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Abstract: Stroke is a major chronic non-communicable disease with high incidence, high mortality, 
and high recurrence. To comprehensively digest its risk factors and take some relevant measures to 
lower its prevalence is of great significance. This study aimed to employ Bayesian Network (BN) 
model with Max-Min Hill-Climbing (MMHC) algorithm to explore the risk factors for stroke. From 
April 2019 to November 2019, Shanxi Provincial People’s Hospital conducted opportunistic screening 
for stroke in ten rural areas in Shanxi Province. First, we employed propensity score matching (PSM) 
for class balancing for stroke. Afterwards, we used Chi-square testing and Logistic regression model 
to conduct a preliminary analysis of risk factors for stroke. Statistically significant variables were 
incorporated into BN model construction. BN structure learning was achieved using MMHC algorithm, 
and its parameter learning was achieved with Maximum Likelihood Estimation. After PSM, 748 non-
stroke cases and 748 stroke cases were included in this study. BN was built with 10 nodes and 12 
directed edges. The results suggested that age, fasting plasma glucose, systolic blood pressure, and 
family history of stroke constitute direct risk factors for stroke, whereas sex, educational levels, high 
density lipoprotein cholesterol, diastolic blood pressure, and urinary albumin-to-creatinine ratio 
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represent indirect risk factors for stroke. BN model with MMHC algorithm not only allows for a 
complicated network relationship between risk factors and stroke, but also could achieve stroke risk 
prediction through Bayesian reasoning, outshining traditional Logistic regression model. This study 
suggests that BN model boasts great prospects in risk factor detection for stroke. 

Keywords: stroke; Bayesian network; logistic regression; risk factors; model construction 
 

Abbreviations: BN: Bayesian network; PSM: Propensity core matching; DAG: Directed acyclic graph; 
CPT: Conditional probability tables; MMHC: Max-Min Hill-Climbing; CKD: Chronic kidney disease; 
BMI: Body mass index; HDL-C: High-density lipoprotein cholesterol; LDL-C: Low-density 
lipoprotein cholesterol; TC: Total cholesterol; TG: Triglyceride; GHb: Glycosylated haemoglobin; 
FPG: Fasting plasma glucose; IFG: Impaired Fasting Glucose; Hcy: Homocysteine; SBP: Systolic 
blood pressure; DBP: Diastolic blood pressure; MALB: Urinary microalbumin; α1MG: Urinary 1-
microglobulin; ACR: Urinary albumin-to-creatinine ratio; MCR: Urinary 1-microglobulin-to-
creatinine ratio 

1. Introduction 

Stroke is a major chronic non-communicable disease that seriously harms one’s health, with high 
incidence, high mortality, and high recurrence [1]. It’s the second leading cause of death and a major 
cause of disability worldwide [2]. Despite substantial reductions in age-standardised rates, the annual 
number of strokes and deaths due to stroke increased substantially from 1990 to 2019, posing an 
alarming burden for the national healthcare system. Also, its prevalence is increasing rapidly in China 
with over 2 million new cases annually [3], more in rural (298 cases per 100,000 person-years) than 
urban areas (204 cases per 100,000 person-years) [3,4], more in northern than southern areas [5] and 
its burden ranks first globally [6], especially in her rural areas that are subjected to ageing populations 
and underused medical facilities. Yet, it’s hard to arouse public attention for its unobvious early 
symptoms and sudden onset. Obviously, it has emerged as a public health issue. To comprehensively 
digest its risk factors and thus take some relevant measures to reduce its prevalence are all the 
more important. 

Previously, Logistic regression was employed to explore the risk factors of stroke [7,8], 
suggesting that hypertension, hyperlipidemia, diabetes mellitus, coronary heart disease and smoking 
are significantly associated with stroke. Some drawbacks, however, come with the model. The first 
one concerns independent variables [9]. In clinical research, correlation often exists in risk factors, but 
the model is unable to meet the prerequisite of independence between variables. The second one lies 
in its inability to make a sequential prediction. Unavailability of data is common in clinical research, 
and this interferes with model functionality. The third one is that the model fails to identify direct or 
indirect risk factors. A better model is needed. 

Bayesian networks (BNs), proposed by Pearl Judea in 1987, offer a better solution. BNs comprise 
directed acyclic graph (DAG), reflecting potential relationships among risk factors, and conditional 
probability tables (CPT), which demonstrate correlations between variables [10,11]. BNs hold many 
advantages, one of which relates to its unstrict statistical hypothesis [12]. Moreover, with known nodes, 
BNs could infer the probability of unknown nodes, flexibly showing the impact of relevant risk factors 
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on stroke. Accordingly, it allows for complex networks between one disease and its risk factors, 
overcoming the limitations of traditional Logistic regression model. 

