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Abstract: Monkeypox 2022, a new re-emerging disease, is caused by the Monkeypox virus.
Structurally, this virus is related to the smallpox virus and infects the host in a similar way; however,
the symptoms of Monkeypox are more severe. In this research work, a mathematical model for
understanding the dynamics of Monkeypox 2022 is suggested that takes into account two modes of
transmission: horizontal human dissemination and cross-infection between animals and humans. Due
to lack of substantial knowledge about the virus diffusion and the effect of external perturbations, the
model is extended to the probabilistic formulation with Lévy jumps. The proposed model is a two
block compartmental system that requires the form of Itô-Lévy stochastic differential equations. Based
on some assumptions and nonstandard analytical techniques, two principal asymptotic properties are
proved: the eradication and continuation in the mean of Monkeypox 2022. The outcomes of the study
reveals that the dynamical behavior of the proposed Monkeypox 2022 system is chiefly governed
by some parameters that are precisely correlated with the noise intensities. To support the obtained
theoretical finding, examples based on numerical simulations and real data are presented at the end of
the study. The numerical simulations also exhibit the impact of the innovative adopted mathematical
techniques on the findings of this work.
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1. Introduction

Monkeypox is a contagious disease caused by an Orthopoxvirus. This zoonotic infection was
initially transmitted to humans in the forest areas of central and western Africa by wild rodents;
however, human-to-human spread (horizontal transmission) is also possible in this infection. The
human-to-human spread is particularly observed within the family or in the context of care [1]. The
Monkeypox virus can be diffused by immediate contact with lesions on the skin or mucous
membranes of a sick person, as well as by droplets (sneezing, saliva, sputters, etc.) [2]. Generally, an
individual can get the infection whenever he/she comes into the surrounding environment of a
Monkeypox infected patient. It is therefore important to isolate such a patient throughout the duration
of his/her illness. In many cases, humans are getting the infection due to their active contact with
animals, rodents or monkeys [3].

Infection with the Monkeypox virus begins with a fever, often high, accompanied by headaches,
body aches and weakness [4]. After about two days, a blistering rash appears, consisting of fluid-
filled blisters that progress to dryness and crusting, then scarring and itching. The bubbles are most
concentrated on the face, the forehands and the soles of the feet. The mucous membranes of the
mouth and genital area are also affected [5], with swollen and painful lymph nodes under the jaw and
neck. The disease is more severe in children and immunocompromised people. It can be complicated
by secondary infection of skin lesions or damage to the respiratory, digestive, ophthalmic or nervous
systems [2].

Historically, the earliest cases of the disease were discovered in the 1970s in DR Congo. The next
outbreak of Monkeypox outside of Africa was detected in the United States, 2003 [6]. On 14 May
2022, the United Kingdom Health Security Agency (UKHSA) reported two cases of Monkeypox.
Since then, new cases have been identified in Belgium, France, Italy, Portugal, Spain, Sweden,
Austria, Canada and the United States [1]. In total, 80 mild cases were recorded in ten countries, as of
May 20, according to the World Health Organization. While transmission from animals to humans is
acceptable in Africa, these emerging cases are associated with human-to-human contamination, most
often observed in homosexual or bisexual men with skin lesions of the genitals and face [6].

The European Center for Disease Prevention and Control (ECDPC) recently announced that there is
a potentially significant risk of human-to-animal spread of Monkeypox in Europe [7]. This has already
been confirmed during recent years in West Africa, in particular, when a relationship exists between
infected humans and susceptible domestic animals [8]. Actually, the hypothesis of cross-infection
between human and animals cannot be neglected.

In this research, we propound a mathematical formulation of Monkeypox that simulates its strong
spread at two levels: human-human transmission and animal-human infection. Our model is composed
of two blocks with possible cross-infection between animals and humans. The first block describes the
evolution of Monkeypox in the human population, which is divided into four classes: sensitive class
C1,h, infected class C2,h, the isolated class C3,h and the recovered class C4,h. The last block describes
the evolution of the virus between animals, which are divided into two sub-populations: susceptible
animals C1,m and infected animals C2,m. Movements between these classes are characterized by the
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following deterministic system:

dC1,h(t) =
{
A− ζC1,h(t)C2,m(t) − ζ◦C1,h(t)C2,h(t) − uC1,h(t) + τ1C3,h(t)

}
dt,

dC2,h(t) =
{
ζC1,h(t)C2,m(t) + ζ◦C1,h(t)C2,h(t) − (u + u0 + φ + r1 + r2) C2,h(t)

}
dt,

dC3,h(t) =
{
φC2,h(t) − (τ1 + τ2 + α1 + α2) C3,h(t)

}
dt,

dC4,h(t) =
{

(r1 + r2) C2,h(t) + τ2C3,h(t) − uC4,h(t)
}

dt,

− − −− − − − − − − − − − − − − − − − − − − − − − −

dC1,m(t) =
{
A⋆ − ζ⋆C1,m(t)C2,h(t) − u⋆C1,m(t)

}
dt,

dC2,m(t) =
{
ζ⋆C1,m(t)C2,h(t) − u⋆C2,m(t)

