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Abstract: The high accuracy of short-term power load forecasting has a pivotal role in helping power
companies to construct reasonable production scheduling plans and avoid resource waste. In this pa-
per, a multi-model short-term power load prediction method based on Variational mode decomposi-
tion (VMD)-improved whale optimization algorithm (IWOA)-wavelet temporal convolutional network
(WTCN)-bidirectional gated recurrent unit (BiGRU)-attention and CatBoost model fusion is proposed.
First, VMD was employed to decompose the load data into different intrinsic mode functions. Second,
a WTCN was utilized to extract the load data features, and multi-dimensional feature factors were
integrated into the BiGRU network for model training. Moreover, an attention mechanism was added
to enhance the influence degree of important information. The WTCN-BiGRU-attention model is im-
proved by the WOA algorithm to optimize the hyperparameters of the network. Finally, the model
was fused with the predicted data of the CatBoost network by the mean absolute percentage error-
reciprocal weight (MAPE-RW) algorithm to construct the best fusion model. Compared with other
forecasting models, the proposed multi-model fusion method has higher accuracy in short-term power
load forecasting using the public data set for an Australian region.

Keywords: temporal convolutional networks; gated recurrent networks; improved whale
optimization algorithm; catboost network; power load forecasting

1. Introduction

Power load forecasting can be divided into long-term forecasting, medium-term forecasting, short-
term forecasting and ultra-short-term forecasting according to the forecasting time-scale. The forecast-
ing period of short-term power load is typical, as it is a critical basis for maintaining the stable operation
of the power system and improving economic benefits. The accuracy of the short-term power forecast
can play an important role in addressing the issue of the power decision department controlling power
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dispatch in the next step. Accurate short-term load forecasting can effectively reduce resource waste
and improve economic benefits [1–3].

At present, load prediction methods primarily include a statistical prediction method composed of
multiple linear regression [4], a Kalman filter [5, 6] an autoregressive moving average and a machine
learning method composed of a support vector machine [7–9], an expert system and artificial neural
networks [10]. Research has consistently shown that the calculation model of the statistical method
is too ordinary, as it can only deal with linear data but cannot grasp the inherent characteristics of
nonlinear data reasonably. Although the machine learning method can deal with nonlinear data well, it
cannot extract time-series data features effectively. With the development of deep learning, it becomes
the focus of load forecasting. A large number of deep neural networks are widely employed in load
prediction, such as convolutional neural networks (CNNs), recurrent neural networks (RNNs) [11] and
short and long duration memory networks (LSTM) [12]. CNNs can effectively extract multidimen-
sional data features, but it cannot deal with time-series features efficiently. RNNs can model long
time-series data through a cyclic structure, but with the increase of load data, there are problems such
as gradient disappearance or gradient explosion. As a special RNN, the LSTM network can better solve
the deficiency of the RNN through the use of a gate structure. Nonetheless, with the increase in training
data, it is difficult to select parameters for the LSTM network [13]. In order to effectively process multi-
dimensional power load data, the CNN-LSTM hybrid neural network prediction method was proposed
in the literature [14]. Feature extraction was carried out through a two-dimensional convolutional layer
to reduce the training difficulty of the LSTM network model. Surveys such as that conducted by the
authors of [15] showed that using the CNN to extract data features, using the gated recurrent neural
(GRU) network to avoid the problem of multiple training parameters in the LSTM network and in-
troducing an attention mechanism, can effectively improve the accuracy of power load forecasting.
Reference [16] found that their CNN-BiGRU network improves data utilization in order to make data
flow bidirectional in the network layer. According to the research, since CNN networks cannot pre-
dict time series data well, time series convolutional networks (TCNs) can be employed for sequence
data prediction. And TCN can extract time series data features better than CNN and RNN [17]. Tian et
al. [18] proposed a short-term wind speed prediction model employing empirical modal decomposition
and an improved sparrow algorithm to optimize the LSTM neural network. The model decomposes
the ultra-short-term wind speed by utilizing empirical modal decomposition, predicts it by employing
the LSTM network and optimizes the LSTM network hyperparameters by improving the sparrow op-
timization algorithm. In [19] for short-term wind speed prediction, a prediction model based on local
mean decomposition (LMD) with a combined kernel function least squares support vector machine
(LSSVM) is proposed. Wind speed data are decomposed by the LMD algorithm and predicted by the
LSSVM, and the firefly algorithm is employed to optimize the parameter selection. The authors of [20]
proposed a time-series convolutional network with the multi-attentional mechanism. By introducing an
initial structure into the TCN network, multidimensional information was extracted from convolutional
kernels of disagreement scales, improving the accuracy of ultra-short-term load prediction effectively.
The authors of [21] proposed a combined prediction model based on empirical modal decomposition
to forecast traffic flow state information. The empirical modal decomposition is decomposed into
components, the optimal prediction method is selected based on the results of adaptive analysis and
the combined model weights are optimized by employing the fruit fly algorithm. The authors of [22]
proposed a combined prediction model based on ensemble empirical modal decomposition and a reg-
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ularized limit learning machine for wind speed prediction. The wind speed series of the ensemble
empirical modal decomposition is predicted by employing the regularized limit learning machine, and
the reliability of the prediction model is improved by cross-validation. Recent evidence suggests that
complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and variational
model decomposition (VMD) can be employed to decompose power load data. Second, non-stationary
components and stationary components are predicted by deep bidirectional long short-term memory
(DBILSTM) and mixed logistic regression (MLR) networks respectively. Finally, the prediction accu-
racy is improved by combining the prediction structure with data reconstruction [23].

