
http://www.aimspress.com/journal/mbe

MBE, 19(12): 13607–13627.
DOI: 10.3934/mbe.2022635
Received: 21 June 2022
Revised: 11 August 2022
Accepted: 15 August 2022
Published: 16 September 2022

Research article

Runtime verification in uncertain environment based on probabilistic model
learning

Ge Zhou1, Chunzheng Yang2,*, Peng Lu3 and Xi Chen4

1 Department of Computer Science and Technology, National University of Defense Technology,
Hunan, Changsha 410081, China

2 Moral Culture Research Center, Hunan Normal University, Hunan, Changsha 410073, China
3 School of Economics and Management, Xinjiang University, Xinjiang, Urumqi 830049, China
4 Staff Department of Hunan Armed Police Corps, Hunan, Changsha 410022, China

* Correspondence: Email: zhouge12@nudt.edu.cn; Tel: +8618073113202.

Abstract: Runtime verification (RV) is a lightweight approach to detecting temporal errors of system
at runtime. It confines the verification on observed trajectory which avoids state explosion problem.
To predict the future violation, some work proposed the predictive RV which uses the information
from models or static analysis. But for software whose models and codes cannot be obtained, or
systems running under uncertain environment, these predictive methods cannot take effect. Meanwhile,
RV in general takes multi-valued logic as the specification languages, for example the true, f alse
and inconclusive in three-valued semantics. They cannot give accurate quantitative description of
correctness when inconclusive is encountered. We in this paper present a RV method which learns
probabilistic model of system and environment from history traces and then generates probabilistic
runtime monitor to quantitatively predict the satisfaction of temporal property at each runtime state. In
this approach, Hidden Markov Model (HMM) is firstly learned and then transformed to Discrete Time
Markov Chain (DTMC). To construct incremental monitor, the monitored LTL property is translated
into Deterministic Rabin Automaton (DRA). The final probabilistic monitor is obtained by generating
the product of DTMC and DRA, and computing the probabilities for each state. With such a method,
one can give early warning once the probability of correctness is lower than a pre-defined threshold,
and have the chance to do adjustment in advance. The method has been implemented and experimented
on real UAS (Unmanned Aerial Vehicle) simulation platform.

Keywords: runtime verification; probabilistic monitor; Markov Chain; ω-automata

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2022635

13608

1. Introduction

1.1. Motivation and contribution

Runtime verification (RV) is a lightweight formal verification technique in software verification [1].
It decides whether the system’s running satisfies specific properties only based on the current observed
trace [2]. RV is closely related to model checking and testing, which are two commonly used methods
to evaluate the credibility of software. However, when the software to be verified is very complicated,
model checking will encounter the problem of state explosion [3], and testing will also be difficult to
cover most paths of the software [4].RV complements model checking and testing because it makes
conclusions of the properties using only observed trace, which is insensitive to software scale. RV
can also monitor the properties related to operating environment after software is deployed on
actual platform.

Traditional RV techniques only give judgement with observed trace, while predictive RV [5] will
predict the running trend of the target system in advance. This feature can provide great potential
to avoid software failures rather than only find them. One main existing predictive RV method uses
predictive words [6] to realize advance prediction. The so-called predictive words are auxiliary monitor
information generated from the models or codes of target software with the methods such as model
abstraction or static analysis. However, for some historical legacy software and black box systems, or
the systems running in uncertain environment, these methods are not applicable.

RV in general takes multi-valued logic as the specification language, and the monitoring process
stops whenever the correctness values (i.e., true or f alse) are encountered. A major drawback of these
methods is that it can not provide accurate quantitative description for the satisfaction of property.
To resolve this problem and make RV suitable for infinite trace semantics, temporal logic LT L3 adds
inconclusive to truth values and corresponding monitor generation method was proposed [7]. But
its evaluation value of a formula remains to be unknown when inconclusive is encountered, which
may be the most situations in monitoring process. Hence, in these settings, one cannot give a precise
predication of the trend of correctness. For such situation, if a probabilistic value can be computed
for judgement inconclusive to evaluate the satisfaction of the properties in a quantitative way, it will
compensate the deficiency of the existing predictive RV methods. Furthermore, for different target
systems and different properties, we can set corresponding thresholds for acceptance of probabilistic
values based on requirement or expert experience. When the system with a probabilistic monitor
detects that the value of current trace exceeds the threshold, alarm or control operations can be issued
to steer the running of system.

In this paper, we propose the method of learning probabilistic model from historical traces which
include system and environment events, and generating the monitor which can give the probability
that the property will be satisfied (or violated) when new state of current trace is observed. For this
purpose, a Hidden Markov Model (HMM) is learned from historical traces and translated to Discrete
Time Markov Chain (DTMC), and the Deterministic Rabin Automaton (DRA) is generated from the
property in Linear Temporal Logic (LTL). Then the probabilistic monitor will be generated using
DTMC and DRA. Such probabilistic RV method can predict the trend of the target system by
quantitatively judging the extent to which the current system state satisfies the monitored property.
Compared with previous predictive RV methods, in our approach the model or code of target system
is not needed and the environment is also be considered. The probabilistic monitor can also give the

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13607–13627.

13609

guidance information for software execution. When the software deviates from the expected
properties, the running of target system can be adjusted by predefined behavior to avoid malfunction.
The corresponding tool of learning and generating probabilistic monitor is implemented and the
experiments show the effectiveness of the proposed method.

The paper is organized as follows. Section 1 introduces the motivation and related work, and
Section 2 presents some basic concepts. Section 3 gives the method of learning HMM and DTMC,
while Section 4 elaborates the way to generate probabilistic monitor. Section 5 describe the implements
and experiment. The paper is concluded in Section 6.

1.2. Related work

Verifying probabilistic properties is firstly considered in probabilistic model checking, which has
been studied for a long time with adequate theoretical results and important application fields. For
example, in [8], probabilistic model checking is applied in provisioning of cloud resources, which
shows good results in experiments. The work in [9] discuss two categories of probabilistic model
checking when applied in self-adapted systems. Learning is used in [10] to get the abstract model of
stochastic systems without source code for statistical model checking.

In recent years, combining RV with probability and statistics has become a novel research direction.
To do statistical checking of probabilistic properties at runtime, [11] provides a method to decompose
a trace into several samples based on specification of two kinds of events. In [12], the probabilistic
model is extracted, and traditional instrumentation and monitoring methods in RV are combined to
evaluate the property probabilities in quantitative and qualitative ways. [13] did similar work upon the
framework of WMI and .NET. Above works mainly study the methods of determining if a probabilistic
property will be satisfied for observed trace, but cannot determine the probability that a deterministic
property will be satisfied or violated in uncertain environment.

（A）Predictive RV based on the model

V ()

Running system P

Runtime monitor M

Target model G
ρ ρ
- - Predictor

Receiver Checker Controller

Running Program

Source Code Properties

(B) Predictive RV based on the code

Figure 1. Two types of existing predictive RV methods.

