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Abstract: Habitat loss and fragmentation is the largest contributing factor to species extinction and
declining biodiversity. Landscapes are becoming highly spatially heterogeneous with varying degrees
of human modification. Much theoretical study of habitat fragmentation has historically focused on
a simple theoretical landscape with patches of habitat surrounded by a spatially homogeneous hostile
matrix. However, terrestrial habitat patches are often surrounded by complex mosaics of many different
land cover types, which are rarely ecologically neutral or completely inhospitable environments. We
employ an extension of a reaction diffusion model to explore effects of heterogeneity in the matrix
immediately surrounding a patch in a one-dimensional theoretical landscape. Exact dynamics of
a population exhibiting logistic growth, an unbiased random walk in the patch and matrix, habitat
preference at the patch/matrix interface, and two functionally different matrix types for the one-
dimensional landscape is obtained. These results show existence of a minimum patch size (MPS),
below which population persistence is not possible. This MPS can be estimated via empirically derived
estimates of patch intrinsic growth rate and diffusion rate, habitat preference, and matrix death and
diffusion rates. We conclude that local matrix heterogeneity can greatly change model predictions, and
argue that conservation strategies should not only consider patch size, configuration, and quality, but
also quality and spatial structure of the surrounding matrix.

Keywords: heterogeneous landscape; locally heterogeneous matrix; reaction diffusion models;
habitat preference; exact bifurcation diagrams; habitat fragmentation; logistic growth

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2022638


13676

1. Introduction

The largest contributing factor to species extinction and declining biodiversity is habitat loss and
fragmentation e.g., [1–5]. Across terrestrial ecosystems worldwide, landscapes are becoming highly
spatially heterogeneous with varying degrees of human modification [6]. Many studies show that
fragmentation is often associated with significant changes in density and that individual species can
be differentially affected by fragmentation [7–11]. In fact, understanding effects of fragmentation has
become a central focus of how to guide conservation efforts [12].

Much habitat fragmentation research has historically been based upon the theories of island
biogeography and metapopulation dynamics. Both theories assume a simple binary representation of
landscapes consisting either of habitat patches or inhospitable, homogeneous matrix, which is viewed
as unimportant [13]. This dichotomous view of a landscape has been the guide for most fragmentation
research in the past decades [13]. Researchers have placed much emphasis on patch-level attributes
such as patch-size and largely ignored heterogeneity of the landscape context (i.e., matrix) [12–15].
As such, their ability to make accurate predictions of real-world patterns of patch occurrence,
population persistence, and dispersal has been diminished [6]. The relative importance of landscape
heterogeneity and matrix composition compared to focal habitat configuration and composition
remains an unanswered question [16].

Notwithstanding, terrestrial habitat patches are often surrounded by complex mosaics of many
different land cover types, which are rarely ecologically neutral or completely inhospitable
environments [16]. Edge effects are also predicted to play a major role in shaping population
dynamics [17]. Even with an early mention in the literature, incorporation of effects of a
heterogeneous matrix into habitat fragmentation study has only recently been made [12]. Even though
this has been discussed by landscape ecologists, only a few authors have attempted to develop models
which simulate effects of a heterogeneous matrix on population persistence and movement patterns in
hypothetical landscapes [12]. These models often employ arbitrarily chosen values for matrix
characteristics and lack a mechanistic underpinning.

Connecting the wealth of empirical information available about individual movement and
mortality in response to matrix composition to predictions about patch-level persistence is a
formidable task [18]. The sheer complexity of realistic landscapes has hampered efforts to develop
modeling frameworks capable of capturing all important spatial features [12]. However, adaptation of
the reaction diffusion framework has seen some recent success in incorporating certain aspects of
matrix heterogeneity into the model in order to study population persistence at the patch-level.
Recently, the authors have developed a modeling framework built upon reaction diffusion models to
study effects of variable matrix hostility and habitat loss on population persistence at the patch-level.
The framework extends pioneering work done by authors who first attempted to incorporate matrix
hostility and edge effects into reaction diffusion models for organisms dwelling in a one-dimensional
patch-matrix system [18–20] to two- and three-dimensional landscapes [21]. The framework provides
a mechanistic connection of individual-level assumptions regarding dispersal in the patch and matrix,
growth processes in the patch, hostility in the matrix, and habitat preference at the patch/matrix
interface to patch-level predictions of population persistence [21]. Subsequent studies employing this
framework have uncovered important consequences of matrix hostility, edge effects, and habitat
preference on population persistence [22–26].
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This framework has allowed a more realistic study of landscapes in which each patch can be
modeled with different assumptions regarding movement, hostility, and habitat preference in the local
matrix surrounding the patch. Even though landscape heterogeneity is incorporated into the
framework, there is an implicit assumption that the matrix immediately surrounding a patch is
spatially homogeneous. We define this type of spatial homogeneity within a heterogeneous landscape
as locally homogeneous matrix. The present work is an attempt to extend the framework to the case
where spatial heterogeneity is present even within the matrix immediately surrounding a patch, which
we define as locally heterogeneous matrix. In particular, we envision a patch surrounded by a locally
heterogeneous matrix with two functionally different matrix types (as in [27], functionally different
refers to differences noticeable to the organism of interest which may or may not be noticeable to
humans). Figure 1 illustrates this scenario with a forested patch (Ω) surrounded by active farmland on
the left (ΩM1) and inactive farmland on the right (ΩM2).

High matrix
hostility 
( )

Low matrix 
hostility 
( )

Patch ( )

Figure 1. Example of a patch (Ω) surrounded by heterogeneous matrix with two functionally
different land covers, i.e., ΩM1 and ΩM2 . Aerial photo courtesy of National Agriculture
Imagery Program - USDA.

We initiate this study by focusing on investigation of population persistence in the presence of
spatial heterogeneity in the matrix for a one-dimensional analog of the landscape illustrated in Figure 1
(see Figure 2).

| |

0 ℓ

Ω̃Ω̃M1 Ω̃M2

Figure 2. One dimensional landscape with a patch Ω̃ = (0, ℓ) surrounded by matrix
components Ω̃M1 and Ω̃M2 with functional differences yielding different effective matrix
hostilities.
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1.1. Modeling Framework

Here, we describe the modeling framework for our one-dimensional patch-matrix system. The
model is built upon the reaction diffusion framework which has seen tremendous success in studying
spatially structured systems (see [28–34] and references therein for a detailed history of the
framework). We make the assumption that a single species is dwelling in a focal patch Ω̃ = (0, ℓ) with
patch size ℓ > 0 that is surrounded by a locally heterogeneous matrix (Ω̃M) with two functionally
different components denoted by Ω̃M1 = (−∞, 0) and Ω̃M2 = (ℓ,∞). We further assume that organisms
disperse with an unbiased random walk with diffusion rate D0

i > 0 and experience exponential decay
at fixed rate S 0

i > 0 for each matrix component Ω̃Mi , respectively, i = 1, 2. Denote the boundary of Ω̃
by ∂Ω̃ = {0, ℓ}. The variables t and x represent time and spatial location within the patch. Inside the
patch, organisms are assumed to follow logistic growth and an unbiased random walk, while at the
patch/matrix interface a discontinuity between the density in the patch and matrix is allowed (via a
biased random walk). However, continuity in the flux is assumed, as has been shown to arise naturally
from a landscape-level random walk derivation [18, 20, 35]. In this case, organisms recognize the
patch/matrix interface and potentially modify their random walk movement probability (i.e.,
probability of an organism moving at a given time step in the random walk process), random walk
step length (i.e., distance that an organism moves during a given time step), and/or probability of
remaining in the patch (say αi). Here, we equate dispersal from the patch to organisms reaching the
patch/matrix interface, leaving the patch with probability 1 − αi (taken to be constant), and entering
the matrix, where they still have the opportunity to re-enter the patch at the interface. A
straightforward modification of the derivation given in [21], gives the following reaction diffusion
model:


ut = Duxx + ru

(
1 − u

K

)
; t > 0, x ∈ (0, ℓ)

u(0, x) = u0(x); x ∈ (0, ℓ)
−Dα1ux(t, 0) + S ∗1 [1 − α1] u(t, 0) = 0; t > 0
Dα2ux(t, ℓ) + S ∗2 [1 − α2] u(t, ℓ) = 0; t > 0

(1.1)

which will exactly model the described study system in the sense that steady states of (1.1) and their
stability properties will be exactly the same as those of the study system (see [21] and references
therein). Here, D > 0 represents patch diffusion rate, r > 0 patch intrinsic growth rate, K > 0 patch
carrying capacity, u0(x) initial population density distribution in the patch, and αi the probability of an
individual staying in the patch upon reaching the boundary interfacing with Ω̃Mi . Note that the

parameter S ∗i =
√

S 0
i D0

i
κi
≥ 0 represents the effective matrix hostility towards an organism in Ω̃Mi , has

units of length by time, and can assume different forms depending upon the patch/matrix interface
assumptions as encoded in κi. Table 1 shows different cases for κi corresponding to different
patch/matrix interface assumptions as derived in [21]. Notice that when αi ≡ 0, the boundary
interfacing with Ω̃Mi is absorbing, i.e., all individuals that reach the boundary will emigrate into Ω̃Mi ,
while, αi ≡ 1, implies the boundary interfacing with Ω̃Mi is reflecting, i.e., emigration rate into matrix
Ω̃Mi is zero. See Table 2 for a summary of model parameters.
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Table 1. Listing of interface scenarios with descriptions and selected references.