}
dt,

(1.1)

where A designates the recruitment rate of C1,h. ζ indicates the cross infection transmission rate
between C1,h and C2,m. ζ◦ is the horizontal human-human dissemination rate. τ1 is the transfer rate from
C3,h to C1,h. u and u0 are, respectively, the natural and the Monkeypox-induced death rates of the human
individuals. φ is the quarantine rate of infected human individuals. r1 is the human recuperation rate.
r2 is the the medical treatment rate. τ2 is cure rate of isolated individuals. α1 and α2 are, respectively,
the natural and the infection-induced death rates of the isolated human individuals. For the animal
population,A⋆ designates the recruitment rate of C1,m. ζ⋆ is the the cross contamination rate between
C1,m and C2,h. u⋆ is the animal natural death rates. For ease of reading the remainder of this manuscript,
we illustrate the transmission mechanisms of the above-mentioned model by the flow diagram shown
in Figure 1.
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C C3,h 4,hC2,h
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Figure 1. Flowchart of the studied Monkeypox 2022 model.
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Epidemiologically, the basic reproduction ratio S0 is the number of secondary cases produced by
one infected individual in an entirely susceptible population during its period as an infective. In the
literature, several techniques have been proposed for the calculation of S0 ( [9], chapter 5), but the
most known is that of the next generation approach introduced by van den Driessche and Watmough
in [10]. According to this method, which will be used in our case, S0 is the spectral radius ρ of the
next generation matrix defined by M = FV−1 where F and V are, respectively, the matrices expressing
the infection transition and the emergence of new infected cases in the different contaminated
compartments of the model. On account of the mathematical results presented in [6], the spread
behavior of the aforesaid Monkeypox model is entirely determined by the deterministic sill S0, which
is expressed in this case by

S0 =
ζAζ⋆A⋆ + ζ◦Au

2
⋆

u (u + u0 + φ + r1 + r2) u2
⋆

.

In fact, external environmental disturbances affect the spread of the epidemic and make its behavior
difficult to predict [11–16]. In such cases, deterministic systems, while capable of making very useful
predictions, are not sufficiently adequate [17, 18]. Thus, there is an urgent need for a sophisticated
and general mathematical model that takes into account the effect of randomness, especially in the
context of studying the prevalence of a highly prevalent infectious disease such as Monkeypox [19,20].
In this context, a large number of authors have proposed and developed several stochastic models
that describe the dynamics of epidemics from different angles and projections [21–23]. In all these
previously mentioned works, the transition from the deterministic to the stochastic formula is carried
out by assuming that the solution of this first naturally fluctuates around its value, which is often
expressed by obfuscating some parameters of the system with white noise [24]. The addition of the
latter is one of the most logical and remarkable ways of modeling any phenomenon in which a given
quantity undergoes slight and continuous fluctuations [25]. For example, in the context of the spread
of infectious diseases, environmental uncertainty is often represented in this way. Unfortunately, this
approach is not adequate to model the impact of massive and sudden disturbances such as climate
changes, economic crises, human interventions, etc. [26]. For this reason, we turn to Lévy processes,
which are famous for their ability to properly formulate this type of issue. There are several reasons
to enhance the classical stochastic paradigm. Models based on Lévy processes make it possible to
deal with situations leading to heavy-tailed distributions. Moreover, they make it possible to exploit
the full force of Markovian modeling because the most general Markov processes are solutions of
stochastic differential equations driven by Lévy processes. As the Lévy processes admit jumps, they
are well suited to describe complex problems in a discontinuous manner. In addition, several fractal
patterns associated with white noise and Lévy jumps are observed in the living world. They seem,
for example, to be present in domains as varied as biology and the economy. If the Lévy process
acted at the individual level, these adaptation mechanisms could then also have effects at higher levels
of organization and dynamics, even at the scale of ecosystems [27, 28]. So, we can expand the
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model (1.1) to the probabilistic formulation bellow:

dC1,h(t) =
{
A− ζC1,h(t)C2,m(t) − ζ◦C1,h(t)C2,h(t) − uC1,h(t) + τ1C3,h(t)

}
dt+dΣ1(t),

dC2,h(t) =
{
ζC1,h(t)C2,m(t) + ζ◦C1,h(t)C2,h(t) − (u + u0 + φ + r1 + r2) C2,h(t)

}
dt+dΣ2(t),

dC3,h(t) =
{
φC2,h(t) − (τ1 + τ2 + α1 + α2) C3,h(t)

}
dt+dΣ3(t),

dC4,h(t) =
{

(r1 + r2) C2,h(t) + τ2C3,h(t) − uC4,h(t)
}

dt+dΣ4(t),

− − −− − − − − − − − − − − − − − − − − − − − − −−

dC1,m(t) =
{
A⋆ − ζ⋆C1,m(t)C2,h(t) − u⋆C1,m(t)

}
dt+dΣ5(t),

dC2,m(t) =
{
ζ⋆C1,m(t)C2,h(t) − u⋆C2,m(t)

}
dt+dΣ6(t),

(1.2)

where 

dΣ1(t) = Υ1C1,h(t)dP1(t) +
∫
J

Ξ1(u)C1,h(t−)C̃[dt, du],

dΣ2(t) = Υ2C2,h(t)dP2(t) +
∫
J

Ξ2(u)C2,h(t−)C̃[dt, du],

dΣ3(t) = Υ3C3,h(t)dP3(t) +
∫
J

Ξ3(u)C3,h(t−)C̃[dt, du],

dΣ4(t) = Υ4C4,h(t)dP4(t) +
∫
J

Ξ4(u)C4,h(t−)C̃[dt, du],

dΣ5(t) = Υ5C1,m(t)dP5(t) +
∫
J

Ξ5(u)C1,m(t−)C̃[dt, du],

dΣ6(t) = Υ6C2,m(t)dP6(t) +
∫
J

Ξ6(u)C2,m(t−)C̃[dt, du].

Here, Pℓ (ℓ = 1, · · · , 6), are mutually independent Wiener processes of intensities
Υℓ > 0 (ℓ = 1, · · · , 6), respectively. These processes are defined on a filtered probability space
(Ω,F , (Ft)t⩾0,P) endowed with a filtration that satisfies the habitual conditions.
C1,h(t−),C2,h(t−),C3,h(t−),C4,h(t−),C1,m(t−) and C2,m(t−) denote the left limits of
C1,h(t),C2,h(t),C3,h(t),C4,h(t),C1,m(t) and C2,m(t). C is a Poisson counting measure independent of
Pℓ (ℓ = 1, · · · , 6) with a finite characteristic measure ϖ defined on a measurable set J ⊂ R+. C̃ is a
compensating martingale, and it is presumed that ϖ is a specific Lévy measure that verifies
ϖ(du)dt = C[dt, du] − C̃[dt, du]. Lastly, Ξℓ : J → R are the jumps, magnitude functions, which are
supposed to be continuous on J .