BN learning refers to the obtainment of complete BNs by existing information. The construction 
method consists of parameter learning and structure learning. The former seeks for parameter 
determination based on a known network structure. This study focuses on structure learning, a more 
commonly used algorithm, which could be divided into score-based search and constraint-based 
algorithm [12]. The former aims for the best score-functioning BN structure. However, it’s hard to 
obtain an optimal network structure under a large structure space. The latter boasts a higher learning 
efficiency and allows for a globally optimal solution, but it also comes with some shortcomings. The 
first one emphasizes sophisticated judgement of node independence. Also, with more nodes, the 
independence tests between nodes increase exponentially. The second one relates to unreliable high-
order conditional independence test. Due to their limitations, some scholars have proposed a hybrid 
algorithm, Max-Min Hill-Climbing (MMHC) [13], which combines the advantages of both score-
search and constraint-based algorithms and draws great attention from researchers. The MMHC 
algorithm for BN construction consists of two phases. The first phase is to use the heuristic search 
algorithm, Max-Min Parents and Children algorithm, to identify candidate parent and child nodes, 
thereby building a BN framework that detects the network with the highest scores. The second phase 
is to perform a scoring search to determine the edges and directions of the network structure. As such, 
MMHC algorithm could reduce the size of the research size and determine the optimal network 
structure. At present, BN with MMHC algorithm has been employed to discuss the risk factors for 
chronic obstructive pulmonary disease, hyperlipidemia and other diseases [13], showing great performance. 

Yet, data imbalance is widespread in clinical studies, because the number of positives is much 
smaller than that in the normal population. As mentioned above, there are 298 cases per 100,000 
person-years of stroke in rural areas, so a category imbalance is prominent in the stroke dataset. In 
data-driven algorithms, an imbalanced dataset would contribute to lower model performance, so it’s 
important to balance stroke categories before constructing BN model [14]. It also has been documented 
that when discussing stroke prediction using data-driven models, an unbalanced data was first handled 
to report the results [15,16]. Propensity score matching (PSM) [17] has been shown a good approach 
to reducing the bias due to confounding variables. In this study, some variables, including smoking, 
alcohol consumption, diet and salt consumption were not well-defined and it’s inappropriate to take 
these variables into analysis. Accordingly, it’s good to conduct propensity scores with 1:1 matching 
to eliminate the influence of these variables and to create balanced stroke categories for better 
model construction. 

This study aimed to employ BN model with MMHC algorithm to explore risk factors for stroke, 
combined with PSM, with data from stroke screening in Shanxi Province, thus providing a new idea 
for clinical practice, reducing the prevalence of stroke and improving the quality of life. 

2. Materials and methods 

2.1. Study participants 

From April 2019 to November 2019, a screening program for chronic kidney disease and stroke 
was conducted in ten rural regions in Shanxi province, i.e., Ningwu county, Yu county, Yangqu county, 
Lin county, Shouyang county, Zezhou county, Huozhou city, Hejin city, Linyi county, Ruicheng county. 
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In total, 13,550 villagers participated in the program, and 12,285 were finally enrolled in this study 
with 5206 men and 7079 women. Informed consent was signed by all study participants and this study 
was approved by the Ethics Committee of Shanxi Provincial hospital, with reference number 2021213. 
Inclusion criteria included residents over 40 years old. Exclusion criteria included incomplete recorded 
data; those less than 40 years old; those unwilling to cooperate and pregnant women with and history 
of substance abuse. 

2.2. Data collection 

Data were collected by questionnaire, physical examinations, and laboratory analyses. The 
questionnaire comprises sociodemographic information (sex, age, annual income, educational levels), 
stroke family history, and lifestyles (exercise, smoking, alcohol consumption, dietary habits). The 
questionnaire was conducted online or offline and was completed by the subjects themselves or their 
families. Physical examinations were conducted by medical staff or trained medical students at Shanxi 
Provincial hospital. They consist of heigh, weight, and blood pressure which was measured two times 
and then we calculated the mean value. Body Mass Index (BMI) was calculated as weight in kilograms 
divided by the square of height in meters. Besides, fasting venous blood was taken from participants 
for high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total 
cholesterol (TC), triglyceride (TG), glycosylated haemoglobin (GHb), fasting plasma glucose (FPG), 
homocysteine (Hcy). Additionally, morning urine was garnered for α1-Microgloblobumin (α1-MG), 
urine creatinine (Ucr) and urinary albumin (mAlb), and then we calculated Urinary albumin-to-
creatinine ratio (ACR) and α1-MG-to-creatinine ratio (MCR). 

2.3. Propensity score matching 

Generally, each covariate variable is substituted into the Logistic regression model, and the 
conditional probability of being sorted into the case group is calculated, thus detecting the control 
group individuals with similar characteristics to each case [18]. In this study, the population 
characteristics such as smoking, alcohol consumption, diet, and salt consumption were used as 
matching variables for their unperfect definition, and the caliper value was set at 0.1, and the calipers 
were matched with a ratio of 1:1 for 748 stroke cases and 11,537 non-stroke cases in the non-stroke group. 

2.4. Bayesian network (BN) 

A BN consists of a directed acyclic graph whose nodes represent random variables and edges 
express dependencies between nodes [19]. If one edge is from variable A to variable B (A→B), it 
means variable A has a direct influence on variable B or variable A is the risk factor for variable B. 
Also, we name variable A the parent node of variable B, and variable B the child node of variable A. 
Another important concept in BN is that each child node has a conditional probability distribution that 
measures the effects of its predictor variables (parents). This is given by P (Xi| pa (Xi)), where P is the 
conditional probability, Xi represents each node and pa (Xi) represents the parents of node Xi [20]. 
BNs use the graphical structure and network parameters to uniquely determine the joint probability 
distribution on the random variable = x {X1, Xn}, which can be listed as: 
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 Π P x |π x   

π x  is the set of parent nodes of x , π x ⊆ x , … , x . When the value of π x  is known, 
x  is conditionally independent of other variables in x , … , x . Figures 1 and 2 are examples of 
BN. The BN consists of three nodes, including hypertension, cardiovascular disease and depression. 
The edges points from hypertension to cardiovascular disease and depression. It means that both 
cardiovascular disease and depression are the child nodes of hypertension, suggesting that 
hypertension has a direct influence on both cardiovascular disease and depression. Figure 1 shows that 
the prior probability of cardiovascular disease and depression stands at 0.559 and 0.0815. If one is 
subjected to hypertension, the probability increases from the prior probability to P (cardiovascular 
disease|hypertension) = 0.896 and to P (depression|hypertension) = 0.125 (Figure 2). 

