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Abstract: We study the nonlinear stability of spiky solutions to a chemotaxis model of consump-
tion type with singular signal-suppressed motility in the half space. We show that, when the no-flux
boundary condition for the bacteria density and the nonhomogeneous Dirichlet boundary condition for
the nutrient are prescribed, this chemotaxis model admits a unique smooth spiky steady state, and it is
nonlinearly stable under appropriate perturbations. The challenge of the problem is that there are two
types of singularities involved in the model: one is the logarithmic singularity of the sensitive function;
and the other is the inverse square singularity of the motility. We employ a Cole-Hopf transformation
to relegate the former singularity to a nonlocality that can be resolved by the method of anti-derivative.
To deal with the latter singularity, we construct an approximate system that retains a key structure of
the original singular system in the local theory, and develop a new strategy, which combines a weighted
elliptic estimate and the weighted energy estimate, to establish a priori estimate in the global theory.
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1. Introduction

In a series of works [1,2], Kim and his collaborators introduced the following chemotaxis model

= (% (%)) (1.1)

w; = dw,, — k(W)u,

where u is the bacterial density and w is the concentration of nutrient. d > 0 is the diffusion rate of

nutrient. k(w) > 0 is the consumption rate. Typical examples of x(w) include x(w) = w" with m > 0.
System (1.1) is an alternative model to describe the propagation of traveling band of bacteria ob-

served in the experiment of Adler [3]. Compared with the classical Keller-Segel system [4], this model
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is rigorously derived from the notion of “metric of food”, and brings the theory of Riemannian geome-
try to the field of chemotaxis. Choi and Kim [1] have proved that system (1.1) with d = O can generate
traveling bands and traveling fronts under various assumptions on «(w). They also generalized their
results of [1] to the models with porous medium diffusion for the bacterial density, and showed that
there exist compactly supported traveling waves for chemotaxis. Ahn, Choi and Yoo [5] proved the
global existence of strong solutions of Cauchy problem of system (1.1) if the initial value of w has
positive lower bound. Very recently, they [6] have generalized this result to the case where w, with
infinite initial mass, can be zero at spatial infinity.

In this paper, we are interested in the existence and stability of spiky patterns to system (1.1). We
assume that the consumption rate is linear for simplicity, and write system (1.1) as

= (% (”x - u::)) (1.2)

w, = dw,, — wu.

We shall consider the system in the half-space R, = [0, c0), with the following initial value

(I/t, W)(x, O) = (M()(.X'), WO(X))’ (13)

and boundary conditions

(1.4)

(ux = 52)(0,1) = 0, w(0, 1) = b,
(i, w)(+00,1) = (0,0).

where b > 0 is a constant. That means we prescribe no-flux boundary condition for the bacterial
density and saturated boundary condition for the oxygen. This kind of boundary conditions have also
been used in a chemotaxis-fluid model to describe the formation of concentration patterns for aerobic
bacteria observed in the experiment of [7].

System (1.2) is actually a chemotaxis model with signal-suppressed motility. In other words, the
diffusion rate of the bacterial density is monotonically decreasing as the concentration of the signal
increases. There are several analytical works for the chemotaxis model of self-aggregation type with
signal-suppressed motility in bounded domains. See [8, 9] for the global existence of classical solu-
tions if the motility function satisfies the power law, [10,11] for the existence of critical mass generating
blowup if the motility is an exponential function, [12] for the formation of spiky patterns. In contrast,
system (1.2) is of consumption type. That is the chemical signal w is consumed by the bacteria u. It
turns out that such two types of chemotaxis model may exhibit different dynamics. Indeed, one can
easily verify (following the argument of Proposition 2.1 of [13]) that if b = 0 or w satisfies homo-
geneous Neumann boundary in the half space, then system (1.2) only has constant steady states, and
no pattern exists. In other words, it is the nonhomogenous boundary condition that generates spiky
patterns. Such phenomenon is quite different from the solution structures of chemotaxis model of self-
aggregation type for which the intrinsic mechanics of chemotactic interaction generates spiky patterns
(see [14, 15]). Furthermore, Tao [16] showed that, under homogeneous Neumann boundary condi-
tions in bounded domains, the multidimensional classical chemotaxis model of consumption type has
a unique global bounded solutions under suitable assumptions on the initial data w, and the chemotac-
tic coefficient. In particular, the global existence or blow-up of solutions is independent of the initial
data uy. This study indicates that the chemotaxis model of consumption type posses another different

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13988-14028



13990

property from the one of self-aggregation type since the latter has the well-known critical mass on
ug for blow-up in dimension 2. This work subsequently led to various generalizations. Baghaei and
Khelghati [17] improved the results of [16] to a larger set of wy and chemotactic coefficient. Frassu
and Viglialoro [18] further generalized the works of [16] to the models with indirect signal consump-
tion. Recently, Li and Zhao [19] and Wang [20] proved that under homogeneous Neumann boundary
conditions, the chemotaxis-consumption system with regular signal-dependent motility also has global
bounded solutions under some assumptions on wy. It is worth mentioning that for the chemotaxis-
consumption system with logarithmic sensitivity, Winkler [21,22] introduced the notion of renormal-
ized solutions to handle the singularity in the study of global existence of large solutions.

There are some studies on the dynamics of classical chemotaxis model of consumption type with
nonhomogeneous boundary conditions. In the one dimensional case, Hong and Wang [23] studied
the stability of steady state to the minimal model with Dirichlet boundary condition for the nutrient
in bounded domains; Carrillo, Li and Wang [13] obtained the stability of steady state to the model
with constant motility and logarithmic singular sensitivity in the half space. In the multidimensional
case, Braukhoff and Lankeit [24] proved the existence and uniqueness of steady state to the minimal
model with nonhomogeneous Robin boundary condition, while Lee, Wang and Yang [25] obtained
similar results for the minimal model with Dirichlet boundary condition, and they further analyzed the
boundary layer phenomena. Recently, Fuest, Lankeit and Mizukami [26] further showed the stability
of steady state for the minimal parabolic-elliptic model on the base of the works on the steady state
obtained in [24].

One can observe from the boundary condition w(+co, f) = 0 that, in contrast with the models studied
in the above mentioned works, system (1.2) is actually a chemotaxis model with singular sensitivity
and singular motility. In this paper, we shall develop some new strategies to overcome analytical
difficulties caused by the coupling of nonhomogenous boundary condition and singularities. And we
obtain the following results:

(1) system (1.2)—(1.4) admits a unique steady state (U, W), and U — Ad(x) as d — 0, where d(x) is
the Dirac function and A is the initial bacterial density, i.e., A = fooo uy(x)dx;

(2) this spiky steady state (U, W) is asymptotically stable in the sense that if the initial data (1, wy) is
a small perturbation of (U, W) in some topology, then the solution (u#, w) will converge to (U, W)
time asymptotically.

Following the argument of [13], one can easily show that result (1) holds. The aim of this paper is
to show the nonlinear stability of steady state. The main difficulty of the problem is the presence of
two types of singularities in the model: one is the logarithmic singularity of the sensitivity function, the
other is the inverse square singularity of the signal-dependent motility. As in the arguments of [13,27—
29], we relegate the former singularity by using the Cole-Hopf transformation to a nonlinear nonlocal
term. However, this transformation is not powerful enough to settle the latter singularity. We shall
develop new ideas to deal with the challenge of inverse square singularity of motility. Indeed, we first
reformulate the problem in the perturbation variables using the method of anti-derivative, to classify
the strength of singularity. Then we construct an appropriately approximate system, which retains
some key structures of the original system, to establish the local well-posedness of the perturbation
equations. In this step we will first prove that the approximate system is locally well-posed in a time
interval [0, T'], where T is independent of the artificial parameter €; and then pass to the limit &£ — 0"
by using the Aubin-Lions compactness lemma and a diagonal argument. Finally, to close the a priori
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estimate that is necessary to obtain the global well-posedness of the perturbation equations (or the
asymptotic stability of steady state), we establish a new weighted elliptic estimate upon the weighted
energy estimates where the weights are artfully chosen according to the nice structures of the equations.

The paper is organized as follows. In Section 2, we present some elementary calculations and state
the main results of this paper. In Section 3, we derive the perturbation equations, and establish the local
well-posedness theory. Section 4 is devoted to the proof of nonlinear stability of the spiky steady state.

2. Preliminaries and main results

In this section, we first show the existence of spiky steady state to the system (1.2)—(1.4). Then
we present some elementary calculations and state the main results on the asymptotic stability of such
spike profile.

Owing to the zero-flux boundary condition for u, the mass of bacterial should be conserved. In

other words,
/l::f u(x,t)dx:f uo(x)dx. 2.1
0 0

Thus, the steady state of (1.2) satisfies

1 f
—(UX—UW) :0,
W2 w )]

AW, —~ WU =0, 22)
J; Udx = 2> 0.
with boundary conditions
Uw,
(Ux_ W )(0) =0, W(0) = b, (U, W)(+0) = (0,0). (2.3)

Observe that when W > 0, the steady state equations (2.2) and (2.3) is actually the m = y = 1 case of
the chemotaxis model studied in [13]. Thus, according to Proposition 2.1 and Theorem 2.1 of [13], we
have the following result.

Proposition 2.1. (1) The system (2.2) and (2.3) has a unique smooth solution (U, W) satisfying U’ < 0,
W’ <0, and

_ /12 A -2 _ A -2
U(x) = @(l + @x) , W(x) =b(1 + @x) . 2.4)

(2) U concentrates as a spike at x = 0as d — 07, i.e.,
U(x) = A8(x) in the sense of distribution as d — 0.