Regarding the present paper, our principal intention is to find sufficient criteria for eradication and
continuation in the mean of the Monkeypox system (1.2). These two asymptotic properties are
regarded to be sufficient for having an excellent view of the Monkeypox future pandemic situation.
Our new approach presented in this research improves some standard methods presented, for
example, in [29, 30]. Also, we adopt some new analytic techniques to get a more precise threshold for
Monkeypox eradication. The analysis presented in this work seems to be very promising for studying
other epidemic models, especially those which are perturbed with Lévy jumps.

The remainder of this research is ordered as follows: In Section 2, we start by giving some
necessary lemmas and techniques. In Section 3, we treat the dynamical bifurcation by giving the
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acute criteria of eradication and continuation of the Monkeypox. Section 4 numerically validates the
mathematical outcomes and explores the effect of leaps on the long-run attitude of the Monkeypox
infection model (1.2).

2. Hypothetical framework and required lemmas

We start this section by providing the hypothetical framework of our analysis. During this research,
we presume the following.

⋆ c1 : ∀ℓ ∈ {1, · · · , 6}, Ξℓ(u) > −1, and the quantities

max
1⩽ℓ⩽6

{∫
J

Ξ2
ℓ(u)ϖ(du)

}
,

max
1⩽ℓ⩽6

{∫
J

(
Ξℓ(u) − ln (1 + Ξℓ(u))

)
ϖ(du)

}
,

max
1⩽ℓ⩽6

{∫
J

((
1 + Ξℓ(u)

)2
− 1
)2
ϖ(du)

}
,

max
1⩽ℓ⩽6

{∫
J

(
ln
(
1 + Ξℓ(u)

))2
ϖ(du)

}
,

are finite.

• c2 : ∃v > 2 such that Vv = min
{
u, u⋆

}
− 0.5(v − 1)U −

1
v

Wv > 0, where U = max
{
Υ2
ℓ | ℓ ∈

{1, · · · , 6}
}

, Ξ̃(u) = max
{
Ξℓ(u) | ℓ ∈ {1, · · · , 6}

}
, Ξ˜(u) = min

{
Ξℓ(u) | ℓ ∈ {1, · · · , 6}

}
, Θ̃v(u) =(

1 + Ξ̃(u)
)v
− v × Ξ̃(u) − 1,Θ˜ v(u) =

(
1 + Ξ˜(u)

)v
− v × Ξ˜(u) − 1,Θv(u) = max

{
Θ̃v(u),Θ˜ v(u)

}
,

Wv =

∫
J

Θv(u)ϖ(du).

Now, the first question in exploring the dynamics of an epidemic model is whether it admits a unique
and positive global solution over time. The following lemma shows these properties and ensures the
well-posedness of the proposed probabilistic system (1.2).

Lemma 2.1. Let c1 holds. Then, the stochastic system (1.2) is biologically and mathematically well-
posed in the sense that it has a single solution which is positive and global in time.

We define the total human population as follows: T (t) = C1,h(t) + C2,h(t) + C3,h(t) + C4,h(t). Then,
we explore some long-run characteristics of the boundary equations associated with model (1.2) in
the case of C2,h(t) = 0 and C2,m(t) = 0 (absence of Monkeypox). Because of that reason, we use the
following two-block auxiliary system with quadratic Lévy noise:

dD(t) =
(
A− uD(t)

)
dt +

4∑
ℓ=1

dΣℓ(t),

D(t) = T (0),

dD⋆(t) =
(
A⋆ − u⋆D⋆(t)

)
dt + Υ5D⋆(t)dP5(t) +

∫
J

Ξ5(u)D⋆(t−)C̃[dt, du],

D(t) = C1,m(0).

(2.1)
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Lemma 2.2. Assume that c1 and c2 hold and let
(
D(t),D⋆(t)

)
be two Markov processes that verify the

two-block auxiliary system (2.1). Then, we have the following properties:

1) Θ := 2u − U −
∫
J

max
{
Ξ̃2(u),Ξ˜2(u)

}
ϖ(du) > 0.

2) lim
t→∞

1
t

∫ t

0
D(s) ds =

A

u
a.s

3) lim
t→∞

1
t

∫ t

0
D2(s) ds ≤

2A2

uΘ
a.s

4) Θ⋆ := 2u⋆ − Υ2
5 −

∫
J

Ξ2
5(u)ϖ(du) > 0.

5) lim
t→∞

1
t

∫ t

0
D⋆(s) ds =

A⋆

u⋆
a.s

6) lim
t→∞

1
t

∫ t

0
D2
⋆(s) ds ≤

2A2
⋆

u⋆Θ⋆
a.s

The proof of this result is almost analogous to that of Lemma 2.1. in [12].

3. Potential scenarios of the Monkeypox infection

3.1. First scenario: eradication of the Monkeypox infection

In this part, we probe the eradication condition of the Monkeypox infection. For simplicity and
comfort in reading the next results, we define the following quantities:

⋆ z◦,† := max{0, z} = 0.5
(
z + |z|

)
, ∀z ∈ R.

⋆ g(u) =
{

min
{
Ξ2(u),Ξ5(u)

}
− ln

(
1 +min

{
Ξ2(u),Ξ5(u)

})}
× 1{

min
{
Ξ2(u),Ξ5(u)

}
>0

}.

⋆ g(u) =
{

max
{
Ξ2(u),Ξ5(u)

}
− ln

(
1 +max

{
Ξ2(u),Ξ5(u)

})}
× 1{

max
{
Ξ2(u),Ξ5(u)

}
≤0

}.

⋆ H1 :=
∫
J

(
g(u) + g(u)

)
ϖ(du).