This paper presents a multi-model fusion method for short-term power load forecasting based
on VMD, improved whale optimization (WOA), Wavelet temporal convolutional network (WTCN)-
BiGRU and CatBoost methods. First, VMD was employed to decompose power load data into contrast
intrinsic mode functions(IMFs), and weather characteristic factors were added for each intrinsic mode.
Then, the TCN was utilized to extract multidimensional data features, and the extracted features were
sent to the BiGRU network for model training. The influence degree of necessary information can
be effectively retained by adding an attention mechanism. The model adopts the improved WOA
(IWOA) algorithm to optimize the hyperparameter selection of the TCN-BiGRU-attention network,
which designs the parameter selection of the network layer of the model more effectively and predicts
the stationary component of the sequence in parallel with the CatBoost network. The parallel predic-
tion results of two-layer networks were combined with the mean absolute percentage error-reciprocal
weight (MAPE-RW) algorithm. The model accuracy was verified by utilizing commenced loading
data from an Australian region, and the model performance was evaluated using the root mean square
error (RMSE) and mean absolute percentage error (MAPE). The contributions of this paper can be
summarized as follows:

1) A multi-model fusion load forecasting method is proposed. First, the IWOA-WTCN-BiGRU-
attention prediction model of VMD was constructed as Model one. Second, the CatBoost prediction
model based on a random search algorithm was adopted as Model two. Finally, the MAPE-RW al-
gorithm has been utilized to fuse the load prediction results of the two models to achieve an accurate
prediction of the power load value.

2) The Morlet wavelet function is used to improve the TCN. The Morlet wavelet basis function is
introduced as residual block activation function of the TCN.

3) An improved WOA is proposed. The traditional WOA is improved by introducing a nonlinear
convergence factor and adaptive weight, which improves the convergence speed and the convergence
accuracy of the algorithm.

The paper has been organized in the following way. In Section 2, the network principles employed
in the multi-model structure are introduced. In Section 3, the load prediction model structure of the
multi-model fusion network is proposed. In Section 4, the experimental validation of the multi-model
fusion network is performed and the experimental results are analyzed. Finally, the whole paper is
summarized and future work to be carried out is presented.
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2. Multi-model fusion analysis

2.1. VMD network

As mentioned in the literature [24], in 2014, Konstantin et al. proposed a VMD method for modal
decomposition, which is an adaptive and completely non-recursive modal decomposition processing
method. VMD has a more solid theoretical basis and can better suppress mode aliasing by controlling
bandwidth. The decomposition method is suitable for non-stationary sequence data and can decompose
the data set into multiple stationary sub-sequences with different frequency scales. The VMD solution
procedure is as follows.

Structural constraint variational optimal problem is
min
{uk},{wk}

{
k∑

k=1

∥∥∥∥∂t

[
(d(t) +

j
pt )guk(t)

]
e− jwkt

∥∥∥∥2

2
}

s.t.
K∑

k=1
uk(t) = S

(2.1)

where {uk}, {ωk} denote the corresponding modal set and center frequency after VMD decomposition
respectively, and K is the number of IMFs.

The penalty factor α and Lagrange operator λ are introduced into the constrained variational prob-
lem to transform it into the following unconstrained variational problem:
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The above unconstrained variational problems are solved by the alternating direction multiplier
method, and the solving process is as follows:

K∑
k=1

∥∥∥ûn+1
k − ûn

k

∥∥∥2
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/∥∥∥ûn
k

∥∥∥2
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where γ is the allowable error, n is the number of iterations and the Fourier transform of ûn+1
k , f (t), λ(t)

is ûn+1
k (ω), f̂ (ω), λ̂n(ω).

2.2. WTCN

The TCN was first proposed by Bai et al. [25]. in 2018 and is mainly employed for timing pre-
diction, probability prediction, time prediction and traffic prediction. The TCN evolved from CNN
results and can extract load data features effectively. In this paper, a multi-model fusion network is
introduced, and a TCN is employed to extract data feature information from time series to remove
invalid features to improve the accuracy of power load prediction. The TCN is composed of causal
convolution, expansion convolution and a residual block [26].
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Causal convolution adopts the one-dimensional full convolutional network framework. The zero-fill
module is introduced into the network so that the input layer, hidden layer and output layer can keep
the same length, to avoid the loss of effective information. The input yt is related only to the input
(xt−1, xt−2, · · · xt−n) before the current input xt and t. The convolutional calculation is shown in Figure
1.

Figure 1. Convolutional calculation process.

Figure 2. Structure of residual block.

Expansion convolution can increase the receptive field size of the output unit without increasing the
number of parameters. The convolutional calculation method is as follows:

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13399–13420.
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F(s) = (x ⊗ fd)(s) =

k−1∑
i=0

f (i) · xt−d·i (2.4)

where fd is the expansion rate, d corresponds to the filter and xt−d·i is the input at the current time and
the historical time.