 

Figure 1. An example of Bayesian network model. 

 

Figure 2. An example of Bayesian reasoning. 

2.5. MMHC algorithm 

MMHC algorithm is one of the most widely-used hybrid algorithms that could overcome the 
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drawbacks by combining the advantages of both the constraint-based method and search score method [21]. 
MMHC algorithm construction comprises two phases. The first one is to employ a heuristic search 
algorithm, the Max-Min Parents and Children algorithm, to determine candidate parent and child nodes, 
thus constructing a BN framework and detecting the network with the largest score through increasing, 
removing, and transforming the direction of the edges in the constraint space through the method of 
scoring search. The second one is to perform a scoring search to determine the edges of the network 
structure and the orientation of the edges. It involves a greedy search method, which starts with a blank 
graph and achieves the highest rated belief network structure by continuously adding edges, 
subtracting edges and reversing directions to the network [13,21]. 

2.6. Definitions 

Annual income/educational levels, smoking/alcohol consumption status, previous medical history, 
and lifestyle were obtained from a questionnaire. The categories of annual income were divided into 4 
parts, namely, < 5000 Yuan, 5000–10,000 Yuan, 10,000–20,000 Yuan, and > 20,000 Yuan. The 
categories of education level consisted of ≤ Primary school, ≤ Middle school, ≤ High school, ≥ 
Bachelor degree. Smoking was divided into Yes or No. Alcohol consumption was defined as Always 
(over 100 g/time and 3 times/week), Sometimes (< 3 times/week or less than 100 g/time) and Seldom. 
Exercise was classified into Never or Always (≥ 3 times/weeks and ≥ 30 min/time with intensity over 
moderate walking). Salt consumption was defined as Light, Balanced, and Salty. Diet was defined as 
Vegetable, Balanced and Meat. 

Under the Chinese Guidelines on Prevention and Treatment of Dyslipidemia in Adults published 
in 2007 [22], TC ≥ 6.22 mmol/L was defined as hypercholesterolemia; TG ≥ 2.26 mmol/L was defined 
as hypertriglyceridemia; LDL-C ≥ 4.14 mmol/L was defined as high levels of low-density lipoprotein 
cholesterol; HDL-C < 1.04 mmol/L was defined as low levels of high-density lipoprotein cholesterol. 
Hyperhomocysteinemic was defined as Hcy > 15μmol/L [23]. FPG was defined as Normal (< 6.1 
mmol/L), Impaired Fasting Glucose (IFG, 6.1~7.0 mmol/L), Hyperglycosemia (> 7.0 mmol/L). 

Following the Guidelines for the Prevention and Treatment of Type 2 Diabetes in China published 
in 2021, GHb was defined as Normal (< 6.5 mmol/L) and Abnormal (≥ 6.5 mmol/L). systolic blood 
pressure (SBP) was defined as High (≥ 140 mmHg), Normal (120~140 mmHg) and low (< 120 mmHg), 
and diastolic blood pressure (DBP) was defined as High (≥ 90 mmHg), Normal (80~90 mmHg) and 
Low (< 80mmHg) [24]. As per the standards established for Chinese by the Department of Disease 
Control, Ministry of Health [25], BMI classification comprised underweight (< 18.5 kg/m2), normal 
(18.5~24.0 kg/m2), overweight (24.0~28.0 kg/ m2), obesity (≥ 28 kg/m2). ACR equals to mAlb divided 
by Ucr multiplied by 8.84; MCR equals α-1 MG divided by Ucr multiplied by 8.84. ACR ≥ 30 mg/g 
was defined as increased ACR and MCR > 23 mg/g was defined as increased MCR. Stroke is 
diagnosed with clear imaging evidence (CT, MRI) by a neurological physician. 

2.7. Statistical analyses 

Categorical variables were expressed as percentage (%) and we used chi-square tests to determine 
the difference between groups. Afterwards, a multivariate stepwise logistic regression (αin = 0.05, 
αout = 0.10) was employed for exploration of the risk factors for increased ACR and increased MCR; 
the independent variables were those statistically significant variables in Chi-squared test. Significant 
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risk factors were incorporated to construct the BN model. Statistical description, Chi-squared test, 
multivariate logistic regression and structure learning of BN were conducted using R studio 4.2.0 (R 
Development Core Team). P < 0.05 was considered statistically significant. The structure learning was 
realized using mmhc () function in the package “bnlearn”. The BN model and BN reasoning were 
visualized using Netica software (Norsys Sofware Corp., Vancouver, BC, Canada). Besides, the 
maximum likelihood estimation was employed for CPT. 