Traditional RV methods cannot predict whether the future running of the target system satisfies
given properties. Predictive RV tries to extend this ability, such as Anticipatory Active Monitoring [14]
proposed by us. The main idea is to process the models or codes of the software through static
analysis or other methods, so as to obtain necessary information to assist runtime monitor to make
decision as early as possible. One of our previous work in predictive RV is based on system model, as
the framework shown in Figure 1(A). G is the model of software to be monitored. During runtime, the
monitorM generated from LTL property will use the information of model G to predict whether the

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13607–13627.

13610

current system trace ρ̄ will violate the property in the future. When there exist violation paths from
current state, the active monitor will generate a corresponding intervention behavior V(ρ̄) which can
guide the running to correct paths and feed it back to the running system P.

For software without models, we also proposed another predictive RV method which depends on
code static analysis [6], as shown in Figure 1(B). Control Flow Graph (CFG) of the code is extracted
before software is deployed. For each control node in CFG, the event sequences related to the property
in its scope are generated, and the variables whose values will be calculated at run-time and used
in branch decision expression are also recorded. At run-time, the monitor will predict the property
violation based on these event sequences and variable values at current state. Although the method can
predict the violation more -accurately since branch decision is determined at run-time, the cost may be
huge for complex software.One obvious shortcoming of above predictive RV methods is that they are
not suitable for software without models or codes, or systems running in uncertain environment. These
problems will be focused on in this paper.

In this paper, we use the hidden Markov based Baum-welch algorithm in machine learning to model
black box systems and uncertain environments. There are many other methods to model the black box
system. For example, in the document [15], it proposes a method based on BP neural network to
model the black box of a nonlinear maneuvering ship, while [16] uses the method based on deep
neural network to model the system. There is also a modeling method for the system, that is, the
state model of the system is built by providing input and observation output to the black box system.
For example, the literature [17] uses L* algorithm to model the target system. There are many other
methods. The literature [18] uses Bayesian network to model the system, while the literature uses
reinforcement learning in machine learning to model [19]. There are many other modeling methods.
The purpose of system modeling in this paper is to provide auxiliary information for the later run-time
verification, so as to improve the capability of the verification. Therefore, the model we need is mainly
the state model of the target system, which is different from other people’s work.

As we all know, the target system where the run-time monitor is deployed will evolve over time.
This is the time even if obtaining the verification information becomes critical. For this reason,
literature [20] present incremental verification techniques, which exploit the results of previous
analyses. Unlike this paper, The target systems modelled as Markov decision processes, developing
incremental methods for constructing models from high-level system descriptions and for numerical
solution using policy iteration based on strongly connected components. In this work of literature [21],
instead of assuming such a model is given, they describe a run-time verification workflow where the
model is learn and incrementally refined by using process mining techniques. In addition, Stoller et al.
proposed a run-time verification technology with state estimation. This technology improves the
efficiency of the monitor by reducing the sampling points, while the run-time monitor with state
estimation has the characteristics of probability. As in this paper, the hidden Markov model (HMM)is
used in this work. The difference is that we use Baum-Welch algorithm to model the system based on
the previously observed target event sequence, while the literature [22] uses the classical forward
algorithm to determine the probability of the state sequence of a given observation sequence. The
literature [23] present Adaptive Runtime Verification (ARV), a new approach to runtime verification
in which overhead control, runtime verification with state estimation, and predictive analysis are
synergistically combined. Overhead control maintains the overhead of runtime verification at a
specified target level, by enabling and disabling monitoring of events for each monitor instance as

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13607–13627.

13611

needed. In ARV, predictive analysis based on a probabilistic model of the monitored system is used to
estimate how likely each monitor instance is to violate a given temporal property in the near future,
and these criticality levels are fed to the overhead controllers, which allocate a larger fraction of the
target overhead to monitor instances with higher criticality, thereby increasing the probability of
violation detection.

2. Preliminaries

2.1. Linear-time Temporal Logic

Linear-time Temporal Logic (LTL) is usually used to specify the temporal behavior and properties
of system. Assuming that P is a set of atomic propositions, and Σ = 2P denotes the finite alphabet,
LTL formulae can be defined as

φ ::= p | ¬φ | φ1 ∨ φ2| Xφ | φ1Uφ2

where p ∈ P. There are some standard derived operators, such as:

⊤ ≡ p ∨ ¬p
φ1 ∧ φ2 ≡ ¬(¬φ1 ∨ ¬φ2)
φ1 → φ2 ≡ ¬φ1 ∨ φ2

Fφ ≡ ⊤ Uφ
Gφ ≡ ¬(F¬φ)
φ1Rφ2 ≡ ¬(¬φ1U¬φ2)

Semantics of LTL formulae are defined with an infinite trace π ∈ Σω and a position i. The i-th letter
π(i) of the trace π is a subset of P, which can be viewed as an assignment to P. The standard semantics
of the LTL formulae are defined as follows [7]:

π, i |= p ∈ P ⇔ p ∈ π(i)
π, i |= ¬φ ⇔ π, i ̸|= φ

π, i |= φ1 ∨ φ2 ⇔ π, i |= φ1 or π, i |= φ2

π, i |= Xφ ⇔ π, i + 1 |= φ
π, i |= φ1Uφ2 ⇔ ∃ j ≥ i : π, j |= φ2 and

∀i ⩽ k < j : π, k |= φ1

2.2. RV and monitoring semantics

RV is a lightweight formal verification method that only focuses on whether the current execution of
system meets certain properties. At runtime, a system trace can be treat as a finite sequence composed
of system states, and different definitions of state should be given for different concerns. At hardware
level, the state of the system should be defined with the combination of values of registers, memories
and so on. At software level, the system state is usually defined by the locations of the program, the
values of variables, the events of function calling and so on.

The current system execution at runtime is a finite prefix of the infinite trajectory. The goal of RV
is to check whether this prefix satisfies the given property. Commonly a monitor will be generated

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13607–13627.

13612

from the given property according to a specific method to do this checking. Thus, from perspective
of the formal language, RV solves the problem whether a given word is included in the language
corresponding to the given property. Therefore, the monitor is the device that reads a finite trace and
yields a certain verdict.

Monitoring semantics [24] is a set of advanced logical protocols that formally define what decision
the monitor makes in different situations. Different monitoring semantics may get different
conclusions. The standard semantics of LTL is defined on infinite traces, which can not be applied
directly to finite traces. For two-valued semantics of LTL, there are the following three methods to
solve this problem [25]. Given a finite trace µ and a LTL formula φ,

(1) Weak semantics: φ is violated iff µ is a bad-prefix of it. Namely, for any infinite word ν, we have
µν ̸|= φ.

(2) Strong semantics: In this case, φ is satisfied iff µ is a good-prefix of it. That is, µν |= φ for every
infinite word ν.

(3) Multi-value semantics: There exist consistency problems in two-valued semantics of LTL. Thus
multi-value semantics was proposed and defined on infinite trace, such as LT L3:

[µ |= φ]LT L3 =


true, i f ∀σ ∈ Σω : µσ |=LT L φ;
f alse, i f ∀σ ∈ Σω : µσ ̸|=LT L φ;
?, otherwise.