Scenario Name Scenario Description κi References

Continuous
Density

Organisms move between the patch and
matrix with equal probability. Step sizes
and movement probabilities are equal in
the patch and matrix.

1 [36]

Type I
Discontinuous
Density (DD)

Organisms modify their movement
behavior at the patch/matrix interface and
would have a probability α of remaining
in Ω̃ which may be different from 50%.
Step sizes differ between the patch and
matrix, whereas movement probabilities
are equal.

√
D0

i
D [18, 20]

Type II
Discontinuous
Density (DD)

Organisms modify their movement
behavior at the patch/matrix interface and
would have a probability α of remaining
in Ω̃ which may be different from 50%.
Step sizes are equal between the patch
and matrix but movement probabilities
are different.

D0
i

D [18, 20]

Type III
Discontinuous
Density (DD)

Organisms remain in Ω̃ with probability
α which may be different from 50%.
Movement probabilities and step sizes are
the same between the patch and matrix.

1 [37, 38]

Table 2. Summary of dimensional model parameters.

Parameter Definition Units
ℓ Length of patch Ω̃ length
r Patch intrinsic growth rate 1/time
D Patch diffusion rate length2/time
K Patch carrying capacity density
S 0

i Death rate in matrix component Ω̃Mi 1/time
D0

i Diffusion rate in matrix component Ω̃Mi length2/time
κi Patch/matrix interface parameter for Ω̃Mi unitless

Introducing a standard scaling [21],

x̃ =
x
ℓ
, ũ =

u
K
, & t̃ = rt, (1.2)

and dropping the tilde, the patch becomes Ω = (0, 1), left matrix becomes ΩM1 , right matrix becomes
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ΩM2 , and (1.1) becomes 
ut =

1
λ
uxx + u (1 − u) ; t > 0, x ∈ (0, 1)

u(0, x) = u0(x); x ∈ (0, 1)
−ux(t, 0) +

√
λγ1u(t, 0) = 0; t > 0

ux(t, 1) +
√
λγ2u(t, 1) = 0; t > 0

(1.3)

with steady state equation 
−u′′ = λu (1 − u) ; (0, 1)
−u′(0) +

√
λγ1u(0) = 0

u′(1) +
√
λγ2u(1) = 0

(1.4)

where λ > 0 is a composite parameter which is proportional to patch size squared and γi is a composite
parameter proportional to effective matrix hostility in matrix component ΩMi . Table 3 gives a summary
of these composite parameters and their definitions in the different scenarios outlined in Table 1, i.e.,
Continuous Density (CTS) and Type I - III Discontinuous Density (DD).

Table 3. Summary of non-dimensional model parameters.

Composite Parameter Expression Range
λ rℓ2

D 0 < λ < ∞

CTS, Type I DD, & Type III DD: γi

√
S 0

i
r

1−αi
αi

0 ≤ γi < ∞

Type II DD: γi

√
S 0

i D
rD0

i

1−αi
αi

0 ≤ γi < ∞

In the present work, we consider the following two cases:

• Case 1: Effective matrix hostility in ΩM2 is fixed and finite, while allowed to vary in ΩM1 .
• Case 2: Matrix componentΩM1 is immediately lethal to organisms, while effective matrix hostility

is allowed to vary in ΩM2 .

Notice that in Case 2, when γ1 → ∞ we have that (1.4) becomes:
−u′′ = λu (1 − u) ; (0, 1)
u(0) = 0
u′(1) +

√
λγ2u(1) = 0.

(1.5)

It is easy to see that similar results to Cases 1 & 2 hold when changing the matrix component with
fixed hostility. We analyze the structure and stability properties of positive solutions for (1.4) in Case 1
and (1.5) in Case 2, providing a complete description of the dynamics of the system.

1.2. Population dynamics with a locally homogeneous matrix

Here, we recall population dynamics of a single species (with density denoted as u) dwelling in a
patch (Ω) located in heterogeneous landscape but with a locally homogeneous matrix (ΩM) as
previously studied in [21, 39]. Namely, the authors studied the structure and stability properties of
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positive steady state solutions of (1.1) in the case when the combined matrix hostility is the same, i.e.,
γ1 = γ2 = γ via: 

−u′′ = λu (1 − u) ; (0, 1)
−u′(0) +

√
λγu(0) = 0

u′(1) +
√
λγu(1) = 0.

(1.6)

The authors gave a complete description of the dynamics of (1.1) in this case as summarized in
Theorem 1.1.

Theorem 1.1 (see [22, 39]). Let γ > 0 be fixed. Then the following hold:

(1) if λ ≤ E1(γ) then (1.6) has no positive solution and the trivial solution is globally asymptotically
stable;

(2) if λ > E1(γ) then (1.6) has a unique globally asymptotically stable positive solution uλ such that
∥uλ∥∞ → 1− as λ → ∞, ∥uλ∥∞ → 0 as λ → E1(γ)+, and uλ is symmetric about the center of the
patch (x = 1

2 ).

These results also established an exact bifurcation diagram of positive solutions for (1.6) as
illustrated in Figure 3.

λ

||u||∞

E1(γ)
|

1

Unconditional

Persistence

Extinction

Figure 3. Exact bifurcation diagram of positive solutions for (1.6).

Here, given a γ > 0, we denote E1(γ) > 0 as the principal eigenvalue of the problem:
−ϕ′′ = Eϕ; (0, 1)
−ϕ′(0) +

√
Eγϕ(0) = 0

ϕ′(1) +
√

Eγϕ(1) = 0
(1.7)

with corresponding eigenfunction ϕ chosen such that ϕ(x) > 0; Ω. Note that existence of this
eigenvalue was discussed in [39]. The bifurcation diagram of positive solutions of (1.6) illustrated in
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Figure 3 shows existence of a minimum patch size given by:

ℓ∗(γ) =

√
E1(γ)

D
r
. (1.8)

In Section 2, we present some mathematical preliminaries, followed by our main results and
biological conclusions in Section 3. We provide proofs of our main results in Section 4. Finally, we
give closing remarks in Section 5 and provide proofs of some technical details of our arguments in the
Appendix.

2. Preliminaries

In this section, we introduce definitions of a sub- and supersolution of (1.4) and then an existence
result. We also state several important lemmas that we will use to establish our results.

By a subsolution of (1.4) we mean ψ ∈ C2((0, 1)) ∩C1([0, 1]) that satisfies
−ψ′′ ≤ λψ(1 − ψ); (0, 1)
−ψ′(0) +

√
λγ1ψ(0) ≤ 0

ψ′(1) +
√
λγ2ψ(1) ≤ 0.

By a supersolution of (1.4) we mean Z ∈ C2((0, 1)) ∩C1([0, 1]) that satisfies
−Z′′ ≥ λZ(1 − Z); (0, 1)
−Z′(0) +

√
λγ1Z(0) ≥ 0

Z′(1) +
√
λγ2Z(1) ≥ 0.

By a strict subsolution of (1.4) we mean a subsolution which is not a solution. By a strict
supersolution of (1.4) we mean a supersolution which is not a solution. The definitions of sub- and
supersolution of (1.5) are analogous.

We now state the following well-known result [40]:

Lemma 2.1. Let ψ and Z be a sub- and supersolution of (1.4), respectively, such that ψ ≤ Z; Ω. Then
(1.4) has a solution u ∈ C2((0, 1)) ∩C1([0, 1]) such that u ∈ [ψ,Z]; Ω.

Remark 2.1. An analogous result holds for (1.5).

Next, we state several lemmas that we will use to construct sub-super solutions. First, denote
E1(γ1, γ2) as the principal eigenvalue of:

−ϕ′′ = Eϕ; (0, 1)
−ϕ′(0) +

√
Eγ1ϕ(0) = 0

ϕ′(1) +
√

Eγ2ϕ(1) = 0.
(2.1)

Lemma 2.2. For γ1, γ2, and λ > 0, let σλ(γ1, γ2) be the principal eigenvalue of the problem:
−ϕ′′ = (λ + σ)ϕ; (0, 1)
−ϕ′(0) +

√
λγ1ϕ(0) = 0

ϕ′(1) +
√
λγ2ϕ(1) = 0.

(2.2)

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13675–13709.
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Then σλ(γ1, γ2) < 0 for λ > E1(γ1, γ2) and λ ≈ E1(γ1, γ2), and σλ(γ1, γ2) > 0 for λ < E1(γ1, γ2) and
λ ≈ E1(γ1, γ2). Furthermore, σλ(γ1, γ2)→ 0 as λ→ E1(γ1, γ2). (See appendix for details).

Lemma 2.3. The principal eigencurve, β = β(µ), of the eigenvalue problem:
−ϕ′′ = βϕ; (0, 1)
ϕ(0) = 0
ϕ′(1) = −µϕ(1)

(2.3)

with µ > 0, is increasing, concave, and lim
µ→∞

β(µ) = ED
1 . Here, ED

1 is the principal eigenvalue of
−ϕ′′ = Eϕ; (0, 1)
ϕ(0) = 0
ϕ(1) = 0.