We next pay attention to the asymptotic stability of (U, W) to system (1.2)—(1.4). Because the
chemical concentration w(x, ) has vacuum end state at x = +oo, there are two types of singularities in
system (1.2): one is the singular sensitivity +*, the other is the singular motility w~2. To handle the
former singularity, motivated by the works of [13,27-29], we employ the following Cole-Hopf type
transformation w

V= _Wx’ that is, (Inw), = —v, (2.5)

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13988-14028



13992

which along with the boundary condition w(0, t) = b gives
w(x, 1) = be™ b 00D, (2.6)

Hence we transform system (1.2) into a nonlocal system of viscous conservation laws as follows

up = (W2t + uv))y, (x, 1) € Ry X R,
v, = dvy, — (dV —u),, x, 1) e R, xR
t ! ( ) + + (27)
w(x, 1) = be b o dy,
(u, V)(x,0) = (uo(x), vo(x)),
where vy = —V:V—‘r. One may observe that the new system (2.7) still has singular motility near x = +co

for the bacterial mass u. In this paper, we shall develop some novel ideas to solve this challenging
problem.

We next determine the boundary conditions of (2.7). The second equation of (1.2) gives (Inw), =
—dv, + dv* — u. Because b is a constant, for smooth solutions (Inw), = 0 at x = 0, it then follows that

dv, —(@d*-u)y=0atx=0.

Denote by (U, V)(x) the steady state of (2.7), where U(x) is given in (2.4). Then we have

W A a4
e Ay Ay
Ve = =3 = 351+ 579

It is easy to see that
V(x) - 0as x — 0.

Because it is expected that v(x, ) — V(x) ast — oo, it is natural to impose v(+oo,7) = 0. Therefore,
the boundary conditions of (2.7) are

u,+uv =0, x=0
dvi =@~ =0, x=0 2.8)
(u,v)(x,1) = (0,0), x — oo.

We also need some notation. H* denotes the usual Sobolev space whose norm is abbreviated as
17 == Z'J‘-zollajfll2 with [Ifll := IIfll2,) and HY is the weighted Sobolev space of measurable

function f such that vwd?f € LA(R,) with norm ||fll, := | Vo flliz,) and [I£12,, = 5, | Vool fIP
forO< j<k.
We are now ready to state the main results.

Theorem 2.1 (Local well-posedness). Let (U, V) be the steady state of (2.7) and (2.8). Assume that
the initial perturbation around (U, V) satisfies ¢po(c0) = ¥o(c0) = 0, where

(G0, 0)(¥) = fo (o) = UG, voy) = VOdy.
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Suppose that

w()x

¢o € H'(R.), Yo € L*(R,), v € L*(R,).

Then there is a time T > 0, such that the system (2.7) and (2.8) has a unique strong solution (u,v) on
R, x (0, T), satisfying

u-UeC(0,T;L2,)NL*(0,T);H,), v—V € C(0,TI; L) N L*(0,T); H,,),

where w; = U and w, = é

Theorem 2.2 (Global well-posedness). Assume that the conditions of Theorem 2.1 hold, and that there
exists a constant 6y > 0 such that,

2 2 2 2 2
oll™ + llgboll” + IWoully, + lidoxll, + lldoxilly, < bos

where w3 = # and wy = # Then the system (2.7) and (2.8) has a unique global solution (u,v)(x,1)
satisfying

u—U € C([0,00); H") N L*((0, 0); H?), 2.9)
v =V e C([0,00); H') N L*((0, 00); H?). '
Moreover, the following asymptotic convergence hold:
sup |(u, v)(x,t) — (U, V)(x)| = 0as t — +oo, (2.10)
xeR 4
and
lu(-, 1) = Ul r,) — 0 as t — +oo. (2.11)

Using the Cole-Hopf transformation (2.5), we transfer Theorem 2.2 to the original system (1.2)—
(1.4).
Theorem 2.3. Let (U, W) be the unique steady state of (1.2)—(1.4). Assume that the initial perturbation
satisfies ¢o(00) = Yo(o0) = 0, where

Po(x) = f (uo(y) — U(y)dy, Yo(x) = —Inwp(x) + InW(x).
0
Suppose that there is a constant 6y > 0 such that

ol + igoll” + osll7,,, + ldoxlls, + lidoulls,, < So.
Then the system (1.2)—(1.4) has a unique global solution (u, w)(x, t) satisfying
{u — U € C(10,00); H') N LX((0, 00); H?),
w— W € C([0, 00); H') N L*((0, 00); H?).
Moreover, we have the following asymptotic convergence:

sup |(u, w)(x,t) — (U, W)(x)| = 0as t — +oo,

xeR,

and
(e, w)(-, 1) = (U, W)l w,) = 0 ast — +oo.
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Remark 2.1. We provide both the pointwise convergence and L' convergence for the solution. In
contrast with the result of [6] where it is required infinite initial mass for w, our Theorem 2.3 implies
that the chemical concentration w carries finite mass for all time.

Remark 2.2. In view of its biological background, it is also interesting to study the stability of trav-
eling waves to system (1.1). However, when we apply our argument to that problem, the perturbation
equation involves several unfavorable terms which are sophisticated to estimate. We leave this problem
for the future study.

Remark 2.3. We shall remark that the steady state (U, W) obtained in Proposition 2.1 is a smooth
solution of system (2.2) and (2.3), and it satisfies U(x) > 0 and W(x) > 0 for any x € [0,+c0). In
other words, U(x) only vanishes at the far field, and the singularity only happens at x = +oco. This
fact enables us to take % as the key weight function, and derive the stability of steady state in specific
weighted space.

3. Local well-posedness

This section is devoted to proving Theorem 2.1, i.e., the local well-posedness of system (2.7) and
(2.8). We first reformulate the problem in the perturbation variables using the method of anti-derivative.
Because the perturbation system still has a singularity, we have to construct an appropriately approxi-
mate system. Then we prove that the approximate system is locally well-posed in a time interval [0, T']
where T is independent of the artificial parameter €. After establishing the uniqueness of solutions in
weighted Sobolev space, we finally derive the local well-posedness of system (2.7) and (2.8) by the
Aubin-Lions compactness lemma and a diagonal argument.

3.1. Reformulation of the problem
The steady state (U, V) of system (2.7) and (2.8) satisfies

(W2, +Uv) =0,
x (3.1)
dV., — (dV2 -U), =0,
where the boundary conditions are given by
(U, + UV)0) = (dV, — (dV* - U))(0) = 0, (U, V)(+) = (0,0). (3.2)
Integrating (3.1) in x, we have
U,+UV =0,
(3.3)
dv,—dv?+ U = 0.

Observing that (u, v) satisfies the zero-flux boundary condition, the perturbation around (U, V) should
have the conservation of mass. That is

fm(u(x, H—Ux),v(x,t)— V(x))dx = fm(uo(x) —Ux),vo(x) = V(x))dx = (0,0). (3.4)
0 0

Then we could adopt the method of anti-derivative to decompose the solution (u, v) as

G5 1) = fo Wy 1) = UG V(1) — V),
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which implies
br=u-U Y,=v-V. (3.5)

Substituting (3.5) into (2.7), integrating the equations in x, noting w = "YW, and using (3.1), we have

o = W_Zezw(¢xx + o+ Ul//x + V¢x)’
U = Al = 2dVi, — d* + ¢,

which is equivalent to

W2, = e (e + $uthx + Ui + Vby), 3.6)
W = d e —2dVi, — dy? + ¢, '
The initial value of (¢, ¢) is given by
(do, Yo)(x) := (¢, ¥)(x,0) = fo (uo(y) = U(y), vo(y) — V(»)dy, (3.7)
with
(¢, Yo)(+0) = (0,0), (3.8)
and the boundary condition satisfies
(0, 4)(0,1) = (0,0), (&, ¥)(+00,1) = (0,0). (3.9)

We shall remark that the anti-derivative for v could remove the nonlocality of the problem, but it can
not handle the singularity of the motility. Indeed, to overcome the difficulties caused by the singular
motility (or degenerate relaxation), we construct an approximate system of (3.6) as

Wipr = € (fox + s + U + Vo), (3.10)
wt = dwxx - 2dvs¢’x - d%zc + ¢m .
where € > 0 is a constant, W, = W+ gand V, = W% - V. Here we also approximate V by V, so that

system (3.10) retains the key structure of system (3.6):

Ve

1
—~£ (=), =0. 3.11
W (Wg) (3.11)
Indeed, recalling that V = —%, a direct calculation leads to
V. 1 V.We+ W, VW+W,
- (—)x = = = 0
W, W, w2 w2

3.2. Local well-posedness for the approximate system

Employing the principle of contraction mapping (e.g., see [30]), one could easily get the local well-
posedness for the approximate system on a time interval that may depend on &.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13988-14028
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Proposition 3.1. Assume that the initial data (¢, Vo) satisfies
¢o € H'(R,), o € H'(RY).

Then, there exists a constant T > 0 depending on &, ||pollg1 and |Wollg such that the approximate
system (3.10) with (3.7)—(3.9) has a unique local strong solution on R, X [0, T'] satisfying

(¢,¥) € C(I0, T1; H') N L*((0, T); H).
Proof.

By Proposition 3.1, there exists a time 7; > 0 such that the system (3.10) with (3.7)—(3.9) has a
unique solution (¢, ¥) on (0, T) that satisfies ¢ € C([0, T]; H))NL*((0, T); H?). Starting at T, applying
Proposition 3.1 again, we can extend the solution (¢, ) to another time 7, = T + t;, where t; > 0
depends on &, ||¢(T)|[ and [[Y(T1)||:. Continuing this procedure, we get two sequences {f; } >, and
{T;} g where t; depends on &, ||¢(T )|l and [[Y(T )|l , such that the solution (¢, i) exists on the time
1nterval (0, T}), and satisfies

(¢,¥) € C([0,T;1; H") N L*((0, T;); H).