2.3. Discrete Time Markov Chain

Discrete Time Markov Chain is a stochastic process in mathematics for discrete events. In the
process, given the current state with knowledge or information, the historical state is not considered
when predict the future state. It is called markov-process. In addition, it is found that no matter what
state it is, the markov-process will gradually become stable after a period of time, and the state of
stability is not related to the initial state.

With a countable set P of propositions, a discrete time markov chain (DTMC) M is a tuple
(S , I,T, L), where

• S is a finite set of states;

• I is an initial distribution over S , and
∑

s∈S
I(s) = 1;

• T : S × S → [0, 1] is the transition matrix fulfilling
∑

s′∈S
T (s, s′) = 1 for each s ∈ S ;

• L : S → 2P is the labelling function.

3. Learning based probabilistic modelling

Event is usually used to encapsulate the behavior and interactions for many software systems, and
event-triggered RV is used to ensure the reliability of a system by observing the occurrence of events.
During the process of monitoring the target system running in specific environment, there is a kind of
events that seem to be independent of each other. However, there often exist some hidden correlations
among these events.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13607–13627.

13613

BA

C

r:100m

Figure 2. An example with uncertain environment in practice.

For example, as shown in the Figure 2, a drone often flies from point A to point B, and there is a
control tower at point C that sends instruction to this drone. Event p is defined as the drone reaches
the area within 100 meters around point B. The operator obtains the position information from the
drone and sends instructions through the control tower. In a real environment, the communication
between drone and control tower may be hindered by some obstacles, thereby leading to some flight
deviation. Another event q is defined as the drone sends the position information back to control tower
C. We have to monitor whether the mission can be completed successfully. On the surface, p and q
are independent events, but these events contain potential probabilistic relationships since the landform
such as mountains or interference sources nearby may affect the sending and receiving of information.
This case will also be used in the following when describing the proposed method.

Target

system

 Log Event Extraction

 Path Join ProcessingForward-Backward Algorithm

Log DataBase

HMM

Log

Path

Series path

 Event name

Environment

Properties

(LTL)

Translate HMM To DTMC
DTMC

Log fragment

Figure 3. Framework of learning the model of target system and environment.

Figure 3 shows the framework of learning the DTMC model of target system and environment. First,
event traces related to the monitoring property need to be extracted from the log history. Then these
paths are joint to form one trace from which the HMM will be learned according to the distribution of
their occurrence. Here the forward-backward algorithm in machine learning is adopted. Finally HMM
is transformed to DTMC, which will be used in monitor generation.

3.1. Problem description

For the software without providing models and codes, running trajectory can be obtained from
the historical running data. In the case of Figure 2 for example, we can randomly extract a great of
trajectories from the log database to learn the model with the focus on events p and q. The traces can
be expressed as the form such as: π = S init → p → p → q → p → ∅ → ∅ → S End. The symbol ∅
indicates that neither p nor q occur. p or q separately shows that corresponding event occur. Symbol

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13607–13627.

13614

pq is used to represent the set {p, q}, which means the occurrence of both events p and q.
Before formalizing the problem, some definitions need to be introduced. A finite trace π is a string

in Σ∗ and length of the trace is denoted by len(π). π(i) denote the i-th location of π for each i < len(π);
therefore, π(i) ⊆ P. A DTMC is a stochastic process that satisfies the following provisos:

- Proviso 1: The probability distribution of the system state at time t + 1 is only related to the state
at time t and is independent of the states before t;

- Proviso 2: The state transition from time t to t + 1 is independent of the value of t.

Given a DTMC M = (S , I,T, L) and a trace π, and [n] to denote the set {0, . . . , n − 1} for n ∈ N, a
mapping from π to M is defined as a function δ with type [len(π)]→ S such that L(δ(i)) = π(i). Then,
the probability of π w.r.t.M under δ is defined as

probδ(M, π) = I(δ(0)) ·
∏

i
T (δ(i), δ(i + 1))

We denote by ∆M,π the set that comprises all mappings from π to M. We now calculate the value
supδ∈∆M,π probδ(M, π) and the corresponding mapping. In other words, our goal is to find a mapping δ
that makes probδ(M, π) as large as possible.

We can canonically lift this problem when we are given a (finite) path set Π. In this setting, our goal
is to determine a mapping δπ ∈ ∆M,π for each π ∈ Π and to maximize the value of Σπ∈Πprobδπ(M, π).
There have been some methods can be used to solve this problem. In this paper, we propose a method
by learning a (HMM) model from traces to solve this problem.

3.2. Hidden Markov Model

HMM is a directed dynamic Bayesian network diagram [26] with a simple structure that is mainly
used for timing data modeling, speech recognition, and natural language processing. As shown in
Figure 4, HMM has two groups of variables. The first group is called the hidden or state variables
Y={y1, ..., yn}, where yi represents the hidden, unobservable state at time t = i. Assuming that the
number of all states in the model is N, that is, the state space Y = {s1, ..., sN}, we have yi ∈ Y. The
second group is called the observation variables or display states X={x1, ..., xn}, where x j represents the
state that can be observed directly at t = j. The observed variables can either be continuous or discrete.
Here we only consider the discrete variables since the systems monitored in our work are supposed
discrete time systems. Assuming the number of observed variables is m, that is, the observation space
X = {o1, ..., om}, we have x j ∈ X.

y1

x1

y2

x2

yi yn

xi xn

... ...

Figure 4. Mapping structure of HMM.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13607–13627.

13615

In Figure 4, an arrow represents the dependency among variables. HMM has the following
properties:

- The change of hidden states is a DTMC, that is, process (y1 → y2 → ... → yn) is consistent with
the Markovian nature.

- The observed variable xt is determined by the hidden variable yt and is independent of other
observed or hidden variables.

Based on above independence relationship, the joint distribution of X and Y is

P(x1, y1, ..., xn, yn) = P(x1|y1)
n∏

i=2

P(yi|yi−1)P(xi|yi)

If we want to determine a hidden Markov modelM, then the following parameters are required in
addition to the state space Y and observation space X:

• Hidden state transition probability matrix A = [ai j]N×N , where ai j = P(yt+1 = s j|yt = si), 1 ≤ i, j ≤
N, which represents the probability of transitions between states in the model.
• Probability matrix of observation B = [bi j]N×M, where bi j = P(xt = o j|yt = si), 1 ≤ i ≤ N, and

1 ≤ j ≤ M, which represents the observed probability from hidden to display states. In other
words, bi j represents the probability that the observed value o j is observed at time t, if the hidden
state at this time is si.
• Initial distribution θ = (θ1, ..., θi, ..., θn), which is the probability of occurrence of each state at time

t = 0, where θi = P(y1 = si) for 1 ≤ i ≤ N. In other words, θi is the probability that the initial
state is si.

In practice, one of the basic problems that people often pay attention to HMM is how to learn
the optimal model parameters based on the sample set. It can be described as: given the observation
sequence x = {x1, x2, ..., xn}, how to learn the model parameter λ = [A,B, θ] to maximize the probability
of occurrence of sequence P(x|λ)? Based on the traces we obtain from the log history, a HMM need to
be constructed that can best describe the observed data.