⋆ H2 =
0.5(Υ2Υ5)2

Υ2
2 + Υ

2
5
.

⋆ ∆⋆ = max
{
u + u0 + φ + r1 + r2, u⋆

}
×

{
S0.5

0 − 1
}◦,†

.

⋆ ∆⋆ = min
{
u + u0 + φ + r1 + r2, u⋆

}
×

{
1 − S0.5

0

}◦,†
.

⋆ H3 = ∆
⋆ − ∆⋆.

Definition 3.1. The population X is said to be exponentially extinct if lim sup
t→∞

t−1 lnX(t) < 0 a.s.
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Theorem 3.1. The solution of the probabilistic system (1.2) verifies the following estimate:

lim sup
t→∞

t−1 ln
(

ζ⋆A⋆
u2
⋆ (u + u0 + φ + r1 + r2)

C2,h(t) +
S0.5

0

u⋆
C2,m(t)

)
⩽ ς a.s,

where

ς = H1 −H2 −H3 +
ζ◦A

u
+ 0.5u⋆S0.5

0

(
2u
Θ
− 1
)0.5

+ 0.5 (u + u0 + φ + r1 + r2)S0.5
0

(
2u⋆
Θ⋆
− 1
)0.5

.

Specifically, the eradication of Monkeypox infection with full probability occurs when ς < 0.

Proof. First, we define the following function:

W(C2,h,C2,m) = ln
(

ζ⋆A⋆
u2
⋆ (u + u0 + φ + r1 + r2)︸                            ︷︷                            ︸

=Z1

C2,h +
S0.5

0

u⋆︸︷︷︸
=Z2

C2,m

)
.

By the use of Itô’s rule, we obtain

dW
(

C2,h(t),C2,m(t)
)
= LItôW

(
C2,h(t),C2,m(t)

)
dt +

{
Z1Υ2C2,h(t)dP2(t) +Z2Υ5C2,m(t)dP5(t)

}
Z1C2,h(t) +Z2C2,m(t)

+

∫
J

ln
(

1 +
Z1Ξ2(u)C2,h(t) +Z2Ξ5(u)C2,m(t)

Z1C2,h(t) +Z2C2,m(t)

)
C̃[dt, du],

where

LItôW

(
C2,h(t),C2,m(t)

)
=
Z1

(
ζC1,h(t)C2,m(t) + ζ◦C1,h(t)C2,h(t) − (u + u0 + φ + r1 + r2) C2,h(t)

)
Z1C2,h(t) +Z2C2,m(t)

+
Z2

(
ζ⋆C1,m(t)C2,h(t) − u⋆C2,m(t)

)
Z1C2,h(t) +Z2C2,m(t)

−
0.5Z2

1Υ
2
2C2

2,h(t) + 0.5Z2
2Υ

2
5C2

2,m(t)(
Z1C2,h(t) +Z2C2,m(t)

)2

+

∫
J

{
ln
(

1 +
Z1Ξ2(u)C2,h(t) +Z2Ξ5(u)C2,m(t)

Z1C2,h(t) +Z2C2,h(t)

)
−
Z1Ξ2(u)C2,h(t) +Z2Ξ5(u)C2,m(t)

Z1C2,h(t) +Z2C2,m(t)

}
ϖ(du).

(3.1)

Obviously, we can see that(
Z1C2,h(t) +Z2C2,m(t)

)2
=

(
1
Υ2
Z1Υ2C2,h(t) +

1
Υ5
Z2Υ5C2,m(t)

)2

⩽

(
1
Υ2

2
+

1
Υ2

5

)(
Z2

1Υ
2
2C2

2,h(t) +Z
2
2Υ

2
5C2

2,h(t)
)
.
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Thus,

−
1(

Z1C2,h(t) +Z2C2,h(t)
)2

(
Z2

1Υ
2
2C2

2,h(t) +Z
2
2Υ

2
5C2

2,m(t)
)
⩽ −

(Υ2Υ5)2

Υ2
2 + Υ

2
5
. (3.2)

Furthermore, we can show that∫
J

{
ln
(
Z1Ξ2(u)C2,h(t) +Z2Ξ5(u)C2,m(t)

Z1C2,h(t) +Z2C2,m(t)
+ 1
)
−
Z1Ξ2(u)C2,h(t) +Z2Ξ5(u)C2,m(t)

Z1C2,h(t) +Z2C2,m(t)

}
ϖ(du) ⩽ −H1.

(3.3)
We amalgamate (3.2) and (3.3) with (3.1), and then

LItôW

(
C2,h(t),C2,m(t)

)
⩽
Z1

(
ζD(t)C2,m(t) − (u + u0 + φ + r1 + r2) C2,h(t)

)
+Z2

(
ζ⋆D⋆(t)C2,h(t) − u⋆C2,m(t)

)
Z1C2,h +Z2C2,m(t)

+ ζ◦D(t) −H1 −H2

⩽

Z1

(
ζ
A

u
C2,m(t) − (u + u0 + φ + r1 + r2) C2,h(t)

)
+Z2

(
ζ⋆
A⋆

u⋆
C2,h(t) − u⋆C2,m(t)

)
Z1C2,h(t) +Z2C2,m(t)

+ ζ◦D(t) −H1 −H2

+
Z1ζC2,m(t)

Z1C2,h(t) +Z2C2,m(t)

(
D(t) −

A

u

)
+

Z2ζ⋆C2,h(t)
Z1C2,h(t) +Z2C2,m(t)

(
D⋆(t) −

A⋆

u⋆

)

⩽

(
Z1ζ
A

u
−Z2u⋆

)
C2,m(t) +

(
Z2ζ⋆

A⋆

u⋆
−Z1 (u + u0 + φ + r1 + r2)

)
C2,h(t)

Z1C2,h(t) +Z2C2,m(t)
+ ζ◦D(t) −H1 −H2

+
Z1ζC2,m(t)

Z1C2,h(t) +Z2C2,m(t)

