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Abstract: Intratumor heterogeneity hinders the success of anti-cancer treatment due to the interaction
between different types of cells. To recapitulate the communication of different types of cells, we
developed a mathematical model to study the dynamic interaction between normal, drug-sensitive and
drug-resistant cells in response to cancer treatment. Based on the proposed model, we first study the
analytical conclusions, namely the nonnegativity and boundedness of solutions, and the existence and
stability of steady states. Furthermore, to investigate the optimal treatment that minimizes both the
cancer cells count and the total dose of drugs, we apply the Pontryagin’s maximum(or minimum)
principle (PMP) to explore the combination therapy strategy with either quadratic control or linear
control functionals. We establish the existence and uniqueness of the quadratic control problem, and
apply the forward-backward sweep method (FBSM) to solve the optimal control problems and obtain
the optimal therapy scheme.
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1. Introduction

Intratumor heterogeneity contributes to the emergence of therapy resistance, which plays a vital
role in cancer relapse. Biologically, heterogeneity may originate from cellular genetic and epigenetic
modifications as well as the environmental changes [1, 2]. Clinically, adaptive responses to targeted
therapies can facilitate both the expansion of pre-existing drug-resistant subpopulations and the
acquisition of new mutations, which yields heterogeneity [2–4]. However, the dynamics of how
intratumor heterogeneity may affect tumor evolution is not well understood, and is important for us to
understand the mechanisms of drug resistance in cancer therapy.

There are mounting evidences that mutation can create favorable conditions for heterogeneity and
result in cancer therapy resistance. A critical question arises that whether mutation is prior to or after
the onset of therapy. Experiments have showed that mutations in KRAS, TP53, ABL or MET can
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pre-exist before the initiation of therapy, and contribute to the development of drug resistance [5–10].
In addition, it is shown that mutations can also emerge in response to treatment stress and promote
drug resistance [11–16]. The two mechanisms may imply different dynamics of cancer relapse, and
quantitative studies are necessary to uncover the process of how mutation may affect treatment
resistance over time.

Many mathematical models have been developed to study the complex dynamics of cancer
resistance/recurrence [17–24]. For example, various ordinary differential equations models were
developed to describe how the interaction between drug-sensitive and drug-resistant cancer cells may
shape the progression of drug resistance [17–20]. Moreover, the interaction between cancer cells and
stroma [21] or immune cells [22–24] are considered in different types of models. In addition to the
tumor cells, the competition between normal cells and tumor cells can be important for tumor
progression [25,26]. Most existing models consider the tumor progression dynamics with pre-existing
resistant cells, which interact with sensitive tumor cells through the competition in resources.
Nevertheless, resistance cells can also be induced by the treatment behavior, by which sensitive cells
can transit to resistant cells due to treatment stress. The mechanism of cell plasticity induced drug
resistance is important clinically, however, to our knowledge, is not well studied quantitatively.

In recent years, the idea of adaptive therapy has attracted the attention of many researchers, and the
mathematical tool of optimal control theory was applied to obtain the optimal therapy schemes in
adaptive therapy. For example, from the standpoint of optimal control, minimization of the total drug
count was analyzed in order to control IgG multiple myeloma [27]. The optimal control method was
utilized in treatments of various types of cancers, including metastatic prostate cancer [17],
immunotherapeutic treatment [28, 29], chemotherapy [30], combination of chemotherapy and stem
cell transplants for acute myeloid leukemia [31], combination therapy of chronic myeloid
leukemia [32], combination chemotherapy of antiangiogenic treatment [33], and bone metastasis
treatment [34]. In these studies, the effects of cell plasticity induced drug resistance and the
competition between tumor cells and normal cells are not included. Here, we ask how optimal control
theory can help us to determine the optimal therapy strategy when both effects of the cell plasticity
and competitions are considered.

In this study, to have a better understanding of tumor progression in the base of competitions
between normal cells and various types of cancer cells, we develop a mathematical model that
includes normal cells, drug-sensitive tumor cells and drug-resistant tumor cells, and apply the model
to study the dynamics of tumor progression and treatment responses. First, mathematically, we
consider the nonnegativity and boundedness of the model solutions, and the existence and stability of
steady states. Next, applying the Pontryagin’s maximum(or minimum) principle (PMP) [35], we
derive the optimal treatment schedule that can minimize the tumor burden during the treatment and
the total drug dose of combination therapy. Two types of optimal control problems are considered with
different designations of cost functionals, including the quadratic and linear drug control, respectively.

2. Model formulation

To model the interaction between normal and tumor cells, we consider a mathematical model of
tumor progression dynamics that includes normal cells, drug-sensitive and drug-resistant tumor cells
(Figure 1). In the model, each type of cells proliferate with different rates that are dependent on the
cell numbers and the microenvironmental cytokines regulating the cell proliferation pathway, and are
removed due to cell death. All cells can secrete cytokines to regulate the proliferation of all cells, which
form the competition between different types of cells. To consider the occurrence of mutation induced
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by treatment stress, we assume a possible transition from drug-sensitive to drug-resistant cells.

Figure 1. Schematic of the proposed model. There are three types of cells, including normal
cells (x1(t)), drug-sensitive (x2(t)) and drug-resistant (x3(t)) tumor cells, all cells undergo
proliferation and cell death, and can secrete cytokines to regulate the proliferation of all
cells. Drug-sensitive tumor cells can transit to drug-resistant tumor cells due to random gene
mutations.

To formulate the model, we consider the numbers of normal, drug-sensitive and drug-resistant cells,
which are represented by x1(t), x2(t) and x3(t), respectively. Dynamically, these three types of cells
different from each other in their associated proliferation rates and removal rates.

Biologically, the self-renewal ability of a cell is determined by both microenvironmental
conditions, e.g., growth factor receptors and cell cycle checkpoints, such as fibroblast growth factors
(FGFs) and the transforming growth factor beta (TGF-β) family [36–38]. The exact activation
pathways that regulate the self-renewal of cells are poorly understood. However, a Hill type
proliferation function can be derived based on simple but general assumptions on either positive or
negative regulation growth factors [39, 40]. Let

ci =

3∑
j=1

ai jx j, i = 1, 2, 3, (2.1)

represent the overall effects of how cytokines secreted from all types of cells may regulate the self-
renewal of type i cells, the competitions from cell type j to cell type i are given by the coefficients
ai j (i, j = 1, 2, 3). Thus, according to the Hill type function proposed in [39, 40], the proliferation rate
for normal cells can be formulated as

β1
θ1
θ1 + c1

,

where β1 represents the maximum proliferation rate of normal cells, and θ1 is the 50% effective
coefficient (EC50) that is associated with the effective concentration of cytokines. Here, we take the
Hill coefficient to be 1 for simplicity. The proliferation rates of tumor cells are given similarly.
However, tumor cells can escape the antigrowth signals due to the capability of self-sufficiency to
growth signals and insensitivity to anti-growth signals [41], we thus introduce an additional nonzero
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constant βi0 (i = 2, 3) for the effects of self-sustained growth signals of tumor cells. Hence, the
proliferation rates of drug-sensitive and drug-resistant cells are formulated as

β2
θ2
θ2 + c2

+ β20, β3
θ3
θ3 + c3

+ β30,

respectively.
The three types of cells undergo cell death with rates µi, respectively. Moreover, we assume that

drug-sensitive cells can transit to drug-resistant cells with a rate η. These arguments give rise to the
following model 

dx1

dt
= β1

θ1
θ1 + c1

x1 − µ1x1,

dx2

dt
= (β2

θ2
θ2 + c2

+ β20)x2 − µ2x2 − ηx2,

dx3

dt
= (β3

θ3
θ3 + c3

+ β30)x3 − µ3x3 + ηx2.

(2.2)

Biologically, all parameters are non-negative, i.e.

βi, β20, β30, η, ai j (i , j) ⩾ 0, θi, µi, aii > 0, i, j = 1, 2, 3. (2.3)

Without loss of generality, we let
aii = 1 (i = 1, 2, 3).

In the model (2.2), we apply Hill type functions to describe the proliferation rates of cells, which
are derived based on the assumption of cell proliferation regulated by cytokines. Nevertheless, we note
that in many studies, logistic growth or Gompertizian growth are often applied to model the dynamics
of tumor growth [17–19,22–24,30]. These growth rate functions are consistent in describing the same
property that cell growth rates decrease with the cell number, however are originated from difference
biological assumptions. Biologically, Hill type growth rate is more proper to model tumor growth, by
which the effects of cytokines are described explicitly.

In the current study, we would be always interested at the situation with positive cell numbers prior
treatment. Thus, we have the following assumptions:

(H1) The maximal proliferation rate β1 is greater than the death rate µ1 of normal cells, i.e.,

ξ1 ≜
β1

µ1
− 1 > 0. (2.4)

(H2) The maximal proliferation rate of drug-sensitive cells (β2 + β20) is larger than the total removal
rate due to either cell death or transition (µ2 + η), and the residual proliferation rate β20 should
be smaller than the total removal rate to avoid infinity cell numbers (uncontrolled cell growth).
These assumptions give

ξ2 ≜
β2

µ2 + η − β20
− 1 > 0. (2.5)

(H3) The maximal proliferation rate of drug-resistant cells (β3 + β30) is larger than the cell death rate
(µ3), and the residual proliferation rate β30 should be smaller than the death rate to avoid infinity
cell numbers (uncontrolled cell growth). These assumptions give

ξ3 ≜
β3

µ3 − β30
− 1 > 0. (2.6)
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The assumptions (H1)–(H3) give biologically natural restrictions to the proliferation and death rates
for the three types of cells.

3. Results

In this section, we first study the mathematical properties of the model (2.2), next consider the
optimal strategy using PMP.

3.1. Invariant set of model solutions

Theorem 1. Assume the conditions (2.3)–(2.6), let

Ω = {(x1, x2, x3) ∈ R3 | 0 ⩽ x1 ⩽ ξ1θ1, 0 ⩽ x2 ⩽ ξ2θ2, 0 ⩽ x3 ⩽
β3θ3 + ηξ2θ2
µ3 − β30

}, (3.1)

then Ω is an invariant set of the model (2.2), i.e., any solution of (2.2) with initial condition
(x10, x20, x30) ∈ Ω satisfies

(x1(t), x2(t), x3(t)) ∈ Ω,∀t ⩾ 0.