Take the maximal existing time 7" as T* = Ty + > it i. Then the solution can be extended to (0, 7™)
and satisfies

(@.¥) € C([0, T); H') N L*((0, T); HY),
forany T € (0, T"). Clearly, if T* < oo, then

Hm (IOl + W O)l) = oo, (3.12)

However, one can not use Proposition 3.1 to derive the local well-posedness of system (3.6) by
directly passing to the limit € — 0, since the time interval [0, 7] obtained in Proposition 3.1 depends
on &. In the following, we have to establish appropriate a priori estimates that are independent of &.

Proposition 3.2. Assume that (¢o, ¥) satisfies

wa
VW

Then there exists a constant Ty > 0 independent of €, such that the approximate system (3.10) with
(3.7)—(3.9) has a unique solution on R, X [0, T], which satisfies

¢o € H'(R,), Yo € L*(R,), € L*(R,). (3.13)

00 2 0 2
sup f ( Wed? +u* + W + “}”V—)dx < 2f (ng)g + 5+ Wep, + %x)dx, (3.14)
0 0

t€[0,To] & Ws

To wZ
f f (— i W) < C(Ty). (3.15)
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Proof. Thanks to (3.12), it suffices to establish a priori estimate in the weighted Sobolev space that
is independent of &. To achieve this, we multiply the first equation of (3.10) by v%’ and integrate the
resultant equation over (0, ¢) X (0, +o0) to get

Y o (7 Ve, O o U 1f°° )
2[) Ws¢ —‘ﬁ‘fo e (W£¢¢x+ Ws + Wg +W8¢¢’x)+2 0 Ws¢0
_ (e | _f’f"" 2¢¢_)2c_ftfm 20 96
_ff[ (Wa)xe OP. e e W . e W, (3.16)
ff _ew@/fx f Ws¢%
0
By (3.11) we have

2¢¢ ff 2 f[foo 2¢;¢¢x¢’x lfoo 2
Lo [ A N e A

It follows from Young’s 1nequahty that

U‘—me<awwfww%ﬁawff¢wx (3.17)
Using the inequality
1 1
00 00 7 00 ¢2 2
s =-2 [ ooy <2( [“we] ([T (3.18)
X 0 0 WS
we get
[ttty
0 Ws
Sce||w||Lw||¢||Lm(R+)'f e‘”%dx'
<Ceh || YW, 12 A it ¢x|| [ 22
e ¢ LZ(R) \/— LZ(R) \/— L2(R,) \/— L2(R,)
v (3.19)
<C€2|W||Loo|| V ¢||L2(R ) \/—”L (RJr)” \/—x L2(R,)
e Yx ¢
SC€6”¢“L ” W€¢”i2(R+)”\/——”22(R+) 8 | \/_”LZ(RJr)
X e X
<CeM | Wl |+ CEMI| \;”_HLZ(]R) Hl \/(”_HLZ(R)

Combining (3.17) and (3.19), one obtains
00 00 2
HCweal [ T8
2 Jo 8 Jo Jo We
t 00 lpz
gJ}WWf(m&+i) (3.20)
0 0 Ws
! 00
+ Cf o (f W dx + f R dx) f W.¢;.
0 0 0
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Multiplying the second equation of (3.10) by ¢, we get

s [ wwa [ [wr=caa [ [ v [ [Cew-a| [Twies [wic2n
0 0 JO 0 JO 0 0 0 JO 0

By Young’s inequality, we have

(o] d (o] 00
)2d f vgwxdx' <7 f W2dx + C f y2dx, (3.22)
0 0 0

‘foo ¢xlﬂdx‘ < CeZIWHLoo foo lﬂzdx+ 1[00 2¢/¢de
: 0 8Jo We

Moreover, using (3.18) yields

and

| f pda| <CIW e, f Widx
0

C”"/IHLZ(R )”lﬁx”7 (3.23)

<C||9[/||L2(R ) + C”'v[’xlle(R )
Now substituting (3.22) and (3.23) into (3.21), we have

1002dtc>02
5£¢"‘fo%

. . 2w¢2 . (3.24)
scf(1+e2“‘””v’° f e ff f(f zdx) f 7
0
Combining (3.20) with (3.24) yields
lfoo 5 5 3 t 00 5 ¢)2( d t 00 5
= (Wep™ + y)dx + — e Ldxdr + = Yidxdr
2 Jo 4 Jo Jo W, 4 Jo Jo
! 00 f 00
SCf ele‘”lL“f W8¢2dxdT+Cf e6”‘””L°°(f W8¢2dx)3dr
0 . 0 . 0 . 0 . (3.25)
+Cf 1 + Wl f wzdxdT+Cfe2”‘””L°°f widxdr
+C f e ( f vy X dx) ‘dr+C f f yldx)’ dr e L f (Wedi + Ug)dx.
0 o We 0
Multiplying the first equation of (3.10) by ¢*‘ , one gets
v [
ff (2¢_¢x¢xx 2¢¢X¢Xxlr//x _¢xxl%c+ Wx¢t¢x) f W‘9¢(2)x
0 (3.26)

24 Qw ¢x¢xxlﬁx -
f f [ ( W W2 ) ¢x¢xx Wg ¢xx¢x]

-~ 2w W +2x+V52+—fW52,
ﬁj{: e Wg ¢xw ¢x) 2 0 ¢0x
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where we have used the first equation of (3.10) in the second equality. As in (3.19),

’f 2¢/¢x¢xxl//x ‘

0021,0
s ¢
8 )y W.

2

00 3 o0 3
— 2 dx +Ceﬁ”‘””“’° f ngbidx + CeSMWle f —Xdx) .
0 ) ()

From Young’s inequality, it follows that

|I}m ez‘”%%ﬂﬁxdx‘ < Ce?Wll= I}m Yldx + % 0°° Z:f”d
[
‘ f e ¢r t/fde‘

' < CeZHW”LOOf 1% ¢2dx+ C62||¢//||me wx Xy,

and

* ellgx ol
<C= I NIz, \(/b_w
Wl 11 W b Pux O

<C‘€2 || ¢)C||L2(R )” \/—”LZ(R )” \/—”L (RJF)HWXHL R®Ry)

Y . bus
ngo W dx + CEWV || Wil 2, lle” \/ngle(R+)|ll//xlli2(R+)

1 00 62w¢2 1 00 €2w¢2 .

- x - xx Iz 2 4
sgf(; W dx + 8](; W dx + Ce®W'lt ||w/W£¢x||L2(R+)||¢x||L2(R+)

1 ) 21//¢x 00 ezwqbix
<3 fo oAty fo o dx + CeWl= (| W 1S, + 115,).

Substituting (3.27)—(3.30) into (3.26) leads to

f W dx + = f f ”dXdT
<Cff v Px it dxdT+Cf 2l oo (f w2dx+foo quﬁ)zcdx)d?'
L C f Ol oo ( f W,pdx + f ;[/zdx) dr + - f W dx.
0 0

Multiplying the second equation of (3.10) by 77 Y

1 o] 2 t 00 2
NN
2Jo We 0o Jo We

, one gets

A b YW 1 1 (™ ¥,
—fofo (2dW€wxwxx W T (Ws)xw,wx)+2 W

&

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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By Young’s inequality,

‘f 2d—~% lﬁxl//xxdx<Cf %d + 2 f %d
Moreover, integration by parts leads to
‘ f P xx dx|
0 Ws
® XXV X “ 1 XV X
- [ B [ b 22
b+e

- 2¢ oo le co 12
Sl ¢x l f ¢xxdx + C62||¢||L°° f &dx +
8 0 W 8 0 Wg 0 Wa

x=0

P

b+e

The boundary term can be estimated as

Patfx

b+e

x=0

=20+ g)¢ o * 20b + s)‘”ch 0

= b+ Sf ¢x¢xxdx - —f wxwxxdx

o [ Eetnrcom [Twa:

+6f w”d +Cf %d

where 6 is a small constant. It follows from (3.18) that

V12 Y
| fo a5 ] <C - fo v dx

l/’x lpxx
<Ol Welage 1= e Iz
LZ(R ) XX LZ(R ) \/W L*(Ry) \/W L*(Ry)
& &

Vo 3 a3
\/_ L2(Ry) \/_ L2(Ry)

lpxx l//x 3

In view of the second equation of (3.10), it holds:

<Cl|

|
_f (W)xwthdx :f 2dV( )xwzdx f ( )xwxxwxdx
0 & 0 0

_ - ” . 3
fo st [ deg s
| f 24V, widx f Yy

where

x=0|"
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00 1 oo‘//2 d 001/12
d_x Xx xd <C —dx+ < xxd’
|} dgpaa<c [ Graveg [ s

1 1 [ e
‘f(; (Wg)xd)xl/’xdx‘ < g ¢xdx+cez||kﬁllmof wx Xy,

0
and by (3.18),

| f d<—>xwxdx\ <CIW e Wl fL||Lz(R+

fl/lxxd foo xd)%
. W,

Then choosing 6 < 1, by (3.31), we get

0o 2 t 0o 12
LR

W ¢ ¢
<cf 1+e2”‘”””’°f ff e ”+cff e = (3.33)
cfo (fo ;”V_zdx)u(fomwxczx) +cf znwnmf Wt + & f‘%x

Combining (3.31) with (3.33), we have

f(w ff (zm wxx)

3

<c f f +c f el ( f ngbzdx)

3 (3.34)
00 wz
+Cf 2||¢||wa W¢ +Cf(1 +e6||l//|L°°)(f dex)
ve [aveme [T e ([ 8ay+5 [ v+ Vo)
0 s
Multiplying (3.25) by K > 1 and combing the resultant inequality with (3.34), we have
¢ v
rx 2¢ Zzp XX 2 xx
f(¢+:p+W¢+ )ff( W+¢X+W8)
cc [[eme [ s wayvc [ (( [y ([ wa)
0 0 0 0 0 (3.35)

t 00 2 t 0o 42
+ Cfo (1+ ez”‘””L"")fO (v + ;PV_,;) + Cfo (1+ e6”‘/’”L°°)(j; W“:dx)3
00 2
+ f (Wg% + R+ W, + %"),
0 Wa
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which further gives

foo (qubz + Yt + Wep? + w—’z‘)dx
0

W,
!
SCf[1+
0

” v dx| Ol
O(8¢+w+W¢+W)xe
0o wZ
+ f (Wg¢3 + s+ Weph + O") .
0 Ws

Set H(t) := " (Weg? + 2 + Wg? + £)dx. Noting

e > 1forz >0 and ||y < f W + ¢z,
0

we are led to
Hm<CJYH+W6“ Ho,

wa

where H,, = fooo(qu% + YL+ Weeh + wo)dx. Itis easy to verify that when T, satisfies

— 1 H,
2Ce"VI(Hy + 1°T, < min . 70},

then .
H(t) < 2H, for t € (0, Ty).