{
D(t) −

A

u

}◦,†
+

Z2ζ⋆C2,h

Z1C2,h +Z2C2,m(t)

{
D⋆(t) −

A⋆

u⋆

}◦,†
. (3.4)

Then, we have

LItôW

(
C2,h(t),C2,m(t)

)
⩽

(
S0 − S

0.5
0

)
C2,m(t) +

(
S0.5

0 Z1 (u + u0 + φ + r1 + r2) −Z1 (u + u0 + φ + r1 + r2)
)

C2,h(t)

Z1C2,h +Z2C2,m(t)

+ ζ◦D(t) −H1 −H2 +
Z1ζ

Z2

{
D(t) −

A

u

}◦,†
+
Z2ζ⋆
Z1

{
D⋆(t) −

A⋆

u⋆

}◦,†

⩽

(
S0.5

0 − 1
) (
Z1 (u + u0 + φ + r1 + r2) C2,h(t) +Z2u⋆C2,m(t)

)
Z1C2,h(t) +Z2C2,m(t)

+ ζ◦D(t) −H1 −H2 +
Z1ζ

Z2

{
D(t) −

A

u

}◦,†
+
Z2ζ⋆
Z1

{
D⋆(t) −

A⋆

u⋆

}◦,†
⩽ H3 −H1 −H2 + ζ◦D(t) +

Z1ζ

Z2

{
D(t) −

A

u

}◦,†
+
Z2ζ⋆
Z1

{
D⋆(t) −

A⋆

u⋆

}◦,†
.
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Consequently, we infer that

dW
(

C2,h(t),C2,m(t)
)
⩽

(
H3 −H1 −H2 + ζ◦D(t) +

Z1ζ

Z2

{
D(t) −

A

u

}◦,†
+
Z2ζ⋆
Z1

{
D⋆(t) −

A⋆

u⋆

}◦,†)
dt

+

(
Z1Υ2C2,hdP2(t) +Z2Υ5C2,m(t)dP5(t)

)
Z1C2,h +Z2C2,m(t)

+

∫
J

ln
{

1 +max{Ξ2(u),Ξ5(u)}
}
C̃[dt, du].

A simple integration leads to

W
(
C2,h(t),C2,m(t)

)
t

−
W
(
C2,h(0),C2,m(0)

)
t

⩽ H3 −H1 −H2 +
ζ◦
t

∫ t

0
D(s)ds

+
Z1ζ

Z2t

∫ t

0

{
D(s) −

A

u

}◦,†
ds +

Z2ζ⋆
Z1t

∫ t

0

{
D⋆(s) −

A⋆

u⋆

}◦,†
ds

+
1
t

(∫ t

0

Z1Υ2C2,h(s)
Z1C2,h(s) +Z2C2,m(s)

dP2(s) +

∫ t

0

Z2Υ5C2,m(s)
Z1C2,h(s) +Z2C2,m(s)

dP5(s)

)
︸                                                                                                 ︷︷                                                                                                 ︸

:=O1(t)

+
1
t

∫ t

0

∫
J

ln
{

1 +max{Ξ2(u),Ξ5(u)}
}
C̃[ds, du]︸                                                      ︷︷                                                      ︸

:=O2(t)

. (3.5)

In line with Hölder’s inequality, we acquire that

1
t

∫ t

0

{
D(s) −

A

u

}◦,†
ds =

0.5
t

∫ t

0

(
D(s) −

A

u

)
ds +

0.5
t

∫ t

0

∣∣∣∣D(s) −
A

u

∣∣∣∣ ds

⩽
0.5
t

∫ t

0

(
D(s) −

A

u

)
ds +

0.5
t0.5

(∫ t

0

(
D(s) −

A

u

)2

ds

)0.5

⩽ 0.5
(

1
t

∫ t

0
D(s) ds −

A

u

)
+ 0.5

(
1
t

∫ t

0

(
D2(s) −

2A
u

D(s) +
A2

u2

)
ds

)0.5

.

As a result, we get

lim
t→∞

1
t

∫ t

0

{
D(s) −

A

u

}◦,†
ds ⩽ 0.5

(
2A2

uΘ
− 2
A2

u2 +
A2

u2

)0.5

=
A

2u

(
−1 +

2u
Θ

)0.5

a.s. (3.6)

Using the same analytical treatment, we obtain

lim
t→∞

1
t

∫ t

0

{
D⋆(s) −

A⋆

u⋆

}◦,†
ds ⩽ 0.5

(
2A2

⋆

u⋆Θ⋆
− 2
A2
⋆

u2
⋆

+
A2
⋆

u2
⋆

)0.5

=
A⋆

2u⋆

(
−1 +

2u⋆
Θ⋆

)0.5

a.s. (3.7)
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Now, by employing the well-known strong law of large numbers (for local martingales) and condition
c1, we have

lim
t→∞

t−1O1(t) = 0 and lim
t→∞

t−1O2(t) = 0 a.s. (3.8)

Eventually, we conclude that

lim sup
t→∞

W

(
C2,h(t),C2,m(t)

)
t

⩽ H3 −H1 −H2 +
ζ◦A

u
+
Z1ζ

Z2

A

2u

(
2u
Θ
− 1
)0.5

+
Z2ζ⋆
Z1

A⋆

2u⋆

(
2u⋆
Θ⋆
− 1
)0.5

= H3 −H1 −H2 +
ζ◦A

u
+ 0.5u⋆S0.5

0

(
2u
Θ
− 1
)0.5

+ 0.5 (u + u0 + φ + r1 + r2)S0.5
0

(
2u⋆
Θ⋆
− 1
)0.5

:= ς.