3. Results 

3.1. Baseline characteristics of study population 

Before PSM, there are 11,537 non-stroke cases, and 748 cases in this study, and smoking, diet, 
salt consumption is incomparable (P < 0.05). After PSM, there are 748 non-stroke cases and 748 stroke 
cases, and smoking, diet, salt consumption, and alcohol consumption is comparable (P > 0.05), as 
shown in Table S1. In stroke group, men account for 52.5 and 43.2% of the patients aged 61 years to 
70 years. Nearly half of them are less-educated, with 46.9% of them with ≤ primary educational 
background. Besides, the annual income is not handsome; 53.1% of them are with an income of ＜5k. 
Additionally, lots of them are not subject to abnormal biochemical parameters; 77.7, 95.3, 96.3, 80.7, 
82.9 and 83.6% of the patients have normal TG, TC, LDL, HDL, FPG, and GHb. Notably, 73% of the 
patients are subjected to abnormal HHcy. More than 50% of them are women (56.6%), and 36.1% are 
with the age of 51 to 60 years, with nearly half of them (48.5%) with an educational background of ≤ 
middle school. Most of them had no dyslipidemia, with 83.4, 95.9, 98.4 and 86.4% not subjected to 
abnormal TG, TC, LDL and HDL. 67% of them were subjected to HHcy, and 90.1% had no family 
history of stroke; 90.8% had a normal ACR and 87.8% had a normal MCR. More detailed descriptions 
are listed in Table 1. 

3.2. Univariate analysis 

We used chi-square tests to explore the differences in each variable between the stroke and non-
stroke groups. The results showed that the differences in exercise and TC between the two groups were 
not statistically significant (P > 0.05). Sex, age, education, income, TG, LDL, HDL, FPG, GHb, Hcy, 
SBP, DBP, BMI, family history, ACR, MCR were statistically significant between the two groups (P 
< 0.05), as reflected in Table 1. 

Table 1. baseline characteristics of stroke and non-stroke groups. 

Variables levels Non-stroke (N = 748) Stroke (N = 748) P 
sex men 325 (43.4%) 393 (52.5%) < 0.001 

women 423 (56.6%) 355 (47.5%)  
age 40~ 147 (19.7%) 38 (5.1%) < 0.001 

51~ 270 (36.1%) 187 (25%)  
61~ 240 (32.1%) 323 (43.2%)  
71~ 91 (12.2%) 200 (26.7%)  

Continued on next page 
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Variables levels Non-stroke (N = 748) Stroke (N = 748) P 
Educational levels ≤ primary 252 (33.7%) 351 (46.9%) < 0.001 

≤ middle 363 (48.5%) 335 (44.8%)  
≤ high 92 (12.3%) 53 (7.1%)  
≥ bachelor 41 (5.5%) 9 (1.2%)  

income < 5k 306 (40.9%) 397 (53.1%) < 0.001 
5–10k 207 (27.7%) 190 (25.4%)  
10–20k 81 (10.8%) 63 (8.4%)  
> 20k 154 (20.6%) 98 (13.1%)  

exercise no 439 (58.7%) 448 (59.9%) 0.674 
yes 309 (41.3%) 300 (40.1%)  

TG no 624 (83.4%) 581 (77.7%) 0.006 
yes 124 (16.6%) 167 (22.3%)  

TC no 717 (95.9%) 713 (95.3%) 0.706 
yes 31 (4.1%) 35 (4.7%)  

LDL no 736 (98.4%) 720 (96.3%) 0.016 
yes 12 (1.6%) 28 (3.7%)  

HDL no 646 (86.4%) 604 (80.7%) 0.004 
yes 102 (13.6%) 144 (19.3%)  

FPG normal 686 (91.7%) 620 (82.9%) < 0.001 
impaired 39 (5.2%) 63 (8.4%)  
high 23 (3.1%) 65 (8.7%)  

GHb no 684 (91.4%) 625 (83.6%) < 0.001 
yes 64 (8.6%) 123 (16.4%)  

Hcy no 247 (33%) 202 (27%) 0.013 
yes 501 (67%) 546 (73%)  

SBP low 158 (21.1%) 54 (7.2%) < 0.001 
normal 326 (43.6%) 257 (34.4%)  
high 264 (35.3%) 437 (58.4%)  

DBP low 320 (42.8%) 216 (28.9%) < 0.001 
normal 267 (35.7%) 288 (38.5%)  
high 161 (21.5%) 244 (32.6%)  

BMI underweight 19 (2.5%) 14 (1.9%) 0.009 
normal 330 (44.1%) 274 (36.6%)  
overweight 299 (40%) 329 (44%)  
obesity 100 (13.4%) 131 (17.5%)  

Strokef* no 674 (90.1%) 628 (84%) < 0.001 
yes 74 (9.9%) 120 (16%)  

ACR normal 679 (90.8%) 598 (79.9%) < 0.001 
increased 69 (9.2%) 150 (20.1%)  

MCR normal 657 (87.8%) 591 (79%) < 0.001 
increased 91 (12.2%) (21%)  

* Strokef: family history of stroke. 
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3.3. Multivariate analysis 

We conducted a multivariate logistic regression model with stepwise method (αin = 0.05, αout = 0.10) 
for risk factors for stroke, with stroke presence as the dependent variables; independent variables were 
those significantly associated with stroke presence in univariate analysis. The multivariate analysis 
suggested that stroke was significantly associated with sex (OR 0.718, CI: 0.567–0.91), age (OR 1.833, 
CI:1.598, 2.102), educational levels (OR 0.764, CI: 0.649, 0.901), HDL (OR 1.508, CI: 1.105, 2.058), 
FPG (OR 1.413, CI: 1.118, 1.785), SBP (OR 1.657, CI: 1.363, 2.015), DBP (OR 1.239, CI: 1.042, 
1.473), family history of stroke (OR 2.048, CI: 1.451, 2.89), ACR (OR 1.865, CI: 1.33, 2.615). Among 
them family history, ACR, age, SBP constitute the strongest risk factors for stroke, as shown in Table 2. 