Indeed, consider
!
(HH) + 1) < Mf(H+ D+ (Hy + 1),
0

where M = Ce'2VFo_ then
H() < (Hy+ 1D)(1 -2M(Hy + l)zt)_% — 1 for ¢ small.

Since (1 — x)™2 < 1 + x for x € (0, 1), it holds

H(@t) < (Hy+ D)(1 +2M(Hy + 1)) = 1 = Hy + 2M(Hy + 1)*tHy + 2M(H,y + 1)*t

for ¢ small. Thus, when we take T, satisfying (3.36), we have (3.37).
If we take

o . . 2
H, = f W(g5 + ¢5 )dx + f (95 + &5 )dx + fo W + %)dx,

wa

H, = f W(¢O+¢Ox)dx+ f (;b + )

(3.36)

(3.37)
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then H, > Hy and H, < Hy. Now we take T satisfying
2Ce VI (H, + 1)*T, = min{%, %}.
Clearly, T is independent of &, and
H(t) < 2H, for t € (0, T). (3.38)

Thanks to Proposition 3.1, (3.13) and (3.38), for any 0 < £ < 1, system (3.10) with (3.7)—(3.9) has a
unique solution (¢, ) on R, X (0, T)) satisfying (3.14). The other desired estimate (3.15) follows from
(3.38) and an integration of (3.35) in . O

3.3. Local well-posedness for the singular system

Let us now study the local well-posedness of (3.6)—(3.9). We start with the uniqueness of the
solutions.

Proposition 3.3. Let (¢, ) and (¢,¥7) be two solutions of system (3.6)—(3.9) satisfying

VWi € 150, Ty HY, 2 € 12(0, 7); HY,
N

lyl’ix S 2 wixx 2 2

L*((0,T); L), — € L“((0,T); L"),
N € L7((0,7); L) N € L((0,T); L)
fOri = 192 Then (¢la lﬁl) = (¢29 w2) on IR+ X [Oa T]

Proof. Define (¢, {) by

Wi € L((0,T); L?),

¢ =¢1— 2 Y =Y — Y.
Then (¢, ¥) satisfies

W2¢t :ez¢l¢xx + (Wlx + V)62W1¢x + (ezlﬁl - 62w2)¢2xx

2 2 2 2 2
+ (e V- e w2)¢2x¢1x +e lﬂ2¢2x¢x + V(e V- e w2)¢2x

+ UMy + U@ — )y,
wt :dwxx - (Zdv + dwlx + dex)l/’x + ¢x~

Multiplying the first equation of (3.39) by %, and the second one by ¢, summing the resultant equations
up, one gets after an integration by parts that

1™ 2, 2 " e 2
Ej; (W¢ +w)+foj; (—W +dwx)
_ T St f’foo 20, P2 PYx f’f‘”ﬂ 2
fo‘jo‘(e e)—W+OOeW+OOWe¢wx
+ fo fo S = g+ fo fo T = g+ fo fo b (3.40)
_ T _ t w@_K i 241
fo fo (2dV + di, + Ao b fo fo (55— 37 + Gpe)e™ 69

' * 201 20 ¢2xx¢ lfoo 2 2
+Lfo(e e )—W +2 ; (W¢o+%)-
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By Young’s inequality, we have

‘fom(ezwl 3 ez¢2)¢2xvtf/1x¢dx‘

Scf“wdx
0

w
< Cllll- 1ol 321||L2|| \‘”fvivuy (3.41)
< CIINWelal v_||Lz|| 321||Lz+C||w||Lz||wx||Lz|| 3"1an
< CUNWIE + W) ffin 8 j’“_n + A,
* 2 2¢2x¢¢x ¢2x
| fo e 2 ] < Clgle| \/_HL g \/_
¢2x
< CIVWl -2t + 12 22 e, 3.42
¢ L \/— 12 \/— \/— ( )
b Ve o b
< | \/_uLz + CIINWIP, + Cll \/_anu \/Z_an,
| f ) ge%«wxdx\ < IR, + O VW, (3.43)
0 W \/— L L
To'e) U 00
[ e =i < [ woiax
0 0
< C||¢||Lw||w||Lz||¢/2x||Lz
(3.44)
L2 \/— L2
b
< C(IIR + IIVWHIZ) + 4l r”“’
‘foo K(ez‘”‘ - ez‘/’z)¢2x¢dx' < Cfoo |w¢2x¢|dx
¢x ¢2x '
<4l \/_||L2+C||«/_ oI + Cll \/_annwuLz,
and
| f ¢ dx — f QY +dgn + dy 3 pd] < SR + BBl + CIIE,
0 0
where ¢ > 0 is a small constant. A direct calculation yields —% + (v_lv)x = 0, and then we get
& _ K 2¢1 _ foo 24 YixpPx ¢x 2 2
[ (B -+ Go)eond = | R 7 R e R AL RCRL)
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14005

Integration by parts leads to

~ 21 240 ¢2xx¢
| fo (e - )T

— * 21/11 _ 2¢2 % foo 2¢1 _ 2,//2 ¢x¢2x
_‘L(e e)xW+0(e e)_W
- 1

2{/11 _ 2!,02 _
+ »fo (e e )(W)X¢¢2x
:‘ foo 282'#1% + zfoo(ezwl _ esz)w2x¢¢2x
0 w 0 w

" AN R foo YRS §
+f0 (€™ —e™) =+ | (€ — ) )xbha|-

As in (3.42),
* 1¢’x¢¢ X ¢x '/’x ¢ X
| fo 2 =] < Gl gl + CUNWIL + Nl \/"‘_HLZ (3:47)
As in (3.41),
 ou g W ¢ 2 2
| fo 2 = )= < UG + G-l + 8012 s + W),
- ¥ 24 Pxox bx bax
1 fo (€ =)= 2 < Cllle | el
2 b,
< CUWIR + 2l j_uLz | Wny,
and
2y Zlﬁz ¢2x
1 f (e - ><—>x¢¢2x <CU Wl
& é (3.48)
<d|| \/"_||Lz+cn\/_ ¢l + Cllwl | \/Zian.
Now substituting (3.41)—(3.48) into (3.40), we arrive at
1 * 2 2 ' * 2 ¢)26 2
—f (Wo +w)dx+ff (e¢1—C6)W+(a’—C6)wx dx
" p (3.49)
f (ux/_ I, + I, + 1 vx_an)(Hu \/%niz).
We next present the estimate for fo w*dx Multiplying the second equation of (3.39) by 5 L e get
oo 12 ! 00 2
L
(3.50)

! * wxx ' * wxx(px
f f ( ) lr//xwt L ‘f()‘ W (Zdv + dwlx + d'vaX)l/’x + f(; 0 w .
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Using the second equation of (3.39), we get

[ visc[ wirvvwi o
0 0

and .
f Wi+ Y < ClyllTe < Clz, + s

0

Thus, .
f ( ) Wby <Cf —+6f w?sc‘f &ﬂsf Wy + 62
0 W 0

Similarly,

® Y f f w2,

—(2dV +d, + dyr W, | < C )

0

and

Wil w < ¢r
f Cfo W

Substituting these inequalities into (3.50), we get

1 Oow)zf ' ood XX
Sl Ge e[ [T(5%) G20

Multiplying (3.49) by K > 1 and combing the resultant inequality with (3.51), we have

f (W + +‘/’X>dx<c f (u«/_ OIE + W, + 1 jl||Lz)(1+||f/%||iz).

It then follows from the Gronwall’s inequality that

00 2 2
f (W¢ +¢’—+w—)dx—0
o W W

Therefore, ¢ = 0 and ¥ = 0. We complete the proof.
We are now ready to prove the local existence of solutions to system (3.6)—(3.9).

Proposition 3.4. Assume that (¢o, W) satisfies

Yox

o € H'(R,), v € L(R), —% € IA(R,).