In accordance with the definition of the probabilistic eradication of the infection [12], we can say that
when ς is strictly negative, the Monkeypox epidemic will disappear in the population. □

Remark 3.1. Needless to say, the preceding theorem implies the stochastic extinction of infected
individuals, which implies in turn (by the positivity of the solution) that lim

t→∞
C2,h(t) = 0 and

lim
t→∞

C2,m(t) = 0 a.s. Compared to the deterministic framework, we notice that the extinction criterion
is mainly determined by the parameters closely related to the intensities of the disturbances. From the
structure of the constant ς, we show that the stochastic extinction can occur although the
deterministic solution is extinguishing (i.e., S0 < 1). Therefore, we say that the Lévy noise has
negative effects on the prevalence of Monkeypox. This means that jumps can change the asymptotic
behavior of the Monkeypox model significantly.

3.2. Second scenario: Continuation of the Monkeypox infection

In this part, we seek to explore the sufficient criteria for the continuation of the Monkeypox epidemic.
For this target, we index the following notations:

⋆ I1 = u+
Υ2

1

2
+

∫
J

(
Ξ1(u) − ln

(
1 + Ξ1(u)

))
ϖ(du).

⋆ I2 = (u + u0 + φ + r1 + r2) +
Υ2

2

2
+

∫
J

(
Ξ2(u) − ln

(
1 + Ξ2(u)

))
ϖ(du).

⋆ I3 = u⋆ +
Υ2

5

2
+

∫
J

(
Ξ5(u) − ln

(
1 + Ξ5(u)

))
ϖ(du).

⋆ I4 = u⋆ +
Υ2

6

2
+

∫
J

(
Ξ6(u) − ln

(
1 + Ξ6(u)

))
ϖ(du).

⋆ S̃0 :=
ζζ⋆AA⋆
I1I2I3I4

.
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Definition 3.2. The populationX is said to be strongly persistent in the mean if lim inf
t→∞

t−1
∫ t

0
X(s)ds >

0 a.s.

Theorem 3.2. The sufficient condition of the Monkeypox persistence is S̃0 > 1.

Proof. We define the following function:

W⋆⋆

(
C1,h,C2,h,C1,m,C2,m

)
= −Z1 ln

[
C1,h

]
− Z2 ln

[
C2,h

]
− Z3 ln

[
C1,m

]
− Z4 ln

[
C2,m

]
,

where Z1,Z3,Z4 > 0 are three quantities to be determined later, and Z2 = 1. By employing Itô’s rule,
we get

dW⋆⋆

(
C1,h(t),C2,h(t),C1,m(t),C2,m(t)

)
= LItôW⋆⋆

(
C1,h(t),C2,h(t),C1,m(t),C2,m(t)

)
dt

− Z1Υ1dP1(t) − Υ2dP2(t) − Z3Υ5dP5(t) − Z4Υ6dP6(t)

− Z1

∫
J

ln
(
1 + Ξ1(u)

)
C̃[dt, du] −

∫
J

ln
(
1 + Ξ2(u)

)
C̃[dt, du]

− Z3

∫
J

ln
(
1 + Ξ5(u)

)
C̃[dt, du] − Z4

∫
J

ln
(
1 + Ξ6(u)

)
C̃[dt, du],

where LItôW⋆⋆

(
C1,h(t),C2,h(t),C1,m(t),C2,m(t)

)
is expressed as follows:

LItôW⋆⋆

(
C1,h(t),C2,h(t),C1,m(t),C2,m(t)

)
= −Z1

A

C1,h(t)
+ Z1ζC2,m(t) + Z1ζ◦C2,h(t) + Z1u −

τ1C3,h(t)
C1,h(t)

+ Z1
Υ2

1

2
+ Z1

∫
J

(
Ξ1(u) − ln

(
1 + Ξ1(u)

))
ϖ(du)

−
ζC1,h(t)C2,m(t)

C2,h
− ζ◦C1,h(t) + (u + u0 + φ + r1 + r2) +

Υ2
2

2
+

∫
J

(
Ξ2(u) − ln

(
1 + Ξ2(u)

))
ϖ(du)

− Z3
A⋆

C1,m(t)
+ Z3ζ⋆C2,h + Z3u⋆ + Z3

Υ2
5

2
+ Z3

∫
J

(
Ξ5(u) − ln

(
1 + Ξ5(u)

))
ϖ(du)

−
Z4ζ⋆C1,m(t)C2,h(t)

C2,m(t)
+ Z4u⋆ + Z4

Υ2
6

2
+ Z4

∫
J

(
Ξ6(u) − ln

(
1 + Ξ6(u)

))
ϖ(du).

Then, we obtain

LItôW⋆⋆

(
C1,h(t),C2,h(t),C1,m(t),C2,m(t)

)
⩽ −Z1

A

C1,h(t)
−
ζC1,h(t)C2,m(t)

C2,h
− Z3

A⋆

C1,m(t)
−
Z4ζ⋆C1,m(t)C2,h(t)

C2,m(t)
+ Z1ζC2,m(t)

+
(
Z1ζ◦ + Z3ζ⋆

)
C2,h(t) + Z1

{
u +
Υ2

1

2
+

∫
J

(
Ξ1(u) − ln

(
1 + Ξ1(u)

))
ϖ(du)

}
+

{
(u + u0 + φ + r1 + r2) +

Υ2
2

2
+

∫
J

(
Ξ2(u) − ln

(
1 + Ξ2(u)

))
ϖ(du)

}
+ Z3

(
u⋆ +

Υ2
5

2
+

∫
J

(
Ξ5(u) − ln

(
1 + Ξ5(u)

))
ϖ(du)

)
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+ Z4

{
u⋆ +

Υ2
6

2
+

∫
J

(
Ξ6(u) − ln

(
1 + Ξ6(u)

))
ϖ(du)

}
.