The core idea of residual block is to introduce one or more layers of “hop connection” operation,
and the network structure is shown in Figure 2. The left channel introduces weighted normalized
accelerated gradient descent and a nonlinear activation function. The right channel is the convolution
directly connected to the edge, which ensures that the input and output data dimensions are consistent.
The residual block output is

h(x) = Activation(x + F(x)) (2.5)

where x, h(x) is the input and output of the residual block. The network output h(x) is the result
of linear transformation and activation function mapping.The WTCN is based on TCN topology, and
the Morlet wavelet basis function is introduced into the residual block as its activation function. The
Morlet wavelet basis function is expressed as

y = cos(1.75x)e−x2/2 (2.6)

2.3. Bidirectional GRU network

The GRU network is simpler than the LSTM network with two gating units. The network inherits
the advantages of the LSTM network and improves the training speed on the premise of ensuring train-
ing accuracy [27]. The GRU network structure is shown in Figure 3. By changing the GRU network
into a bidirectional GRU network, information can be transmitted bidirectionally in the network layer,
and the prediction accuracy of the network model is effectively improved [28]. The network structure
is shown in Figure 4.

Figure 3. GRU network structure. Figure 4. BiGRU network model.
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The BiGRU network calculation formula is
zt = σ(Wz · [ht−1, xt])
rt = σ(Wr · [ht−1, xt])
h̃t = tanh(Wh̃ · [rt ∗ ht−1, xt])
ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t

(2.7)


ht = GRU(xt, ht−1)
hi = GRU(xt, ht−1)
ht = wtht + vthi + bt

(2.8)

where zt is the update gate and rt is the reset gate, both of which are jointly determined by the input xt,
hidden layer output xt at the previous moment and activation function σ. ht is the hidden layer output.
Wz,Wr and Wh̃ are all trainable parameter matrices. ht is the state of the forward hidden layer, hi is the
state of the backward hidden layer and bt is the bias optimization parameter of the hidden layer at the
current time.

2.4. Attention mechanism

The attention mechanism is an intuitive interpretation method that imitates human visual mecha-
nisms. It is often exploited in deep learning tasks such as natural language processing, image analysis
and load prediction. The human visual mechanism will pay attention to the critical information of
the object deliberately and ignore the irrelevant information. Consequently, it has been found that the
relevant time-series information can be effectively preserved by adding an attention mechanism and
weight allocation principle in the network model [29]. The structure of attention is shown in Figure 5.

Figure 5. Attention mechanism.

2.5. IWOA

The WOA is a bionic meta-heuristic optimization algorithm proposed by Australian scholars Mir-
jalili and Lewis in recent years based on the predation behavior of model humpback whales. The
algorithm highlights the local search behavior of the network model by imitating the whale hunting
behavior and realizes the global search of the network through the random search strategy. The WOA
has the advantages of faster speed and higher precision in solving model parameter optimization, so it
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has wide application prospects. Nevertheless, the increase of power load data and influencing factors
may cause the traditional WOA to have some limitations in the coordination of global search and local
mining. Among them, the convergence factor a of the WOA cannot reflect the optimization process
well with the linear decrease. Therefore, the nonlinear convergence factor a is proposed:

a = 2 − 2 sin(u
t

max iter
π + ϕ) (2.9)

where u and ϕ are the set parameters and u = 2 and ϕ = 0 represent. max iter is the maximum number
of iterations. When the value is large at the initial stage of training, the searching range of optimal
parameters can be effectively increased by the slowly decreasing convergence factor. With the increase
in the number of iterations, the reduction speed of the convergence factor gradually increases and the
convergence speed accelerates.

The introduction of the nonlinear factor a can improve the performance of the algorithm. However,
in the traditional WOA, the whale motion position vector is not effectively utilized, so the population
flexibility will be reduced and the optimization result will be affected. In this paper, the adaptive weight
ω is introduced to enhance the global search capability of the algorithm and increase the total group
diversity of the WOA. The formula for calculating ω is as follows:

ω = 0.2 cos(
π

2
(1 −

t
max iter

)) (2.10)
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Figure 6. WOA convergence curve was tested by using reference functions.

In this paper, the performance of the IWOA is verified by introducing the benchmark test function
f (x) =

∑n
i=1

[
x2

i − 10 cos(2πxi) + 10
]
. The number of iterations of the algorithm was set to 500 and

the dimension of the base test function is 30. To ensure the reliability of the optimization results, the
average of 10 experimental results is employed to indicate its average level. The WOA, improved
nonlinear convergence factor (NWOA) and IWOA with adaptive weights and a nonlinear convergence
factor are compared for algorithm performance. The experimental results are shown in Figure 6. It is
known that the WOA with improved adaptive weights and a nonlinear convergence factor (IWOA) not
only improves the convergence speed of the algorithm, but also improves the convergence accuracy.
The flow chart of the improved WOA is shown in Figure 7.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13399–13420.



13407

Figure 7. Flow chart of WOA.

2.6. CatBoost network

CatBoost is a machine learning library that the Russian search giant Yandex opened source in 2017,
and it is an improvement on the gradient boosting decision tree (GBDT) algorithm [30]. The CatBoost
algorithm has fewer parameters than the GBDT algorithm. The algorithm effectively solves the prob-
lems of gradient deviation and prediction deviation, reduces the risk of model overfitting and improves
the generalization ability of the algorithm. CatBoost algorithms are often used in data mining and load
forecasting.