Then there exists a constant T > 0, such that the system (3.6)—(3.9) has a unique solution (¢, ) on
R, x (0, T), which satisfies

00 2 0o
sup f (W¢ + W¢ + lﬁ_) dx < Cf (W¢0 + % + W¢0x + %) dx, (3.52)
0

te[0,T]

where C is a constant independent of T.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13988-14028



14007

Proof. Owing to Proposition 3.2, there exists a constant 7 > 0 independent of € > 0 such that the
approximate system (3.10), subject to (3.7)—(3.9), has a unique solution (¢, ) satisfying

sup f Wl + g2+ W, + 2 ax <2 f Wk + 0+ Wk, + 22 )
t€[0,T] JO W‘9 We
wa

<Cf (¢o+¢0x+¢’0+_)

(3.53)

where C is a constant independent of £. Owing to (3.53) and (3.15), passing to the limit & — 07,
applying the Banach-Alaoglu theorem and the diagonal argument, we know that there is a subsequence,
still denoted by (¢, ¥.), such that for any r € (0, o0)

We — W, weakly in L*((0, T); L*(0, r)),
b — ¢, weakly in L*((0, T); L*(0, r)),
W, — ¥ weakly in L*((0, T); H*(0, r)),
¢, — ¢ weakly in L*((0,T); H*(0,r)).

Noting H?(0, r) and H'(0, r) compactly embed into H'(0, r) and L*(0, r), respectively, for any r > 0,
we obtain from the Aubin-Lions compactness lemma that

e — ¢ strongly in L*((0, T); H'(0, 7)) N C([0, T]; L(0, 1)),

$. — ¢ strongly in L2((0,T); H(0, r)).
Observing that W, — W and V., — V in C[0,r], one can see that the nonlinear terms in (3.10),
e*epo s, and dy? converge strongly in L2((0, T); L*(0, 7)) to e* ¢, and dy/?, respectively. Then
one can take the limit as £ — 0 in (3.10) to derive that (¢, ¢) satisfies (3.6) in the sense of distribution.

Moreover, it follows from the weakly lower semi-continuity of the norms, the first inequality of (3.53)
that

A/ 2 2 wx
” W¢“L°°((O,T);H1(O,r) + ”'ﬁllL""((O,T);LZ(O,r) ” \/W”Lm((o T) L2(0 r)

Yex
< Lim(|| VWl o T WellZ o200 + 1= e 02200
0 ellLe(0,1):H'(0,r) llLe(0,1):L2(0.r) VW, L>((0.7);L2(0,r)

lﬁox
< 2lim(|| v Weeboll; P 2 [ 2o T ==l 20.)
0 L>((0,T);H'(0,r) L>((0,T);L*(0,r) \/W L>((0,T);L*(0,r)

— (AT 2 2 Yox o
- 2(” W¢O”L"°((O,T);Hl(0,r) + ”lpOHLm((O’T);LZ(O,r) + ” \/_”L“’((O T) L2(0 r))

Therefore, (3.52) holds, and the proof is complete.

Proof. [Proof of Theorem 2.1] It is a consequence of Propositions 3.3 and 3.4.
4. Nonlinear stability

In this section, we prove the global well-posedness of strong solutions to the system (3.6)—(3.9),
which also implies the nonlinear stability of spiky steady state to the original chemotaxis system (1.2)—
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(1.4). We construct global solutions of system (3.6)—(3.9) in the more regular space:

X(0,T) :={($.y)(x, D¢ € C([o T1:H%),¢. € C([0,T]; L) N L*((0,T); H.),
¢ € C([0,T]; L,

s Sy

for T € (0, +o0], where w, = % w3 = # and w4 = # Set

N() := sup (lpC, DIP + G, DI + g DI, + 1 DIE 4, + llda DIE,)-

7e[0.1]
Since U(x) < 6 -, the Sobolev embedding theorem implies

SuP{||<15( Dl W Dllee} < N(@).

7€[0,1]

2 * (1
ien = f (—>xd - f LLLYNE f (5) Pdx
<Cf w"d +Cf &dx,
U

'ﬁx(% t)

Moreover, noting

we have

< CN(®).

L®

2
¢( ) f (_)xd — f ¢x¢xxd _f ( )x¢2dx
<Cf ¢xd +Cf %dx,

¢x(-, 1)
< CN().
VU =

For system (3.6)—(3.9), we have the following results.

Similarly,

which implies

20,0 € C(0, T, H?), ¢, € C([0, T1; H ) N LZ((o, T);H>).

4.1)

4.2)

4.3)

4.4)

Proposition 4.1. There exists a constant 6, > 0, such that if N(0) < 6y, then the system (3.6)—(3.9) has

a unique global solution (¢, ) € X(0, o) satisfying
I6C, DI + G DIP + g DI, + I DI o, + 1B DI,
+ f (DI 4, + (D, + GO, )T < CN?(0)
0

foranyt € [0, ).

(4.5)

Thanks to the local well-posedness established in Propositions 3.3 and 3.4, we only need to derive

the following a priori estimates to prove Proposition 4.1.
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Proposition 4.2. Assume that the conditions of Proposition 4.1 hold, and that (¢,¥) € X(0,T) is a

solution of system (3.6)—(3.9) for some constant T > 0. Then there is a constant € > 0, independent of
T, such that if N(t) < e forany 0 <t < T, then (¢, ¥) satisfies (4.5) forany 0 <t < T.

To establish the a priori estimate, we need the following Hardy inequality (see Lemma 3.4 of [13]
for the proof).

Lemma 4.1. (Hardy inequality) If / € Hy(0, ), then for j # —1, it holds that

f 00(1 + kx) f2(x)dx < f (1 + kx)"™** f2(x)dx. (4.6)
0

1 )2 k2
where k > 0 is a constant.
We start with the L? estimate.

Lemma 4.2. If N(t) < 1, then there exists a constant C > 0 such that

f(Ugb +w)dx+ff(¢ +Uw)dxd7+ff (—+l//x)dxd7'

4.7)
<C f (U + yg)d-x.
0
Proof. We rewrite (3.6) as
W2, = o+ Vo + U + b + (€2 = (o + Voo + Uiy + ¢y, 45)
U = dire, — 2dVip, — AP + . '

Multiplying the first equation of (4.8) by %, the second one by ¢, and integrating the resulting equations
on (0, ¢) X (0, +00), we have

2 t ) 00
1f (W s +w)dx+ff ¢xdxdr+dff widxdﬁdf |V | dxdt
[ L3l G [ [ S5 [ [0

f f @ = DG+ Dt + U+ Vgodudr + 5 f ( % +wo) dx.

By (2.4) and Hardy inequality, we get

¢x _ % 2 f 2
f X dx fo (1 + x)¢xdx_48d ¢2dx. (4.10)

Owing to (3.3), it is easy to compute that

4], (2) =0 u

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13988-14028



14010

which gives

[ M@, (@) eos=o

By (4.2) and Young’s inequality, we derive that

00 0 © 2 *
| fo P 1] < e fo l(i%'dstN(t) fo L+ CNG) fo ¢dx.

Similarly, since [[¢/(-, 7)||.~ < N(¢) and

2U
V=x1/—,
3d
we have . -
| f dyyda] < dN() f Widx,
0 0
and

f (e - DE et G+ Ui+ V)

:_fo 2wwx¢¢x f(zw 1)( b, + f(ezw_1)¢(¢x%+U¢x+V¢x)

Yx(5 1) f|¢¢x| (¢ |Ux¢¢x|)
C
il ekl 5

<1
+ Cf U |¢w(¢xwx + wa + V¢x)|
0

00 ¢2
< CN(t) f (¢% + == +y?),
0 U

where we have used the Taylor expansion

o= s 3,5

< 2y + 2jwi
n=2

n—ll//n—l
n! '

= 1
<2+ 2wl ) 2 Gy
n=2

< Clyl.

Now substituting (4.10)—(4.15) into (4.9), noting V, < 0, and using Hardy inequality, we get

f(U¢> +w)dx+ff( +lp)dxdr+ff(¢ + Uy?)dxdr
2
< CN() f f (¢2+¢—X+¢§)dxdr+ f (U$t + yg)dx.
0 0 U 0

Thus, we obtain (4.7) provided N(¢) < 1.

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
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We next establish the H! estimate.
Lemma 4.3. If N(t) < 1, then the solution of (3.6)—(3.9) satisfies

[l [ (%5

Scfm(%x"‘%*‘lj%"‘%)
0

Pux

Proof. Multiplying the first equation of (4.8) by 33,

lfoo 2+ft

2 0 ¢x 0 0 W2

_ ! OOE _ ' 001 _ ' Do¢x¢xx¢’x
\f(; ‘fov W2 ‘Pxxl//x ‘f()‘ \f(; W2 ¢x¢xx f(; o W2
I A VRN 1 f g
\f()v‘fo\ (e 1)W2(¢xx+¢x¢’x+wa+V¢x)+2 0 ¢0x‘

In view of (2.4), it holds

we get

2

A
Ux) = odb W(x).

It then follows from Young’s inequality that

0 U XXV X XX
f W@”wdxscf "f’ﬂ'f' x§4 e +cf Wldx.
0

Moreover, by (4.13),

“ vV
‘f(; W(px(pxxdx < _f ¢xxd f W2¢2dx

S _ )C)C f ¢
2 Jo
Using (4.2), it is easy to see that
* XY XXF X OOl X )C)C|
| f ¢ ‘évzw dx| <CN(1) f ¢¢3 dx
0

2
<CN(t)f ¢xdx+CN(t)f ¢”d

By (4.16), the fact that ||y/(-, 1)||.~ < N(¢) and (4.2) again, one has

¢xx
[ e = 15560+ 00+ vo v i

Substituting (4.20)—(4.23) into (4.18), we get
lfw¢2+(l_CN(t))flfw¢_)%x
2Jo 7 M4 0o Jo W?
1 SV ! 00 00
s(C+CN(t))ff @+(C+CN(t))ff wi+1f Py
0 0 W 0 0 2 0

2
dx < CN(t) f ( oy wz)dx.