(2.4)

(See appendix for details)

Lemma 2.4. For λ > 0, let σ̃λ(γ2) be the principal eigenvalue of the problem:
−ϕ′′ = (λ + σ)ϕ; (0, 1)
ϕ(0) = 0
ϕ′(1) +

√
λγ2ϕ(1) = 0,

(2.5)

then σ̃λ(γ2) < 0 for λ > Ẽ1(γ2) and σ̃λ(γ2) > 0 for λ < Ẽ1(γ2). Further, σ̃λ(γ2) → 0 as λ → Ẽ1(γ2).
Here, Ẽ1(γ2)

(
= lim

γ1→∞
E1(γ1, γ2)

)
is the principal eigenvalue of:

−ϕ′′ = Eϕ; (0, 1)
ϕ(0) = 0
ϕ′(1) +

√
Eγ2ϕ(1) = 0.

(2.6)

(See appendix for details).

3. Results

In this section, we present analytical and numerical results for both of the aforementioned cases.

3.1. Case 1: Effective matrix hostility in ΩM2 is fixed and finite, while allowed to vary in ΩM1

We begin with some analytical results for (1.4). The first result provides a means of computing
a bifurcation diagram of positive solutions for (1.4). This is an extension of the quadrature method
introduced for Dirichlet problems in [41], and for the case of linear boundary conditions with γ1 = γ2

in [39].

Theorem 3.1. Let λ > 0 and ρ ∈ (0, 1). Then (1.4) has a positive solution u with ∥u∥∞ = ρ if and only
if there exist q1, q2 ∈ (0, ρ) such that u(0) = q1, u(1) = q2, and λ, ρ, q1, q2 satisfy:

λ =
1
2

{∫ ρ

q1

dz√
F(ρ) − F(z)

+

∫ ρ

q2

dz√
F(ρ) − F(z)

}2

(= λ(ρ) say) (3.1)
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and {
2[F(ρ) − F(q1)] = γ2

1q2
1

2[F(ρ) − F(q2)] = γ2
2q2

2
(3.2)

where F(z) =
∫ z

0
s(1 − s)ds. Furthermore, (3.2) uniquely determines q1(= q1(ρ)), q2(= q2(ρ)) and

λ(= λ(ρ)) defines a continuous function of ρ on (0, 1).

Remark 3.1. We note that for λ > 0 if u is a positive solution of (1.4) with ||u||∞ = ρ ∈ (0, 1), then there
exists a unique x∗ ∈ (0, 1) such that u is symmetric about the point x∗, increasing on (0, x∗), decreasing
on (x∗, 1), u′(x∗) = 0, and ||u||∞ = u(x∗) where

x∗ =

∫ ρ

q1

dz√
F(ρ) − F(z)∫ ρ

q1

dz√
F(ρ) − F(z)

+

∫ ρ

q2

dz√
F(ρ) − F(z)

.

and q1 = u(0), q2 = u(1) are uniquely determined by (3.2) (see Figure 4).

u

x
0

ρ

1x∗

q1

q2

Figure 4. Density profile of a positive solution of (1.4).

The next analytical result gives a complete description of the dynamics of (1.3) in this case.

Theorem 3.2. Let γ2 > 0 be fixed. Then for all γ1 > 0 the following hold:

1) if λ ≤ E1(γ1, γ2) then (1.4) has no positive solution and the trivial solution is globally
asymptotically stable;

2) if λ > E1(γ1, γ2) then (1.4) has a unique globally asymptotically stable positive solution uλ such
that ∥uλ∥∞ → 1− as λ → ∞ and ∥uλ∥∞ → 0 as λ → E1(γ1, γ2)+. In fact, uλ → 1− uniformly on
compact subsets of (0, 1) as λ→ ∞.

Recall, E1(γ1, γ2) is the principal eigenvalue of:
−ϕ′′ = Eϕ; (0, 1)
−ϕ′(0) +

√
Eγ1ϕ(0) = 0

ϕ′(1) +
√

Eγ2ϕ(1) = 0.
(3.3)

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13675–13709.
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Figure 5 illustrates Theorem 3.2.

||uλ||∞

√
λ

1

√
E1(γ1, γ2)

Figure 5. An exact bifurcation diagram of positive solutions for (1.4). Arrows indicate
stability of steady states.

Remark 3.2. We show in the appendix that

E1(γ1, γ2) =



[
tan−1

(
γ1+γ2

1−γ1γ2

)]2
for γ1γ2 < 1[

π + tan−1
(
γ1+γ2

1−γ1γ2

)]2
for γ1γ2 > 1

π2

4
for γ1γ2 = 1.

(3.4)

Note that for a fixed γ2 > 0,

1) E1(γ1, γ2) ∈
(
[tan−1(γ2)]2, [π + tan−1(− 1

γ2
)]2

)
for γ1 > 0;

2) E1(γ1, γ2)→ [tan−1(γ2)]2 as γ1 → 0 and E1(γ1, γ2)→
[
π + tan−1(−

1
γ2

)
]2

as γ1 → ∞;

3) E1(γ1, γ2)→
π2

4
as γ1 →

1
γ2

and E1

( 1
γ2
, γ2

)
=
π2

4
;

4) E1(γ1, γ2) is continuous and increasing in γ1.

The next result establishes that positive solutions of (1.4) have an ordering with respect to γ1 for a
fixed γ2 (see Figure 6).

Theorem 3.3. Let γ2 > 0 be fixed. Then for γ1 > γ∗1 > 0, if wλ := uλ(γ1, γ2) and vλ := uλ(γ∗1, γ2) are
positive solutions of (1.4), then wλ < vλ; [0, 1].
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|| · ||∞

λ

||vλ||∞

||wλ||∞

1

E1(γ1, γ2)E1(γ∗1, γ2)

(a) Bifurcation diagram for vλ and wλ.

ρv

x∗v

ρw

x∗w

vλ0

wλ0

x
0 1

(b) Solution profiles for vλ0 and wλ0 given a fixed λ0 >

E1(γ1, γ2).

Figure 6. Illustration of Theorem 3.3 showing ordering of both bifurcation curves and
solution profiles with respect to γ1.

The final analytical result for this case shows that if γ1 , γ2 then u(0) = q1 , q2 = u(1). In other
words, local matrix heterogeneity can cause density profiles to become asymmetric. Theorem 3.4 is
illustrated in Figure 7.

Theorem 3.4. Let γ2 > 0 be fixed. If γ1 > γ2 (γ1 < γ2) and uλ is a positive solution of (1.4) with
∥uλ∥∞ = ρ, uλ(0) = q1, and uλ(1) = q2, then q1 < q2 (q1 > q2). Further, if γ1 = γ2, then q1 = q2.

Remark 3.3. We note that q1 < q2 implies that x∗ ∈ ( 1
2 , 1), q1 > q2 implies that x∗ ∈ (0, 1

2 ), and q1 = q2

implies that x∗ = 1
2 .

x∗
q1

q2

uλ(x)

x0 1

(a) γ1 > γ2.

x∗

q1, q2

uλ(x)

x0 1

(b) γ1 = γ2.

x∗

q1

q2

uλ(x)

x0 1

(c) γ1 < γ2.

Figure 7. Solution profile of uλ(γ1, γ2) for fixed γ2 > 0 and varying γ1 > 0 as guaranteed in
Remark 3.3.

Next, we present numerically generated bifurcation diagrams of positive solutions for (1.4) using
the following procedure:
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1) Fix γ1, γ2 > 0 and define ρi =
i

n + 1
; i = 1, ..., n, where n ≥ 1 is the desired number of

interpolation points.
2) Using fzero in MATLAB (The Mathworks, Inc. version: R2022a), numerically find the roots of

(3.2), i.e., qi1 = q1(ρi) and qi2 = q2(ρi), for a given ρi.
3) The values of ρi, qi1 , qi2 are then substituted into (3.1) and the corresponding λi-value is

numerically computed using integral.
4) Repeating (2)–(3) for i = 1, 2, ..., n, we obtain (λi, ρi) points, generating a bifurcation curve of λ

vs. ρ = ∥u∥∞ for positive solutions of (1.4).

In terms of computational complexity, a single bifurcation diagram was able to be computed in about
one second using a standard laptop.

Employing Theorem 3.2, the model predicts a minimum patch size (MPS) below which organisms
cannot colonize the patch. Using the definition of λ from Table 3, we can give an explicit form for the
predicted MPS,

ℓ∗(γ1, γ2) =

√
E1(γ1, γ2)

D
r
. (3.5)

Remark 3.2 now gives limiting behavior of MPS with respect to γ1 for fixed γ2 > 0 as presented in
Remark 3.4.

Remark 3.4. Let γ2 > 0 be fixed. Then we have:

1) lim
γ1→0+

ℓ∗(γ1, γ2) = tan−1
(
γ2

)√D
r

(= ℓ∗(0, γ2) say);

2) lim
γ1→∞

ℓ∗(γ1, γ2) =
(
π + tan−1

(
−

1
γ2

)) √
D
r

(= ℓ∗(∞, γ2) say);

3) ℓ∗(∞, γ2) − ℓ∗(0, γ2) =
π

2

√
D
r

.

From Remark 3.2, it immediately follows that ℓ∗(γ1, γ2) ∈
[
ℓ∗(0, γ2), ℓ∗(∞, γ2)

]
and the length of this

interval is a constant independent of the value of γ2 > 0.

Figure 8 shows an evolution of bifurcation curves as γ1 varies with γ2 = 1 and r = D chosen for
convenience of presentation. In Figure 8a, we consider γ1 going to zero from the right and observe that
MPS approaches ℓ∗(0, 1) = π

4 from the right, shifting the bifurcation curves to the left. In Figure 8b,
we consider γ1 approaching ∞ and observe MPS approaching ℓ∗(∞, 1) = 3π

4 from the left as γ1 → ∞,
this time shifting the bifurcation curves to the right. Further, we observe that MPS ranges over (π4 ,

3π
4 ),

increases in γ1, and causes bifurcation curves to move to the right as γ1 increases.
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(a) Evolution of bifurcation curves (from right to left) of
(1.4) as γ1 → 0+.
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(b) Evolution of bifurcation curves (from left to right) of
(1.4) as γ1 → ∞.