Hence, we derive that

LItôW⋆⋆

(
C1,h(t),C2,h(t),C1,m(t),C2,m(t)

)
⩽ −4 4

√
Z1Z3Z4ζζ⋆AA⋆ + Z1ζC2,m(t) +

(
Z1ζ◦ + Z3ζ⋆

)
C2,h(t)

+ Z1

{
u+
Υ2

1

2
+

∫
J

(
Ξ1(u) − ln

(
1 + Ξ1(u)

))
ϖ(du)

}
︸                                                           ︷︷                                                           ︸

=I1

+

{
(u + u0 + φ + r1 + r2) +

Υ2
2

2
+

∫
J

(
Ξ2(u) − ln

(
1 + Ξ2(u)

))
ϖ(du)

}
︸                                                                                         ︷︷                                                                                         ︸

=I2

+ Z3

{
u⋆ +

Υ2
5

2
+

∫
J

(
Ξ5(u) − ln

(
1 + Ξ5(u)

))
ϖ(du)

}
︸                                                               ︷︷                                                               ︸

=I3

+ Z4

{
u⋆ +

Υ2
6

2
+

∫
J

(
Ξ6(u) − ln

(
1 + Ξ6(u)

))
ϖ(du)

}
︸                                                               ︷︷                                                               ︸

=I4

.

Now, we select Z1 =
ζζ⋆AA⋆

I2
1 I3I4

, Z3 =
ζζ⋆AA⋆

I1I2
3 I4

and Z4 =
ζζ⋆AA⋆

I1I3I2
4

, and then

LItôW⋆⋆

(
C1,h(t),C2,h(t),C1,m(t),C2,m(t)

)
⩽ Z1ζC2,m(t) + Z3ζ⋆C2,h(t) + I2 −

ζζ⋆AA⋆
I1I3I4

=
(
Z1ζC2,m(t) +

(
Z1ζ◦ + Z3ζ⋆

)
C2,h(t)

)
− I2

{
(
ζζ⋆AA⋆
I1I2I3I4︸       ︷︷       ︸
S̃0

−1
}
.

Hence,

dW⋆⋆

(
C1,h(t),C2,h(t),C1,m(t),C2,m(t)

)
⩽
{(
Z1ζC2,m(t) +

(
Z1ζ◦ + Z3ζ⋆

)
C2,h(t)

)
−I2

(
S̃0−1

)}
dt

−Z1Υ1dP1(t)−Υ2dP2(t)−Z3Υ5dP5(t)−Z4Υ6dP6(t)

− Z1

∫
J

ln
(
1 + Ξ1(u)

)
C̃[dt, du] −

∫
J

ln
(
1 + Ξ2(u)

)
C̃[dt, du]

− Z3

∫
J

ln
(
1 + Ξ5(u)

)
C̃[dt, du] − Z4

∫
J

ln
(
1 + Ξ6(u)

)
C̃[dt, du].

(3.9)

An integration from 0 to t gives

W⋆⋆

(
C1,h(t),C2,h(t),C1,m(t),C2,m(t)

)
t

−
W⋆⋆

(
C1,h(0),C2,h(0),C1,m(0),C2,m(0)

)
t
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⩽
Z1ζ

t

∫ t

0
C2,m(s) ds +

(
Z1ζ◦ + Z3ζ⋆

)
t

∫ t

0
C2,h(s) ds − I2

(
S̃0 − 1

)
−Z1Υ1

P1(t)
t
−Υ2
P2(t)

t
−Z3Υ5

P5(t)
t
−Z4Υ6

P6(t)
t

−
Z1

t

∫ t

0

∫
J

ln
(
1 + Ξ1(u)

)
C̃[ds, du] −

∫ t

0

∫
J

ln
(
1 + Ξ2(u)

)
C̃[ds, du]

−
Z3

t

∫ t

0

∫
J

ln
(
1 + Ξ5(u)

)
C̃[ds, du] −

Z4

t

∫ t

0

∫
J

ln
(
1 + Ξ6(u)

)
C̃[ds, du].

So,

W⋆⋆

(
C1,h(t),C2,h(t),C1,m(t),C2,m(t)

)
t

−
W⋆⋆

(
C1,h(0),C2,h(0),C1,m(0),C2,m(0)

)
t

⩽
max

{
Z1ζ,Z1ζ◦ + Z3ζ⋆

}
t

∫ t

0

(
C2,m(s) + C2,h(s)

)
ds − I2

(
S̃0 − 1

)
⩽ −Z1Υ1

P1(t)
t
−Υ2
P2(t)

t
−Z3Υ5

P5(t)
t
−Z4Υ6

P6(t)
t

−
Z1

t

∫ t

0

∫
J

ln
(
1 + Ξ1(u)

)
C̃[ds, du] −

∫ t

0

∫
J

ln
(
1 + Ξ2(u)

)
C̃[ds, du]

−
Z3

t

∫ t

0

∫
J

ln
(
1 + Ξ5(u)

)
C̃[ds, du] −

Z4

t

∫ t

0

∫
J

ln
(
1 + Ξ6(u)

)
C̃[ds, du].

Consequently,

max
{
Z1ζ,Z1ζ◦ + Z3ζ⋆

}
t

∫ t

0

(
C2,m(s) + C2,h(s)

)
ds

⩾ I2

(
S̃0 − 1

)
+Z1Υ1

P1(t)
t
+Υ2
P2(t)

t
+Z3Υ5

P5(t)
t
+Z4Υ6

P6(t)
t

+
Z1

t

∫ t

0

∫
J

ln
(
1 + Ξ1(u)

)
C̃[ds, du] +

∫ t

0

∫
J

ln
(
1 + Ξ2(u)

)
C̃[ds, du])

+
Z3

t

∫ t

0

∫
J

ln
(
1 + Ξ5(u)

)
C̃[ds, du] +

Z4

t

∫ t

0

∫
J

ln
(
1 + Ξ6(u)

)
C̃[ds, du]

−
W⋆⋆

(
C1,h(t),C2,h(t),C1,m(t),C2,m(t)

)
t

+
W⋆⋆

(
C1,h(0),C2,h(0),C1,m(0),C2,m(0)

)
t

. (3.10)

By taking the inferior limit, we infer that

lim inf
t→∞

1
t

∫ t

0

(
C2,m(s) + C2,h(s)

)
ds ⩾

I2

(
S̃0 − 1

)
max

{
Z1ζ,Z1ζ◦ + Z3ζ⋆

} > 0 a.s.,

that is, the continuation of the Monkeypox infection occurs when S̃0 > 1. □
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Remark 3.2. Persistence in the mean is an important concept in mathematical epidemiology. It
captures the long-term survival of Monkeypox even when the population size is quite low at t = 0.
Moreover, the persistence of the model refers to a situation where Monkeypox is endemic in a
population.