Noise and low-frequency data interference can be effectively reduced by adding prior distribution
terms to the gradient decision tree. Its algorithm is as follows:

x̂i
k =

p−1∑
j

[xσ j,k = xσi,k] · Yσ j + a · p

p−1∑
j

[xσ j,k = xσi,k] + a
(2.11)

where σ represents the weight coefficient of the prior term, and p represents the prior term. The
CatBoost usually captures the mean of the data set as the first item when solving regression problems.
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2.7. MAPE-RW algorithm principle

The MAPE-RW algorithm can fuse disagreement models according to the degree of prediction
error and output the optimal prediction results. The proportion of the predicted value of each model
was determined by finding the optimal weight. The final predicted value calculated by the algorithm is
as follows:  ωi =

M j

Mi+M j

f f inal = ωVTWBA fCatboost + ωCatboost fVTWBA
(2.12)

where ωi is the corresponding model weight, and f f inal is the final prediction output of multi-model
fusion. fCatboost and fVTWBA are the predicted outputs of the CatBoost model and VMD-decomposed
WTCN-IWOA-BiGRU-attention model, respectively.

Figure 8. Multi-model fusion network load forecasting model.
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3. Multi-model fusion network load forecasting model

There is a lot of power load influencing factors in time-series data, so the traditional prediction
model cannot extract the data feature law effectively. In this paper, a multi-model fusion short-term
power load forecasting model is proposed by combining a deep learning algorithm and a machine
learning algorithm. Combined with the advantages of different algorithms, the characteristic informa-
tion between data can be effectively mined to improve the accuracy of load prediction. The prediction
model design of the multi-model fusion network is shown in Figure 8.

3.1. Structure of prediction model

1) Data processing. The model validation analysis is carried out by employing a public power load
data set from 2006 to 2010 in an Australian region. This data set contains six-dimensional feature
vectors, and the feature parameters are shown in Table 1 below. The data set captures 30 min as the
sampling point, and load prediction is carried out by using a sliding window, with a sliding window size
of 10 and sliding step size of 1. Therefore, 10 sets of historical data are employed to predict the electric
load value at the next moment. The data set is divided into the training set, verification set and test set
according to 3:1:1. The multi-fusion network model employs the verification set to conduct parameter
tuning in the training process. In order to make the network model evaluation more accurate, the test
set will not participate in the network model training.

Table 1. Characteristic parameters.

Characteristic parameters Parameter types Character descriptions
Data Time Samples were taken every 30 minutes

Weather factors

Dew-point humidity Equilibrium temperature
Dry-bulb humidity Aerothermodynamic temperature
Wet-bulb temperature Thermodynamic saturation temperature
Humidity Degree of atmospheric dryness

Economic factors Degree Price per kWh

2) Input layer. Characteristic data and power load data are exploited as input for the prediction
model. The input data with length n is filled with missing values and normalized into the prediction
model.

3) VMD layer. The power load data are employed as the input of the prediction model. The long
time-series data were input into the prediction Model one after missing-value filling and normalization.
In the VMD, the values of k and alpha are determined by the central frequencies in the decomposition.
The value of the central frequency is calculated by changing the values of k and alpha. By choosing a
reasonable value of k, the phenomenon of model mixing can be avoided, and fewer network parameters
for the WOA-based model one can also be generated. As can be seen from Table 2, at k = 5 and alpha
= 1850, the central frequency has been relatively stable with the least number of decomposition layers,
which makes further training produce fewer parameters and improves the model training speed. The
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penalty factor of decomposition of the variational model alpha = 1850, the tolerance difference of
collection tol = 1e − 7 and the number of decomposition modes k = 5 are set. The decomposition of
each mode is shown in Figure 9.

Table 2. Center frequencies corresponding to different values of k.

k Simulated signal center frequency
2 0.0001 0.02243
3 0.0001 0.02080 0.04274
4 0.0001 0.02076 0.04167 0.06471
5 0.0001 0.02076 0.04162 0.06469 0.34702
6 0.0001 0.02076 0.04162 0.06238 0.08467 0.35872

Figure 9. Results of VMD.

4) IWOA-based hyperparameter optimization. The optimal hyperparameters are obtained by em-
ploying WOA, and in order to perform the optimization search within the range of valid parameter
selections, the range of network parameter values selected has been defined as shown in Table 3.
The components and weather characteristics generated from the decomposition of load information by
VMD are the input of the WTCN-BiGRU-attention network, respectively. And, the IWOA is employed
to optimize the network hyperparameters. The optimal network hyperparameter search structure of
each component is shown in Table 4.
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Table 3. Parameters of IWOA.

Parameters Parameter values

Parameter settings
Population size 5
Max iterations 5
Constant b 2

Search for upper and lower bounds

Learn rate [0.001,0.01]
Epoch [10,100]
Batchsize [16,128]
BiGRU node number [1,20]
Number of nodes at the full [1,100]

Table 4. Optimal parameter selection for power load forecasting.

Modal tags IMF1 IMF2 IMF3 IMF4 IMF5
Learn rate 0.0047 0.0027 0.0064 0.0054 0.0024
Epoch 38 26 61 70 89
Batchsize 72 19 72 37 22
BiGRU node number 8 18 8 17 2
BiGRU node number 16 11 7 17 19
Number of nodes at the full 49 4 46 14 97

Table 5. Power load forecasting for CatBoost network hyperparameters.

Verbose Learning rate Iterations Depth
50 0.03 900 12

5) WTCN layer. The influential factors of the load characteristics were added to the modes decom-
posed by the VMD layer, respectively. The Morlet wavelet function is used as a residual block acti-
vation function. The network extracts load characteristics and influencing factors through the WTCN
layer. It normalizes the weight of the convolutional kernel. The dropout coefficient can be set to 0.2 to
prevent over-fitting of the model. We set the expansion coefficient as (1, 2, 4, 8, 16, 32). We set the
number of filters to 128.