Figure 8. Evolution of bifurcation curves of (1.4) showing patch size (ℓ) vs maximum steady
state density (∥u∥∞) when γ2 = 1 and r = D.

Figure 9. Variation of minimum patch size (ℓ∗(γ1, γ2)) with respect to composite parameters
γ1 and γ2 when r = D.

In Figure 9, we provide the evolution of MPS (ℓ∗(γ1, γ2)) as γ1, γ2 both vary with r = D chosen
for convenience of presentation. Here, we observe that for any fixed γ2 > 0 (γ1 > 0), ℓ∗(γ1, γ2) is an
increasing function of γ1 (γ2). Furthermore, we observe that MPS approaches 0+ as γ1, γ2 → 0 and
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approaches
√

ED
1 = π as γ1, γ2 → ∞, where ED

1 is the principal eigenvalue of (2.4). Recall that these
facts were proved analytically and stated in Remark 3.2.

3.2. Case 2: Matrix component ΩM1 is immediately lethal to organisms, while effective matrix
hostility is allowed to vary in ΩM2

We begin by presenting some analytical results for (1.4) in the case when γ1 → ∞, namely (1.5).
The first result is a modification of the time map analysis presented in Theorem 3.1 for this case.

Theorem 3.5. Let λ > 0 and ρ ∈ (0, 1). Then (1.5) has a positive solution u such that ∥u∥∞ = ρ if and
only if there exists q ∈ (0, ρ) such that u(1) = q and λ, ρ, q satisfy:

λ =
1
2

{∫ ρ

0

dz√
F(ρ) − F(z)

+

∫ ρ

q

dz√
F(ρ) − F(z)

}2

(= λ(ρ) say) (3.6)

and
2[F(ρ) − F(q)] = γ2

2q2. (3.7)

where F(z) =
∫ z

0
s(1 − s)ds. Furthermore, (3.7) uniquely determines q(= q(ρ)) and λ(= λ(ρ)) defines a

continuous function of ρ on (0, 1).

Remark 3.5. We note that for λ > 0 if u is a positive solution of (1.5) with ||u||∞ = ρ ∈ (0, 1), then there
exists a unique x∗ ∈ (0, 1) such that u is symmetric about the point x∗, increasing on (0, x∗), decreasing
on (x∗, 1), u′(x∗) = 0, and ||u||∞ = u(x∗) where

x∗ =

∫ ρ

0

dz√
F(ρ) − F(z)∫ ρ

0

dz√
F(ρ) − F(z)

+

∫ ρ

q

dz√
F(ρ) − F(z)

and q = u(1) is uniquely determined by (3.7) (see Figure 10).

u

x
0

ρ

1x∗

q

Figure 10. Density profile of a positive solution of (1.5).
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The next analytical result gives a complete description of the dynamics of (1.3) in the case when
γ1 → ∞.

Theorem 3.6. Let γ2 > 0 be fixed. Then the following hold:

(1) if λ ≤ Ẽ1(γ2) then (1.5) has no positive solution and the trivial solution is globally asymptotically
stable;

(2) if λ > Ẽ1(γ2) then (1.5) has a unique globally asymptotically stable positive solution uλ such that
∥uλ∥∞ → 1− as λ → ∞ and ∥uλ∥∞ → 0 as λ → Ẽ1(γ2)+. In fact, uλ → 1− uniformly on compact
subsets of (0, 1) as λ→ ∞.

Recall, Ẽ1(γ2) = E1(∞, γ2)
(
= lim

γ1→∞
E1(γ1, γ2)

)
is the principal eigenvalue of (2.6).

Figure 11 illustrates Theorem 3.6.

||uλ||∞

ℓ

1

ℓ∗(γ2)

Figure 11. An exact bifurcation diagram of positive solutions for (1.5). Arrows indicate
stability for steady states.

Remark 3.6. We show in the appendix that

Ẽ1(γ2) =
[
π + arctan

(
−

1
γ2

)]2
.

Note that for a fixed γ2 > 0,

1) Ẽ1(γ2) ∈ (π
2

4 , π
2) for γ2 > 0;

2) Ẽ1(γ2)→
π2

4
as γ2 → 0, and Ẽ1(γ2)→ ED

1 = π
2 as γ2 → ∞;

3) Ẽ1(γ2) is continuous and increasing in γ2.

The next result establishes that positive solutions of (1.5) have an ordering with respect to γ2 (see
Figure 12).

Theorem 3.7. Let γ2 > γ
∗
2 > 0 be fixed. If wλ := uλ(γ2) and vλ := uλ(γ∗2) are positive solutions of (1.5),

then wλ < vλ; (0, 1].
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|| · ||∞

ℓ

||vλ||∞

||wλ||∞

1

ℓ∗(γ∗2) ℓ∗(γ2)

(a) Bifurcation diagram for vλ and wλ.

ρv

x∗v

ρw

x∗w

vλ0

wλ0

x
0 1

(b) Solution profiles for vλ0 and wλ0 given a fixed λ0 >

ℓ∗(γ2).

Figure 12. Illustration of Theorem 3.7 showing ordering of both bifurcation curves and
solution profiles with respect to γ2.

Finally, combining Theorems 3.3, 3.7 and Remarks 3.2, 3.6, we observe the limiting behavior of
bifurcation curves of positive solutions for (1.4) as γ1 → ∞ in Figure 13a for a fixed γ2 > 0 and in
Figure 13b for γ2 → ∞.

|| · ||∞

ℓ

1

ℓ∗(γ1, γ2) ℓ∗(∞, γ2)

(a) For a fixed γ2, evolution of bifurcation curves (from
left to right) of (1.4) as γ1 → ∞.

|| · ||∞

ℓ

1

ℓ∗(∞, γ2) ℓ∗(∞,∞)

(b) Evolution of bifurcation curves (from left to right)
of (1.5) as γ2 → ∞.

Figure 13. Limiting behavior of bifurcation curves as hostility parameters increase.

Following the methodology outlined in Section 3.1, we numerically obtain the evolution of
bifurcation curves of positive solutions for (1.5) with respect to γ2 using MATLAB. Remark 3.6 now
allows a characterization of MPS in this case:

Remark 3.7. We have the following:

1) lim
γ2→0+

ℓ∗(∞, γ2) =
π

2

√
D
r
=

√
ED

1

4
D
r

(= ℓ∗(∞, 0) say);
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2) lim
γ2→∞

ℓ∗(∞, γ2) = π

√
D
r
=

√
ED

1
D
r

(= ℓ∗(∞,∞) say).

Figure 14 shows an evolution of bifurcation curves as γ2 varies and r = D is chosen for
convenience of presentation. Remark 3.7 is reflected in both Figure 14a where we observe shifting
bifurcation curves to the left and Figure 14b where we observe shifting bifurcation curves to the right.
Further, we observe that MPS (ℓ∗(∞, γ2)) ranges over

(
π
2 , π

)
, increases in γ2, and causes bifurcation

curves to move to the right as γ2 increases.
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(a) Evolution of bifurcation curves (from right to left)
of (1.5) as γ2 → 0+.
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(b) Evolution of bifurcation curves (from left to right)
of (1.5) as γ2 → ∞.

Figure 14. Evolution of bifurcation curves of (1.5) showing patch size (ℓ) vs maximum
steady state density (∥u∥∞) when r = D.
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Figure 15. Variation of minimum patch size (ℓ∗(∞, γ2) with respect to the composite
parameter γ2 in the case r = D.
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In Figure 15, we provide the evolution of MPS (ℓ∗(∞, γ2)) as γ2 varies with r = D chosen for
convenience of presentation. Here, we observe that ℓ∗(∞, γ2) is an increasing function of γ2,

approaches
√

ED
1

4 =
π
2 as γ2 → 0+, and approaches

√
ED

1 = π as γ2 → ∞, where ED
1 is the principal

eigenvalue of (2.4).

3.3. Biological conclusions

The model predicts that patches with size (ℓ) less than or equal to the minimum patch size, i.e.,
ℓ∗(γ1, γ2), cannot support a population as losses due to mortality caused by interaction with the hostile
matrix fail to be overcome by growth inside the patch. However, for patches with ℓ > ℓ∗(γ1, γ2),
the model predicts that organisms with a positive initial density profile will be able to successfully
colonize the patch and persist. Our results also show that as patch size approaches ℓ∗(γ1, γ2) from the
right, maximum density of the unique steady state density profile will tend towards zero in a continuous
fashion. On the other hand, as patch size becomes large, a core habitat will form in the center of the
patch for which organisms dwelling in the core are not likely to exhibit mortality at the patch/matrix
interface. As patch size grows, this core habitat will approach 100% of the overall patch. Our results
further show that the steady state density profile will approach 100% of patch carrying capacity (K) in
this habitat core.