3.3. Learning probabilistic model

The most popular approach to constructing a HMM model is the forward-backward algorithm.
However, the forward-backward algorithm can only process one trajectory to construct HMM, so
multiple trajectories need to be combined for processing. First, we deal with all the traces obtained
from the log repository (the number of traces is assumed to be N). For example, if a trace πi appears a
total of mi times, we use pair (πi,mi) to represent them. The corresponding HMM synthesis algorithm
is presented in Algorithm 1.

Merging all the traces directly will introduce errors into the final model and non-existent paths,
such as those transitions from the end states to the initial states. In this case, we add two states to all
resulting traces, namely, S init and S end. The introduction of these two states will improve the accuracy
of the final model [27]. The classical forward-backward algorithm does not implement the incremental
process, fortunately, there is a lot of research to solve the problem, such as the work in [28].

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13607–13627.

13616

Algorithm 1: HMM generation algorithm
Input: A finite set traces = {(π1,m1), (π2,m2), . . . , (πn,mn)}
Output: HMM model Hm

1 Π← ε; //Initialization of Π as an empty string;

2 N =
n∑
1

mi; //N is the total number of traces

3 a← random(1,N); //a is a random value
4 for j← 1 to N do

5 if a ∈ [1 +
k−1∑

1

mk,

k∑
1

mk] then

6 Π← Π + πk; //πk is concatenated to Π
7 a← random(1,N);

8 Hm = hmm(Π); // Call forward-backward algorithm;
9 return Hm;

M = 6

N = 6

A:

0.001342 0.509898 0.487121 0.001781 0.001891 0.001989

0.001897 0.204231 0.275123 0.098343 0.423153 0.001176

0.001279 0.099123 0.281981 0.523891 0.095871 0.001891

0.001871 0.001898 0.001891 0.996891 0.001090 0.000123

0.000671 0.000211 0.001452 0.000983 0.998981 0.001981

0.001981 0.000781 0.000981 0.499901 0.499891 0.001771

B:

0.991842 0.001901 0.001981 0.001075 0.001981 0.001826

0.001781 0.991782 0.001092 0.001981 0.001887 0.001912

0.001089 0.001891 0.991091 0.001892 0.001891 0.001882

0.001901 0.001125 0.001091 0.989012 0.001192 0.001891

0.001193 0.001898 0.001098 0.008915 0.971881 0.001882

0.001183 0.001121 0.001781 0.009811 0.001982 0.991981

θ:

0.999986 0.001003 0.001003 0.001003 0.001003 0.001003

p q

Φ pq

0.20

0.28

0.10 0.42

0.28

0.10

0.52
0.10

1.00

0.51 0.49

1.00

Figure 5. The DTMC (Right) corresponding to the learned HMM (Left, Note that the matrix
A contains extra state S init and S end), and the precision of data in DTMC is rounded to two
decimals.

For example in Figure 2, we simulate the process of generating DTMC in UAV platform
Ardupilot [29]. The data of all control commands and sensors are recorded into the log system of
Ardupilot. We implemented an event parser to obtain concerned events from logs. After simulating
the flight for 10000 times, the corresponding traces are extracted and used to generate HMM with
Algorithm 1. Left part in Figure 5 depicts the HMM [A,B, θ] learned from 10,000 traces, and the
graphical representation of its DTMC only contain p and q is shown in the right part of Figure 5.
These logs are obtained by monitoring the target drone and its environment. The DTMC model can be
obtained from matrix A in HMM directly. Through experiments, we find that the accuracy of the
forward-backward algorithm is closely related to two factors. First, a longer observation sequence
corresponds to a higher accuracy. Second, the similarity between the initial model and the target
model will directly affect the efficiency of the algorithm.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13607–13627.

13617

4. Probabilistic monitor generation

The generated DTMC is the model of system and environment learned, which should be used
together with the monitored property to determine and predict the satisfaction of property in specific
state. Thus, we will generate a probabilistic monitor from DTMC and the automaton corresponding to
the property. Figure 6 shows the framework of the procedures for generating probabilistic monitor.

Büchi

Automata

Deterministic

Rabin Atuomata
 Discrete-Time

Markov Chain

Synthesis

Algorithm

（G=A×M）
SCC

SMT

LTL2ba LTL2dstar

Tarjan

Equation Set

LTL

P_Monitor

A:DRA

M:DTMC

G

P(v)

Figure 6. The framework of probabilistic monitor generation.

ω-automata A ω-automaton A = (Q,Σ, δ,Q0, Acc) includes the following elements:

• Q is a finite set of states;
• Σ is a finite set called alphabet;
• δ : Q × Σ→ 2Q is the transition function;
• Q0 ⊆ Q is the initial state set;
• Acc is the acceptance condition.

ω-automata can be classified into deterministic and non-deterministic ones, which mainly differ in
transition functions. An automaton is said deterministic if |Q0| = 1 and |δ(q, a)| = 1 for each q ∈ Q and
a ∈ Σ. In this case, we consider the transition function δ to be of the type Q × Σ→ Q.

An input for A is an infinite string over the alphabet Σ, i.e. it is an infinite sequence α = a0, a1, a2,
The run of A on such input is an infinite sequence ρ = r0, r1, r2, ... of states, defined as follows:r0 ∈ Q0

and ri ∈ δ(ri−1, ai−1) where i ≥ 1. Let ρ denote a run of A over the infinite word σ ∈ Σω , and In f (ρ) be
the set of states occurring infinitely in ρ. Given the different acceptance conditions, ω-automata can be
classified into different types such as:

• Büchi automata (BA): For accept state set F ⊆ Q, F ∩ In f (ρ) , ∅;
• Rabin automata (RA): For the set of pairs {(E1, F1), (E2, F2), ..., (Em, Fm)}, where Ei, Fi ⊆ Q, there

exists some 1 ⩽ i ⩽ m that Ei ∩ In f (ρ) = ∅ and Fi ∩ In f (ρ) , ∅.

In this paper, we use NBA and DRA to designate nondeterministic Büchi automata and deterministic
Rabin automata, respectively.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13607–13627.

13618

Directed Graph and SCC A directed graph G is a tuple (V, E), where:

• V is a finite non-empty set of vertices;
• E ⊆ V × V is a finite set of directed edges.

Give a directed graph G = (V, E), and V ′ ⊆ V . If for each pair of vertices x, y ⊆ V ′ there are
x → y and y → x, then we call the subgraph of G composed by the node set V ′ as strongly connected
component S CC V ′.

Maximal SCC, Bottom S CCs and Intermediate S CCs If S CC V ′ ⊆ C ⇒ V ′ = C for each S CC C
of G, then we consider S CC V ′ as maximal SCC and denote it by S CCs V ′.

If a S CCs V ′ exists in G = (V, E) and C = V \ V ′, for each vertex x ∈ V ′ and y ∈ C, there is no
x→ y holds. We then call it Bottom S CCs, denoted as BS CCs V ′.