Proof. Let (x1(t), x2(t), x3(t)) be the solution of the model (2.2) with initial condition (x10, x20, x30) ∈ Ω.
Firstly, it is easy to have

x1(t) = x10e
∫ t

0 ( β1θ1
θ1+x1(s)+a12 x2(s)+a13 x3(s)−µ1)ds ⩾ 0, ∀t ⩾ 0,

and
x2(t) = x20e

∫ t
0 ( β2θ2
θ2+a21 x1(s)+x2(s)+a23 x3(s)+β20−µ2−η)ds ⩾ 0,∀t ⩾ 0.

From the third equation of (2.2), we have

dx3

dt
⩾ (β3

θ3
θ3 + a31x1(t) + a32x2(t) + x3(t)

+ β30)x3 − µ3x3. (3.2)

Multiplying both sides of (3.2) by e−
∫ t

0 ( β3θ3
θ3+a31 x1(s)+a32 x2(s)+x3(s)+β30−µ3)ds, we have[

dx3

dt
−

(
(β3

θ3
θ3 + a31x1(t) + a32x2(t) + x3(t)

+ β30)x3 − µ3x3

)]
e−

∫ t
0 ( β3θ3
θ3+a31 x1(s)+a32 x2(s)+x3(s)+β30−µ3)ds ⩾ 0,

which gives
d
dt

[
x3(t)e−

∫ t
0 ( β3θ3
θ3+a31 x1(s)+a32 x2(s)+x3(s)+β30−µ3)ds

]
⩾ 0. (3.3)

Integrating (3.3) over (0, t) with x3(0) = x30, we have

x3(t)e
−

∫ t
0 (

β3θ3
θ3 + a31x1(s) + a32x2(s) + x3(s)

+β30−µ3)ds
− x30 ⩾ 0,

which gives

x3(t) ⩾ x30e

∫ t
0 (

β3θ3
θ3 + a31x1(τ) + a32x2(τ) + x3(τ)

+β30−µ3)dτ
⩾ 0.
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Thus, any solution of (2.2) with nonnegative initial condition remains nonnegative over t > 0.
Next, we show that any nonnegative solution of (2.2) has finite upper bound. From the initial

condition x1(0) = x10 ⩽ ξ1θ1 and

dx1(t)
dt

∣∣∣
{x1=ξ1θ1,x2,x3⩾0}

= β1
θ1

θ1 + ξ1θ1 + a12x2 + a13x3
ξ1θ1 − µ1ξ1θ1

⩽ β1
θ1

θ1 + ξ1θ1
ξ1θ1 − µ1ξ1θ1

= β1
µ1

β1
ξ1θ1 − µ1ξ1θ1 = 0,

we have x1(t) ⩽ ξ1θ1,∀t ⩾ 0.
Similar calculations yield x2(t) ⩽ ξ2θ2 and x3(t) ⩽ β3θ3+ηξ2θ2

µ3−β30
,∀t ⩾ 0. This completes the proof.

3.2. Steady state solutions

3.2.1. Existence of steady state solutions

Now, we consider the steady state solutions of the model (2.2). Let (x∗1, x
∗
2, x
∗
3) be the nonnegative

steady state, we have 

β1
θ1
θ1 + c∗1

x∗1 − µ1x∗1 = 0,

(β2
θ2
θ2 + c∗2

+ β20)x∗2 − µ2x∗2 − ηx
∗
2 = 0,

(β3
θ3
θ3 + c∗3

+ β30)x∗3 − µ3x∗3 + ηx
∗
2 = 0,

(3.4)

where
c∗1 = x∗1 + a12x∗2 + a13x∗3, c∗2 = a21x∗1 + x∗2 + a23x∗3, c∗3 = a31x∗1 + a32x∗2 + x∗3.

We are only interested at the steady states that the cell numbers are nonnegative, which can be
divided into one of the 8 possible types (+/0,+/0,+/0), here ‘+’ means a positive number, and ‘0’
means zero. It is easy to see that, there always exists a zero steady sate E0 = (0, 0, 0), however this
state represents the state of death and is biologically not interested. Since η > 0, x∗3 = 0 always implies
x∗2 = 0, there is no steady state of form (0,+, 0) or (+,+, 0). Thus, there are 6 possible steady states
(here x∗i > 0)

E0 = (0, 0, 0), E1 = (x∗1, 0, 0), E3 = (0, 0, x∗3),
E13 = (x∗1, 0, x

∗
3), E23 = (0, x∗2, x

∗
3), E123 = (x∗1, x

∗
2, x
∗
3).

(3.5)

The theorem below gives the existence of nonnegative steady states.

Theorem 2. Consider the model (2.2), and assume that all parameters satisfy (2.3).

(1) There always exists the zero steady state E0 = (0, 0, 0).
(2) If (2.4) holds, (2.2) has tumor-free equilibrium E1 = (ξ1θ1, 0, 0).
(3) If (2.6) holds, (2.2) has normal-free equilibrium E3 = (0, 0, ξ3θ3).
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(4) If both (2.4) and (2.6) hold, let

s2 = 1 − a13a31, ξ4 = ξ1θ1 − a13ξ3θ3, ξ5 = ξ3θ3 − a31ξ1θ1, (3.6)

(2.2) has one steady state of form E13 = (
ξ4
s2
, 0,
ξ5
s2

) only when s2, ξ4 and ξ5 are non-zero and have

the same sign.
(5) If both (2.5) and (2.6) hold, then

(i) if a23 >
ξ2θ2
ξ3θ3

, let

p1 = a32 +
θ3
ξ2θ2
,

q1 = 1 + a32
β30 − µ3

η
+
θ3
ξ2θ2

(a23 +
β3 + β30 − µ3

η
),

r1 =
a23θ3
ξ2θ2

β3 + β30 − µ3

η
−
µ3 − β30

η
,

(3.7)

if

0 < −
q1

2p1
<
µ3 − β30

η
, q2

1 − 4p1r1 > 0 (or = 0), (3.8)

(2.2) has two (or one) steady state of E23-type; otherwise, (2.2) has no steady state of E23-
type.

(ii) if a23 <
ξ2θ2
ξ3θ3

, (2.2) has one and only one steady state of E23-type.

(6) If (2.4)–(2.6) hold, (2.2) has at most two steady states of form E123 = (x∗1, x
∗
2, x
∗
3). Moreover, let

p2 = −(s3 + a31(a12a23 − a13) + a32(a13a21 − a23))(s3(µ3 − β30) − η(a13a21 − a23)),

q2 = s2
3θ3(β3 + β30 − µ3) + s3

(
ηθ3(a13a21 − a23) + ξ1θ1((a21a32 − a31)(µ3 − β30) − ηa21)

+ ξ2θ2((a12a31 − a32)(µ3 − β30) + η)
)

− ηξ1θ1((a21a32 − a31)(2a13a21 − a23) + a23a21(a12a31 − a32))

− ηξ2θ2((a12a31 − a32)(a13a21 − 2a23) − a13(a21a32 − a31)),

r2 = −η(ξ1θ1a21 − ξ2θ2)(s3θ3 − ξ1θ1(a21a32 − a31) − ξ2θ2(a12a31 − a32)),

(3.9)

where s3 = 1 − a21a12 , 0, the E123-type steady states are determined by the solutions x3 = x∗3 of
the equation

p2x3
2 + q2x3 + r2 = 0, (3.10)

and the solution x∗3 satisfy: if s3 > 0,

1
a21

(ξ2θ2 − a23x∗3) > (ξ1θ1 − a13x∗3) > a12(ξ2θ2 − a23x∗3), (3.11)

and if s3 < 0,

a12(ξ2θ2 − a23x∗3) > (ξ1θ1 − a13x∗3) >
1

a21
(ξ2θ2 − a23x∗3) > 0. (3.12)
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In this case, x∗1 and x∗2 are given by

x∗1 =
1
s3

((ξ1θ1 − a13x∗3) − a12(ξ2θ2 − a23x∗3)), (3.13)

x∗2 =
1
s3

((ξ2θ2 − a23x∗3) − a21(ξ1θ1 − a13x∗3)). (3.14)

Proof. (1). It is trivial to see that model (2.2) always has the zero steady state E0.
(2). Let x∗2 = x∗3 = 0 and x∗1 , 0, from the first equation of (2.2), x∗1 satisfies

β1
θ1
θ1 + x∗1

x∗1 − µ1x∗1 = 0, (3.15)

which gives

β1
θ1
θ1 + x∗1

− µ1 = 0. (3.16)

Hence, condition (2.4) implies

x∗1 = (
β1

µ1
− 1)θ1 = ξ1θ1 > 0.

(3). Let x∗1 = x∗2 = 0 and x∗3 , 0. From the third equation of (3.4), we have

(β3
θ3
θ3 + x∗3

+ β30)x∗3 − µ3x∗3 = 0, (3.17)

which gives

β3
θ3
θ3 + x∗3

+ β30 − µ3 = 0. (3.18)

Thus, condition (2.6) implies

x∗3 = (
β3

µ3 − β30
− 1)θ3 = ξ3θ3 > 0.

(4) Let x∗2 = 0, the first and the third equation of (3.4) become
β1

θ1
θ1 + x∗1 + a13x∗3

x∗1 − µ1x∗1 = 0,

(β3
θ3

θ3 + a31x∗1 + x∗3
+ β30)x∗3 − µ3x∗3 = 0.

(3.19)

Given x∗1, x
∗
3 , 0, (3.19) can be rewritten as

β1
θ1

θ1 + x∗1 + a13x∗3
− µ1 = 0,

β3
θ3

θ3 + a31x∗1 + x∗3
+ β30 − µ3 = 0,

(3.20)
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which yields 
x∗1 + a13x∗3 = ξ1θ1,

a31x∗1 + x∗3 = ξ3θ3.
(3.21)

From (3.21), we obtain

x∗1 =
ξ4
s2
, x∗3 =

ξ5
s2

when s2, ξ4 and ξ5 are given by (3.6). Thus, (2.2) has a steady state of form E13 only when s2, ξ4 and ξ5
are non-zero and have the same sign.

(5). To consider the steady state of form E23, let x∗1 = 0 in (3.4), we obtain
(β2

θ2
θ2 + x∗2 + a23x∗3

+ β20)x∗2 − µ2x∗2 − ηx
∗
2 = 0,

(β3
θ3

θ3 + a32x∗2 + x∗3
+ β30)x∗3 − µ3x∗3 + ηx

∗
2 = 0.

(3.22)

When x∗2, x
∗
3 , 0, (3.22) can be rewritten as

β2
θ2

θ2 + x∗2 + a23x∗3
= µ2 + η − β20,

β3
θ3

θ3 + a32x∗2 + x∗3
= µ3 − η

x∗2
x∗3
− β30.