6) BiGRU layer. The model builds two BiGRU layers to learn the features extracted from the
WTCN, design full utilization of the data features and capture its internal change rules.

7) Attention layer. The input of the attention mechanism is the output data activated by the two-
layer BiGRU network. The corresponding proportions of disagreement feature vectors are calculated
according to the weight allocation principle, and the optimal weight parameter matrix is searched by
using continuous updates and iteration.

8) CatBoost prediction model. A random search algorithm is employed to select the CatBoost
network hyperparameters. The optimal network hyperparameters are shown in Table 5. The input
power load and weather characteristic factors are modeled.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13399–13420.
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9) Output layer. The IWOA-WTCN-BiGRU-attention network is set as Model one, and the Cat-
Boost network is set as Model two. The MAPE-RW algorithm was exploited to calculate the weight of
the output results of Model one and Model two. Finally, the load prediction output of the multi-model
fusion network is obtained by effective fusion of the model prediction results.

3.2. Model one loss function

Adam’s optimization algorithm was selected as the parameter optimization method of network
Model one. Adam is a first-order optimization algorithm that can effectively replace the traditional
gradient descent process. The algorithm can update and iterate the weight of the network according
to the data so that the loss function can be optimized. The loss function of the model is calculated by
employing the mean square error, and its formula is

MS E =
1
N

N∑
i=1

(yi − ŷi)2 (3.1)

where N is the number of samples; yi and ŷi are the actual load value and predicted load value of model
i, respectively.

4. Example analysis

4.1. Data normalization

The minimum-maximum normalization method is exploited to normalize the original data and in-
crease the training speed of the model. The inverse normalization of the predicted data designs the
comparison between the predicted value and the real value more intuitive. Its calculation formula is

xn =
x − xmin

xmax − xmin
(4.1)

where x is the original load data. xmax and xmin are, respectively, the maximum value and minimum
value of the sample data. xn is the normalized data.

4.2. Model evaluation index

The RMSE, MAPE, mean absolute error (MAE) and R-square were utilized as evaluation indexes.
The calculation formulas are as follows:

RMS E =

√
1
N

N∑
i=1

(x̃i − xi)2

MAPE = 100
N

N∑
i=1

∣∣∣∣ x̃i−xi
P0

∣∣∣∣
MAE = 1

n

n∑
i=1
|x̃i − xi|

R − square = 1 −

n∑
i=1

(x̃i−xi)2

n∑
i=1

(x̃i−x̄i)2

(4.2)
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where N is the number of samples. x̃i is the true value of the sample point i. xi is the predicted value
of the ith sample point.

4.3. Analysis of model prediction results

4.3.1. Electricity load data forecast

The prediction results of the proposed model were compared with those of the traditional single
model or mixed deep learning models such as GRU, LSTM, TCN, WTCN, WTCN-GRU, WTCN-
LSTM, TCN-BiGRU, WTCN-BiGRU and TCN-BiGRU-attention models. The results of the load
forecast data for December 20, 2010, are plotted to show more visually the accuracy advantages of the
power load forecast model proposed in this paper. The load forecasting curves are shown in Figure
10. Different curves represent the prediction results and trends of disagreement prediction models. As
can be seen from the prediction trends of the disagreement models shown in Figure 10, the prediction
results of the prediction model proposed in this paper are more accurate, stable and closer to the real
load. Table 6 shows the test lumped prediction and evaluation indexes of each model.

Table 6. Total evaluation index results of the electricity load forecasting models.

Prediction model RMSE MAPE MAE R-square
IWOA-WTCN-BiGRU-attention 110.964 0.914 82.189 0.993
CatBoost 89.089 0.727 63.407 0.996
Fusion model of this paper 77.495 0.632 56.103 0.997
WTCN-BiGRU-attention 103.452 0.86 76.179 0.994
WTCN-BiGRU 97.573 0.803 69.903 0.995
WTCN-GRU 96.584 0.814 70.868 0.995
WTCN-LSTM 100.309 0.843 73.649 0.995
WTCN 103.558 0.869 75.975 0.994
TCN 103.969 0.89 78.024 0.994
LSTM 147.665 1.261 108.342 0.988
GRU 109.991 0.932 82.114 0.994
CNN 337.913 3.241 275.52 0.939

Therefore, the forecasting effects of different models were evaluated by analyzing the effects of
the forecasting data of different models every month. Table 7 shows the error values of the monthly
forecasting results of the different models. The analysis of the model evaluation metrics shows that
the smaller the error values of MAPE, MAE and RMSE, the better the forecasting performance of
the models. The larger the R-square value, the closer the predicted value is to the real value. After
analyzing the data in Table 6 and Figure 10, the following conclusions can be drawn:

1) Compared with VMD-IWOA-WTCN-BiGRU-attention and CatBoost alone, the prediction re-
sults are more accurate by combining the proposed multiple models. The RMSE decreased by 33.469
and 11.594, MAPE decreased by 0.282 and 0.095% and MAE decreased by 26.086 and 7.304, respec-
tively. By analyzing the reasons, it can be seen that VMD-IWOA-WTCN-BiGRU-attention has a large
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prediction deviation in load fluctuation hours because VMD caused a loss of part of the data. The Cat-
Boost model is more accurate in the prediction of stationary components, but the prediction deviation
is larger when the data fluctuation is larger. Therefore, the MAPE-RW algorithm is used to integrate
the advantages of the two models to create a prediction effect that is more accurate.
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  WTCN   TCN   LSTM   GRU        CNN

Figure 10. Results of the load forecast data for December 20, 2010.