If node set V ′ is S CCs, but it is not BS CCs, we say the V ′ is an Intermediate S CCs, denoted as
MS CCs.

Then given the learned DTMC and the LTL property to be monitored, we will generate probabilistic
monitor according to the process shown in Figure 6.

4.1. From LTL to DRA

Various methods of translating a LTL formula into an equivalent Büchi automaton have been
proposed in literatures. Unlike model checking, here we focus on the probability of property
satisfaction when a new event is observed, thus we hope the monitor should be deterministic. Since
deterministic Büchi automata are strictly less expressive than the non-deterministic ones, currently
there is no way for translating NBAs into DBAs. But, McNaughton’s Theorem and Safra’s
construction provide the algorithm that can translate a Büchi automaton into a deterministic Rabin
automaton [30]. Thus we will use DRA as the automaton formalism of LTL property, which still need
BA as intermediate representation.

The tool LTL2BA [31] can convert LTL formulas into Büchi automata. The conversion is
implemented in three steps. Firstly, the LTL formula is transformed into a very weak alternating
automaton (AWAA). This step mainly deals with the logical relations among the sub-formulas.
Secondly, the VWAA is converted into a generalized Büchi automaton (GBA), which mainly deals
with the problem of state combinations. Thirdly, GBA is converted into BA by using an easy-to-use
and well-known construction method. Finally, we use tool LTL2dstar [32] to convert BA into DRA
with a worst-case complexity of 2O(n log n), where n denotes the number of states in BA.

4.2. Generating probabilistic runtime monitor

With the DTMC learned and the DRA constructed from property, we now can generate the
probabilistic monitor as follow.

Step 1: Product of DRA and DTMC [33]. Given a DRA A = (Q,Σ, δ, q0, ACC) and a DTMC
M = (S , I,T, L), where Σ = S , we firstly construct their production. Define the directed graph G =
A×M = (V, E), where V = {(q, s)|q ∈ Q, s ∈ S }. An edge e ∈ E has the form e = ((q, s), (q′, s′)), which
should satisfy T (s, s′) > 0 and q′ = δ(q, s). Figure 7 presents an example of this construction process,
where the DRA is generated by the LTL formula φ = FGp which is a property should be satisfied by
the case in Figure 2.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13607–13627.

13619

（B）The DTMC extracted from log library by machine learning method.

（C）Initial probability monitor M = DRA × DTMC （D）Optimized probability monitor obtained by merging 0 or 1 states

（A）The DRA corresponding to the LTL formula FGp generated by LTL2dstar.

Figure 7. Generating probability monitor for property φ of UAS.

Step 2: Probability Calculation. We use P(v) to denote the probability that node v = (q, s) ∈ V will
satisfy the LTL property in finite graph G. In order to calculate the probability of each node in G, the
concept of Accepted S CCs is introduced. The acceptance condition of the DRA generated by LTL is
ACC = {(E1, F1), ..., (Ek, Fk)}. A BS CCs C is accepted if there is some i such that C ∩ Ei = ∅ and
C ∩ Fi , ∅. Otherwise the BS CCs C is re jected. For node v = (q, s) in S CCs C, its probability will be
obtained as following:

(1) If C is an Accepted S CCs then P(v) = 1;

(2) If C is an Re jected S CCs then P(v) = 0;

(3) If C is an Intermediate S CCs then P(v) =
∑

u∈W(T (s, s′) × P(u)), W is set of all successors of v,
and u is denoted as (q′, s′) where q′ = δ(q, s).

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13607–13627.

13620

We use the case in Figure 7 to describe the procedures. Figure 7(A),(B) present the DRA and
DTMC which are input of algorithm 1. Figure 7(C) gives the product of them. The initial states are
nodes (S 2, p) and (S 2, q), then we can obtain all S CCs using the classic Tarjan algorithm and we name
it FindS CCs. As shown in Figure 7(C), except for nodes (S 2, p), (S 2, q), (S 1, q), (S 1, p), (S 0, p), (S 0, q)
that make up one S CCs, every other node is a S CCs.

According to the previous definition, we can easily know that node (S 0, pq) and node (S 2, ∅) are
BS CCs. Based on the definition of Accepted BS CCs and the DRA structure, we can work out the
probability of Accepted BS CCs (S 0, pq) with above (1) and Re jected BS CCs (S 2, ∅) with (2). For
all MS CCs, we obtain P by solving the equations based on (3). For instance, we can calculate the
probability of nodes in one MS CCs with following equations:

P(S 0, p) = P(S 0, p) ∗ T (p, p) + P(S 0, pq) ∗ T (p, pq)
+P(S 2, q) ∗ T (p, q) + P(S 2, ∅) ∗ T (p, ∅)

P(S 0, q) = P(S 2, p) ∗ T (q, p) + P(S 2, ∅) ∗ T (q, ∅)
+P(S 2, pq) ∗ T (q, pq) + P(S 2, q) ∗ T (q, q)

P(S 1, p) = P(S 0, p) ∗ T (p, p) + P(S 0, pq) ∗ T (p, pq)
+P(S 0, ∅) ∗ T (p, ∅) + P(S 0, q)

P(S 1, q) = P(S 2, p) ∗ T (q, p) + P(S 2, q) ∗ T (q, q)
+P(S 2, ∅) ∗ T (q, ∅) + P(S 2, pq) ∗ T (q, pq)

P(S 2, p) = P(S 1, p) ∗ T (p, p) + P(S 1, pq) ∗ T (p, pq)
+P(S 2, q) ∗ T (p, q) + P(S 2, ∅) ∗ T (p, ∅)

P(S 2, q) = P(S 1, pq) ∗ T (q, pq) + P(S 1, p) ∗ T (q, p)
+P(S 2, q) ∗ T (q, q) + P(S 2, ∅) ∗ T (q, ∅)

The above equations are solved using Gaussian− Elimination method and the probability of each
node can be obtained then. As show in these equations, to calculate the probability of node (S 2, q), we
should know the probability of node (S 2, ∅) which we have worked out before. So in fact the process
of the calculation is Depth-First-Search (DFS) which consists with the process of Tarjan algorithm.
Because of this fact, once we find a S CCs through the Tarjan algorithm, we can calculate the probability
of each node in this S CCs which meet formula φ = FGp, as shown in Figure 7(C).

Step 3: Optimization. After calculating the probability of each state based on G = A×M, G and the
labelled probability make up the runtime monitor. For some states in the monitor, the probability labels
are 0 or 1. These states can be merged to optimize the structure of the monitor. In this example, given
that the probability labels for states (S 0, pq) and (S 1, pq) are both 1, they can be merged to optimize
the monitor as shown in Figure 7(D).

For the generated probability monitor, there are two traditional deployment methods. One is called
the embedded method. This method is to centrally process the monitor code and the source program
of the monitored target system, and realize the jump of the monitor status by capturing the trigger of
the event. This method has the advantages of good real-time performance, and the biggest problem
is that it threatens the security of the original monitoring system; The other method is the external
method. Different from the embedded method, the monitor is deployed outside the target system. The
monitor can jump by acquiring the flag information of whether the event occurs through the bus and

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13607–13627.

