination of SVM and compartmental
models contributes to optimal decision-making regarding breast cancer. This research is the first one
that computed SVM and compartmental model to check whether a tumor is malignant or benign, and
studied the dynamic of breast cancer patients. The findings are rather important for researchers in
the domains of medicine, public health, mathematics and statistics. The limitations of this study are
related to the availability of data on the tumor characteristics of breast cancer in Benin. We think that
this information will give stronger pieces of evidence.
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Table 9. SVM Accuracy comparison with previous studies.

Accuracy Source
98 % [44]
97 % [45]
92 % [46]
>98 % Our work

6. Conclusions

In sum, the development of our work was done in two main parts.
First, we performed a classification of malignant and benign tumors to help in the diagnosis of

breast cancer patients. We used an SVM model and obtained probabilities allowing the doctor to
declare whether the tumor is malignant or benign at a certain percentage.

In a second step, a mathematical model was built with six variables and 19 parameters. The model
was built according to medical phenomena concerning the cardiotoxicity of chemotherapy in breast
cancer patients. The model consists of four subpopulations of breast cancer patients by stage, a disease-
free subpopulation and a cardiotoxic subpopulation. A dynamic analysis is performed to determine the
dynamics of the number of patients in each subpopulation at time t. The result of the dynamic analysis
is a stable equilibrium point. Numerical simulations were performed to verify the behavior of the so-
lutions around the equilibrium point. Based on the results of the simulations, it can be concluded that
if all parameters are assumed to be constant, the state of the population will be stable at a given time,
regardless of the initial conditions. This shows that the equilibrium point of the system was found to
be stable without conditions. By reducing the relapse rate, an unexpected result is obtained, namely an
increase in the toxic subpopulations. Better results are obtained by reducing the rate of cardiotoxicity.
Under these conditions, the number of disease-free subpopulations increases and the number of car-
diotoxic subpopulations decreases considerably. These simulation results provide a practical solution
to minimise the number of cardiotoxic patients and increase the number of patients who recover or
have a complete response after chemotherapy. The solution is to reduce the rate of cardiotoxicity in
stage 3 and stage 4 subpopulations.
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cer du sein, 2020, available from: https://www.adentis.fr/

une-ia-superchampionne-de-detection-du-cancer-du-sein/, (accessed on: 10-
03-2021).
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