Table 7. Each model predicts the evaluation index.

RMSE Model one Model two Fusion model WT-BG-a WT-BG WT-G WT-L WT
Jan. 108.372 106.039 97.048 126.77 116.382 96.321 107.057 121.456
Feb. 102.257 84.791 76.02 108.625 89.625 90.072 88.652 103.947
Mar. 85.485 72.585 61.48 84.297 76.175 80.666 85.047 86.109
Apr. 96.362 106.033 83.271 105.568 110.002 108.207 109.236 113.008
May 121.924 95.097 80 101.731 101.456 101.066 100.091 108.432
Jun. 141.496 86.97 82.599 100.258 91.622 93.661 98.118 104.279
Jul. 131.409 86.787 77.983 101.809 87.982 92.821 95.962 100.363
Aug. 170.315 84.826 102.867 105.915 103.802 105.615 112.917 107.68
Sept. 127.524 83.933 81.581 104.565 99.724 99.005 101.172 100.071
Oct. 85.224 89.977 65.933 95.965 93.855 99.785 101.756 97.116
Nov. 79.742 84.105 62.097 99.21 95.347 101.174 106.564 100.065
Dec. 79.927 82.657 63.727 103.142 101.035 92.024 101.432 101.644

WT-BG-a: WTCN-BiGRU-attention; WT-BG: WTCN-BiGRU; WT-G: WTCN-GRU; WT-L: WTCN-LSTM; WT: WTCN.
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2) Compared with other independent prediction models, the prediction results of the model proposed
in this paper are closer to the real value. Compared with the WTCN-BiGRU prediction model, the
RMSE decreased by 20.078, MAPE decreased by 0.171% and MAE decreased by 13.4. It can be seen
that the algorithm based on the bottom combination model also achieves good training results, but it
has the disadvantage of low prediction accuracy.

4.3.2. Photovoltaic power generation data forecasts

To verify the feasibility and accuracy of the model in different forecasting areas. We employed the
2018 annual measured power generation of the domestic Ningxia Wuzhong Sun Mountain photovoltaic
(PV) power plant for PV power generation prediction, as well as five environmental data types, i.e.,
total solar irradiation, PV panel module temperature, ambient temperature, atmospheric pressure and
relative humidity, measured by the environmental detector corresponding to this PV array. The data
sets were collected at 15-minute intervals. Since the PV array only emits energy during the daytime, the
valid data of the daily 7:30–16:30 PV-emitted power were selected as the model validation data. The
data are divided according to the ratio of 10:1:1, and the first 10 months are taken as the training data,
November has been applied as the validation data during training and December data as the test set. The
prediction model parameters are set in the same way as the power load prediction model parameters.
The WTCN-BiGRU-attention network hyperparameters were selected by the WOA algorithm for the
PV power generation prediction model, as shown in Table 8, and the best network hyperparameters
were selected by the random search algorithm for the CatBoost network, as shown in Table 9.

Table 8. Selection of hyperparameters for the PV power prediction network.

Modal tags IMF1 IMF2 IMF3 IMF4 IMF5
Learn rate 0.0038 0.0012 0.0059 0.0067 0.0030
Epoch 72 54 50 73 96
Batchsize 32 57 118 117 70
BiGRU node number 5 1 16 10 3
BiGRU node number 6 7 15 13 12
Number of nodes at the full 44 12 54 84 12

Table 9. PV power forecasting CatBoost network hyperparameters.

Verbose Learning rate Iterations Depth
50 0.05 500 9

The prediction results of the model are compared with the hybrid neural network models WTCN-
BiGRU-attention, TCN-BiGRU-attention and CNN-BiGRU-attention. The daily power generation
forecasting results of PV panels for two days are plotted to show more intuitively the advantages
of the multi-model fusion forecasting network proposed in this paper. The accuracy of the load curve
prediction results is shown in Figures 11 and 12, where different curves represent the prediction results
and trends of different models. From the figures, it can be seen that the proposed multi-modal fusion
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forecasting network has higher accuracy. Table 10 shows the total prediction evaluation index of each
model test set.

Table 10. PV power generation forecast model evaluation index.

Prediction model RMSE MAPE MAE R-square
Model one 1.996 24.380 1.190 0.964
Model two 1.434 13.119 1.023 0.982
Fusion model of this paper 1.285 12.285 0.924 0.985
WTCN-BiGRU-attention 3.737 26.8 2.315 0.875
TCN-BiGRU-attention 3.739 23.808 2.466 0.875
CNN-BiGRU-attention 3.738 26.243 2.365 0.875
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Figure 11. December 10, 2018 PV power forecast.
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Figure 12. December 18, 2018 PV power forecast.
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To sum up, the multiple models proposed in this paper combined with the short-term power load
prediction model have more outstanding prediction performance, and the prediction results are rel-
atively more stable, meaning that the model can be better used to predict the power load data with
multidimensional feature inputs.