Table 2. Risk factors of stroke using Logistic regression model. 

Variables B S.E. Wald P OR (95% C.I.) 
sex 0.331 0.121 7.489 0.006 0.718 (0.567, 0.910) 
age 0.606 0.070 74.927 < 0.001 1.833 (1.598, 2.102) 
education 0.269 0.084 10.276 0.001 0.764 (0.649, 0.901) 
HDL 0.411 0.159 6.695 0.010 1.508 (1.105, 2.058) 
FPG 0.346 0.119 8.383 0.004 1.413 (1.118, 1.785) 
SBP 0.505 0.100 25.646 < 0.001 1.657 (1.363, 2.015) 
DBP 0.214 0.088 5.867 0.015 1.239 (1.042, 1.473) 
Strokef* 0.717 0.176 16.629 < 0.001 2.048 (1.451, 2.89) 
ACR 0.623 0.172 13.061 < 0.001 1.865 (1.33, 2.615) 
Constant -2.873 0.301 91.110 < 0.001 0.057 

* Strokef: family history of stroke. 

3.4. Bayesian networks model 

BN was constructed with 10 nodes and 12 directed edges, which is crystal clear in reflecting the 
risk factors than the Logistic regression model. Directed edges represent probabilistic dependencies 
between connected nodes. The results suggested that age, FPG, SBP, and stroke family history 
constitute direct risk factors for stroke, whereas sex, educational levels, HDL, DBP, and ACR represent 
indirect risk factors for stroke. Besides, the model suggested that age and educational levels are direct 
risk factors for SBP and FPG is direct risk factors for ACR. Additionally, SBP has a direct influence 
on DBP and sex is correlated with ACR and HDL (Figure 3). 

3.5. Bayesian reasoning 

Prior probabilities of the variables are presented in Figure 3. The resulting probabilistic model 
could quantitatively analyse the influence of these factors on stroke via computing conditional 
probabilities P (y|xi). From Figure 3, we could learn that the prior probability of stroke stands at 0.50. 
If one’s gender is female, the probability increases from the prior probability to P (stroke|female) = 0.502 
(Figure S1). And if the person is subjected to hyperglycemia, the probability rises to P (stroke|female, 
hyperglycemia) = 0.624 (Figure S2). If the person is over seventy years old, the probability rises to P 
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(stroke|female, hyperglycemia, 71–91 years) = 0.68 (Figure S3). If he is also subjected to high SBP, 
the probability amounts to P (stroke|female, hyperglycemia, 71–91 years, high SBP) = 0.725 (Figure S4). 

 

Figure 3. MMHC algorithm to construct stroke BNs and prior probability. 

4. Discussion 

When exploring risk factors for stroke, past studies often employed logistic regression, which 
uses probabilities to reflect the strength of the association, however, it cannot elaborate on the overall 
association between risk factors [21], nor can it detect direct or indirect risk factors. BNs, on the other 
hand, boast more advantages than the former in constructing risk factor models [26]. Firstly, BNs do 
not require any prior assumptions. Secondly, the model can integrate different variables and analyze 
their relative importance [27]. Therefore, BNs have been favoured by many clinical researchers in 
recent years. Studies have shown that BNs, as risk assessment tools for large clinical datasets, can 
quantitatively identify indicators important for predicting specific histopathological diagnoses, and 
prognosis and identifying risk factors for diseases that support medical decision-making [12]. Of note, 
the more variables there are when constructing BNs, the more complex the network is, so BNs should 
be constructed based on univariate and multivariate analysis. 

In this study, logistic regression model shows that sex, age, educational levels, HDL, FPG, SBP, 
DBP, family history of stroke, ACR represent risk factors for stroke. Yet, BNs with MMHC algorithm 
suggest that age, FPF, SBP and stroke family history represent direct risk factors for stroke, and sex, 
age, educational background, HDL, DBP and ACR constitute indirect risk factors for stroke. The risk 
factors identified in our findings are generally consistent with previous studies [28–31]. Besides, BN 
with MMHC algorithm shows that education levels could be an indirect risk factor for stroke through 
SBP. Age could be a direct and indirect risk factor for stroke through SBP, indicating its ability to 
explore the intermediate linkages between associated factors and stroke, and its suitability to detect 
variables related to stroke. 

To the best of our knowledge, our study is the first to apply BNs to the risk factors for stroke. It 
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not only reveals the risk factors for stroke, but also determines the direct and indirect effects of their 
effects on stroke and elucidates their complex network relationships. BN with MMHC has an 
advantage over traditional logistic regression model in risk factor analysis for stroke. The first one 
concerns variable dependency. As BNs with MMHC algorithm shows sex is related to HDL, ACR and 
education levels, suggesting that there is an intercorrelation between risk factors for stroke. Logistic 
regression model is constructed under the premise that variables should be inter-independent, which 
fails to fully exploit data information and truly reflect the impact on stroke. As such, it’s unable to 
provide a scientific idea for the prevention and control of stroke. BN with MMHC algorithm is a data-
driven model constructed on disease-related knowledge, having no strict requirements for the data 
distribution. Therefore, it facilitates discovering potential unobvious but important data information, 
offering a scientific foundation for stroke evaluation, prediction and prevention.  