(3.23)

Thus, we have 
x∗2 + a23x∗3 = ξ2θ2,

a32x∗2 + x∗3 = (
β3

µ3 − ηx∗2/x
∗
3 − β30

− 1)θ3.
(3.24)

Dividing both sides of (3.24) by x∗3, we have
x∗2/x

∗
3 + a23 = ξ2θ2/x∗3,

a32x∗2/x
∗
3 + 1 = (

β3

µ3 − ηx∗2/x
∗
3 − β30

− 1)θ3/x∗3.
(3.25)

Denote y∗ =
x∗2
x∗3

and z∗ =
1
x∗3

, then

0 < y∗ <
µ3 − β30

η
, z∗ > 0,

and (3.25) becomes 
y∗ + a23 = ξ2θ2z∗,

a32y∗ + 1 = (
β3

µ3 − ηy∗ − β30
− 1)θ3z∗.

(3.26)
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The first equation of (3.26) implies

z∗ =
y∗ + a23

ξ2θ2
. (3.27)

The second equation of (3.26) implies

z∗ =
(a32y∗ + 1)(µ3 − ηy∗ − β30)
θ3(β3 − µ3 + ηy∗ + β30)

. (3.28)

Hence, (3.27) and (3.28) together give the equation for y = y∗,

y + a23

ξ2θ2
=

(a32y + 1)(µ3 − ηy − β30)
θ3(β3 − µ3 + ηy + β30)

,

which implies
f (y) ≜ p1y2 + q1y + r1 = 0, (3.29)

where p1, q1, r1 are given by (3.7). Thus, to get the positive solution of (3.26), we only need to solve
the equation (3.29) for the solution 0 < y∗ < µ3−β30

η
.

When (3.29) has a solution y∗ ∈ (0,
µ3 − β30

η
), we have z∗ > 0 from (3.27), and the nonnegative

steady state E23 = (0, x∗2, x
∗
3) is given by x∗2 =

y∗

z∗
and x∗3 =

1
z∗

. Now, we identify the conditions to have

such a solution based on the competition coefficient a23.

(i) If a23 >
ξ2θ2
ξ3θ3

, we have p1 > 0, and

f (0) =
a23θ3
ξ2θ2

β3 + β30 − µ3

η
−
µ3 − β30

η

>
1
ξ3

β3 + β30 − µ3

η
−
µ3 − β30

η

=
1
ξ3

β3

η
− (

1
ξ3
+ 1)
µ3 − β30

η

=
1
ξ3

β3

η
−

1
ξ3

β3

µ3 − β30

µ3 − β30

η
= 0. (3.30)

Moreover,

f (
µ3 − β30

η
) =
β3θ3
ηξ2θ2

(a23 +
µ3 − β30

η
) > 0.

Hence, if

0 < −
q1

2p1
<
µ3 − β30

η
, q2

1 − 4p1r1 > 0 (or = 0),

(3.29) has two (or one) positive solutions in the interval (0, µ3−β30
η

), i.e., (2.2) has two (or one)
steady states of E23-type; otherwise, (2.2) has no steady state of E23-type.
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(ii) If a23 <
ξ2θ2
ξ3θ3

, similar to the above argument of (3.30), we have

f (0) <
1
ξ3

β3 + β30 − µ3

η
−
µ3 − β30

η
= 0.

Thus, since,

f (
µ3 − β30

η
) > 0,

the quadratic function f (y) has one and only one root in (0,
µ3 − β30

η
), i.e., (2.2) has one and only

one steady state of E23-type.

(6). To consider the positive steady sate of form E123 = (x∗1, x
∗
2, x
∗
3), we need to find the positive

solution of 

β1
θ1

θ1 + x∗1 + a12x∗2 + a13x∗3
− µ1 = 0,

β2
θ2

θ2 + a21x∗1 + x∗2 + a23x∗3
+ β20 − µ2 − η = 0,

(β3
θ3

θ3 + a31x∗1 + a32x∗2 + x∗3
+ β30)x∗3 − µ3x∗3 + ηx

∗
2 = 0.

(3.31)

From the first and the second equations of (3.31), we have
x∗1 + a12x∗2 = ξ1θ1 − a13x∗3,

a21x∗1 + x∗2 = ξ2θ2 − a23x∗3,
(3.32)

which gives 
x∗1 =

1
s3

((ξ1θ1 − a13x∗3) − a12(ξ2θ2 − a23x∗3)),

x∗2 =
1
s3

((ξ2θ2 − a23x∗3) − a21(ξ1θ1 − a13x∗3)),

(3.33)

where s3 = 1 − a21a12 , 0.
Substituting (3.33) into the third equation of (3.31), x∗3 satisfies the quadratic equation

p2x∗3
2
+ q2x∗3 + r2 = 0, (3.34)

where p2, q2 and r2 are given by (3.9). Moreover, from (3.32) and (3.33), if s3 > 0, x∗3 should satisfy

1
a21

(ξ2θ2 − a23x∗3) > (ξ1θ1 − a13x∗3) > a12(ξ2θ2 − a23x∗3) > 0; (3.35)

and if s3 < 0, x∗3 satisfies

a12(ξ2θ2 − a23x∗3) > (ξ1θ1 − a13x∗3) >
1

a21
(ξ2θ2 − a23x∗3) > 0. (3.36)

Thus, (2.2) has at most two steady states of form E123, which are determined by the solutions of
(3.34) and (3.33) with x∗3 satisfies (3.35) when s3 > 0, or (3.36) when s3 < 0.
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Theorem 2 establishes the conditions for the existence of nonnegative steady states of different
types. Biologically, the conditions (2.4)–(2.6) are satisfied by most tissue cells, and hence the steady
states of types E0, E1 and E3 always exist. Moreover, under the extreme condition when the competition
coefficients ai j = 0 for any i , j, it is easy to have the existence of the steady states of types E13 and
E23 from (4) and (5), and from (6),

p2 = −(µ3 − β30) < 0, r2 = ηθ2θ3ξ2 > 0, s3 = 1 > 0,

which yield the existence of a steady state of type E123. Thus, from the continuous dependence, the
proposed model (2.2) have steady states of all types in (3.5) when the competition coefficients
ai j > 0 (i , j) are small enough.

3.2.2. Stability of steady states

Now, we study the stability of the steady state E∗ = (x∗1, x
∗
2, x
∗
3). Let x = x1 − x∗1, y = x2 − x∗2 and

z = x3 − x∗3, and linearize the model (2.2) at E∗, we have the linearization equation

dx
dt
= A1x + A2y + A3z,

dy
dt
= B1x + B2y + B3z,

dz
dt
= C1x +C2y +C3z,

(3.37)

where
A1 =

θ1β1

θ1 + c∗1
− µ1 − α1, A2 = −a12α1, A3 = −a13α1,

B1 = −a21α2, B2 =
θ2β2

θ2 + c∗2
+ β20 − µ2 − η − α2, B3 = −a23α2,

C1 = −a31α3, C2 = −a32α3 + η, C3 =
θ3β3

θ3 + c∗3
− α3 − µ3 + β30,

α1 =
β1θ1x∗1

(θ1 + c∗1)2 , α2 =
β2θ2x∗2

(θ2 + c∗2)2 , α3 =
β3θ3x∗3

(θ3 + c∗3)2 .

The characteristic equation of (3.37) is written as

λ3 + aλ2 + bλ + c = 0. (3.38)

where
a = −(A1 + B2 +C3), b = B2C3 + A1B2 + A1C3 − B3C2 − A2B1 − A3C1,

c = −A1B2C3 + A1B3C2 + A2B1C3 − A3B1C2 − A2B3C1 + A3B2C1.
(3.39)

Based on the characteristic Eq (3.39), the condition for asymptotical stability of steady states are
given by the Theorem below.

Theorem 3. Consider the model(2.2), and assume that all parameters satisfy (2.3) and the conditions
for the existence of steady states listed in Theorem 2, we have the following results.
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(1) The zero steady state E0 = (0, 0, 0) is asymptotically stable if and only if none of the conditions
(2.4)–(2.6) holds, i.e.,

β1 − µ1 < 0, β2 + β20 − µ2 < η, β3 + β30 − µ3 < 0. (3.40)

Furthermore, if
β1 − µ1 < 0, β2 + β20 − µ2 < 0, β3 + β30 − µ3 < 0, (3.41)

E0 is globally stable for any solutions in Ω.
(2) If (2.4) holds, the steady state E1 = (x∗1, 0, 0) is asymptotically stable if and only if

ξ2θ2
ξ1θ1

< a21,
ξ3θ3
ξ1θ1

< a31. (3.42)

(3) If (2.6) holds, the steady state E3 = (0, 0, x∗3) is asymptotically stable if and only if

ξ1θ1
ξ3θ3

< a13,
ξ2θ2
ξ3θ3

< a23. (3.43)

(4) If (2.4) and (2.6) hold, the steady state E13 = (x∗1, 0, x
∗
3) is asymptotically stable if and only if

1 − a13a31 > 0, and ξ2θ2 < a21x∗1 + a23x∗3. (3.44)

(5) If (2.5) and (2.6) hold, the steady state E23 = (0, x∗2, x
∗
3) is asymptotically stable if and only if

ξ1θ1 < a12x∗2 + a13x∗3, (1 − a23a32) +
η

β3θ3x∗3
(
x∗2
x∗3
+ a23)(θ3 + a32x∗2 + x∗3)2 > 0. (3.45)

(6) If (2.4)–(2.6) hold, the steady state E123 = (x∗1, x
∗
2, x
∗
3) is asymptotically stable if and only if

a > 0, ab − c > 0, c > 0, (3.46)

where a, b, c are defined by (3.39). Particularly, if the following conditions are satisfied

ξ1, ξ2, ξ3 > 0,

1 − a23a32 − a12a21 − a13a31 + a13a21a32 + a12a23a31 > 0,

2 − a13a21a32 − a12a23a31 ⩾ 0,

1 − a23a32 ⩾ 0, 1 − a12a21 > 0, 1 − a13a31 ⩾ 0, a23 − a13a21 ⩾ 0,

(3.47)

E123 is asymptotically stable.

Proof. (1) For the steady state E0, the coefficient matrix of the linearized Eq (3.37) is

JE0 =


β1 − µ1 0 0

0 β2 + β20 − µ2 − η 0
0 η β3 + β30 − µ3

 . (3.48)

It is straight forward to obtain the corresponding eigenvalues

λ1 = β1 − µ1, λ2 = β2 + β20 − µ2 − η, λ3 = β3 + β30 − µ3.
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Thus, E0 is asymptotically stable if and only if λ1, λ2, λ3 < 0, i.e., none of the conditions
(2.4)–(2.6) holds.