13621

other methods. We can implement the monitor as hardware to achieve better results. This method has
the advantage of reducing the interference to the target system as much as possible, The disadvantage
is that information may be lost due to communication failure, which may lead to judgment error. In
addition, the real-time performance is not as good as the implantable method.

5. Implementation and evaluation

The tool framework and running process of the probabilistic runtime monitor is briefly described
in Figure 8. It extracts the events of interest from event acquirer module. When an event occurs,
the probabilistic monitor will perform a transition based on its current state and the received event.
Based on the system requirements, if the probability value exceeds our specified gate value, then some
predefined behavior will be executed, such as an alarm. When an alarm occurs in the system, the
events labelled on the transitions in the monitor following current state can help controller to change
the direction of the system running by trigger a specific event.

Properties DTMC
MC Learner

(See Fig 3)

Synthesize

（See Fig 6）

Prob_M Acquirer

Controller

Static Process

Runtime Process

Event

Event

Log.txt

Mission Planner Log Library

Monitor Display

Set Gate -value

Manual Intervention

Figure 8. The framework of tool implementation in the UAS simulation platform Ardupilot.

In the process of running the system, the Acquirer obtains the events from the target system and
environment, and Prob M is the main part of the monitor platform which stores the structure of the
monitor and changes its state based on the event obtained by Acquirer. The Controller decides which
control event should be issued in next step when the system encounters a problem, or prompts what
external command intervention are needed to maintain the system in safe state. In the static phase, we
can use the traces newly added to the log library to update the learned model, which can continuously
improve the accuracy of the probabilistic monitor.

Compared with our work, traditional RV monitor under binary semantics of LTL faces the
semantic problem of consistency, since they should give a new semantics of LTL on finite traces.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13607–13627.

13622

Although the monitoring method under three-valued semantics of LTL can satisfy impartial and
anticipatory requirements [7], the monitor does not produce more quantitative results when the
satisfaction of property in many states are output as “?” (inconclusive). Meanwhile, the probabilistic
monitor can exactly determine the quantitative evaluation of satisfying the LTL property in current
state, thereby greatly expanding its application scenarios and making up the insufficiency of other RV
methods.

Furthermore, our probabilistic monitors can adjust the subsequent execution of the target system.
Specifically, when the system is running, people know which “event” can increase or decrease the
future probability for the system to meet the property. The existing runtime monitors are unable to
achieve this purpose.

To show the effectiveness of the method proposed above, we applied the probabilistic RV and its
tool to actual UAS platform Ardupilot. It is generally known that the hardware or software defects and
the presence of external malicious attacks pose a great threat to the security of UAS. Let’s consider the
following situation.

When UAS reconnaissances a hostile force area, if it encounters dangerous conditions (such as
abnormal signal interference), in order to balance the task completion and UAS safety, we set the
following rules: Firstly, if detection task has been initialized, the drone will not accept abnormal
signal (both from the region and the console), until the task has finished or the task is interrupted (such
as receiving a normal command of stopping detection); secondly, if the task has not been initialized
after enter this hostile area, the task will not be started to ensure the safety of UAS.

Therefore, we define the following events: (1) p: the UAS is in the state of executing critical
task, and (2) q: the UAS has received abnormal instruction. Then the property can be expressed by
LTL formula:

φ = G((p→ (¬qU¬p)) ∧ (¬p→ G¬p))

The corresponding DRA of property φ is generated and shown in Figure 9(A), and the DTMC
model (based on propositions p and q) of this UAS is obtained by learning the log history of multiple
flight simulations, which is shown in Figure 9(B). The probabilistic monitor is generated from above
DRA and DTMC as shown in Figure 9(C). Depend on this monitor, 200 system running traces with
length 1000 (in fact the trace should be infinite, here length 1000 can embody the effectiveness of the
method) are checked whether they satisfied this safety property. As the result, there are 140 traces
finally arrive the state with probability 1.000 that satisfies the property, and for the left 60 traces the
probability is 0.000. The ratio of the traces satisfying the property in all traces is 70%, which is close
to the probability on the initial node with the probability 72.59%.

Table 1. Comparison with LT L3 semantic monitor.

NO -Trackas Probability Monitor LT L3 Monitor
140 1 ?
60 0 0

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13607–13627.

13623

（A）The DRA corresponding to the LTL formula：φ = G((p → (!qU!p)) ∧ (!p → G!p)) . （B）The DTMC model extracted from UAV log Library.

（C）Probability monitor generated by the algorithm in this paper.
（D）The monitor generated by tool LTL3tools is based on

three-value semantics of LTL.

Figure 9. The experiments of probability monitor compared with monitor based on three-
value semantics.

As shown in Table 1, to compare with our method, similar experiments with same data is conducted
under the semantics of LT L3. Firstly, the same LTL formula is transformed into the monitor shown
in Figure 9(D) by applying LT L3 tool. Obviously, there is no state of true in this monitor because
the formula begins with operator G, and true cannot be obtained in infinite word under the semantics
of LT L3. It is because LT L3 method does not consider the environment that system runs in. But our
probabilistic monitor learned the model from history of both system and environment, and use these
information in the monitor. By repeating the same 200 traces, the LT L3 monitor get the results with 140
uncertain and 60 false. It must be pointed out here that although the results of the trajectory monitored
by the probability monitor ultimately only meet the monitoring nature or violate the nature, this is the
reasonable result of the normal trajectory. Unlike the LT L3 monitor, the probability monitor can give a
quantitative conclusion that meets the nature when the system is running normally, and this conclusion
can guide people to interfere with the operation trajectory of the target system, so as to avoid software
failure. This capability is beyond the ability of the LT L3 monitor.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13607–13627.

13624

6. Conclusions

Runtime verification is a lightweight formal verification technology in software verification. It
only determines whether the operation of the system meets the monitoring protocol according to the
currently observed trajectory. Runtime verification technology, model verification technology and
testing technology have their own advantages and disadvantages. In practice, they are often used
together. They are three common methods for software quality evaluation. However, when the
software to be verified is very complex, the model verification will encounter the problem of state
explosion, and the test is difficult to cover most of the paths of the software. Runtime validation
complements model verification and testing because it uses only observed trajectories to draw
conclusions about properties, which is not sensitive to the size of the software. Since runtime
verification technology is often deployed after software implementation, it is often used to monitor
the properties related to the operating environment.

The traditional runtime verification technology can only give an early warning when an error
occurs. The predictive runtime verification technology can predict the development direction of the
target system, which makes it possible to avoid software failure. The existing prediction runtime
verification technology, also known as software active monitoring technology, is mainly realized by
extracting “prediction words” from the target system in the static stage. The so-called prediction word
is obtained from the model or code of the target software by means of model abstraction or static
analysis. However, for some legacy software, black box systems, or systems running in uncertain
environments, the existing methods of software active monitoring technology are not applicable.