The second one relates to the interaction between variables. Logistic regression could only 
suggest those risk factors for stroke, while BN with MMHC algorithm allows for further description 
of how these risk factors are interrelated and affect the occurrence of stroke through a graphical 
approach, which holds certain significance to offer research clues and potential risk factors for stroke. 
When there is an interaction between variables, extra interaction analysis combined with logistic 
regression is needed. Yet, BN with MMHC algorithm facilitates direct detection of interaction between 
risk factors, which helps to comprehensively explore the internal relationship between risk factors.  

The incidence of hypertension, atherosclerosis, intimal thickening and narrowing of the arteries 
increases progressively with age, and metabolic disturbances become more pronounced. Primary 
cerebral haemorrhage is most often seen in patients of advanced age, as it is mainly associated with 
hypertension and atherosclerosis [32,33].  

Atherosclerotic thrombotic cerebral infarction is most common in older people. For elderly 
patients with obvious hypertension and atherosclerosis, when blood pressure fluctuates greatly, there 
is a sudden decrease in blood volume such as a lot of sweating, surgical bleeding, septic shock, and 
severe diarrhoea leading to low blood pressure, and cerebral infarction can be triggered again [34]. 

In patients with poor blood glucose management, increased blood viscosity, prolonged 
hypercoagulability, increased likelihood of thrombosis, abnormal function of platelets and fibrinogen, 
and prolonged activation time of coagulation factors in the blood may lead to a significant increase in 
the recurrence rate of elderly stroke patients. Hyperglycemia causes endothelial cell damage and 
promotes the expression of inflammatory factors, which is closely related to the occurrence and 
development of atherosclerosis [35]. 

Haemodynamic changes have a direct impact on stroke. Sudden fluctuations in blood pressure 
can cause plaque on the intima to rupture and components of the blood [36] such as platelets and fibrin 
to adhere, aggregate and deposit to form thrombi, leading to cerebral infarction. Reduced blood flow 
can also increase the risk of plaque formation in the cerebral arteries. Plaque in the cerebral arteries 
can also cause significant narrowing or occlusion of the lumen itself, resulting in reduced blood 
pressure, slower blood flow and increased blood viscosity in the perfused area, which in turn can 
reduce blood supply to the local brain area or promote local thrombosis and symptoms of cerebral 
infarction [36]. Haemorrhagic strokes are represented by cerebral haemorrhage, which is caused by 
abnormal fluctuations in blood pressure, leading to rupture of blood vessels in the brain parenchyma. 

Genetic factors are directly related to stroke. For example, subcortical atherosclerotic 
encephalopathy, a disease that accompanies white matter lesions, is an autosomal dominant 
cerebrovascular disease [37]. Generally, this hereditary disease is a recurrent stroke occurrence. Or 
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polygenic genetic disorders, such as patients with familial hypertension, do not necessarily lead to 
stroke but in combination with environmental factors such as lifestyle habits, the risk of stroke is 
greatly increased. 

This study also has some limitations. First, the directed edges in BNs cannot represent causal 
relationships between connected nodes, but rather probabilistic dependencies. Second, since this study 
was based on an opportunistic screening program and the locations were mainly located in southern or 
central Shanxi Province, this study may be subject to selection bias. Third, some of the data were 
collected through questionnaires, so recall bias may exist. Third, we did not classify stroke into 
ischemic stroke and hemorrhagic stroke. Our ongoing work is to focus on different types of stroke. 
Finally, since this study focused on BNs with MMHC algorithm, we didn’t make a comparison with 
other hybrid algorithms, which will also be the focus of our future work. 

5. Conclusions 

Risk factor detection is of great significance for disease prevention. Our study suggested that BN 
with MMHC algorithm not only could achieve a complex network relationship between risk factors 
and stroke, but also makes risk prediction for stroke possible, providing a scientific idea for stroke 
control and treatment, helping lower the prevalence of stroke. Specific findings could be listed below： 

1) Logistic regression model demonstrated that stroke was significantly associated with sex, age, 
educational levels, HDL, FPG, SBP, DBP, family history of stroke, and ACR.  

2) The BN model for stroke was constructed with 10 nodes and 12 directed edges. Age, FPG, SBP, 
and family history of stroke represent direct risk factors for stroke, whereas sex, educational levels, 
HDL, DBP, and ACR constitute indirect risk factors for stroke. 

3) BN with MMHC algorithm could achieve probability inference of unknown nodes through 
known nodes, flexibly demonstrating the impact of one risk factor on stroke. 

4) BN with MMHC algorithm outperforms traditional logistic regression model, which boasts 
great prospects in clinical practice. 

Acknowledgements 

This work was supported by the Key Laboratory Project of Shanxi Province(201805D111020) 
and the Key Laboratory Construction Plan Project of Shanxi Provincial Health 
Commission(2020SYS01). We also appreciate all the authors and patients participating in this study. 

Conflict of interest 

The authors declare there is no conflict of interest. 

References 

1. C. M. Stinear, C. E. Lang, S. Zeiler, W. D. Byblow, Advances and challenges in stroke 
rehabilitation, Lancet Neurol., 19 (2020), 348–360. https://doi.org/10.1016/S1474-
4422(19)30415-6 



13672 

Mathematical Biosciences and Engineering  Volume 19, Issue 12, 13660–13674. 