Next, to show the global stability of E0, we construct a Lyapunov function V(x1, x2, x3) as

V(x1, x2, x3) =
1
2

(x2
1 + (x2 + x3)2). (3.49)

It is easy to see that V(x1, x2, x3) is positive definite, and the derivative of V(x1(t), x2(t), x3(t)) along
any solution of (2.2) is given by

dV(x1(t), x2(t), x3(t))
dt

∣∣∣∣∣
(2.2)
= (x1 ẋ1 + (x2 + x3)(ẋ2 + ẋ3))|(2.2)

= (β1
θ1
θ1 + c1

− µ1)x2
1

+ (x2 + x3)
(
(β2

θ2
θ2 + c2

+ β20 − µ2)x2 + (β3
θ3
θ3 + c3

+ β30 − µ3)x3

)
.

(3.50)

From Theorem 1 and the proof therein, any solution of (2.2) with initial condition (x10, x20, x30) ∈ Ω
remains in Ω for all t > 0, i.e., x1(t), x2(t), x3(t) ⩾ 0. Hence, when (3.41) is satisfied, the derivative
(3.50) along any solution in Ω is negative definite. According to Theorem 1.1 in chapter X.1 of [36],
E0 is globally stable for any solutions in Ω.

(2) For the steady state E1 = (x∗1, 0, 0), the coefficient matrix of Eq (3.37) is

JE1 =


−
µ1(β1 − µ1)
β1

−a12
β1θ1x∗1

(θ1 + x∗1)2 −a13
β1θ1x∗1

(θ1 + x∗1)2

0
β2θ2

θ2 + a21ξ1θ1
+ β20 − µ2 − η 0

0 η
β3θ3

θ3 + a31ξ1θ1
+ β30 − µ3


. (3.51)

It is easy to have the eigenvalues

λ1 = −
µ1(β1 − µ1)
β1

λ2 =
β2θ2

θ2 + a21ξ1θ1
+ β20 − µ2 − η,

λ3 =
β3θ3

θ3 + a31ξ1θ1
+ β30 − µ3.

When (2.4) holds, we have ξ1 > 0, and λ1 < 0. Moreover, we have

λ2 < 0 ⇐⇒
β2θ2

θ2 + a21ξ1θ1
+ β20 − µ2 − η < 0

⇐⇒ β2θ2 < (µ2 + η − β20)(θ2 + a21ξ1θ1) and (µ2 + η − β20) > 0

⇐⇒
β2θ2

µ2 + η − β20
< θ2 + a21ξ1θ1

⇐⇒
ξ2θ2
ξ1θ1

< a21.
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and

λ3 < 0 ⇐⇒
β3θ3

θ3 + a31ξ1θ1
+ β30 − µ3 < 0

⇐⇒ β3θ3 < (µ3 − β30)(θ3 + a31ξ1θ1) and (µ3 − β30) > 0

⇐⇒
β3θ3
µ3 − β30

< θ3 + a31ξ1θ1

⇐⇒
ξ3θ3
ξ1θ1

< a31.

Thus, E1 is asymptotically stable if and only if λ2 < 0 and λ3 < 0, i.e.,
ξ2θ2
ξ1θ1

< a21 and
ξ3θ3
ξ1θ1

< a31.

(3) For the steady state E3 = (0, 0, x∗3), the coefficient matrix of (3.37) is given by

JE1 =



β1θ1
θ1 + a13x∗3

− µ1 0 0

0
β2θ2

θ2 + a23x∗3
+ β20 − µ2 − η 0

−a31
β3θ3x∗3

(θ3 + x∗3)2 −a32
β3θ3x∗3

(θ3 + x∗3)2 + η −
(µ3 − β30)(β3 + β30 − µ3)

β3


. (3.52)

This, it is straight forward to have the eigenvalues λ1, λ2, and λ3 as:

λ1 =
β1θ1

θ1 + a13x∗3
− µ1,

λ2 =
β2θ2

θ2 + a23x∗3
+ β20 − µ2 − η,

λ3 = −
(µ3 − β30)(β3 + β30 − µ3)

β3
.

From the condition (2.6), we have ξ3 > 0, and hence λ3 < 0. Moreover, note x∗3 = ξ3θ3, similar to
the argument in (2), we have

λ1 =
β1θ1

θ1 + a13ξ3θ3
− µ1 < 0 ⇐⇒

β1θ1
µ1
< θ1 + a13ξ3θ3 ⇐⇒

ξ1θ1
ξ3θ3

< a13,

and

λ2 =
β2θ2

θ2 + a23ξ3θ3
+ β20 − µ2 − η < 0 ⇐⇒

β2θ2
µ2 + η − β20

< θ2 + a23ξ3θ3 ⇐⇒
ξ2θ2
ξ3θ3

< a23.

Hence, E3 is asymptotically stable if and only if λ1 < 0 and λ2 < 0, i.e.,
ξ1θ1
ξ3θ3

< a13 and
ξ2θ2
ξ3θ3

< a23.

(4) For the steady state E13 = (x∗1, 0, x
∗
3), the coefficient matrix of (3.37) is given by

JE13 =


−α4 −a12α4 −a13α4

0
β2θ2

θ2 + a21x∗1 + a23x∗3
+ β20 − µ2 − η 0

−a31α5 η − a32α5 −α5

 , (3.53)
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where

α4 =
β1θ1x∗1

(θ1 + x∗1 + a13x∗3)2 , α5 =
β3θ3x∗3

(θ1 + a31x∗1 + x∗3)2 .

The eigenvalues λ1, λ2 and λ3 of JE13 satisfy

λ1 + λ3 = −(α4 + α5), λ1λ3 = (1 − a13a31)α4α5

and
λ2 =

β2θ2
θ2 + a21x∗1 + a23x∗3

+ β20 − µ2 − η.

Since α4 > 0, α5 > 0, we have λ1 < 0, λ3 < 0 if and only if 1 − a13a31 > 0. Moreover, similar to the
previous argument,

λ2 < 0 ⇐⇒ β2θ2 < (µ2 + η − β30)(θ2 + a21x∗1 + a23x∗3) ⇐⇒ ξ2θ2 < a21x∗1 + a23x∗3.

Thus, E13 is asymptotically stable if and only if (3.44) is satisfied.
(5) For the steady state E23 = (0, x∗2, x

∗
3), the coefficient matrix of (3.37) is given by

JE23 =


β1θ1

θ1 + a12x∗2 + a13x∗3
− µ1 0 0

−a21α6 −α6 −a23α6

−a31α7 η − a32α7 −
ηx∗2
x∗3
− α7

 , (3.54)

where

α6 =
β2θ2x∗2

(θ2 + x∗2 + a23x∗3)2 , α7 =
β3θ3x∗3

(θ3 + a32x∗2 + x∗3)2 .

The eigenvalues λ1, λ2 and λ3 of JE23 satisfy

λ1 =
β1θ1

θ1 + a12x∗2 + a13x∗3
− µ1,

and

λ2 + λ3 = −(α6 +
ηx∗2
x∗3
+ α7), and λ2λ3 = α6((1 − a23a32)α7 + η(

x∗2
x∗3
+ a23)).

Similar to the previous argument,

λ1 < 0 ⇐⇒
β1θ1

θ1 + a12x∗2 + a13x∗3
< µ1 ⇐⇒ ξ1θ1 < a12x∗2 + a13x∗3.

Moreover, since α6 > 0 and α7 > 0, we have

λ2 < 0, λ3 < 0 ⇐⇒ (1 − a23a32)α7 + η(
x∗2
x∗3
+ a23) > 0

⇐⇒ (1 − a23a32) +
η

β3θ3x∗3
(
x∗2
x∗3
+ a23)(θ3 + a32x∗2 + x∗3)2 > 0.

Thus, E23 is asymptotically stable if and only if (3.45) is satisfied.
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(6) For the steady state E123 = (x∗1, x
∗
2, x
∗
3), the characteristic equation for (3.37) is given by (3.38).

From the Routh-Hurwitz stability criterion, all eigenvalues have negative real parts if and only if
a > 0, ab − c > 0 and c > 0. Hence, E123 is asymptotically stable if and only if (3.46) is satisfied.

Let

α1 =
β1θ1x∗1

(θ1 + c∗1)2 , α2 =
β2θ2x∗2

(θ2 + c∗2)2 , α3 =
β3θ3x∗3

(θ3 + c∗3)2 ,

and applying (3.31), the coefficient matrix of (3.37) at E123 is given by

JE13 =


−α1 −a12α1 −a13α1

−a21α2 −α2 −a23α2

−a31α3 −a32α3 + η −α3 − η
x∗2
x∗3

 . (3.55)

Since α1, α2, α3, x∗2, x
∗
3 > 0, we have

a = α1 + α2 + α3 + η
x∗2
x∗3
> 0.

When the conditions in (3.47) are satisfied, we have

1 − a23a32 − a12a21 − a13a31 + a13a21a32 + a12a23a31 > 0, 1 − a12a21 > 0, a23 − a13a21 ⩾ 0,

and hence

c = −α1(−a23α2(η − a32α3) − α2(α3 + η
x∗2
x∗3

)) − a12α1(a21α2(α3 + η
x∗2
x∗3

) − a23α2a31α3)

− a13α1[a31α2α3 + a21α2(η − a32α3)]

= −α1

(
− a23α2(η − a32α3) − α2(α3 + η

x∗2
x∗3

) + a12(a21α2(α3 + η
x∗2
x∗3

) − a23α2a31α3)

+ a13(a31α2α3 + a21α2(η − a32α3))
)

= α1

(
(1 − a23a32 − a12a21 − a13a31 + a13a21a32 + a12a23a31)α2α3

+ (a23 − a21a13)ηα2 + (1 − a21a12)ηα2
x∗2
x∗3

)
> 0.