In addition, the runtime verification technology often uses binary monitoring semantics, that is,
whenever the property is judged to be violated or satisfied, the monitoring process will stop. The main
drawback of these methods is that they can not provide an accurate quantitative description of
property satisfaction, and there is also the problem of monitoring semantic ambiguity. In order to
solve this problem and make runtime verification suitable for infinite trajectory semantics, based on
the conclusion that LT L3 runtime verification technology adds uncertainty to the truth value, a
corresponding monitor generation method is proposed. However, it is found that in the monitoring
process, most of the situations are “uncertain”, and the uncertain conclusions can not make a
quantitative judgment on the relationship between the current system and the monitoring protocol,
which is undoubtedly a pity. However, if the output of the run-time monitor is a probability value, it
can quantitatively determine the satisfaction of the target system and the monitoring nature, then it
will make up for the shortcomings of the existing prediction run-time verification methods. In
addition, for different target systems and different properties, we can set corresponding thresholds
according to needs or expert experience to trigger the reminder mechanism, that is, when the system
with probability monitor detects that the value of the current trajectory exceeds the threshold, it can
send an alarm or control operations to guide the operation of the system.

To solve the above two problems, this chapter proposes a method to learn the probability model of
the target monitoring system and its operating environment from the historical track, and then
generate a runtime probability monitor by comprehensively monitoring the nature of the protocol.
This probability monitor can give the probability that the target system meets (or violates) the
monitoring property in the new state. To this end, hidden Markov models are learned from historical
trajectories and transformed into discrete-time Markov chains, and deterministic Rabin automata

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13607–13627.

13625

(DRA) are generated from the properties of linear temporal logic. The probability monitor is then
generated using DTMC and DRA. This probabilistic runtime verification method can predict the trend
of the target system by quantitatively judging the degree to which the current system state meets the
monitoring nature. Compared with the previous predictive run-time verification method, our method
does not need the model or code of the target system, and considers the environment. The probability
monitor can also provide guidance for software execution. When the software deviates from the
expected nature, the operation of the target system can be adjusted through predefined behavior to
avoid failure. The corresponding tools for learning and generating probability monitoring are realized,
and experiments show the effectiveness of the method.

For systems that do not have accurate models and program codes, or run in uncertain environments
where threats cannot be predicted before deployment, we propose a method to construct probabilistic
monitors to detect property violations at run time. This method uses the historical traces from the
log base of the target system to learn the hidden Markov model, which represents the behavior of
the system and the environment. Then the DTMC model is obtained from hidden Markov model.
Combined with the DRA generated by LTL formula, the state probability in the product of DTMC and
DRA can be calculated to generate a probability runtime monitor. The probability monitor has good
application scenarios, in which the LTL nature cannot be quantitatively judged by the existing runtime
verification methods at first, and it can also provide directional guidance for system intervention. We
have implemented the corresponding tools on the UAS platform Ardupilot. Compared with other
methods such as LT L3, experiments have proved the effectiveness of this method.

Conflict of interest

The authors declare there is no conflict of interest.

References

1. P. Zhang, Z. Su, Y. Zhu, W. Li, B. Li, Ws-psc monitor: A tool chain for monitoring temporal
and timing properties in composite service based on property sequence chart, in International
Conference on Runtime Verification, 6418 (2010), 485–489. https://doi.org/10.1007/978-3-642-
16612-9 39

2. I. O. Electrical, I. S. Board, IEEE standard for software verification and validation, Software Qual.
Prof., 2005 (2005), 1–217. https://doi.org/10.1109/IEEESTD.2005.96278

3. E. M. Clarke, Model checking-my 27-year quest to overcome the state explosion problem,
in 2009 24th Annual IEEE Symposium on Logic In Computer Science, IEEE, (2008).
https://doi.org/10.1109/LICS.2009.42

4. O. J. Dahl, E. W. Dijkstra, C. A. R. Hoare, Structured Programming, Academic Press, 1972.
https://doi.org/10.5555/1243380

5. C. Zhao, W. Dong, J. Wang, P. Sui, Z. Qi, Software active online monitoring under anticipatory
semantics, Shm, 2009. Available from: https://smcit.ecs.baylor.edu/2011/www-smcit09/abstracts-
contri papers/karsai/DongWei SHM.pdf.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13607–13627.

http://dx.doi.org/https://doi.org/10.1007/978-3-642-16612-9_39
http://dx.doi.org/https://doi.org/10.1007/978-3-642-16612-9_39
http://dx.doi.org/https://doi.org/10.1109/IEEESTD.2005.96278
http://dx.doi.org/https://doi.org/10.1109/LICS.2009.42
http://dx.doi.org/https://doi.org/10.5555/1243380

13626

6. K. Yu, Z. Chen, W. Dong, A predictive runtime verification framework for cyber-physical systems,
in 2014 IEEE Eighth International Conference on Software Security and Reliability-Companion,
(2014), 247–250. https://doi.org/10.1109/SERE-C.2014.43

7. A. Bauer, M. Leucker, C. Schallhart, Comparing ltl semantics for runtime verification, J. Log.
Comput., 20 (2010), 651–674. https://doi.org/10.1093/logcom/exn075

8. A. Naskos, E. Stachtiari, P. Katsaros, A. Gounaris, Probabilistic Model Checking at Runtime
for the Provisioning of Cloud Resources, Springer International Publishing, 9333 (2015).
https://doi.org/10.1007/978-3-319-23820-3 18

9. A. Filieri, G. Tamburrelli, Probabilistic verification at runtime for self-adaptive systems, in
Assurances for Self-Adaptive Systems, 7740 (2013). https://doi.org/10.1007/978-3-642-36249-1 2

10. A. Nouri, B. Raman, M. Bozga, A. Legay, S. Bensalem, Faster statistical model checking
by means of abstraction and learning, in Runtime Verification, 8734 (2014), 340–355.
https://doi.org/10.1007/978-3-319-11164-3 28

11. U. Sammapun, I. Lee, O. Sokolsky, J. Regehr, Statistical runtime checking of probabilistic
properties, Springer, Berlin Heidelberg, 2007 (2007). https://doi.org/10.1007/978-3-540-77395-
5 14

12. V. C. Ngo, A. Legay, V. Joloboff, Pscv: A runtime verification tool for probabilistic
systemc models, in International Conference on Computer Aided Verification, 9779 (2016).
https://doi.org/10.1007/978-3-319-41528-4 5

13. J. Jayaputera, I. Poernomo, H. Schmidt, Runtime verification of timing and probabilistic properties
using wmi and .net, in Proceedings. 30th Euromicro Conference, IEEE, (2004), 100–106.
https://doi.org/10.1109/EURMIC.2004.1333361

14. C. Zhao, W. Dong, Z. Qi, Active monitoring for control systems under anticipatory
semantics, in 2010 10th International Conference on Quality Software, (2010), 318–325.
https://doi.org/10.1109/QSIC.2010.82

15. H. He, Z. Zou, “Black-box modeling of ship maneuvering motion using system identification
method based on bp neural network,” in The 39th International Conference on Ocean, Offshore
and Arctic Engineering, (2020). https://doi.org/10.1115/OMAE2020-18069