2. C. Iadecola, M. S. Buckwalter, J. Anrather, Immune responses to stroke: mechanisms, modulation, 
and therapeutic potential, J. clin. invest., 130 (2020), 2777–2788. 
https://doi.org/10.1172/JCI135530 

3. S. Wu, B. Wu, M. Liu, Z. Chen, W. Wang, C. S. Anderson, et al., Stroke in China: advances and 
challenges in epidemiology, prevention, and management, Lancet Neurol., 18 (2019), 394–405. 
https://doi.org/10.1016/S1474-4422(18)30500-3 

4. W. Wang, B. Jiang, H. Sun, X. Ru, D. Sun, L. Wang, et al., Prevalence, incidence, and mortality 
of stroke in China: results from a nationwide population-based survey of 480 687 adults, 
Circulation, 135 (2017), 759–771. https://doi.org/10.1161/CIRCULATIONAHA.116.025250 

5. X. Xia, W. Yue, B. Chao, M. Li, L. Cao, L. Wang, et al., Prevalence and risk factors of stroke in 
the elderly in Northern China: data from the National Stroke Screening Survey, J. Neurol., 266 
(2019), 1449–1458. https://doi.org/10.1007/s00415-019-09281-5 

6. Y. Wu, Y. Fang, Stroke prediction with machine learning methods among older Chinese, Int. J. 
Environ. Res. Public Health, 17 (2020), 1828. https://doi.org/10.3390/ijerph17061828 

7. A. Aigner, U. Grittner, A. Rolfs, B. Norrving, B. Siegerink, M. A. Busch, Contribution of 
established stroke risk factors to the burden of stroke in young adults, Stroke, 48 (2017), 1744–
1751. https://doi.org/10.1161/STROKEAHA.117.016599 

8. Y. Dong, W. Cao, X. Cheng, K. Fang, X. Zhang, Y. Gu, et al., Risk factors and stroke characteristic 
in patients with postoperative strokes, J. Stroke Cerebrovasc. Dis., 26 (2017), 1635–1640. 
https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.12.017 

9. Z. Wei, X. L. Zhang, H. X. Rao, H. F. Wang, X. Wang, L. X. Qiu, Using the Tabu-search-
algorithm-based Bayesian network to analyze the risk factors of coronary heart diseases, Chin. J. 
Epidemiol., 37 (2016), 895–899. https://doi.org/10.3760/cma.j.issn.0254-6450.2016.06.031 

10. S. J. Moe, J. F. Carriger, M. Glendell, Increased use of bayesian network models has improved 
environmental risk assessments, Integr. Environ. Assess. Manage., 17 (2021), 53–61. 
https://doi.org/10.1002/ieam.4369 

11. A. Frolova, B. Wilczyński, Distributed Bayesian networks reconstruction on the whole genome 
scale, PeerJ, 6 (2018), e5692. https://doi.org/10.7717/peerj.5692 

12. J. Pan, H. Rao, X. Zhang, W. Li, Z. Wei, Z. Zhang, et al., Application of a Tabu search-based 
Bayesian network in identifying factors related to hypertension, Medicine, 98 (2019), e16058. 
https://doi.org/10.1097/MD.0000000000016058 

13. D. Quan, J. Ren, H. Ren, L. Linghu, X. Wang, M. Li, et al., Exploring influencing factors of 
chronic obstructive pulmonary disease based on elastic net and Bayesian network, Sci. Rep., 12 
(2022), 7563. https://doi.org/10.1038/s41598-022-11125-8 

14. Z. Xu, D. Shen, T. Nie, Y. Kou, A hybrid sampling algorithm combining M-SMOTE and ENN 
based on Random forest for medical imbalanced data, J. Biomed. Inf., 107 (2020), 103465. 
https://doi.org/10.1016/j.jbi.2020.103465 

15. M. S. Pathan, A Nag, M. M. Pathan, S. Dev, Analyzing the impact of feature selection on the 
accuracy of heart disease prediction, Healthcare Anal., 2 (2022), 100060. 
https://doi.org/10.1016/j.health.2022.100060 

16. S. Dev, H. Wang, C. S. Nwosu, N. Jain, B. Veeravalli, D. John, A predictive analytics approach 
for stroke prediction using machine learning and neural networks, Healthcare Anal., 2 (2022), 
100032. https://doi.org/10.1016/j.health.2022.100032 



13673 

Mathematical Biosciences and Engineering  Volume 19, Issue 12, 13660–13674. 

17. L. T. Kane, T. Fang, M. S. Galetta, D. K. C. Goyal, K. J. Nicholson, C. K. Kepler, et al., Propensity 
score matching: a statistical method, Clin. Spine Surg., 33 (2020), 120–122. 
https://doi.org/10.1097/BSD.0000000000000932 

18. J. Liang, Z. Hu, C. Zhan, Q. Wang, Using propensity score matching to balance the baseline 
characteristics, J. Thorac. Oncol., 16 (2021), E45–E46. https://doi.org/10.1016/j.jtho.2020.11.030 

19. E. Park, H. J. Chang, H. S. Nam, A Bayesian network model for predicting post-stroke outcomes 
with available risk factors, Front. Neurol., 9 (2018), 699. 
https://doi.org/10.3389/fneur.2018.00699 