Table 1. Parameter values of the Monkeypox model (1.2).

Parameter Test 1 Test 2 Test 3
A 10 10 10
ζ 0.0001 0.0009 0.001
ζ◦ 0.0002 0.0002 0.0002
u 0.05 0.05 0.05
τ1 0.32 0.32 0.32
τ2 0.2 0.2 0.2
u0 0.0003 0.0003 0.0003
φ 0.5 0.5 0.5
r1 0.041 0.041 0.041
r2 0.043 0.043 0.043
α1 0.004 0.004 0.004
α2 0.002 0.002 0.002
A⋆ 10 10 10
ζ⋆ 0.00027 0.00027 0.00027
u⋆ 0.02 0.02 0.02
Υ1 0.2 0.2 0.2
Υ2 0.4 0.4 0.4
Υ3 0.1 0.1 0.1
Υ4 0.2 0.2 0.2
Υ5 0.1 0.1 0.1
Υ6 0.2 0.2 0.2
Ξ1(u) 0.3 0.3 0.3
Ξ2(u) 0.3 0.3 0.3
Ξ3(u) 0.3 0.3 0.3
Ξ4(u) 0.3 0.3 0.3
Ξ5(u) 0.3 0.3 0.3
Ξ6(u) 0.3 0.3 0.3

4. Numerical verification

In order to check and support the diverse analytical outcomes presented in this research, we
implement some numerical examples by taking the deterministic and probabilistic parameter values
from the simulated data presented in Table 1. All trajectories of the analyzed Monkeypox model are
numerically simulated in our case with the following initial information:
C1,h(0) = 120,C2,h(0) = 70,C3,h(0) = 20,C4,h(0) = 10,C1,m(0) = 130 and C2,m(0) = 50. In the
following, the unit of time is 1 day, and the number of human and animal individuals is 1 million.
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Figure 2. Solution paths of the Monkeypox model (1.2) when the numerical values are taken
as shown in the second column of Table 1 (S0 = 0.2759 < 1 and ς = −0.0478 < 0).
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Figure 3. Solution paths of the Monkeypox model (1.2) when the numerical values are taken
as shown in the third column of Table 1 (S0 = 1.9786 > 1 and ς = −0.0013 < 0).
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Figure 4. Solution paths of the Monkeypox model (1.2) when the numerical values are taken
as shown in the fourth column of Table 1 (S̃0 = 1.2370 > 1).
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4.1. First scenario: Eradication of the Monkeypox infection

In this example, by choosing the parameter values presented in the second column, Test 1, in Table 1,
and also taking J = R+ with ϖ(J) = 1, we will examine the theoretical results of Theorem 3.1. By
performing some calculations, we get S0 = 0.2759 < 1 and ς = −0.0478 < 0. So, by the virtue of
Theorem 3.1, the Monkeypox pandemic will be eradicated almost surely, which is exactly shown in
Figure 2. Now, we select the parameters from the third column, Test 2, in Table 1. Then, we obtain
S0 = 1.9786 > 1 and ς = −0.0013 < 0. From Theorem 3.1, we confirm the eradication of Monkeypox,
which is depicted in Figure 3. We note from this figure that Poisson jumps lead to a lack of infection
spreading, while the deterministic system predicts steady continuation. So, heavy jumps have passive
influence on the diffusion of Monkeypox. This indicates that random fluctuations can notably alter the
future of the epidemiological situation.

4.2. Second scenario: Continuation of the Monkeypox infection

In this part, we will illustrate the continuation of the Monkeypox infection. By selecting the
parameters from Test 3 in Table 1, we can directly get S̃0 = 1.2370 > 1. Consequently, by
Theorem 3.2, the Monkeypox epidemic is persistent in the mean, which agrees well with the results
shown in Figure 4.

5. Conclusions and discussion

In this paper, we analyzed a generalized stochastic Monkeypox epidemic model with
cross-infection between animals and humans. Due to the complexity of disease, we captured the
dynamics of the Monkeypox virus as a compartmental system that assumed the form of an Itô-Lévy
stochastic differential equations system. Initially, we developed a deterministic system based on some
assumptions and characteristics of the disease. We applied the nonstandard analytical techniques for
proving two principal asymptotic properties: the eradication and continuation in the mean of
Monkeypox 2022. The system is then converted to a stochastic model, and a number of sophisticated
mathematical analyse are carried out that offer many insights related to Monkeypox propagation,
including, notably, the results related to the long-run behavior. The main mathematical and biological
results of this paper are as follows:

1) We have provided sufficient and threshold results for the Monkeypox eradication (ς < 0).
2) We have proved results which ensure the continuation of the Monkeypox illness (S̃0 > 1).
Roughly speaking, our obtained outcomes show that the eradication and permanence conditions

rely fundamentally on white noise and leaps’ intensities. Analytically, it was noticed that the obtained
results enhance our comprehension related to the dynamics of the Monkeypox virus, which makes this
paper more appropriate in providing a rich ground for further studies, especially in understanding the
reappearance of the Monkeypox disease in many countries around the globe.

One limitation of this paper is that we obtained two separate critical conditions for extinction and
persistence, which is less than the ideal when it comes to epidemiological models. Therefore, there
is a significant gap between the defined criteria and the corresponding threshold value, which is still
considered an open question. The authors are curious to deal with this problem in future work.
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