5. Conclusions

The major objective of this study was to build a forecasting model by integrating multiple models
to improve the accuracy of power load forecasting. In Model one, decompose the data into multiple
components by VMD decomposition. Then, an IWOA is exploited to optimize the super parameters
of the WTCN-BiGRU-attention network model. At the same time, Model two is designed for the
parallel prediction of multi-dimensional load data by the CatBoost algorithm. Finally, the MAPE-RW
algorithm is employed to fuse the prediction results of the two models to achieve accurate and personal
measurements of short-term power load data. Taking multidimensional load data of an area in Australia
as a model example, the feasibility verification analysis was carried out, and the main conclusions are
as follows:

1) Based on the power load data of a certain region in Australia, we constructed a multi-dimensional
power load feature set to better predict the non-stationary components with strong fluctuation of power
load data, i.e., Model one.

2) The stationary components of multi-dimensional power load data are predicted by Model two,
and the model prediction results are fused by the MAPE-RW algorithm, which improve the power load
prediction accuracy of multi-model fusion.

To sum up, the hybrid neural network combined model for multidimensional characteristic power
load data prediction has been proposed in this paper. This research sheds new light and not only pro-
vides reference and choices for short-term power load forecasting methods, but also has good reference
significance for other power fields, such as wind power generation forecasting and energy storage unit
service-life forecasting. However, the structure of the multi-model fusion network is overly complex,
which increases the model prediction time and wastes computer resources while improving the accu-
racy of power load prediction. Therefore, in the future, the authors will work on designing a more
concise interval prediction model for power loading with suitable accuracy. While overcoming the
training time, the interval prediction makes the prediction results more meaningful for the power sec-
tor to conduct power dispatching and effectively avoid the waste of power resources.

Acknowledgments

This work was supported by the State Grid Corporation of China Headquarters Science and Technol-
ogy Project (5400-202122573A-0-5-SF). The authors thank the editors and the anonymous reviewers
for their helpful comments and suggestions that have improved the presentation of this manuscript.

Conflict of interest

The authors declare that there is no conflict of interest.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13399–13420.



13418

References

1. X. Shan, X. Lu, M. Y. Zhai, Z. Gao, C. Xu, X. Teng, et al., Analysis of key technologies for
artificial intelligence applied to power grid dispatch and control, Autom. Electr. Power Syst., 43
(2019), 49–57.

2. S. Fan, L. Li, S. Wang, X. Liu, Y. Yu, B. Hao, Application analysis and exploration of artificial
intelligence technology in power grid dispatch and control, Power Syst. Technol., 44 (2020), 401–
411.

3. C. Bian, S. Liu, H. Xing, Y. Jia, Research on fault-tolerant operation strategy of rectifier of
square wave motor in wind power system, CES Trans. Electr. Mach. Syst., 5 (2021), 62–69.
https://doi.org/10.30941/cestems.2021.00008

4. F. L. Tan, J. Zhang, H. Z. Ma, Combined forecasting method of power load based on trend change
division, J. North China Electr. Power Univ., 47 (2020), 17–24.

5. P. Y. Chen, Y. J. Fang, Short-term load forecasting of power system for holiday point-by-point
growth rate based on Kalman filtering, Eng. J. Wuhan Univ., 53 (2020), 139–144.

6. B. Li, F. Qin, Y. Wu, J. Huang, Short-Term daily load curve forecasting based on fuzzy information
granulation and multi-strategy sensitivity, Trans. China Electrotech. Soc., 32 (2017), 149–159.

7. D. X. Niu, S. Y. Dai, A short-term load forecasting model with a modified particle swarm op-
timization algorithm and least squares support vector machine based on the denoising method
of empirical mode decomposition and grey relational analysis, Energies, 10 (2017), 408–428.
https://doi.org/10.3390/en10030408

8. Q. Liu, Z. Z. Huang, S. Li, Research on power load forecasting based on support vector machine,
J. Balkan Tribol. Assoc., 22 (2016), 151–159.

9. C. B. Li, S. K. Li, Y. Q. Liu, A least squares support vector machine model optimized by moth-
flame optimization algorithm for annual power load forecasting, Appl. Intell., 45 (2016), 1166–
1178. https://doi.org/10.1007/s10489-016-0810-2

10. J. J. Sun, S. Z. Zhang, M. D. Zeng, Multi-objective optimal control for flexible load in active
distribution network considering time-of-use tariff, Trans. China Electrotech. Soc., 33 (2018),
401–412.

11. S. Zhang, J. X. Yang, J. C. Liu, J. Y. Liu, Power load recovery based on multi-scale time-series
modeling and estimation, Trans. China Electrotech. Soc., 35 (2020), 2736–2746.

12. M. Tan, S. P. Yuan, S. H. Li, Y. Su, H. Li, F. He, Ultra-short-term industrial power demand forecast-
ing using LSTM based hybrid ensemble learning, IEEE Trans. Power Syst., 35 (2020), 2937–2948.
https://doi.org/10.1109/TPWRS.2019.2963109

13. J. F. Rendon-Sanchez, L. M. de Menezes, Structural combination of seasonal exponential
smoothing forecasts applied to load forecasting, Eur. J. Oper. Res., 27 (2019), 916–924.
https://doi.org/10.1016/j.ejor.2018.12.013

14. J. Lu, Q. Zhang, Z. Yang, M. Tu, J. Lu, H. Peng, Short-term load forcasting method based on
CNN-LSTM hybrid neural network model, Autom. Electr. Power Syst., 43 (2019), 131–137.