Furthermore, since

2 − a13a21a32 − a12a23a31 ⩾ 0, 1 − a23a32 ⩾ 0, 1 − a12a21 > 0, 1 − a13a31 ⩾ 0,

we have

ab − c = α2
1α2 + α

2
1(α3 + η

x∗2
x∗3

) − a12a21α
2
1α2 − a13a31α

2
1α3 + α

2
2(α3 + η

x∗2
x∗3

) + α1α
2
2

+ α1α2(α3 + η
x∗2
x∗3

) + a23α
2
2(η − a32α3) − a12a21α1α

2
2 + α2(α3 + η

x∗2
x∗3

)2
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+ α1α2(α3 + η
x∗2
x∗3

) + α1(α3 + η
x∗2
x∗3

)2 + a23α2(η − a32α3)(α3 + η
x∗2
x∗3

)

− a13a31α1α3(α3 + η
x∗2
x∗3

) + a13a21α1α2(η − a32α3) − a12a31a23α1α2α3

= α2
1α2 − a12a21α

2
1α2 + α

2
1(α3 + η

x∗2
x∗3

) − a13a31α
2
1α3 + α1α

2
2 − a12a21α1α

2
2

+ α2
2(α3 + η

x∗2
x∗3

) + a23α
2
2(η − a32α3) + α1(α3 + η

x∗2
x∗3

)2 − a13a31α1α3(α3 + η
x∗2
x∗3

)

+ 2α1α2(α3 + η
x∗2
x∗3

) + a13a21α1α2(η − a32α3) − a12a31a23α1α2α3

+ α2(α3 + η
x∗2
x∗3

)2 + a23α2(η − a32α3)(α3 + η
x∗2
x∗3

)

= (1 − a12a21)α2
1α2 + (1 − a13a31)α2

1α3 + α
2
1η

x∗2
x∗3
+ (1 − a12a21)α1α

2
2

+ (1 − a23a32)α2
2α3 + ηα

2
2

x∗2
x∗3
+ a23ηα

2
2 + (1 − a13a31)α1α3(α3 + η

x∗2
x∗3

)

+ α1η(α3 + η
x∗2
x∗3

)
x∗2
x∗3
+ (2 − a13a21a32 − a12a31a23)α1α2α3

+ (2
x∗2
x∗3
+ a13a21)ηα1α2 + (1 − a23a32)α2α3(α3 + η

x∗2
x∗3

)

+ (ηα2
x∗2
x∗3
+ a23ηα2)(α3 + η

x∗2
x∗3

)

> 0.

Hence, from the Routh-Hurwitz stability criterion, E123 is asymptotically stable.

Theorem 3 gives the conditions for the asymptotical stability of steady states of different types.
Specifically, the zero steady state E0 is asymptotically stable if none of the biological restrictions (2.4)–
(2.6) holds, i.e., there is no steady state with non-zero cell numbers. When (2.4)–(2.6) are satisfied,
and the competition coefficients ai j = 0 (i , j), the steady state E123 = (x∗1, x

∗
2, x
∗
3) exists, and is

asymptotically stable, however other nonnegative steady states (E1, E3, E13 and E23) are unstable. The
steady state E123 becomes unstable when the competition coefficients increase, and other corresponding
nonnegative steady states become stable.

3.3. Therapy strategy

Now, we consider the problem of optimal therapy strategy when both drug-sensitive and
drug-resistant tumor cells are co-existence. To this end, we extend the model to include the effect of
drug-induced tumor cell death and transition. Here, we consider the possible combination therapy
with two drugs, targeted to sensitive cells and resistant cells, respectively. Thus, we introduce the
parameters u and v to represent the extra removal rates of drug-sensitive and drug-resistant cells due
to treatment stress, respectively. In addition, we assume that the drug targeted to sensitive cells can
induce transitions from sensitive cells to resistant cells, the transition rate is represented as su. Thus,
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the model (2.2) is modified as

dx1

dt
= β1

θ1
θ1 + c1

x1 − µ1x1,

dx2

dt
= (β2

θ2
θ2 + c2

+ β20)x2 − µ2x2 − ηx2 − ux2,

dx3

dt
= (β3

θ3
θ3 + c3

+ β30)x3 − µ3x3 + ηx2 + sux2 − vx3.

(3.56)

Next we discuss the optimal therapy strategies based on (3.56) by designing the objective
functionals with quadratic and linear controls, respectively.

3.3.1. Quadratic control

Firstly, we analyze the quadratic control problem, and study the existence and uniqueness of optimal
solutions. In cancer therapy, we try to minimize the total quantity of drugs and the tumor burden during
treatment, and hence the associated objective functional can be defined as

J(u, v) =
∫ t f

0
(b(x2(t) + x3(t)) + cu(t)2 + dv(t)2)dt, (3.57)

where t f denotes the duration of treatment, and b > 0, c, d are constants, which represent non-negative
weights of the three parts. Thus, the optimization problem is formulated as

min
(u,v)∈A

J(u, v)

s.t.



dx1

dt
= β1

θ1
θ1 + c1

x1 − µ1x1,

dx2

dt
= (β2

θ2
θ2 + c2

+ β20)x2 − µ2x2 − ηx2 − ux2,

dx3

dt
= (β3

θ3
θ3 + c3

+ β30)x3 − µ3x3 + ηx2 + sux2 − vx3.

t ⩾ 0;

(x1(0), x2(0), x3(0)) = (x10, x20, x30) ∈ Ω,

A = {(u, v) ∈ L1[0, t f ]|0 ⩽ u(t) ⩽ umax, 0 ⩽ v(t) ⩽ vmax,∀t ∈ [0, t f ]}.

(3.58)

Now, we prove the existence of the solution for the optimal control of (3.58).

Theorem 4. There exists at least one pair of optimal control (u∗, v∗) such that

J(u∗, v∗) = min
(u,v)∈A

J(u, v).

Proof. First, we show properties below for the control problem (3.57).
(1). First, similar to the argument in Theorem 1, any solutions of (2.2) with initial condition in Ω1

is bounded with (x1(t), x2(t), x3(t)) ∈ Ω1 for any t > 0. From the Carathéodory Theorem (Theorem 5.1
in chapter I.5 of [42]), there exist (x10, x20, x30) ∈ Ω1 and (u, v) ∈ A so that the solution of Eq (3.56)
with initial condition (x1(0), x2(0), x3(0)) = (x10, x20, x30) is well defined in the interval [0, t f ].

(2). Since the intervals [0, umax] and [0, vmax] are closed and convex, the admissible control set A is
also closed and convex.
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(3). The the right hand side of (3.56) is continuous. Moreover, we can write the right hand side as

ζ1(x1, x2, x3) + ζ2(x1, x2, x3) ·
(

u
v

)
,

where

ζ1(x1, x2, x3) =


β1
θ1
θ1 + c1

x1 − µ1x1

(β2
θ2
θ2 + c2

+ β20)x2 − µ2x2 − ηx2

(β3
θ3
θ3 + c3

+ β30)x3 − µ3x3 + ηx2


, and ζ2(x1, x2, x3) =


0 0
−x2 0
sx2 −x3

 .

Since (x1, x2, x3) ∈ Ω1 is bounded, there exists K > 0 so that

∥ζ1(x1, x2, x3)∥ ≤ K∥x∥, ∥ζ2(x1, x2, x3)∥ ≤ K.

Thus, ∥∥∥∥∥∥ζ1(x1, x2, x3) + ζ2(x1, x2, x3) ·
(

u
v

)∥∥∥∥∥∥ ≤ K(∥x∥ + ∥(u, v)∥).

(4). It is easy to verify that L = b(x2(t) + x3(t)) + cu(t)2 + dv(t)2 is convex with respect to u and v.
Moreover, let c1 = min{c, d}, β = 2, we have

L ⩾ c1∥(u, v)∥β2.

Finally, the existence of the optimal control (u∗, v∗) is followed from the above properties and
Corollary 4.1 in [43].

Now, we try to solve the optimal control solution (u∗, v∗). To this end, applying the Pontryagin’s
maximum(or minimum) principle (PMP), the associated Hamiltonian H is defined as

H(x1, x2, x3, u, v, λ1, λ2, λ3) = b(x2 + x3) + cu2 + dv2

+ λ1(β1
θ1
θ1 + c1

− µ1)x1 + λ2(β2
θ2
θ2 + c2

+ β20 − µ2 − η − u)x2

+ λ3(β3
θ3
θ3 + c3

+ β30)x3 − µ3x3 + ηx2 + sux2 − vx3). (3.59)

Therewith, the associated co-state equations are

dλ1

dt
= −
∂H
∂x1
= −[λ1(β1

θ1
θ1 + c1

− µ1 − γ1) − λ2a21γ2 − λ3a31γ3],

dλ2

dt
= −
∂H
∂x2
= −[b − λ1a12γ1 + λ2(β2

θ2
θ2 + c2

+ β20 − µ2 − η − u − γ2) + λ3(η + su − a32γ3)],

dλ3

dt
= −
∂H
∂x3
= −[b − λ1a13γ1 − λ2a23γ2 + λ3(β3

θ3
θ3 + c3

+ β30 − µ3 − v − γ3)],

(3.60)

here,

γ1 =
β1θ1x1

(θ1 + c1)2 , γ2 =
β2θ2x2

(θ2 + c2)2 , γ3 =
β3θ3x3

(θ3 + c3)2 ,
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and the associated transversality conditions are

λ1(t f ) = 0, λ2(t f ) = 0, λ1(t f ) = 0.

On the interior of the control set A , the optimal controls satisfy the condition

∂H
∂u
=
∂H
∂v
= 0.

Furthermore, a standard optimality technique implies the optimal controls are given by

u∗(t) = max
{
0,min

{
umax,

(λ2(t) − sλ3(t))x2(t)
2c

}}
(3.61)

and
v∗(t) = max

{
0,min

{
vmax,

λ3(t)x3(t)
2d

}}
. (3.62)

Now, analogous to the discussions in previous studies [29, 30, 34], we consider the uniqueness of
the optimal control problem. Similar to the argument in Theorem 1, the state variables (x1, x2, x3) of
(3.56) are bounded, and there exists an invariant set Ω1 for the Eq (3.56) with

Ω1 = {(x1, x2, x3) ∈ R3 | 0 ⩽ x1 ⩽ b1, 0 ⩽ x2 ⩽ b2, 0 ⩽ x3 ⩽ b3}, (3.63)

where b1, b2, b3 > 0. Moreover, the solutions of the co-state system (3.60) are bounded with t ∈ (0, t f ).

Theorem 5. There exists a sufficiently small final time t f such that the optimal control solution is
unique.

Proof. We assume that there are two different solutions (x1, x2, x3, λ1, λ2, λ3) and (x̄1, x̄2, x̄3, λ̄1, λ̄2, λ̄3)
that solve (3.56) and (3.60), and will come out with a contradiction.

For a given positive parameter m > 0 (to be determined latter), set

pi(t) = xi(t)e−mt, qi(t) = λi(t)emt, p̄i(t) = x̄i(t)e−mt, q̄i(t) = λ̄i(t)emt, i = 1, 2, 3.

The optimal control solutions u(t), v(t), ū(t), v̄(t) are given by pi(t), qi(t), p̄i(t), q̄i(t) as

u(t) = max
{
0,min

{
umax,

(q2(t) − sq3(t))p2(t)
2c

}}
, v(t) = max

{
0,min

{
vmax,

q3(t)p3(t)
2d

}}
,

ū(t) = max
{
0,min

{
umax,

(q̄2(t) − sq̄3(t)) p̄2(t)
2c

}}
, v̄(t) = max

{
0,min

{
vmax,

q̄3(t) p̄3(t)
2d

}}
.