(4.17)

(4.18)

(4.19)

(4.20)

4.21)

(4.22)

(4.23)
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Thus, by (4.19) and Lemma 4.2, when N(f) < 1, we arrive at

f¢2dx+ff ¢xxdxdT f¢0xdx+Cf(U¢o+wO)dx

Yax , we have

L[y Vi Punx v
ifo U”’fofo U ff *”ff Vel

Multiplying the second equation of (4.8) by

ff( )W* ff—wxx f%x,

By Young’s inequality,

® xWxx 1 © @2 d © Y2
'f 2Ll dx’ﬁ—f &dx+—f @dx.
. U 2@ ), T2 ), U

‘Zd foo l//xlr//xxdx < Cf _l'ubxwxxldx
0

<Cf wzdx+ f w”dx.

Moreover, (4.13) gives

By (3.3) and (4.13),

[v))-5

which in combination with (4.2) leads to

(2o

< (11]) (dx = 2dVir, — dW* + )| dx
0
¢’x'//xx 2 |¢’jf| * ¢x'~/’x
<C f f 2dx + f +C f =
VU VU 7 VU dx 0 VU

and

<C f ¢"dx+ C+CN(t)fzpdx+ fw”d
'ﬁxxwx

00 d 00 00 (,112 00 s
— Y2, dx| < CN(1) f dx < CN(t) f X dx + CN(1) f Yldx.
' »fo U ' 0 VU o U 0
Now substituting (4.26)—(4.30) into (4.25), we derive that

LR = NIy
ifo U+f0fo (g—CN(t))FS(C+CN(t))f0fO¢X+Cfof0 i
1

2
* lpOx

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13988-14028



14013

Then by Lemma 4.2, when N(f) < 1, we have

00 wZ t 00 wZ 00 wZ 00
f “Xdx + f f X dxdr < f Xdx+C f Uk + y2)dx.
0 U 0 JO U 0 U 0

Combining (4.31) and (4.24), we get (4.17).

The H? estimate is as follows.

Lemma 4.4. If N(t) < 1, then it holds

lp[ l//xx ¢[X wtx XXX XXX
[ (oo G (%

°° ¢0 Vor Do . Vo
<C Upy + iy + =2 + =22 2y o)
fo(% v U U Ul U

Proof. Differentiating the first equation of (4.8) with respect to ¢ leads to

W2¢tt :¢txx + ¢txwx + ¢x¢tx + Ulptx + V¢tx
+ (€ = D) @rxx + Pty + e + Uhe + Vyy)
+ 26U (P + B + U, + V).

Multiplying (4.33) by and integrating it in x and 7, we get

e [ 5L, )
L[ o

f f (eZIﬁ - 1)¢txx f f (821// = D(@nfs + ol + U + V¢tx)¢

; fo fo 2e2”/‘/’;f’¢xx+ fo fo 2P g+ Up 4 V9
* ¢(2)xx ¢(2)x lﬁ%x
+Cf0 (U3 +U2+7)’

where we have used

¢0xx ¢(2)x + wéx) )

U¢t|tO—C(U3 U2 U

By Young’s inequality, Hardy’s inequality, (4.2) and (4.4), we get

Oo¢t¢txwx m Oo¢_?x M ® 2
'fo e d| < > fo T + 2f0¢,d

< CN() fw %dx,
o U

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)
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and

00 00 2 00
| f ¢’¢5%xdx s CN(t) f @dHCN(r) f ¢*dx
0

<CN(t)f l//txd +CN(t)f ¢’xd

Moreover, integration by parts leads to

‘f ¢tw1xdx ‘f l#zd)mdx f ¢zxd fo‘oo %tzdx.

Using (4.16), (4.2) and (4.4) again, a simple calculation yields

f <e2w-1)¢txx¢fdx f i [( 1)(@+¢u¢t( >x)+2e2‘”wx¢m¢’]

<CN(t)f (%+¢t)

o
<CN —dx,
“)fo v

and
| f (@ = D + b+ Uiy + V) 2 T
0

< CN®) fo %(qsmwx s+ Ut + V)

0o 2 00 2 00 2
< CN(t)f %dx + CN(t)f @dx + CN(t)f ﬂdx.
o U o U o U

[t [

<CN(t)f ( +@+¢t+¢/t)

< CN(t) f (@+@)dx,
o \U U

'f 2¢¢tlpt(¢xwx + Uy, + V¢x)dx < CN(t)f (=

Now substituting (4.35)—(4.41) into (4.34), we arrive at

dx

Similarly,

and

¢tx wtzx

)dx

1 * 2 3 ! oo¢t2x ' mwtzx ' 00¢,[2
Efo U¢,+(Z—CN(1))f0fo UgCN(t)fofO 7+cf0f0 =

* ¢(2)X)C ¢(2)X w(z)x
C “0x y T0x)
" fo (U3 T tU

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)
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By (4.2), (3.6), and Lemmas 4.2 and 4.3, we estimate the last term of (4.42) as

¢2
ff —tdxdT<Cff( z//x+—lﬂx+v)dd’r

2
<C f f ( 2 (1+ N () +¢—)dxd7' (4.43)

<Cf (%x + @ + U¢>O + l//o)dx

00 2 . . . . .
We next estimate fot fo ‘%’ Differentiating the second equation of (3.6) with respect to ¢ leads to

Ui = dwtxx - Zdetx - Zdwxwtx + ¢tx- (444)

Multiplying (4.44) by , we have

L N A (7 A 7N A
EL U+£L 7—[ —ffd(—)x%x%

w (4.45)
f f 2d— L f Theo
Owing to Young’s inequality, we have
00 . 1 00 12 1 00 2
| f il w’dx|s— f i g4 L f LIpp (4.46)
o U 2Jo U 2Jo U
and
00 1 00 .
| [ agpuwa < [ Pa
o U o VU
d 00 wZ 001702 (447)
< - 24 “Ldx.
<7 j(; U x+C fo T X
By the boundedness of U(x) and V(x), we arrive that
=Y > 1 g, d (T
| fo 2d5¢,¢mdx‘sc fo SWldx < C fo T+ ] fo Tdx. (4.48)
Moreover, the fact that ||, (-, 1)~ < CN(?) leads to
* l/’x‘//twtx * '7[/t2x * l//tz
‘j; 2d T dx‘sCN(t)j; 7dx+CN(t) i de. (4.49)
Substituting (4.46)—(4.49) into (4.45) gives
[Getem [
0 (4.50)

<(C+CN(t))ff ‘”f ff o —f U|’0
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Combing (4.42) and (4.50), by (4.43), we get

f Ugdx + f ‘”’d + f f ¢’xa’xdr+ f f ‘”’dedr
0

2
v, b vy
<C Ul + O | Z0x 0w 20w gy,
fo(% Wttt s g

(4.51)

Squaring (3.6) and multiplying the resultant equations by %, owing to (4.51) and Lemma 4.3, we

obtain
s f o ¢2l//2 V2
“dx <C ¥ + Uy +—¢-|d
f TN+ T U+ 6 da -
0 2 2 2 .
X w X ¢ XX l/’ XX
SCfO (U¢§+w0+%+70+ [33 + IOJ )dx,
and
4 2
f w’”‘d Cf ﬂ+_¢ +¢—+(i dx
o \U U Uu U
. R W B V3 (359
2 Ox Ox Oxx Oxx
SCL (U¢0+l//0+ﬁ+ U+F+7)dx.
Differentiating the first equation of (3.6) in x yields
¢xxx = ¢xxwx - ¢x¢’xx - Ux(ﬂx - Ulr//xx - Vx¢x - V¢xx + W2¢tx + 2WWx¢t (4 54)

- [(621# - 1)(¢xx + ¢xlr//x + Ul//x + V¢x)]x

Squaring (4.54) and multiplying the resultant equations by % lead to

f f ¢XXX d dT

2 2
= Cf f T ¢ AL —¢ + —¢xx + ch,x) (4.55)

WZW)% 5
+ Cj; ; U ¢ + Cj(; f(; U ‘((e% — D)@ + O+ Uy, + V¢x))x‘ )

By (2.4), (4.51), the boundedness of U(x), and Hardy inequality, we have

t 00 W2W
‘ff 4 ¢2dxdr <Cff ¢’xdxd7'
0 Jo U

PR 02 (4.56)
<Cf (U¢0+w0+ﬂ+ 5x+%+%)dx,
and
t 00 W4 t V)
ff 7¢,2xdxd7' SCff @dxdT
00 ¢ R (4.57)
<C f U8+ + o Ty oy Py
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Using (4.16) and Lemmas 4.2 and 4.3, with the fact that ||[y(-, 1)||;~ < N(t), we get
f 00 1 zw 9
7 (@ = D@+ S+ U+ Vo)
0 Jo

t CS N
<C f f %Iasm + Gulia + Giax + Ut + Ut + Vit + Vel
0o Jo (4.58)

! o €4¢ 5
+ Cf f _[l//x((pxx + ¢x¢x + U'vllx + V¢x)]

<CN(®) f (¢Ox Vi + U¢O+wo)+CN(t) f f ‘bm

Substituting (4.56)—(4.58) into (4.55), and using (4.52) and (4.53), when N(f) < 1, one gets

i oo 12 00 2 2
f f Do e < € f UG+ + Yoo Vor | Fee | Vi) g (4.59)
)T ; U U

Similarly, differentiating the second equation of (3.6) in x yields

AV = Wi + 2dV 0, + 2dV o + 2dY s — P (4.60)

Then squaring (4.60), multiplying the resultant equations by 5 using (4.51) and Lemmas 4.2 and 4.3,

we arrive at
2
ff ‘/’dedr<cff (@+1¢ +—¢xx+‘/’U U)d dr

¢0x lpOx ¢0xx l’b(z)xx
< — 4+ — — |dx.
_Cfo (U¢0+¢//0+U2+U+U3+ 7 X

From (4.59), (4.61) and (4.51)—(4.53), we get the desired (4.32).