20. D. E. da Cunha Leme, The use of Bayesian network models to identify factors related to frailty 
phenotype and health outcomes in middle-aged and older persons, Arch. Gerontol. Geriatr., 92 
(2021), 104212. https://doi.org/10.1016/j.archger.2020.104212 

21. X. Wang, J. Pan, Z. Ren, M. Zhai, Z. Zhang, H. Ren, et al., Application of a novel hybrid algorithm 
of Bayesian network in the study of hyperlipidemia related factors: a cross-sectional study, BMC 
Public Health, 21 (2021), 1375. https://doi.org/10.1186/s12889-021-11412-5 

22. Y. Huang, L. Gao, X. Xie, S. C. Tan, Epidemiology of dyslipidemia in Chinese adults: meta-
analysis of prevalence, awareness, treatment, and control, Popul. Health Metrics, 12 (2014), 1–9. 
https://doi.org/10.1186/s12963-014-0028-7 

23. L. P. Zhao, T. You, S. P. Chan, J. C. Chen, W. T. Xu, Adropin is associated with hyperhomocysteine 
and coronary atherosclerosis, Exp. Ther. Med., 11 (2016), 1065–1670. 
https://doi.org/10.3892/etm.2015.2954 

24. Z. Wang, Z. Chen, L. Zhang, X. Wang, G. Hao, Z. Zhang, et al., Status of hypertension in China: 
results from the China hypertension survey, 2012–2015, Circulation. 137 (2018):2344–2356. 
https://doi.org/10.1161/CIRCULATIONAHA.117.032380 

25. N. Shi, K. Liu, Y. Fan, L. Yang, S. Zhang, X. Li, et al., The association between obesity and risk 
of acute kidney injury after cardiac surgery, Front. Endocrinol., 11 (2020), 534294. 
https://doi.org/10.3389/fendo.2020.534294 

26. P. Arora, D. Boyne, J. J. Slater, A. Gupta, D. R. Brenner, M. J. Druzdzel, Bayesian networks for 
risk prediction using real-world data: a tool for precision medicine, Value health, 22 (2019):439–
445. https://doi.org/10.1016/j.jval.2019.01.006 

27. Y. Dimitrov, M. Ducher, M. Kribs, G. Laurent, S. Richter, J. P. Fauvel, Variables linked to hepatitis 
B vaccination success in non-dialyzed chronic kidney disease patients: use of a bayesian model, 
Nephrol. Ther., 15 (2019), 215–219. https://doi.org/10.1016/j.nephro.2019.02.010 

28. C. S. Anderson, Progress-defining risk factors for stroke prevention, Cerebrovasc. Dis., 50 (2021), 
615–616. https://doi.org/10.1159/000516996 

29. W. Qi, J. Ma, T. Guan, D. Zhao, A. Abu-Hanna, M. Schut, et al., Risk factors for incident stroke 
and its subtypes in China: a prospective study, J. Am. Heart Assoc., 9 (2020), e016352. 
https://doi.org/10.1161/JAHA.120.016352 

30. C. S. Nwosu, S. Dev, P. Bhardwaj, B. Veeravalli, D. John, Predicting stroke from electronic health 
records, in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society, IEEE,  Berlin, Germany, (2019), 5704–5707. 
https://doi.org/10.1109/EMBC.2019.8857234 

31. M. S. Pathan, Z. Jianbiao, D. John, A. Nag, S. Dev. Identifying stroke indicators using rough sets, 
IEEE Access, 8 (2020), 210318–210327, https://doi.org/10.1109/ACCESS.2020.3039439 



13674 

Mathematical Biosciences and Engineering  Volume 19, Issue 12, 13660–13674. 

32. M. N. Cocchi, J. A. Edlow, Managing hypertension in patients with acute stroke, Ann. Emerg. 
Med. 75 (2020), 767–771. https://doi.org/10.1016/j.annemergmed.2019.09.015 

33. Y. C. Cheng, J. M. Sheen, W. L. Hu, Y. C. Hung. Polyphenols and oxidative stress in 
atherosclerosis-related ischemic heart disease and stroke, Oxid. Med. Cell. Longevity, 2017 (2017), 
8526438. https://doi.org/10.1155/2017/8526438 

34. S. N. Bhupathiraju, F. B. Hu, Epidemiology of obesity and diabetes and their cardiovascular 
complications, Circ. Res., 118 (2016), 1723–1735. 
https://doi.org/10.1161/CIRCRESAHA.115.306825 

35. F. Denorme, I. Portier, Y. Kosaka, R. A. Campbell, Hyperglycemia exacerbates ischemic stroke 
outcome independent of platelet glucose uptake, J. Thromb. Haemostasis, 19 (2021), 536–546. 
https://doi.org/10.1111/jth.15154 

36. S. L. Stevens, S. Wood, C. Koshiaris, K. Law, P. Glasziou, R. J. Stevens, et al., Blood pressure 
variability and cardiovascular disease: systematic review and meta-analysis, BMJ, 354 (2016), 
i4098. https://doi.org/10.1136/bmj.i4098 

37. X. Zheng, N. Zeng, A. Wang, Z. Zhu, H. Peng, C. Zhong, et al., Family history of stroke and death 
or vascular events within one year after ischemic stroke, Neurol. Res., 41 (2019), 466–472. 
https://doi.org/10.1080/01616412.2019.1577342 

©2022 the Author(s), licensee AIMS Press. This is an open access 
article distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/4.0) 