16. S. Kundu, A. Soyyigit, K. A. Hoque, K. Basu, “High-level modeling of manufacturing
faults in deep neural network accelerators,” in 2020 IEEE 26th International
Symposium on On-Line Testing and Robust System Design (IOLTS), (2020).
https://doi.org/10.1109/iolts50870.2020.9159704

17. D. Angluin, Learning regular sets from queries and counterexamples, Inf. Comput., 75 (1987),
87–106. https://doi.org/10.1016/0890-5401(87)90052-6

18. Y. Kan, K. Yue, H. Wu, X. Fu, Z. Sun, Online learning of parameters for modeling user preference
based on bayesian network, Int. J. Uncertainty Fuzzines Knowledge Based Syst., 30 (2022), 285–
310. https://doi.org/10.1142/S021848852250012X

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13607–13627.

http://dx.doi.org/https://doi.org/10.1109/SERE-C.2014.43
http://dx.doi.org/https://doi.org/10.1093/logcom/exn075
http://dx.doi.org/https://doi.org/10.1007/978-3-319-23820-3_18
http://dx.doi.org/https://doi.org/10.1007/978-3-642-36249-1_2
http://dx.doi.org/https://doi.org/10.1007/978-3-319-11164-3_28
http://dx.doi.org/https://doi.org/10.1007/978-3-540-77395-5_14
http://dx.doi.org/https://doi.org/10.1007/978-3-540-77395-5_14
http://dx.doi.org/https://doi.org/10.1007/978-3-319-41528-4_5
http://dx.doi.org/https://doi.org/10.1109/EURMIC.2004.1333361
http://dx.doi.org/https://doi.org/10.1109/QSIC.2010.82
http://dx.doi.org/https://doi.org/10.1115/OMAE2020-18069
http://dx.doi.org/https://doi.org/10.1109/iolts50870.2020.9159704
http://dx.doi.org/https://doi.org/10.1016/0890-5401(87)90052-6
http://dx.doi.org/https://doi.org/10.1142/S021848852250012X

13627

19. S. Tao, J. Jiang, D. Lian, K. Zheng, E. Chen, Predicting human mobility with reinforcement-
learning-based long-term periodicity modeling, ACM Tran. Intell. Syst. Technol., 12 (2021), 1–23.
https://doi.org/10.1145/3469860

20. V. Forejt, M. Kwiatkowska, D. Parker, H. Qu, M. Ujma, Incremental runtime verification of
probabilistic systems, in International Conference on Runtime Verification, 7687 (2012), 314–319.
https://doi.org/10.1007/978-3-642-35632-2 30

21. A. Ferrando, G. Delzanno, Incrementally predictive runtime verification. in CILC, (2021), 92–106.
https://doi.org/10.1007/978-3-642-28891-3 37

22. S. D. Stoller, E. Bartocci, J. Seyster, R. Grosu, K. Havelund, S. A. Smolka, et al., Runtime
verification with state estimation, in International Conference on Runtime Verification, (2011),
193–207. https://doi.org/10.1007/978-3-642-29860-8 15

23. E. Bartocci, R. Grosu, A. Karmarkar, S. A. Smolka, S. D. Stoller, E. Zadok, et al., Adaptive
runtime verification, in International Conference on Runtime Verification. (2012), 168–182.
https://doi.org/10.1007/978-3-642-35632-2 18

24. Z. Chen, O. Wei, Z. Huang, H. Xi, Formal semantics of runtime monitoring, verification,
enforcement and control, in International Symposium on Theoretical Aspects of Software
Engineering, (2015), 63–70. https://doi.org/10.1109/TASE.2015.11

25. D. Giannakopoulou, K. Havelund, Runtime analysis of linear temporal logic specifications, in
IEEE International Conference on Automated Software Engineering, (2001). Available from:
http://www.riacs.edu/trs/.

26. S. M. Chu, T. S. Huang, An experimental study of coupled hidden markov models,
in IEEE International Conference on Acoustics, Speech, and Signal Processing, (2002).
https://doi.org/10.1109/ICASSP.2002.5745559

27. N. M. Abbasi, Hidden markov methods. algorithms and implementation, 2015. Available from:
https://manualzz.com/doc/o/cklvd/.

28. B. Motik, Y. Nenov, R. Piro, I. Horrocks, Incremental update of datalog materialisation: the
backward/forward algorithm, in Twenty-Ninth AAAI Conference on Artificial Intelligence, (2015),
1560–1568. https://doi.org/10.5555/2886521.2886537

29. An simulation platform of unmanned aerial vehicle. Available from: https://www.ardupilot.org/.
30. S. Safra, On the complexity of ω-automata, in Foundations of Computer Science, W. H. Freeman,

(1988), 319–327. https://doi.org/10.1109/SFCS.1988.21948
31. P. Gastin, D. Oddoux, Fast LTL to Büchi automata translation, in International Conference on

Computer Aided Verification, (2001), 53–65. https://doi.org/10.1007/3-540-44585-4 6
32. LTL to deterministic Streett and Rabin automata. Available from: https://www.ltl2dstar.de/.
33. W. Liu, F. Song, G. Zhou, Reasoning about periodicity on infinite words, Appl. Microbiol.

Biotechnol., 2017 (2017), 200–215. https://doi.org/10.1007/978-3-319-69483-2 12

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13607–13627.

http://dx.doi.org/https://doi.org/10.1145/3469860
http://dx.doi.org/https://doi.org/10.1007/978-3-642-35632-2_30
http://dx.doi.org/https://doi.org/10.1007/978-3-642-28891-3_37
http://dx.doi.org/https://doi.org/10.1007/978-3-642-29860-8_15
http://dx.doi.org/https://doi.org/10.1007/978-3-642-35632-2_18
http://dx.doi.org/https://doi.org/10.1109/TASE.2015.11
http://dx.doi.org/http://www.riacs.edu/trs/.
http://dx.doi.org/https://doi.org/10.1109/ICASSP.2002.5745559
http://dx.doi.org/https://manualzz.com/doc/o/cklvd/.
http://dx.doi.org/https://doi.org/10.5555/2886521.2886537
http://dx.doi.org/https://www.ardupilot.org/.
http://dx.doi.org/https://doi.org/10.1109/SFCS.1988.21948
http://dx.doi.org/https://doi.org/10.1007/3-540-44585-4_6
http://dx.doi.org/https://www.ltl2dstar.de/.
http://dx.doi.org/https://doi.org/10.1007/978-3-319-69483-2_12
http://creativecommons.org/licenses/by/4.0

	Introduction
	Motivation and contribution
	Related work

	Preliminaries
	Linear-time Temporal Logic
	RV and monitoring semantics
	Discrete Time Markov Chain

	Learning based probabilistic modelling
	Problem description
	Hidden Markov Model
	Learning probabilistic model

	Probabilistic monitor generation
	From LTL to DRA
	Generating probabilistic runtime monitor

	Implementation and evaluation
	Conclusions