The composite parameter γi measures the overall effect of matrix hostility from interaction with
ΩMi on population persistence as the MPS is an increasing function of γi. As Table 3 reveals, this
effect is determined by the ratio of matrix death rate to patch intrinsic growth rate, habitat preference as
measured by emigration probability (i.e., 1−αi, where αi is the probability that an organism will remain
in the patch upon reaching the boundary), and in the Type II DD scenario the ratio of patch diffusion rate
to matrix diffusion rate. In all patch/matrix interface scenarios, increasing matrix death rate, increasing
patch diffusion rate, decreasing patch intrinsic growth rate, or increasing emigration probability will
cause an increase in MPS (holding all other factors fixed). In the Type II DD scenario, increasing
matrix diffusion rate will actually lower MPS. This suggests that for species with no difference between
random walk step length in the matrix versus patch, decreasing movement resistance in the matrix can
actually lower their MPS requirement. However, for organisms falling under the remaining scenarios,
movement resistance in the matrix is not predicted to have any impact on MPS.

One matrix component’s combined hostility measure remaining fixed as the other component’s is
varied (as was studied in Case 1 of our analysis) can arise naturally in a couple of different ways. Local
matrix heterogeneity may occur in an obvious way as one matrix component is affected by consistent
anthropogenic activities such as farming (e.g., increasing the matrix death rate in that component by
excessive pesticide use), while the other component remains untouched. However, our results reveal
that a second more stealthy situation may arise in which both matrix components are identical to the
organism (e.g., matrix death rate and emigration probability are equal and fixed, while movement
resistance in both matrix components is increasing in a similar fashion causing a reduction in matrix
diffusion rate), but one matrix component is functionally different enough from the other to cause
movement step lengths on one side to be the same in the matrix versus patch and different in the other.
In this case, as matrix diffusion rate increases in both matrix components, combined hostility in the
matrix component with similar movement step lengths between patch and matrix increases on that side,
but no change in hostility occurs on the other side. These results indicate that even simple assumptions
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regarding movement at the individual-level could have lasting impacts at the patch-level via increasing
of MPS requirement.

Also, MPS estimates in Case 1 of our analysis were shown to be confined to an envelope of
possible values dictated by the fixed component’s γi-value. For example, we considered the case
when γ2 = 1 and combined matrix hostility was allowed to vary in ΩM1 . Our results show that MPS
ℓ∗(γ1, γ2) ∈

[
ℓ∗(0, γ2), ℓ∗(∞, γ2)

]
). Although both lower and upper bounds on MPS are dependent on

γ2, the length of this interval was always L0 =
π
2

√
D
r –independent of γ2. This result sheds some light

on the consequences of making an assumption of a homogeneous (or even locally homogeneous)
matrix when modeling a population residing in a patch with locally heterogeneous matrix. In fact, we
are able to employ this result to provide some bounds on the potential error incurred by assuming a
locally homogeneous matrix. In our one-dimensional landscape, using the same γi-value for both
matrix components yields a MPS prediction at worse L0 from the correct estimate.

When neither matrix component is immediately hostile to organisms, the model predicts that all
positive steady state density profiles will be symmetric about the center of the patch if and only if the
combined matrix hostility in each component is the same (i.e., composite parameters γ1 and γ2 are
equal). Such a prediction arises from the fact that equal mortality at both patch/matrix interfaces create
a symmetric spatial structure as shown in Figure 7b. This result captures what was found in [22, 39]
for the locally homogeneous matrix case. However, our results show that local heterogeneity in the
matrix can create steady state density profiles with asymmetric spatial structure (see Figure 7a,c). In
fact, peak density in a steady state profile is predicted to occur closer to the patch/matrix interface with
lower combined hostility (e.g., γ1 < γ2 implies that peak density of the steady state profile will occur
closer toΩM1). When one matrix component is close to being immediately hostile to organisms and the
other not, the steady state density profile will always be skewed with the peak occurring closer to the
other latter component. This fact can be used as a tool to give a quick evaluation of the presence of local
matrix heterogeneity. For example, population densities empirically estimated from a patch that show
such a skewed spatial structure where the peak density is closer to one part of the patch/matrix interface
could indicate presence of local matrix heterogeneity and suggest the need for further investigation of
matrix hostility, dispersal, and organismal habitat preference.

4. Proofs of main results

In this section, we present proofs of our main results. First, we provide proofs of Theorems 3.1–3.4
from Case 1.

Proof of Theorem 3.1: Here, we extend the study in [41], where a quadrature method was first
introduced for the Dirichlet boundary conditions, and in [39] where it was extended for the case of
linear boundary conditions with γ1 = γ2.

Suppose u is a positive solution to (1.4) with ||u||∞ = ρ. Clearly u′′ < 0; (0, 1). Further, the boundary
conditions imply that u′(0) > 0 and u′(1) < 0. Hence, there exists a unique x∗ ∈ (0, 1) such that
u′(x∗) = 0 and ||u||∞ = u(x∗) = ρ. Also, since the differential equation is autonomous, the solution
must be symmetric about this x∗. Multiplying both sides of the differential equation in (1.4) by u′ and
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integrating we obtain

u′(x) =
{ √

2λ[F(ρ) − F(u(x))]; (0, x∗]
−

√
2λ[F(ρ) − F(u(x))]; [x∗, 1).

(4.1)

Next, integrating (4.1) yields∫ u(x)

q1

dz√
F(ρ) − F(z)

=
√

2λx; x ∈ (0, x∗) (4.2)∫ u(x)

q2

dz√
F(ρ) − F(z)

=
√

2λ(1 − x); x ∈ (x∗, 1), (4.3)

where q1 = u(0) and q2 = u(1).
Now, taking x→ x∗, λ, ρ, q1, q2, and x∗ must satisfy:∫ ρ

q1

dz√
F(ρ) − F(z)

= x∗
√

2λ (4.4)∫ ρ

q2

dz√
F(ρ) − F(z)

= (1 − x∗)
√

2λ. (4.5)

From (4.4) and (4.5), we obtain

λ =
1
2

[ ∫ ρ

q1

dz√
F(ρ) − F(z)

+

∫ ρ

q2

dz√
F(ρ) − F(z)

]2

(4.6)

and

x∗ =

∫ ρ

q1

dz√
F(ρ) − F(z)∫ ρ

q1

dz√
F(ρ) − F(z)

+

∫ ρ

q2

dz√
F(ρ) − F(z)

. (4.7)

By the boundary conditions in (1.4) and by (4.1), we see that

2[F(ρ) − F(q1)] = γ2
1q2

1 and 2[F(ρ) − F(q2)] = γ2
2q2

2. (4.8)

Note here that since 2F(s)+γis2; i = 1, 2 are strictly increasing on (0, 1), q1(= q1(ρ)) and q2(= q2(ρ))
are uniquely determined for a given ρ ∈ (0, 1).

Next, let λ, q1, q2, and ρ satisfy (3.1) and (3.2). Define u : [0, 1] −→ [0, ρ] such that u satisfies
(4.2) for x ∈ (0, x∗) and (4.3) for x ∈ (x∗, 1). Note that u is well-defined for x ∈ (0, x∗) since both∫ u

q1

dz√
F(ρ) − F(z)

and
√

2λx increase from 0 to
∫ ρ

q1

dz√
F(ρ) − F(z)

as u increases from q1 to ρ and

x increases from 0 to x∗. Similarly we can see that u is well defined for x ∈ (x∗, 1). Define H :
(0, x∗) × (q1, ρ)→ R by

H(l, v) =
∫ v

q1

dz√
F(ρ) − F(z)

−
√

2λl.
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Clearly, H is C1, H(x, u(x)) = 0 for x ∈ (0, x∗), and

Hv|(x,u(x)) =
1√

F(ρ) − F(u(x))
, 0.

By the Implicit Function Theorem, u is C1 on (0, x∗). Similarly we can show that u is C1 on (x∗, 1).
Differentiating (4.2) and (4.3), we obtain

u′(x) =
{ √

2λ[F(ρ) − F(u(x)); (0, x∗)
−

√
2λ[F(ρ) − F(u(x)); (x∗, 1).

(4.9)

Now, from (4.9), it is easy to show that u ∈ C2(0, 1) and is a solution of −u′′(x) = λ f (u(x)); (0, 1).
Further, u ∈ C1[0, 1] and from (3.2) and (4.9), we obtain −u′(0) +

√
λγ1u(0) = 0. Similarly, we see

that u′(1) +
√
λγ2u(1) = 0.

Finally, we recall the study in [41] where the corresponding λ (for the Dirichlet case q1 = 0 = q2)
was proved to be a well-defined and continuous function of ρ (using the fact that f (ρ) > 0). Here q1

and q2, though not zero, are still continuous functions of ρ by (3.2). Hence, the arguments in [41] can
be extended to show that λ in (3.1) is also well-defined and continuous for ρ on (0, 1). □

Proof of Theorem 3.2: First, when λ > E1(γ1, γ2) and λ ≈ E1(γ1, γ2), we establish existence of a
positive solution uλ such that ||uλ||∞ → 0 as λ→ E1(γ1, γ2)+. Let λ > E1(γ1, γ2), λ ≈ E1(γ1, γ2), and let
σλ(γ1, γ2) be the principal eigenvalue of (2.2) and ϕλ be the corresponding normalized eigenfunction
such that ϕλ > 0; Ω (see proof of Lemma 2.2 and Remark .1). Let ψλ = τϕλ, with τ > 0. Then we have

−ψ′′λ − λψλ(1 − ψλ) = τϕλ(σλ(γ1, γ2) + λτϕλ) (4.10)
< 0; Ω

for τ ≈ 0 since by Lemma 2.2 we have σλ(γ1, γ2) < 0. It is also clear that ψλ satisfies the boundary
conditions of (1.4). Thus, ψλ is a subsolution of (1.4) for τ ≈ 0. Now, let Zλ = δλϕλ, where δλ =
−σλ(γ1, γ2)
λmin

[0,1]
ϕλ

. We note that δλ > 0 and δλ → 0 as λ → E1(γ1, γ2)+ since σλ(γ1, γ2) < 0, σλ(γ1, γ2) → 0

as λ→ E1(γ1, γ2)+, and min
x∈[0,1]

ϕλ ↛ 0 as λ→ E1(γ1, γ2)+. Then we have

−Z′′λ − λZλ(1 − Zλ) = δλ(λ + σλ(γ1, γ2)) − (λδλϕλ)(1 − δλϕλ)
= δλϕλ(σλ(γ1, γ2) + λδλϕλ)
≥ 0; Ω.