(3.64)

Substituting xi(t) = pi(t)emt, λi(t) = qi(t)e−mt into Eqs (3.56) and (3.60), after a tedious calculation
(see the Appendix), we obtain that there exist L1,i > 0, L2,i > 0 so that

m
∫ t f

0
(pi − p̄i)2dt ⩽ L1,i(1 + emt f )

∫ t f

0

 3∑
j=1

((p̄ j − p j)2 + (q̄ j − q j)2)

 dt, (3.65)

and

m
∫ t f

0
(qi − q̄i)2dt ⩽ L2,i(1 + emt f + e2mt f + e3mt f )

∫ t f

0

 3∑
j=1

(( p̄ j − p j)2 + (q̄ j − q j)2)

 dt. (3.66)
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Thus, adding up (3.65) and (3.66) for i = 1, 2, 3, there exists L3 = maxi=1,2,3{L1,i + L2,i} so that

(m − L3(1 + emt f + e2mt f + e3mt f ))
∫ t f

0

 3∑
j=1

((p̄ j − p j)2 + (q̄ j − q j)2)

 dt ⩽ 0, (3.67)

and L3 only depends on all equation coefficients.

Now, while we choose m = L3(1 + 3e) and t f <
1

3m
, then m − L(1 + emt f + e2mt f + e3mt f ) > 0, which

come out with a contradiction with (3.67) if (p j, q j) , ( p̄ j, q̄ j). Thus, we conclude pi = p̄i and qi = q̄i,
and hence u = ū and v = v̄ from (3.64).

3.3.2. Linear control

Now, we consider the situation of linear control problem, and seek to minimize the pay-off
functional J1 that is defined as

J1(u, v) =
∫ t f

0
[b(x2(t) + x3(t)) + cu(t) + dv(t)]dt. (3.68)

Similar to discussions in Theorem 4, we have the existence of optimal control strategy (u, v) that
minimizes J1(u, v).

Now, the necessary conditions of the above optimal problem can be given by the PMP [44].
According to PMP, the associated Hamiltonian H is written as

H(x1, x2, x3, u, v, λ1, λ2, λ3) = b(x2 + x3) + cu + dv

+ λ1(β1
θ1
θ1 + c1

− µ1)x1 + λ2(β2
θ2
θ2 + c2

+ β20 − µ2 − η − u)x2

+ λ3[(β3
θ3
θ3 + c3

+ β30)x3 − µ3x3 + ηx2 + sux2 − vx3]. (3.69)

Thus, the associated co-state equations are

dλ1

dt
= −
∂H
∂x1
= −[λ1(β1

θ1
θ1 + c1

− µ1 − γ1) − λ2a21γ2 − λ3a31γ3],

dλ2

dt
= −
∂H
∂x2
= −[b − λ1a12γ1 + λ2(β2

θ2
θ2 + c2

+ β20 − µ2 − η − u − γ2) + λ3(η + su − a32γ3)],

dλ3

dt
= −
∂H
∂x3
= −[b − λ1a13γ1 − λ2a23γ2 + λ3(β3

θ3
θ3 + c3

+ β30 − µ3 − v − γ3)],

(3.70)

where
γ1 =

β1θ1x1

(θ1 + c1)2 , γ2 =
β2θ2x2

(θ2 + c2)2 , γ3 =
β3θ3x3

(θ3 + c3)2 ,

and the associated transversality conditions are

λ1(t f ) = 0, λ2(t f ) = 0, λ1(t f ) = 0.

The optimal control solution (u, v) satisfies

∂H
∂u
= c − λ2x2 + sλ3x2,

∂H
∂v
= d − λ3x3. (3.71)
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Hence the optimal control solution is given by

u∗(t) =
{

0, c − λ2x2 + sλ3x2 > 0,
umax, c − λ2x2 + sλ3x2 < 0.

(3.72)

and

v∗(t) =
{

0, d − λ3x3 > 0,
vmax, d − λ3x3 < 0.

(3.73)

From (3.72) and (3.73), the optimal controls for the linear problem is a bang-bang control with
either zero or maximum dose drugs.

3.3.3. Numerical results

Now, we perform numerical simulations to verify the above analytic discussions. To carry out the
numerical simulation, firstly we need to specify parameter values in our model. Since our model is
proposed to describe the dynamics of tumor growth with both drug-sensitive and drug-resistant cells,
we assume that the proliferation rate of drug-sensitive cancer cells is larger than that of normal cells,
and the self-sustained growth rates of cancer cells are nonzero. Moreover, the proliferation rate of
drug-resistant cells is larger than that of sensitive cells, but sensitive cells can strongly inhibit the
proliferation of drug-resistant cells. Thus, we should have

β3 > β2 > β1, β20 > 0, β30 > 0, a32 > 1.

Different types of cells response differently to the cytokines, and hence we assume that θi can be
different for different types of cells. Default parameter values used in numerical simulation are listed
in the Table 1. Figure 2(a) shows the cell number dynamics in the case without treatment, in which the
system states (x1, x2, x3) approaches the steady state of E123-type. At this state, drug-sensitive cells are
dominant in the system, and there are a small fraction of pre-existing drug-resistant cells.

Now, we consider the effect of sequential treatment, with only one drug at one period. To this end,
we run the model Eq (3.56) with u = v = 0 to t = 200 days so that cancer cells numbers reach a high
level near the steady state. Next, we set u = umax to turn on the drug targeted to sensitive cells (u-drug
for short) for 200 days. Then, we set u = 0 and v = vmax to turn on the drug targeted to resistant
cells (v-drug for short). Figure 2(b) shows the cell number dynamics after sequential treatment. From
Figure 2(b), after the administration of u-drug, sensitive cell numbers rapidly decreases to an extreme
low level, however resistant cells number increases to a high level and becomes dominant. Next, after
the administration of v-drug, resistant cells number decreases, and sensitive cells number increases
again, which show the clinical symptom of tumor relapse.
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Table 1. Default parameter values.

Parameter Value Unit
β1 0.85 day−1

β2 1.1 day−1

β3 1.2 day−1

θ1 45.0 ×106cells
θ2 96.0 ×106cells
θ3 60.0 ×106cells
β20 0.0002 day−1

β30 0.0002 day−1

µ1 0.05 day−1

µ2 0.05 day−1

µ3 0.05 day−1

η 0.0002 day−1

a12 0.16 -
a13 0.44 -
a21 0.46 -
a23 0.38 -
a31 0.57 -
a32 1.2 -
umax 0.24 day−1

vmax 0.3 day−1

s 0.002 -
b 1 -
c 70 -
d 0.15 -
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Figure 2. Evolution of cell counts. (a) Cell count dynamics with no treatment. (b) Cell
count dynamics under sequential treatment with two drugs. Here, the u-drug and v-drug
are administrated in the time interval of t ∈ [t1, t2] and t ∈ [t2, 700], respectively. In all
simulations, initial conditions are x10 = 600, x20 = 32, x30 = 2, and parameters are taken
from Table 1.
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Now, we investigate the dynamics of cell number ratios under different treatment strategies with
either u-drug or v-drug alone, or sequential treatment with the two drugs. Here, the drug is applied at
t = 200 as in Figure 2 by which sensitive cells are dominant. After the administration of u-drug for 60
days, the ratio of sensitive cells decrease over time, however the ratio of resistant cells increase along
with treatment, and the ratio of total cancer cells slowly increases following the decreasing phase in the
early stage after treatment (Figure 3(a),(b)). If v-drug is applied alone, there is no obvious decreases
in the cancer cells ratio after treatment (Figure 3(c),(d)). The reason is obvious, since the v-drug
targeted cells contribute only a small fraction of cancer cells before treatment. Finally, in the case with
sequential treatment of two drugs, the total cancer cells ratio shows continuous decrease over time,
and reaches a level below 0.2 after 60 days treatment (Figure 3). These results suggest that various
treatment strategies can result in different outcomes.

Figure 3. Dynamics of cancer cells ratio under different treatment strategies. (a) Treatment
strategy with continuous u-drug. (b) Dynamics of cancer cells ratio corresponding to the
strategy (a). (c) Treatment strategy with continuous v-drug. (d) Dynamics of cancer cells
ratio corresponding to the strategy (c). (e) Treatment strategy with sequential treatment with
u-drug and v-drug. (f) Dynamics of cancer cells ratio corresponding to the strategy (e).
Parameters are taken from Table 1.

To investigate the effect of optimal control strategy, we numerically solve the optimal control
problem with the method of forward-backward sweep method (FBSM) [45]. Figure 4 shows the result
corresponding to the quadratic control problem. Here, we take the weight coefficients b = 1, c = 70
and d = 0.15 (Table 1). The optimal solution in Figure 4 suggests that we should apply the maximum
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dose drugs simultaneously, and continuously reduce the drug doses at the end point of treatment. In
this case, the total cancer cells ratio continuously decreases toward a level (2.93%) much lower than
those in Figure 3.
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Figure 4. Optimal solution of quadratic control problem. (a) Drug doses corresponding to
the optimal solution of the quadratic control problem. (b) Cancer cells ratio corresponding
to the optimal solution in (a). Parameters are taken from Table 1.

In the Eq (3.56), we introduce a parameter s to represent the effect of transition from sensitive cells
to resistant cells. Biologically, the transition can be induced by epigenetic, adaptive changes, or gene
mutation due to drug stress. To investigate how the transition may affect the optimal control treatment,
we vary the relative strength of the transition rate (measured by the ratio sumax/η), and calculate the
total drug doses

U(t) =
∫ t f

0
u(t)dt,V(t) =

∫ t f

0
v(t)dt, (3.74)

and the ratio of cancer cells at t = 60 for each value sumax. Results show that both total doses and the
ratio of cancer cells are insensitive with changes in the relative strength of the transition rate (Figure 5).
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Figure 5. Optimal solutions of quadratic control with different values sumax/η. (a) Total drug
doses defined by (3.74) during treatment versus sumax/η. (b) Cancer cells ratio at t = 60
versus sumax/η. Here, other parameters are taken from Table 1.
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Figure 6. Optimal solution of linear control problem. (a) Drug doses corresponding to the
optimal solution of the linear control problem. (b) Cancer cells ratio corresponding to the
optimal solution in (a). Parameters are taken from Table 1.