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13399–13420.

http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.30941/cestems.2021.00008 
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.3390/en10030408
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1007/s10489-016-0810-2
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1109/TPWRS.2019.2963109
http://dx.doi.org/https://doi.org/10.1016/j.ejor.2018.12.013
http://dx.doi.org/


13419

15. B. Zhao, Z. Wang, W. Ji, X. Gao, X. Li , A short-term power load forecasting method based on
attention mechanism of CNN-GRU, Power Syst. Tech., 43 (2019), 4370–4376.

16. L. J. Zhu, Z. Xun, Y. X. Wang, Short-term power load forecasting based on CNN-BiLSTM, Power
Syst. Tech., 45 (2021), 4532–4539.

17. Y. Zhao, H. Wang, L. Kang, Z. Zhang, Temporal convolution network-based short-term electrical
load forecasting, Trans. China Electrotech. Soc., 5 (2022), 1243–1251.

18. Z. D. Tian, H. Chen, A novel decomposition-ensemble prediction model for
ultra-short-term wind speed, Energy Convers. Manage., 248 (2021), 1–18.
https://doi.org/10.1016/j.enconman.2021.114775

19. Z. D. Tian, Short-term wind speed prediction based on LMD and improved FA op-
timized combined kernel function LSSVM, Eng. Appl. Artif. Intell., 91 (2020), 1–24.
https://doi.org/10.1016/j.engappai.2020.103573

20. C. Tong, L. Zhang, H. Li, Y. Ding, Temporal inception convolutional network based on multi-head
attention for ultra-short-term load forecasting, IET Gener. Transm. Distrib, 16 (2021), 1680–1696.
https://doi.org/10.1049/gtd2.12394

21. Z. D. Tian, Approach for short-Term traffic flow prediction based on empirical mode decompo-
sition and combination model fusion, IEEE Trans. Intell. Transp. Syst., 22 (2021), 5566–5576.
https://doi.org/10.1109/TITS.2020.2987909

22. Z. D. Tian, S. J. Li, Y. H. Wang, A prediction approach using ensemble empirical mode
decomposition-permutation entropy and regularized extreme learning machine for short-term wind
speed, Wind Energy, 23 (2020), 177–206. https://doi.org/10.1002/we.2422

23. S. E. Haupt, S. Dettling, J. K. Williams, J. Pearson, T. Jensen, T. Brummet, et al., Blending
distributed photovoltaic and demand load forecasts and deep bidirectional long short-term memory
and multiple linear regression, Sol. Energy, 157 (2017), 542–551.

24. K. Dragomiretskiy, D. Zosso, Variational mode decomposition, IEEE Trans. Signal Process., 62
(2014), 531–544. https://doi.org/10.1109/TSP.2013.2288675

25. S. J. Bai, J. Z. Kolter, V. Koltun, An empirical evaluation of generic convolutional and recurrent
networks for sequence modeling, preprint, arXiv:1803.01271.

26. S. H. Rafi, N. AI Masood, S. R. Deeba, S. R. Deeba, E. Hossain, A short-term load forecast-
ing method using integrated CNN and LSTM network, IEEE Access, 9 (2021), 32436–32448.
https://doi.org/10.1109/ACCESS.2021.3060654

27. X. B. Jin, W. Z. Zheng, J. L. Kong, X. Y. Wang, Y. T. Bai, T. L. Su, et al., Deep-learning forecasting
method for electric power load via attention-based encoder-decoder with Bayesian optimization,
Energies, 14 (2021), 1406–1596. https://doi.org/10.3390/en14061596

28. Y. Y. Wang, J. Chen, X. Q. Chen, X. Zeng, Y. Kong, S. Sun, et al., Short-term load forecasting for
industrial customers based on TCN-LightGBM, IEEE Trans. Power Syst., 36 (2021), 1984–1997.
https://doi.org/10.1109/TPWRS.2020.3028133

29. M. Lysaker, A. Lundervold, X. C. Tai, Noise removal using fourth-order partial differential equa-
tion with applications to medical magnetic resonance images in space and time, IEEE Trans. Image
Process., 12 (2003), 1579–1590. https://doi.org/10.1109/TIP.2003.819229

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13399–13420.

http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1016/j.enconman.2021.114775
http://dx.doi.org/https://doi.org/10.1016/j.engappai.2020.103573
http://dx.doi.org/https://doi.org/10.1049/gtd2.12394
http://dx.doi.org/https://doi.org/10.1109/TITS.2020.2987909
http://dx.doi.org/https://doi.org/10.1002/we.2422
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1109/TSP.2013.2288675
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2021.3060654
http://dx.doi.org/https://doi.org/10.3390/en14061596
http://dx.doi.org/https://doi.org/10.1109/TPWRS.2020.3028133
http://dx.doi.org/https://doi.org/10.1109/TIP.2003.819229


13420

30. Y. Zhang, Q. Ai, L. Lin, S. Yuan, Z. Y. Li, A very short-term load forecasting method based on
deep LSTM RNN at zone level, Power Syst. Tech., 43 (2019), 1884–1892.

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13399–13420.

http://dx.doi.org/
http://creativecommons.org/licenses/by/4.0

	Introduction
	Multi-model fusion analysis
	VMD network
	WTCN
	Bidirectional GRU network
	Attention mechanism
	IWOA
	CatBoost network
	MAPE-RW algorithm principle

	Multi-model fusion network load forecasting model
	Structure of prediction model
	Model one loss function

	Example analysis
	Data normalization
	Model evaluation index
	Analysis of model prediction results
	Electricity load data forecast
	Photovoltaic power generation data forecasts


	Conclusions