It is also easy to see that Zλ satisfies the boundary conditions of (1.4). Thus, Zλ is a supersolution
of (1.4) such that ||Zλ||∞ → 0+ as λ→ E1(γ1, γ2)+.

Further, we have ψλ ≤ Zλ for τ ≈ 0. By Lemma 2.1, (1.4) has a positive solution uλ ∈ [ψλ,Zλ] such
that ||uλ||∞ → 0 as λ → E1(γ1, γ2)+. We emphasize that this shows existence of a positive solution for
λ > E1(γ1, γ2) and λ ≈ E1(γ1, γ2).
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It is well known that 
−v′′ = λv(1 − v); (0, 1)
v(0) = 0
v(1) = 0

has a unique positive solution vλ for λ > ED
1 such that ||vλ||∞ → 1− as λ → ∞. In fact, vλ → 1−

uniformly on compact subsets of Ω as λ→ ∞. Since v′λ(1) < 0 and v′λ(0) > 0, is it easy to see that vλ is
a subsolution of (1.4) for λ ≫ 1. Recall that Z ≡ 1 is a supersolution of (1.4). By Lemma 2.1, (1.4) has
a positive solution uλ ∈ [vλ, 1] for λ > ED

1 . Furthermore, uλ → 1− uniformly on compact subsets of Ω
as λ→ ∞ since vλ does the same. This immediately implies that ||uλ||∞ → 1− as λ→ ∞. Our previous
results together with Theorem 3.1 imply that (1.4) has a positive solution uλ for λ > E1(γ1, γ2) such
that ||uλ||∞ → 0 as λ→ E1(γ1, γ2)+ and ||uλ||∞ → 1 as λ→ ∞.

Next, we show that (1.4) has at most one positive solution for any λ > 0. Suppose that (1.4) has
two distinct positive solutions u1 and u2. (Note: Nontrivial, non-negative solutions are positive in the
interior). Since Z ≡ m is a global supersolution for all m ≥ 1, without loss of generality we can assume
that u2 is the maximal positive solution of (1.4). Therefore, u1 ≤ u2 in [0, 1]. Integration by parts yields∫ 1

0
[u′′1 u2 − u′′2 u1]dx = [u′1u2 − u′2u1]

∣∣∣∣1
0

= [u′1(1)u2(1) − u′2(1)u1(1)] − [u′1(0)u2(0) − u′2(0)u1(0)]

=
[
−
√
λγ2u1(1)u2(1) +

√
λγ2u2(1)u1(1)

]
−[√

λγ1u1(0)u2(0) −
√
λγ1u2(0)u1(0)

]
= 0.

However, by (1.4), we have∫ 1

0
[u′′1 u2 − u′′2 u1]dx =

∫ 1

0

{(
− λu1[1 − u1]

)
u2 −

(
− λu2[1 − u2]

)
u1

}
dx

= λ

∫ 1

0
u1u2[u1 − u2]dx.

Combining these results, it follows that∫ 1

0
u1u2[u1 − u2]dx = 0.

This is a contradiction since u1 and u2 are distinct positive solutions with u1 ≤ u2. Therefore, we
must have u1 ≡ u2. Hence, (1.4) has at most one positive solution uλ for λ > 0.

Combining the above results that at most one positive solution exists for λ > 0, existence of a
positive solution uλ for λ > E1(γ1, γ2) and λ ≈ E1(γ1, γ2) such that ||uλ||∞ → 0 as λ → E1(γ1, γ2)+ and
||uλ||∞ → 1 as λ→ ∞, and the continuity of λ for ρ on (0, 1) from Theorem 3.1, it follows that there is
no positive solution for λ ≤ E1(γ1, γ2). Therefore, the exact bifurcation diagram illustrated in Figure 5
is established. Stability results immediately follow from uniqueness of positive steady states and the
sub-supersolution construction [42]. □
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Proof of Theorem 3.3: Let γ1 > γ
∗
1 > 0 and λ > E1(γ1, γ2). Further, let wλ = uλ(γ1, γ2) be the positive

solution of: 
−u′′ = λu(1 − u); (0, 1)
−u′(0) +

√
λγ1u(0) = 0

u′(1) +
√
λγ2u(1) = 0

(4.11)

and vλ = uλ(γ∗1, γ2) be the positive solution of:
−u′′ = λu(1 − u); (0, 1)
−u′(0) +

√
λγ∗1u(0) = 0

u′(1) +
√
λγ2u(1) = 0.

(4.12)

We claim that wλ is a subsolution of (4.12). To see this, observe that

−w′′λ = λwλ(1 − wλ); (0, 1)

−w′λ(0) +
√
λγ∗1wλ(0) < −w′λ(0) +

√
λγ1wλ(0) = 0

w′λ(1) +
√
λγ2wλ(1) = 0,

since γ1 > γ∗1. Thus, wλ is a strict subsolution of (4.12). Note that Z ≡ 1 is a supersolution of (4.12).
By Lemma 2.1, (4.12) has a positive solution yλ satisfying wλ ≤ yλ ≤ 1. Since wλ is a strict
subsolution of (4.12), it is easy to see that wλ < yλ. However, since vλ is the unique solution of (4.12),
we have yλ = vλ and hence wλ < vλ. □

Proof of Theorem 3.4: First we show that if γ1 > γ2, then q1 < q2. Let uλ be a positive solution
of (1.4) with ∥uλ∥∞ = ρ, uλ(0) = q1, and uλ(1) = q2. Suppose that q1 ≥ q2. Combining the equations

in (3.2), we obtain 2[F(q1) − F(q2)] = γ2
2q2

2 − γ
2
1q2

1. Since F(u) =
∫ u

0
s(1 − s)ds =

1
2

u2 −
1
3

u3 is a

strictly increasing function for u ∈ (0, 1), we have F(q1) ≥ F(q2). This implies that
γ2

2q2
2 − γ

2
1q2

1 = (γ2q2 + γ1q1)(γ2q2 − γ1q1) ≥ 0. Hence, we have γ2q2 − γ1q1 ≥ 0, or equivalently,
γ2

γ1
≥

q1

q2
. This is a contradiction since q1 ≥ q2 and γ1 > γ2. Thus, we have q1 < q2. Similarly we can

show that if γ1 < γ2, then q1 > q2, and if γ1 = γ2, then q1 = q2.

Second, we provide proofs for Theorems 3.5–3.7 from Case 2.

Proof of Theorem 3.5: This is a special case of Theorem 3.1 where q1 = 0. □

Proof of Theorem 3.6: First, we establish nonexistence of a positive solution when λ ≤ Ẽ1(γ2).
Suppose that uλ is a positive solution of (1.5) for λ ≤ Ẽ1(γ2). Let σ̃λ(γ2) be the principal eigenvalue and
ϕλ be the normalized positive eigenfunction of the eigenvalue problem (2.5) (see proofs of Lemma 2.3,
2.4 and Remark .2). Using integration by parts, we have∫ 1

0
[−ϕ′′λ uλ + u′′λϕλ]dx =

{
− ϕ′λuλ + u′λϕλ

}∣∣∣∣1
0

=
{
− ϕ′λ(1)uλ(1) + u′λ(1)ϕλ(1)

}
−

{
− ϕ′λ(0)uλ(0) + u′λ(0)ϕλ(0)

}
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=
√
λγ2ϕ(1)uλ(1) −

√
λγ2uλ(1)ϕλ(1)

= 0.

By (2.5), we also have∫ 1

0
[−ϕ′′λ uλ + u′′λϕλ]dx =

∫ 1

0

{
(λ + σ̃λ(γ2))ϕλuλ − λuλ(1 − uλ)ϕλ

}
dx

=

∫ 1

0
ϕλuλ[σ̃λ(γ2) + λuλ]dx > 0

since σ̃λ(γ2) ≥ 0 for λ ≤ Ẽ1(γ2) by Lemma 2.3. This is a contradiction. Thus, (1.5) has no positive
solution when λ ≤ Ẽ1(γ2).

Next, we establish existence of a positive solution for λ > Ẽ1(γ2). Let ψλ := ωϕλ, where ω > 0
is a constant to be chosen later. Then for x ∈ (0, 1), we have ϕλ

{
σ̃λ(γ2) + λωϕλ

}
≤ 0 for ω ≈ 0 since

σ̃λ(γ2) < 0 for λ > Ẽ1(γ2). This implies that

−ψ′′λ = ω
(
λ + σ̃λ(γ2)

)
ϕλ ≤ λωϕλ

(
1 − ωϕλ

)
= λψλ(1 − ψλ).