Similarly, we solve the optimal control problem with linear control pay-off functional, which yields
a bang-bang control. We obtain similar optimal solutions as in the case of quadratic control, in which
both drugs are administrated simultaneously with maximum doses, and stop the treatment at later stage
(Figure 6). Correspondingly, the final total cancer cells ratio at t = 60 decreases to about 4.54%.
Moreover, we vary the relative strength of the transition rate sumax/η to examine the dependences of
the total drug doses and final cancer ratios on the relative strength of the transition rate sumax/η. Similar
to the situation of quadratic control problem, both the total drug doses and final cancer cells ratio are
nonsensitive with the transition rate sumax/η (Figure 7).
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Figure 7. Optimal solutions of linear control problem with different values sumax/η. (a)
Total drug doses defined by (3.74) during treatment versus sumax/η. (b) Cancer cells ratio at
t = 60 versus sumax/η. Here, other parameters are taken from Table 1.

4. Conclusions

Intratumor heterogeneity is important to cell competition, and may play important roles in cancer
evolution. Here, we study a mathematical model of cancer evolution that includes competition between
normal cells and two types of cancer cells, as well as the transition between cancer cells. Moreover,
the potential transition from drug-sensitive cancer cells to drug-resistant cancer cells is also involved
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in the model. Based on the model, the invariant set of the nonnegative solutions, and the existence and
the stability of steady sates are discussed. We further discuss the optimal control problem that trying to
find the treatment strategy to minimize the optimal functional for both tumor burden and drug doses.
We prove the existence and uniqueness of the optimal control strategy for the proposed model. Finally,
numerical simulations are performed to verify the optimal control solutions.

In the present study, we study the problem of optimal treatment strategy of cancer through a simple
differential equation model. This model considers the competition between different types of cells.
In the realistic world, optimal treatment of cancer relies on two techniques: (1) effective method to
measure the state of tumor growth; (2) reliable prediction of tumor growth. However, neither of these
two techniques are available at present, and there is still a long way toward real world application of
the concept of optimal control treatment. This paper is rather a conceptual study that try to explore the
possible cell population dynamics when there are competitions between different types of cells, and the
possible benefit of optimal treatment in comparing with traditional maximum dose treatment (MDT).
The current study is based on a toy model of cell competitions in which different types of cells are
assumed to be homogeneous, and the effects of microenvironment are not included in the model, the
immune response are not included explicitly. To develop a more realistic and applicable model, these
factors are for sure to be included, which is a big ambition in the field of computational cancer biology.
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Appendix

Proof of the inequalities (3.65) and (3.66)

Substituting xi(t) = pi(t)emt, λi(t) = qi(t)e−mt into equations (3.56) and (3.60), we have (hereafter, ˙

means
d
dt

)

ṗ1emt + mp1emt =
β1θ1emt p1

θ1 + emt p1 + a12emt p2 + a13emt p3
− µ1emt p1,

ṗ2emt + mp2emt =
β2θ2emt p2

θ2 + a21emt p1 + emt p2 + a23emt p3
+ (β20 − µ2 − η)emt p2 − uemt p2,

ṗ3emt + mp3emt =
β3θ3emt p3

θ3 + a31emt p1 + a32emt p2 + emt p3
+ (β30 − µ3)emt p3 + ηemt p2 + suemt p2 − vemt p3,

and

q̇1e−mt − mq1e−mt = −
β1θ1e−mtq1

θ1 + emt p1 + a12emt p2 + a13emt p3
+ µ1e−mtq1

+
β1θ1emt p1e−mtq1

(θ1 + emt p1 + a12emt p2 + a13emt p3)2 +
a21β2θ2emt p2e−mtq2

(θ2 + a21emt p1 + emt p2 + a23emt p3)2
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+
a31β3θ3emt p3e−mtq3

(θ3 + a31emt p1 + a32emt p2 + emt p3)2 ,

q̇2e−mt − mq2e−mt = −b +
a12β1θ1emt p1e−mtq1

(θ1 + emt p1 + a12emt p2 + a13emt p3)2 + (µ2 + η − β20)e−mtq2 + e−mtuq2

−
β2θ2e−mtq2

θ2 + a21emt p1 + emt p2 + a23emt p3
+

β2θ2emt p2e−mtq2

(θ2 + a21emt p1 + emt p2 + a23emt p3)2

+
a32β3θ3emt p3e−mtq3

(θ3 + a31emt p1 + a32emt p2 + emt p3)2 − ηe
−mtq3 − se−mtuq3,

q̇3e−mt − mq3e−mt = −b +
a13β1θ1emt p1e−mtq1

(θ1 + emt p1 + a12emt p2 + a13emt p3)2

+
a23β2θ2emt p2e−mtq2

(θ2 + a21emt p1 + emt p2 + a23emt p3)2 −
β3θ3e−mtq3

θ3 + a31emt p1 + a32emt p2 + emt p3

+ (µ3 − β30)e−mtq3 + e−mtvq3 +
β3θ3emt p3e−mtq3

(θ3 + a31emt p1 + a32emt p2 + emt p3)2 .

Multiplying both sides of the first three equation by e−mt, and the last three equations by emt,
respectively, we obtain

ṗ1 + mp1 =
β1θ1 p1

θ1 + emt p1 + a12emt p2 + a13emt p3
− µ1 p1,

ṗ2 + mp2 =
β2θ2 p2

θ2 + a21emt p1 + emt p2 + a23emt p3
+ (β20 − µ2 − η)p2 − up2,

ṗ3 + mp3 =
β3θ3 p3

θ3 + a31emt p1 + a32emt p2 + emt p3
+ (β30 − µ3)p3 + ηp2 + sup2 − vp3,

q̇1 − mq1 = −
β1θ1q1

θ1 + emt p1 + a12emt p2 + a13emt p3
+ µ1q1

+
β1θ1emt p1q1

(θ1 + emt p1 + a12emt p2 + a13emt p3)2 +
a21β2θ2emt p2q2

(θ2 + a21emt p1 + emt p2 + a23emt p3)2

+
a31β3θ3emt p3q3

(θ3 + a31emt p1 + a32emt p2 + emt p3)2 ,

q̇2 − mq2 = −bemt +
a12β1θ1emt p1q1

(θ1 + emt p1 + a12emt p2 + a13emt p3)2 + (µ2 + η − β20)q2 + uq2

−
β2θ2q2

θ2 + a21emt p1 + emt p2 + a23emt p3
+

β2θ2emt p2q2

(θ2 + a21emt p1 + emt p2 + a23emt p3)2

+
a32β3θ3emt p3q3

(θ3 + a31emt p1 + a32emt p2 + emt p3)2 − ηq3 − suq3,

q̇3 − mq3 = −bemt +
a13β1θ1emt p1q1

(θ1 + emt p1 + a12emt p2 + a13emt p3)2

+
a23β2θ2emt p2q2

(θ2 + a21emt p1 + emt p2 + a23emt p3)2 −
β3θ3q3

θ3 + a31emt p1 + a32emt p2 + emt p3

+ (µ3 − β30)q3 + vq3 +
β3θ3emt p3q3

(θ3 + a31emt p1 + a32emt p2 + emt p3)2 .

Similarly, we obtain the same form equations of p̄i and λ̄i, i = 1, 2, 3.
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Next, subtracting the equations for pi and p̄i, and the equations for qi and q̄1, we have

( ṗ1 − ˙̄p1) + m(p1 − p̄1) =
β1θ1 p1

θ1 + emt p1 + a12emt p2 + a13emt p3
−

β1θ1 p̄1

θ1 + emt p̄1 + a12emt p̄2 + a13emt p̄3

− µ1(p1 − p̄1),

(ṗ2 − ˙̄p2) + m(p2 − p̄2) =
β2θ2 p2

θ2 + a21emt p1 + emt p2 + a23emt p3
−

β2θ2 p̄2

θ2 + a21emt p̄1 + emt p̄2 + a23emt p̄3

+(β20 − µ2 − η)(p2 − p̄2) − (up2 − ūp̄2),

( ṗ3 − ˙̄p3) + m(p3 − p̄3) =
β3θ3 p3

θ3 + a31emt p1 + a32emt p2 + emt p3
−

β3θ3 p̄3

θ3 + a31emt p̄1 + a32emt p̄2 + emt p̄3

+ (β30 − µ3)(p3 − p̄3) + η(p2 − p̄2) + s(up2 − ūp̄2) − (vp3 − v̄ p̄3),

and

(q̇1 − ˙̄q1) − m(q1 − q̄1) = −
β1θ1q1

θ1 + emt p1 + a12emt p2 + a13emt p3
+

β1θ1q̄1

θ1 + emt p̄1 + a12emt p̄2 + a13emt p̄3

+ µ1(q1 − q̄1)

+
β1θ1emt p1q1

(θ1 + emt p1 + a12emt p2 + a13emt p3)2 −
β1θ1emt p̄1q̄1

(θ1 + emt p̄1 + a12emt p̄2 + a13emt p̄3)2

+
a21β2θ2emt p2q2

(θ2 + a21emt p1 + emt p2 + a23emt p3)2 −
a21β2θ2emt p̄2q̄2

(θ2 + a21emt p̄1 + emt p̄2 + a23emt p̄3)2

+
a31β3θ3emt p3q3

(θ3 + a31emt p1 + a32emt p2 + emt p3)2 −
a31β3θ3emt p̄3q̄3

(θ3 + a31emt p̄1 + a32emt p̄2 + emt p̄3)2 ,

(q̇2 − ˙̄q2) − m(q2 − q̄2) =
a12β1θ1emt p1q1

(θ1 + emt p1 + a12emt p2 + a13emt p3)2 −
a12β1θ1emt p̄1q̄1

(θ1 + emt p̄1 + a12emt p̄2 + a13emt p̄3)2

−
β2θ2q2

θ2 + a21emt p1 + emt p2 + a23emt p3
+

β2θ2q̄2

θ2 + a21emt p̄1 + emt p̄2 + a23emt p̄3

+
β2θ2emt p2q2

(θ2 + a21emt p1 + emt p2 + a23emt p3)2 −
β2θ2emt p̄2q̄2

(θ2 + a21emt p̄1 + emt p̄2 + a23emt p̄3)2

+
a32β3θ3emt p3q3

(θ3 + a31emt p1 + a32emt p2 + emt p3)2 −
a32β3θ3emt p̄3q̄3

(θ3 + a31emt p̄1 + a32emt p̄2 + emt p̄3)2

+ (µ2 + η − β20)(q2 − q̄2) + uq2 − ūq̄2 − η(q3 − q̄3) − s(uq3 − ūq̄3),

(q̇3 − ˙̄q3) − m(q3 − q̄3) =
a13β1θ1emt p1q1

(θ1 + emt p1 + a12emt p2 + a13emt p3)2 −
a13β1θ1emt p̄1q̄1

(θ1 + emt p̄1 + a12emt p̄2 + a13emt p̄3)2

+
a23β2θ2emt p2q2

(θ2 + a21emt p1 + emt p2 + a23emt p3)2 −
a23β2θ2emt p̄2q̄2

(θ2 + a21emt p̄1 + emt p̄2 + a23emt p̄3)2

−
β3θ3q3

θ3 + a31emt p1 + a32emt p2 + emt p3
+

β3θ3q̄3

θ3 + a31emt p̄1 + a32emt p̄2 + emt p̄3

+
β3θ3emt p3q3

(θ3 + a31emt p1 + a32emt p2 + emt p3)2 −
β3θ3emt p̄3q̄3

(θ3 + a31emt p̄1 + a32emt p̄2 + emt p̄3)2

+ (µ3 − β30)(q3 − q̄3) + vq3 − v̄q̄3.