(4.61)

¢()x ¢(J XX

Notice that the estimate (4.32) requires that the initial data satisfies 75 + 75 < oco. Hence, to

guarantee the extension procedure works, we further need the following weighted elliptic estimate.

Lemma 4.5. If N(t) < 1, we have

¢x('a t) ? ¢x('7 t) ? foo 2 ¢x ¢xx
NG Lw+‘ Lm+ | ¢ dx + ; U2d X+ | U3dx e
¢ Vi, o U3 o2
scfo (¢0+¢/0 =+ 5)‘ + 13’;)‘ + ;;x)dx.
Proof. By (4.1), (4.17) and (4.53), we have
Yo ) $or . Yor | Powr , Vou
I Wi . < cf (UpR + v + UOZ l(} + 83 + 2)] )dx. (4.63)
We write the first equation of (4.8) as
¢xx + V¢x = W2¢t - U'ﬁx - ¢x'~ﬁx - (e2¢ - 1)(¢xx + ¢xwx + Ulﬁx + V¢x) (464)
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Multiplying (4.64) by — UZV’ noting
OO¢X¢XX _ —2y/-1 42 - —2y7-1 2
O Ty dx=-U"V ¢ - O U2V, pdx,
(e - 1) f N f‘” ¢ 1
———— by dx — e -1 d
fo gry Pudidx gy 9 , 2 Dy &
B e -1) ,
202V & x=0’
we get
e +1) , T 2013 ) 42
077 Pt ), (-U+WV),) ¢ldx
“ W2 * ¢xwx ¢ 'ﬁx Zezwl//x
=- —— ¢ pd ——d 4.
\j; U2V¢ ¢l x+£ UV X+ 0 f ¢x UZV ( 65)

oL 1 °°<e2¢— 1)
- fo S (e ‘”(W)xd’” fo oy OOt + U+ Vg dx.

A direct calculation by (3.3) gives

1 Vv 1
-2 “2y-1y _ x
-U +(U \% )x—ﬁ—U2V2>ﬁ.
Thus,
00 ¢2
LHS of (4.65) > f U—;dx. (4.66)
0
We next estimate the RHS of (4.65). By (4.2),
2 Zw 2 1
d) lﬁx f x dx < CN(t) ¢x —=dx.
0 U2V uv 0
By (4.16),
2y _
f o0+ U+ Vpdx < CNG) f ( "”5"3') x

Then we get from (4.13) and Young’s inequality that

* |¢t¢x| * |¢xwx| * |¢)25'7[’x ¢x
RHS of (4.65) sCfO NGy + C‘fo v + Cfo U2V CN(t)f ——dx wen

1 ~ 4 v
<(5 + VW) | gedreC f Udidx +C j; T

Now substituting (4.66) and (4.67) into (4.65), by Lemmas 4.3 and 4.4, we have

2 2
¢0x wa ¢Oxx + l//Oxx

¢ dx <Cf (Ug + g + —= + U3 U )dx, (4.68)

0
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which along with Hardy inequality gives

2 2
f ¢*dx <C f (Ut +y2 + %x @ ¢£’;"+%)dx. (4.69)

We next write the first equation of (3.6) as
boe = W2 — (Vo + U+ dh).

Squaring this equation and multiplying the resultant equation by -5, owing to (4.2) again, we obtain

U3

00 2 2
f ¢”dx<Cf (U¢,2+V¢ +%+¢Uf )dx

0o g2
<C(1+N() [";);dﬁc f Ugldx +C f %dx.
0 0

Thus, by (4.68) and Lemma 4.4,

XX ¢x l/lzx ¢2xx lfllzxx
f ¢ a’x<Cf (U + 2 + 2> 5 + 53 + fj)dx. (4.70)

Using (4.3), (4.68) and (4.70), we get

2
f %d+f‘%w
-

¢0x lf//%x q%xx l//(z)xx
<C U — + — + — |dx.
f0(¢0+% NN T A

¢x(', l)
VU

4.71)

Therefore, (4.62) follows from (4.63) and (4.68)—(4.71). We complete the proof.
Proof. [Proof of Proposition 4.2] It is a direct consequence of Lemmas 4.2—4.5.

Proof. [Proof of Theorem 2.2] The a priori estimate (4.5) guarantees that if N(0) is small, then N(¢)
is small for all + > 0. Thus, applying the standard extension argument, we obtain the global well-
posedness of system (3.6)—(3.9) in X (0, co). Owing to the transformation (3.5), system (2.7) and (2.8)
has a unique global solution (i, v)(x, t) satisfying (2.9).

We next prove the convergence (2.10). We first show that

¢+, DI + i, DIl = O as £ — oo. (4.72)

It suffices to prove that ||¢,(-, 1)|[> € WH1(0, 00) and ||y(-, )||> € W1(0, c0). By Lemma 4.2, we get

f f ¢*dxdt < C f f ¢xa’xdt<oo (4.73)

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13988-14028



14020

By Lemma 4.5, we have ||[y(-, )|~ < C and II%Ile < C. In view of the first equation of (3.6), there

exists a constant C such that

d 002 00
— dx| =2 «p.d
dtfoqsxx fowx

=2 foo Grxpdx
0

=2 f ) W20 ™ (hrx + duthy + U, + V)dx
0

2
SCIIe‘”IIim( ”d +C(1+|| it ||Lm f ¢de+f «/lidx),
0

0

(4.74)

where we have used (4.13) and (4.19). Then integrating (4.74) with respect to ¢ and using (4.5), we get

(o) d 00
f ‘—f Prdafdr < oo,
o 'dtJy
which, along with (4.73) leads to ||¢,(-, 1)|[*> € W!1(0, o0). Thus

I, Ol = 0 as t — oo.

f f Yldxdt < oo.

Using the second equation of (3.6), there is a constant C > 0 such that

d 00 00
dtf vdx fo Yathidx

f ) Yl = 2dVip — Y + ¢, )dx
0

Similarly, one has

=2

=2

<C + I3 f Yrdx+C f Yidx +C f drdx.
0 0 0

Then we integrate (4.77) with respect to ¢t and make use of (4.5) to get

fo 'd—t fo Wldx|dr < o,
which, along with (4.76) implies ||y(-, 1)||> € W10, o). Thus

I (-, Ol = O as t — oo,

(4.72) then follows from (4.75) and (4.78). By Cauchy-Schwarz inequality and (4.5), we get

Po(x, 1) = =2 f ¢x¢xx(y’t)dy<2 f 2dy : f %dy 7
< Cllg.(, Dl

— Qast— +oo.

(4.75)

(4.76)

4.77)

(4.78)

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13988-14028



14021

This implies

sup |¢.(x,1)] = 0 as t — +oo.
xeR4

Similarly, we have

sup |y, (x, 1) = 0 as t — +oo.
xeR

Thus, (2.10) holds.
Finally, we prove the L! convergence. By Lemmas 4.2 and 4.4, we get

f f —<C and f d)ﬂ<C 4.79)
o Jo U
A simple calculation gives

d ~ )2( ¢1X¢X ¢x ¢tx
d_t,ﬂ de l f —dx +f —dx. (4.80)

Integrating (4.80) with respect to ¢ and using (4.79), we obtain
0o d 00 2
f — f ¢—xdx
o |dtJy U
which, along with the first inequality (4.79) yields [~ 50D g € W(0, 00). And then

o 12 ,t
f (X )dx—>OaSt—>oo.
o U

Thus, from Holder inequality and the fact that fooo Udx < oo, it follows that

00 00 12 % 00 %
f | (x, D)ldx < (f de) (f de) —0ast — oo,
0 0 U 0

This yields the convergence (2.11).

dt =2

dt < oo,

Proof. [Proof of Theorem 2.3.] We just need to pass the results from v to w to complete the proof of
Theorem 2.3. The transformation (3.5) and Theorem 2.2 give the regularity of =* — WW
Next, we derive the results of w—W. Let £ := w—W. Owing to (2.5) and (3.5), it is easy to calculate
that
w(x, t) = be” b vondy — po= [y WetVidy — vy
Thus, £ = W(e™ — 1) and & = W (e™ — 1) — We ™, which gives the regularity of w — W.

It is left to show the convergence. By Cauchy-Schwarz inequality and (4.5), we get

X 00 1 00 1
YA(x0) =2 f Yy, Dy < 2 f wdy)’( f yldy)’ < CligG o)l
0 0 0
Noting |[¥(-, H)||~ < N(t) < 1, the Taylor expansion gives

o (=1 )”lﬁ"

N-e=ly- < Clyl.

n:2
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Therefore, by (4.78), we get
sup [£(x, )] < C sup [Y(x, )] < Clly( D2 — 0 as t — oo,

xeR, x€R,
For the L' convergence, noting fooo W(x)dx < oo, it follows from Holder inequality and Hardy inequal-
ity that

f ) l£(x, Hldx < C f ) Wiy (x, )ldx < C ( f ) Wza’x)z ( f ) W22 (x, t)dx)2
0 0 0 0

< Clig( 0l

— 0Qast— oo.