Also, on the boundary we have ψλ(0) = ωϕλ(0) = 0 and ψ′(1)+
√
λγ2ψλ(1) = ωϕ′λ(1)+

√
λγ2ωϕλ(1) =

0. Thus, ψλ is a subsolution of (1.5) for ω ≈ 0. Further, it is clear that Z ≡ 1 is a supersolution for
(1.5). Hence by Lemma 2.1, (1.5) has a positive solution uλ ∈ [ψλ,Z] for λ > Ẽ1(γ2).

We note that the proof of uniqueness of positive solutions for λ > Ẽ1(γ2) is very similar to the
proof of the uniqueness in Theorem 3.2. Hence we omit the proof here. Further, following the same
argument as in Theorem 3.2, it follows that ||uλ||∞ → 1− as λ → ∞. Finally, we show that ||uλ||∞ → 0
as λ → Ẽ1(γ2)+. We note that Theorem 3.5 together with the facts that (1.5) has no positive solution
for λ ≤ Ẽ1(γ2) and has a unique positive solution uλ for λ > Ẽ1(γ2) such that uλ → 1− uniformly on
compact subsets of Ω as λ → ∞, immediately implying that ||uλ||∞ → 1− as λ → ∞. These facts also
establish that ||uλ||∞ → 0 as λ → Ẽ1(γ2)+ since by Theorem 3.5, λ is a continuous function of ρ on
(0, 1). Hence, the exact bifurcation diagram illustrated in Figure 9 is established. □

Proof of Theorem 3.7: This argument is similar to the proof of Theorem 3.3. Hence, we omit the
proof. □

5. Conclusions

Fragmentation and loss of natural habitats have driven a widespread decline in terrestrial
biodiversity [16]. As demands for natural resources and land increase, landscapes will be increasingly
altered and fragmented creating spatial heterogeneity [2]. Overall, effects of heterogeneity in
landscapes and, particularly, matrix have been largely understudied compared with assessments based
upon habitat amount or configuration [27]. Crucial to the area of conservation research is to what
extent does loss of habitat area versus habitat fragmentation per se versus matrix heterogeneity
contribute to population viability [43]. One of the most important conservation questions to be
answered is: how much must be conserved for persistence of a population to be ensured [2]? This
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question is often addressed at the patch-level by determining the minimum patch size necessary to
promote a viable population. Modeling studies suggest dependence of minimum patch size on several
factors including reproduction rate, emigration rate, population genetics of the organism, and various
stochastic factors [2]. However, it has become apparent that the “matrix matters” in prediction of
population persistence [12, 13]. A key guide for conservation is a better understanding of the role
played by matrix quality in fragmented landscapes [13].

In this paper, we have extended an established reaction diffusion modeling framework to model
effects of matrix heterogeneity in population persistence at the patch level. This new framework
allows for predicting persistence of populations residing in a patch surrounded by a locally
heterogenous matrix. Our results give the exact dynamics of a population exhibiting logistic growth,
an unbiased random walk in the patch and matrix, habitat preference at the patch/matrix interface, and
two functionally different matrix types for a one-dimensional landscape. We show existence of a
minimum patch size, below which population persistence is not possible. This MPS can be estimated
via empirically derived estimates of patch intrinsic growth rate and diffusion rate, habitat preference,
and matrix death and diffusion rates. Mechanistic derivation of MPS allows us to analyze qualitative
dependence of MPS on these parameters.

Recently, ecologists have begun focusing more and more attention to matrix habitat quality [44,
45]. Our theoretical results provide additional support to the notion that local matrix heterogeneity
can greatly change model predictions. Asymmetries not found in a locally homogeneous matrix can
occur, giving rise to a steady state density profile with peak density closer to the matrix component
with less severe combined matrix hostility. This result suggests a test of local matrix heterogeneity.
Empirical estimates of density throughout a patch that show peak density near the center of the patch
would suggest local matrix homogeneity for that patch. However, asymmetric spatial patterns in the
density with a peak closer to one part of the patch/matrix interface would suggest presence of local
matrix heterogeneity and suggest further investigation into the cause of the functional differences in
matrix components. Our results also suggest that MPS estimates can be much less accurate when local
heterogeneity is ignored in the modeling framework. For our one-dimensional landscape system, we
have derived an upper bound on the MPS error in making such an assumption. Finally, our results agree
with and strengthen previous authors’ claims [2] that conservation strategies should not only consider
patch size, configuration, and quality, but also quality and spatial structure of the surrounding matrix.
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Appendix

Proof of Remark 3.2: First, we note that the eigenvalues need to be positive. Now the general solution
of the differential equation in (2.1) for E > 0 is ϕ(x) = c1 cos(

√
Ex)+c2 sin(

√
Ex), with c1, c2 constants

to be determined. Using the boundary conditions, we obtain the following eigenvalue equation:

(γ1 + γ2) cos(
√

E) + (γ1γ2 − 1) sin(
√

E) = 0. (A.1)

Assuming γ1γ2 , 1, this becomes

tan(
√

E) =
γ1 + γ2

1 − γ1γ2
. (A.2)

For γ1γ2 > 1, we know
γ1 + γ2

1 − γ1γ2
< 0. Hence there exists a unique E ∈ (π

2

4 , π
2) such that (A.2) is

satisfied. Now, if γ1γ2 < 1, we know
γ1γ2

1 − γ1γ2
> 0. Hence there exists a unique E ∈ (0, π

2

4 ) such that

(A.2) is satisfied. In both cases, this shows the existence of the principal eigenvalue. From (A.2), we
obtain the following explicit form of the principal eigenvalue:

E1(γ1, γ2) =


[

tan−1
(
γ1+γ2
1−γ1γ2

)]2
for γ1γ2 < 1[

π + tan−1
(
γ1+γ2
1−γ1γ2

)]2
for γ1γ2 > 1.

(A.3)

It follows from (A.1) and (A.3) that E1(γ1, γ2) →
π2

4
as γ1 →

1
γ2

, E1

( 1
γ2

)
=
π2

4
, and E1(·, γ2) is

continuous and increasing in γ1.

Proof of Remark 3.6: Again, we first note that the eigenvalues need to be positive. Now for fixed
γ2 > 0, the general solution of the differential equation in (2.6) for E > 0 is ϕ(x) = c1 cos(

√
Ex) +

c2 sin(
√

Ex), with c1, c2 constants to be determined. Using the boundary conditions, we obtain the
following eigenvalue equation:

tan(
√

E) = −
1
γ2
. (A.4)

Since tan(
√

E) ∈ (−∞,∞) and −
1
γ2

< 0, there exists a unique E ∈ (π
2

4 , π
2) such that (A.4) is satisfied.

This shows the existence of the principal eigenvalue. From (A.4), we obtain its explicit form:

Ẽ1(γ2) =
[
π + tan−1

(
−

1
γ2

)]2
. (A.5)

From (A.5), it is easy to see that as γ2 → 0, Ẽ1(γ2)→
π2

4
and as γ2 → ∞, Ẽ1(γ2)→ π2. It is also easy

to see that Ẽ1(γ2) is continuous and increasing in γ2. □

Proof of Lemma 2.2: First, we consider the case γ1γ2 , 1 and establish the existence and uniqueness
of the principal eigenvalue σλ(γ1) by an application of the Implicit Function Theorem. Let λ > 0 be
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fixed with λ+σ > 0 in (2.2). Then the general solution of (2.2) has the form ϕλ(x) = c1 cos(
√
λ + σx)+

c2 sin(
√
λ + σx), where c1 and c2 are constants. Using the boundary conditions and the fact that λ+σ >

0, we obtain the following eigenvalue equation:

[(1 − γ1γ2)λ + σ] tan(
√
λ + σ) = (γ1 + γ2)

√
λ
√
λ + σ. (A.6)

Since γ1γ2 , 1, we obtain an equivalent form of (A.6):

tan(
√
λ + σ) = −

(γ1 + γ2)
√
λ
√
λ + σ

(γ1γ2 − 1)λ − σ
. (A.7)

Using (A.7), we define

F(λ, σ) := tan(
√
λ + σ) +

(γ1 + γ2)
√
λ
√
λ + σ

(γ1γ2 − 1)λ − σ
. (A.8)

Note that F(E1(γ1, γ2), 0) = 0.
Next, we show that Fσ(E1(γ1, γ2), 0) > 0. A simple calculation will show that

Fσ(E1(γ1, γ2), 0) =
sec2

( √
E1(γ1, γ2)

)
2
√

E1(γ1, γ2)
+

(γ1 + γ2)
√

E1(γ1, γ2)(γ1γ2 + 1)
2[(γ1γ2 − 1)E1(γ1, γ2)]2 . (A.9)

By (A.9), it is easy to see that Fσ(E1(γ1, γ2), 0) > 0(, 0). By the Implicit Function Theorem, there
exists ε > 0 and a unique C1 function σ(λ) = σλ(γ1) defined on I := (E1(γ1, γ2) − ε, E1(γ1, γ2) + ε)
satisfying F(λ, σ(λ)) = 0 on I with F(E1(γ1, γ2), 0) = 0. This establishes the existence and uniqueness
of the principal eigenvalue, σλ, of (2.2) as a root of (A.8).

Next, we show that Fλ(E1(γ1, γ2), 0) > 0. Observe that

Fλ(λ, σ) =
sec2(

√
λ + σ)

2
√
λ + σ

+
−σ(γ1 + γ2)

(
(γ1γ2 − 1)λ − σ

)
2
√
λ2 + λσ[(γ1γ2 − 1)λ − σ]2

.

For λ = E1(γ1, γ2) and σ = 0, we have

Fλ(E1(γ1, γ2), 0) =
sec2(

√
E1(γ1, γ2))

2
√

E1(γ1, γ2)
> 0.

Using the fact that F(λ, σ(λ)) = 0 on
(
E1(γ1, γ2) − ε, E1(γ1, γ2) + ε

)
and differentiating (A.8) with

respect to λ, we have Fλ + Fσσ
′(λ) = 0, which implies σ′(λ) = −

Fλ

Fσ

. Since Fλ(E1(γ1, γ2), 0) >

0 and Fσ(E1(γ1, γ2), 0) > 0, it follows that σ′(E1(γ1, γ2)) < 0. This means σ(λ) is decreasing on
(E1(γ1, γ2) − ε, E1(γ1, γ2) + ε). Therefore, we have σ(λ) < 0 for λ > E1(γ1, γ2) and λ ≈ E1(γ1, γ2),
and σ(λ) > 0 for λ < E1(γ1, γ2) and λ ≈ E1(γ1, γ2). Further, it is easy to see that σ(λ) → 0 as
λ→ E1(γ1, γ2).

Now we focus on the case when γ1γ2 = 1. We first show that σλ(γ1) exists and then establish
that σλ(γ1) < 0 for λ > E1(γ1, γ2) and λ ≈ E1(γ1, γ2) and σλ(γ1) → 0 as λ → E1(γ1, γ2)+. Fix
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λ > E1(γ1, γ2) such that λ =
π2

4
+ η where η > 0 and η ≈ 0. Setting γ1γ2 = 1 in (A.6), we obtain a new

eigenvalue equation:

tan(
√
λ + σ) =

[
(γ1 + γ2)

√
λ
] √λ + σ

σ
. (A.10)

Let g(σ) = tan(
√

π2

4 + η + σ) and h(σ) =
[
(γ1 + γ2)

√
π2

4 + η
] √

π2
4 +η+σ

σ
, defined for σ ∈ [−π

2

4 −

η,∞), with the exception of singularities. Note that g has its first singularity when
√
λ + σ =

π

2
, or

equivalently, when σ = −η. Also, since g is increasing on [−π
2

4 − η,−η) with g(σ) > 0 and h is
decreasing on [−π

2

4 − η,−η), with h(σ) < 0, we know g(s) , h(s) for σ ∈ [−π
2

4 − η,−η). This means no
eigenvalue exists on this interval (see Figure A1).

σ axis
−π

2

4 − η

|
−η σλ

|

g(σ)

h(σ)

Figure A1. The graphs of g and h.

Next, observe that g is increasing on (−η, 0) and g(σ) → −∞ as σ → −η+. We also have h(−η) < 0, h
is decreasing on (−η, 0) and h(σ) → −∞ as σ → 0−. This implies that (A.10) has a unique minimum
solution on (−η, 0). Thus, (2.2) has a unique principal eigenvalue σλ(γ1, γ2)(< 0). It is easy to see that

σλ(γ1, γ2) → 0 as λ →
π2

4

+

. Thus, we have σλ(γ1, γ2) → 0 as λ → E1(γ1, γ2)+. A similar argument
will show that σλ(γ1) > 0 for λ < E1(γ1, γ2) and λ ≈ E1(γ1, γ2) and σλ(γ1) → 0 as
λ→ E1(γ1, γ2)−. □

Remark .1. We note that the eigenfunction, ϕλ(x), corresponding to (2.2) is given by

ϕλ(x) = c1

{
cos(

√
λ + σλ(γ1)x) +

√
λγ1√

λ + σλ(γ1)
sin(

√
λ + σλ(γ1)x)

}
.

Setting λ = E1(γ1, γ2) and σλ(γ1) = 0, it follows that

ϕE1(x) = c1 sin
( √

E1(γ1, γ2)x
)(

cot
( √

E1(γ1, γ2)x
)
+ γ1

)
.
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Using the value of E1(γ1, γ2) in the case γ1γ2 , 1, it is not hard to see that ϕλ(x) > 0 when λ =

E1(γ1, γ2) and σλ(γ1) = 0. By continuity, we have ϕλ > 0 for λ ≈ E1(γ1, γ2).

Proof of Lemma 2.3: Denote β = β(µ) as the principal eigenvalue of (2.3) with corresponding
eigenfunction ϕ, chosen such that ϕ(x) > 0; Ω. We denote ϕµ as the derivative of ϕ with respect to µ
for fixed x and use ′ to denote differentiation with respect to x for fixed µ. However, we denote β′(µ)
as differentiation of β with respect to µ. Now, differentiating (2.3) with respect to µ yields

−ϕ′′µ = β
′(µ)ϕ(µ) + β(µ)ϕµ; (0, 1)

ϕµ(0) = 0
ϕ′µ(1) + ϕ(µ)(1) + µϕµ(1) = 0.

(A.11)

Next, we calculate β′(µ) for any µ > 0. By Green’s Second Identity and the fact that ϕ(µ)(0) = ϕµ(0) =
0, we have that ∫ 1

0

[
−ϕ′′(µ)ϕµ + ϕ(µ)ϕ′′µ

]
dx = −ϕ′(µ)(1)ϕµ(1) + ϕ(µ)(1)ϕ′µ(1). (A.12)

From (2.3) and (A.11), we obtain∫ 1

0

[
−ϕ′′(µ)ϕµ + ϕ(µ)ϕ′′µ

]
dx = −(ϕ(µ)(1))2 (A.13)

and ∫ 1

0
[−ϕ′′(µ)ϕµ + ϕ(µ)ϕ′′µ ]dx = −β′(µ)

∫ 1

0
(ϕ(µ))2dx. (A.14)

Combining (A.13) and (A.14) gives

β′(µ) =
(ϕ(µ)(1))2∫ 1

0
(ϕ(µ))2dx

> 0. (A.15)

Thus, β(µ) is increasing in µ for µ > 0.
Green’s First Identity and (2.3) yields∫ 1

0

[
−ϕ′′(µ)ϕ(µ)

]
dx =

∫ 1

0
(ϕ′(µ))2dx + µ(ϕ(µ)(1))2. (A.16)

We also have ∫ 1

0

[
−ϕ′′(µ)ϕ(µ)

]
dx = β(µ)

∫ 1

0
ϕ(µ)2dx. (A.17)

Combining (A.16) and (A.17), we have that

β(µ)
∫ 1

0
(ϕ(µ))2dx =

∫ 1

0
(ϕ′(µ))2dx + µ(ϕ(µ)(1))2. (A.18)

Now by (A.15) and (A.18) we obtain

β′(µ) =
β(µ)
µ
−

1

µ
∫ 1

0
ϕ2(µ)dx

∫ 1

0
(ϕ′(µ))2dx (A.19)
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which implies that

β′(µ) ≤
β(µ)
µ

(A.20)

for µ > 0. Thus, β is a concave function of µ for µ > 0.

Now let β(µ) = [m(µ)]2 in (2.3), where m > 0. We note that the general solution of (2.3) has the
form ϕ(x) = c1 cos(mx)+ c2 sin(mx), where c1 and c2 are constants. Using the boundary conditions and
the fact that m > 0, we obtain the following eigenvalue equation:

m cos(m) + µ sin(m) = 0, (A.21)

or equivalently,

−µ = m cot(m) (A.22)

Since we are interested in the principal eigenvalue β(µ) for µ > 0, we have m ∈ (π2 , π). Define
j(m) = m cot(m) for m ∈ (π2 , π). It is easy to see that j is decreasing, continuous, j(π2 ) = 0 and
lim
m→π

j(m) = −∞. Thus, for each µ > 0, there exists a unique m ∈ (π2 , π), or equivalently, β(µ) ∈ (π
2

4 , π
2)

which satisfies (A.22). This implies that lim
µ→∞

β(µ) = ED
1 = π

2. □

Proof of Lemma 2.4: Observe in Figure A2 that Ẽ1(γ2) is the y-coordinate of the intersection of β(µ)

and
µ2

γ2
2

. Recall that
π2

4
< Ẽ1(γ2) < π2 for γ2 > 0. Let λ > E1(γ2) be fixed. Observe

µ2

γ2
2

= λ when

µ =
√
λγ2. Note that β(

√
λγ2) = λ + σ̃λ(γ2). In Figure A2, we see that γ2

√
λ > γ2

√
Ẽ1(γ2), therefore,

β(γ2
√
λ) < λ. Then we have λ + σ̃λ(γ2) < λ which implies σ̃λ(γ2) < 0. Using a similar argument and

the geometry of Figure A2 we can show that σ̃λ(γ2) > 0 when λ < Ẽ1(γ2) and σ̃λ(γ2) → 0 as
λ→ Ẽ1(γ2). □

Remark .2. The eigenfunction corresponding to (2.5) is ϕλ(x) = sin(
√
λ + σ̃λ(γ2)x). By Figure A2 we

have
π

2
<

√
Ẽ1(γ2) <

√
λ + σ̃λ(γ2) < π. For x ∈ (0, 1), this implies 0 <

√
λ + σ̃λ(γ2)x < π. On the

interval (0, π), the sine function is positive, hence ϕλ > 0.
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µ

λ

π2

Ẽ1(γ2)

λ + σ̃λ(γ2)
λ

π2

4

γ2

√
Ẽ1(γ2) γ2

√
λ

β(µ)

µ2

γ2
2

Figure A2. Intersection of β(µ) and µ2

γ2
2
.
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