We complete the proof of Theorem 2.3.
5. Summary and discussion

We are concerned with the existence and stability of spiky patterns to the chemotaxis model (1.1)
proposed by Kim and his collaborators [1,2]. This model was derived from the notion of “metric of
food”which measures the amount of food. It avoids the mysterious assumption that the microscopic
scale bacteria sense the macroscopic scale gradient of food. Moreover, this model also admits two types
of traveling waves: traveling band and traveling front, under suitable assumptions on the consumption
rates. Hence, it can be viewed as an alternative model to describe the propagation of traveling bands
of bacteria observed in the experiment of Adler [3]. However, since the traveling wave of oxygen
W vanishes at far field, one has to encounter the challenge of presence of two types of singularities
in the study of stability of traveling waves. As the first step we investigate instead the stability of
stationary waves to the model in the half space. In this case the model remains singular at the far field.
We successfully find an effective strategy to handle the two types of singularities. In the following
studies, we will apply the strategy of this paper to study the stability of traveling waves of the model
by modifying some estimates.

The potential biological application of our results is the explanation of formation of a plume pattern
for aerobic bacteria observed in the experiment of [7], where the bacteria consume oxygen in a water
drop. We conjecture that this plume pattern is a superposition of series of one dimensional spikes.
However, owing to the lack of effective mathematical tools to handle the stability of biological patterns
to a chemotaxis-fluid model, we consider a simplified fluid free chemotaxis model. And we expect that
our argument is effective for more general chemotaxis models and even some chemotaxis-fluid models.
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Appendix

Proof. [Proof of Proposition 3.1] The local existence can be proved using the principle of contraction
mapping. Set

Yr =}, 9I(f,8) € L°((0,T); H'), (f, &) € L*((0,T); H"))

equipped with norm

ICfs DMy, = ICf, g)||L°°((o,T);H1) + ||(fx,gx)||L2((0,T);Hl)-

Define a mapping Z: (¢, ) € Y — Z(¢, ) such that (¢, ) = Z(¢, ) is a solution of

{Wsast = s + ol + Uiy + Vi), "

wt = dl//xx - ZdVS'ﬁx - dl&i + &x’
with the initial and boundary conditions (3.7)—(3.9). Taking a ball

By = (. 9) : 1§, Plly, < M},

where M is a constant to be determined later. We shall show that there are M and T such that (i) Z
maps By, r into itself; (ii) Z is a contraction in By, r.

We first show (i). According to the standard linear parabolic theory, for any (¢, ¥/) € Y+, the second
equation of (A1) has a unique strong solution . Substituting i into the first equation, we obtain the
existence of strong solution ¢. Hence the mapping Z is well-defined.

We next derive the estimates for (¢4, ). Multiplying the second equation of (A1) by i gives

1fww2+dffwwislffmw%c’ff@%éﬁ)wffwv?iwulfm%,
2 0 0 0 2 0 0 0 0 0 0 2 0
where

00 R o%] . 1 1 d 00 00
d f Gyl < dliyll- f 0y < ML, < 5 f s+ f W'+ CM*.
0 0 0 0

Then choosing T < %, we get

00 T 00 00
sup f Wldx + f f Ylrdxdt < C(M? + MHT +2 f Yidx. (A2)
0 0 0 0

0<t<T

Similarly, multiplying the second equation of (A1) by ¥, leads to

) T ) T 0o % )
sup f Ylrdx + f f W2 dxdt < CM2T+CM3T%( f f %) + f Wi dx
0<i<T Jo 0 Jo 0 Jo 0 (A3)

< CM’T + CM*T? + f W2 dx,
0
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where we have used
00
24 2017 112 23 A 32
f X <M ”(ﬁx”Loo <M ”(ﬁxHLzllwxx”L2 <M ”wxx”Lz-
0

By (A2) and (A3), if we take M? > 2 fooo(tp(z) +y2 ) and chose T small enough, then

||w||ioo((0’T);H1) S MZ‘ (A4)

Multiplying the first equation of (A1) by ¢ gives

Cwg [ [
2Jo ¢ 0 Jo )
t 00 t 00 A . R 1 00
= _zf f ezwwxgbxgb + f f ezw((bxl//x + UWx + V£¢x)¢ + = f W§¢(2)’
0 0 0 0 2 0

(A5)

where
b 3 1
2 oMy, 2 5 3
2f gl < 2¢Mle ‘”¢x||,fz||¢llizlllﬁxllu
0
1 00 (oo}
< —f e2¢¢§+e4MM4f ¢,
2 Jo 0
Wia 4 2 AMpA 12 1l 12
f e‘”lfﬁxt/'xtﬁlsf ¢ + €|l lall;
0 0
2 AM 317
Sf ¢ +e"M wax”Lza
0
and

f ) (U, + Vo)l < f ) o>+ MM
0 0

If e*MMAT < %2, we get from (A5) that

00 T 9] )
sup f o + f f Xt < CMMAT 7% + Ce™2 f 2. (A6)
o<i<T Jo 0o Jo 0
Similarly, multiplying the first equation of (A1) by ¢, gives
1 f TS f ' f T e
Py Ws ¢x + 3 e l/I¢x)c
2o 2Jo Jo
t 00 . . R ! 00 1 00
< f f N Putls + U + Veh )bl +2 f f WelWe ol + 5 f W, 5,
0 Jo 0 Jo 2 Jo

f 1 00
- f (I+1I)+ = f W22,
0 2 0

R 1 (o] (o6}
I < MMl + M M?, 1T < 1 f eyt +CeM M + f P2
0 0

where
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. 2
Then choosing T < % we have

) T 00 )
sup f P>+ f f X < Ce M MUT? + Cs™> f b3 (A7)
0<t<T JO 0 0 0

In view of (A2), (A3), (A6) and (A7), we choose M and T satisfying
M=4 f W2 +y2,) +4Cs™ f @2+ ¢2) + 1, 8C(M + MP)T? + 8Ce™MM*s>T7 < 1,
0 0

then ||(¢, ¥)lly, < M, which verifies (i).
We proceed to show (ii). For any (é1,01). (@_2, %_Zfz) € Bur, set (¢1,¢1) = Z(B1,¥1), ($2,42) =
Z(p2,42) and (@, ¥) := (¢1,¢1) — (¢2,¥2). Then (@, Y) satisfies

Wig =€ b + (€' — €)pour + (€' — €)1 1
+ & (Gr1x — P Wix + €2 Poc(Wr1x — Y2)
+ U = YW1+ U (i — f2) (A8)
+ V(@' = )1, + Ve (1 — 20,
Ur =drce = 2dVe(ly = Y2)x — dWy = o) (i + 22) + (1 — o)

with zero initial-boundary conditions. Multiplying the second equation of (A8) by ¢ gives

00 T 00 T 00 T 00
f 7+ d f f P < (C+ M) f f @ — da)P + f f @+ ClB1 = d).
0 0 0 0 0 0 0

Thus, choosing T < %, we get

7112 T 12 2 7 7 2
”lf//”L‘x’((O,T);LZ) + ”wx”LZ((O,T);LZ) S(:(1 + M )T”(wl - l/IZ)XHL‘”((O,T);LZ)
A A 2
+ CT||(¢1 - ¢2)x||Lm((0’T);L2)'

Multiplying the second equation of (A8) by ¥,,, and noting
T 00 . . . . . . T . .
f f W1 + ) PIG0 = o) < MW — l/’z)x||im«0’T);Lz)f (1 + )l
0o Jo 0
< MZT%”('?Zl - l’/’}Z)x”iw((O,T);Lz)’
we get after choosing T < 1 that

7112 7 2
”‘ﬁx”Lm((O,T);Lz) + ”wxx”LZ((O’T);LZ)

LA s P (A9)
< CMZTZ”('J’] - 1702))6”%400((0’7*);[‘2) + CT||(¢1 - ¢2)X||i°°((0,T);L2)'

This also implies
— 1 N N A A
117 w0 772 < CMPT2IW = )l o.py2) + CTN@1 = B2l o012y (A10)
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Multiplying the first equation of (A8) by ¢, noting

T 00 T
f f (€' = )| < f 111 lpacell 2 1 2
0 0 0

7112 21,7112
< Tl o122y + MWL 0.2
we have

211 %112 12
& ||¢”L°°((O,T);L2) + ||¢x||L2((O’T);L2)
2112 7112
et (”¢)HL°"((0,T);L2) + ”lp”L“’((O,T);L""))
7 7 2 I I 2
+ C(M)T (“(lpl - wZ)x”L‘X’((O,T);LZ) + ||(¢1 - ¢2)x||L°°((O,T);L2)) .

Multiplying the first equation of (A8) by ¢.,, noting

T 00 B 1 T ) _ T B _
f f |(62wl - 62¢2)¢2xx¢xx| < E f f ¢ix + Cf eﬁMHl//”Lz”wx”Lz”¢2xx”iz
0 0 0 0 0

1 (T re ) ) )
< 5 f f ¢ + COD|Y 0,1y W 2l 2= 0. 70:22)
0 0

and
T 00 A A o
f f esz (¢1 - ¢2)xw1x¢xx
0 0
1 (e - s e T
= Ef f P + CM)I(¢1 — ¢2)x||Loo((0’T);L2)f Y 1.x (-, D] 2
0 0 0
1 T ) , Lo A ,
< 5 ¢xx + C(M)T2 ”(¢1 - ¢2)X||L°°((0,T);L2)’
0 0
we have

2117 112 i 2
&€ ||¢X||L°°((O,T);L2) + ||¢XX||L2((O,T);L2)
< C(M)||¢||L°°((0,T);L2)||¢x||L°°((0,T);L2)

+ C(M)T (“(1&1 - &2))6”%00((0’7');[‘2) + ”(&1 - &2)x|lim((0]);L2)) .

Therefore, owing to (A9)—(A10), we can take 7 small enough to derive

- - | A A
1. Wlly, < (D1 = do. Y1 = ¥l (ALL)

which verifies (ii).
Now we apply the contraction mapping principle to obtain that system (3.10) has a solution. The
uniqueness follows from a similar argument as (A11) and the Gronwall’s inequality.
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