Now, we consider the equations for (p3 − p̄3) and (−q3 + q̄3), and other equations can be treated
similarly. Multiplying the equation for (p3 − p̄3) by (p3 − p̄3), and integrating the obtained equation
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from 0 to t f , we have

1
2

(p3(t) − p̄3(t))2
∣∣∣t f

0
+ m

∫ t f

0
(p3 − p̄3)2dt

=

∫ t f

0

( β3θ3 p3

θ3 + a31emt p1 + a32emt p2 + emt p3
−

β3θ3 p̄3

θ3 + a31emt p̄1 + a32emt p̄2 + emt p̄3

)
(p3 − p̄3)dt

+ (β30 − µ3)
∫ t f

0
(p3 − p̄3)2dt + η

∫ t f

0
(p2 − p̄2)(p3 − p̄3)dt

+ s
∫ t f

0
(up2 − ūp̄2)(p3 − p̄3)dt −

∫ t f

0
(vp3 − v̄ p̄3)(p3 − p̄3)dt. (4.1)

Multiplying the equation for (q3 − q̄3) by (−q3 + q̄3), and integrating the obtained equation from 0
to t f , we have

−
1
2

(q3(t) − q̄3(t))2
∣∣∣t f

0
+ m

∫ t f

0
(q3 − q̄3)2dt

=

∫ t f

0

( a13β1θ1emt p1q1

(θ1 + emt p1 + a12emt p2 + a13emt p3)2 −
a13β1θ1emt p̄1q̄1

(θ1 + emt p̄1 + a12emt p̄2 + a13emt p̄3)2

)
(q̄3 − q3)dt

+

∫ t f

0

( a23β2θ2emt p2q2

(θ2 + a21emt p1 + emt p2 + a23emt p3)2 −
a23β2θ2emt p̄2q̄2

(θ2 + a21emt p̄1 + emt p̄2 + a23emt p̄3)2

)
(q̄3 − q3)dt

−

∫ t f

0

( β3θ3q3

θ3 + a31emt p1 + a32emt p2 + emt p3
−

β3θ3q̄3

θ3 + a31emt p̄1 + a32emt p̄2 + emt p̄3

)
(q̄3 − q3)dt

+

∫ t f

0

( β3θ3emt p3q3

(θ3 + a31emt p1 + a32emt p2 + emt p3)2 −
β3θ3emt p̄3q̄3

(θ3 + a31emt p̄1 + a32emt p̄2 + emt p̄3)2

)
(q̄3 − q3)dt

−

∫ t f

0
(µ3 − β30)(q3 − q̄3)2dt +

∫ t f

0
(vq3 − v̄q̄3)(q̄3 − q3)dt. (4.2)

We note that p3(0) = p̄3(0) = x30, equation (4.1) implies

1
2

(p3(t f ) − p̄3(t f ))2 + m
∫ t f

0
(p3 − p̄3)2dt

=

∫ t f

0

( β3θ3 p3

θ3 + a31emt p1 + a32emt p2 + emt p3
−

β3θ3 p̄3

θ3 + a31emt p̄1 + a32emt p̄2 + emt p̄3

)
(p3 − p̄3)dt

+ (β30 − µ3)
∫ t f

0
(p3 − p̄3)2dt + η

∫ t f

0
(p2 − p̄2)(p3 − p̄3)dt

+ s
∫ t f

0
(up2 − ūp̄2)(p3 − p̄3)dt −

∫ t f

0
(vp3 − v̄ p̄3)(p3 − p̄3)dt

⩽

∫ t f

0

∣∣∣∣ β3θ3 p3

θ3 + a31emt p1 + a32emt p2 + emt p3
−

β3θ3 p̄3

θ3 + a31emt p̄1 + a32emt p̄2 + emt p̄3

∣∣∣∣|p3 − p̄3|dt

+ (β30 − µ3)
∫ t f

0
(p3 − p̄3)2dt + η

∫ t f

0
(p2 − p̄2)(p3 − p̄3)dt

+ s
∫ t f

0
(up2 − ūp̄2)(p3 − p̄3)dt −

∫ t f

0
(vp3 − v̄ p̄3)(p3 − p̄3)dt. (4.3)
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Since the solutions of (3.56) are nonnegative, namely pi, p̄i ⩾ 0, we have

(θ3 + a31emt p1 + a32emt p2 + emt p3)(θ3 + a31emt p̄1 + a32emt p̄2 + emt p̄3) ⩾ θ23.

Hence,

1
2

(p3(t f ) − p̄3(t f ))2 + m
∫ t f

0
(p3 − p̄3)2dt

⩽
β3

θ3

∫ t f

0

∣∣∣∣p3(θ3 + a31emt p̄1 + a32emt p̄2 + emt p̄3) − p̄3(θ3 + a31emt p1 + a32emt p2 + emt p3)
∣∣∣∣|p3 − p̄3|dt

+ (β30 − µ3)
∫ t f

0
(p3 − p̄3)2dt + η

∫ t f

0
(p2 − p̄2)(p3 − p̄3)dt

+ s
∫ t f

0
(up2 − ūp̄2)(p3 − p̄3)dt −

∫ t f

0
(vp3 − v̄ p̄3)(p3 − p̄3)dt

=
β3

θ3

∫ t f

0

∣∣∣∣θ3(p3 − p̄3) + a31emt(p3 p̄1 − p̄3 p1) + a32emt(p3 p̄2 − p̄3 p2)
∣∣∣∣|p3 − p̄3|dt

+ (β30 − µ3)
∫ t f

0
(p3 − p̄3)2dt + η

∫ t f

0
(p2 − p̄2)(p3 − p̄3)dt

+ s
∫ t f

0
(up2 − ūp̄2)(p3 − p̄3)dt −

∫ t f

0
(vp3 − v̄ p̄3)(p3 − p̄3)dt

⩽
β3

θ3

∫ t f

0

(
θ3|p3 − p̄3| + a31emt|p3 p̄1 − p̄3 p1| + a32emt|p3 p̄2 − p̄3 p2|

)
|p3 − p̄3|dt

+ (β30 − µ3)
∫ t f

0
(p3 − p̄3)2dt + η

∫ t f

0
(p2 − p̄2)(p3 − p̄3)dt

+ s
∫ t f

0
(up2 − ūp̄2)(p3 − p̄3)dt −

∫ t f

0
(vp3 − v̄ p̄3)(p3 − p̄3)dt

=
β3

θ3

∫ t f

0

(
a31emt|p3 p̄1 − p̄3 p1| + a32emt|p3 p̄2 − p̄3 p2|

)
|p3 − p̄3|dt

+ (β30 − µ3 + β3)
∫ t f

0
(p3 − p̄3)2dt + η

∫ t f

0
(p2 − p̄2)(p3 − p̄3)dt

+ s
∫ t f

0
(up2 − ūp̄2)(p3 − p̄3)dt −

∫ t f

0
(vp3 − v̄ p̄3)(p3 − p̄3)dt. (4.4)

Now, we perform estimations to some terms of (4.4), and the other terms can be obtained by similar
discussions. Applying the Cauchy inequality, there exists M1 > 0 such that∫ t f

0
a31emt|p3 p̄1 − p̄3 p1||p3 − p̄3|dt ⩽ a31emt f

∫ t f

0
|(p3 p̄1 − p̄3 p1)(p3 − p̄3)|dt

= a31emt f

∫ t f

0
|(p3 p̄1 − p3 p1 + p3 p1 − p̄3 p1)(p3 − p̄3)|dt

= a31emt f

∫ t f

0
|(p3( p̄1 − p1)(p3 − p̄3) + (p3 − p̄3)p1)(p3 − p̄3)|dt

⩽ a31emt f

∫ t f

0
|p3( p̄1 − p1)(p3 − p̄3)| + |p1|(p3 − p̄3)2dt
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⩽ a31emt f M1

∫ t f

0
((p̄1 − p1)2 + (p3 − p̄3)2)dt. (4.5)

Next, since pi(t) and p̄i(t) are nonnegative functions for t ∈ (0, t f ),∫ t f

0
(up2 − ūp̄2)(p3 − p̄3)dt

=

∫ t f

0
(max

{
0,min

{
umax,

(q2 − sq3)p2

2c
}}

p2 −max
{
0,min

{
umax,

(q̄2 − sq̄3) p̄2

2c
}}

p̄2)(p3 − p̄3)dt

⩽

∫ t f

0

∣∣∣∣(max
{
0,min

{
umax,

(q2 − sq3)p2

2c
}}

p2 −max
{
0,min

{
umax,

(q̄2 − sq̄3) p̄2

2c
}}

p̄2)(p3 − p̄3)
∣∣∣∣dt

=

∫ t f

0

∣∣∣∣ max
{
0,min

{
umax p2,

(q2 − sq3)p2
2

2c
}}
−max

{
0,min

{
umax p̄2,

(q̄2 − sq̄3) p̄2
2

2c
}}∣∣∣∣|(p3 − p̄3)|dt

⩽

∫ t f

0

∣∣∣∣ (q2 − sq3)p2
2

2c
−

(q̄2 − sq̄3) p̄2
2

2c

∣∣∣∣|p3 − p̄3|dt.

Moreover, since the function f (p2, q2, q3) =
(q2 − sq3)p2

2

2c
is locally Lipschitz, there exists M2 > 0

so that ∫ t f

0

∣∣∣∣ (q2 − sq3)p2
2

2c
−

(q̄2 − sq̄3)p̄2
2

2c

∣∣∣∣|p3 − p̄3|dt

⩽ M2

∫ t f

0
(|p2 − p̄2| + |q2 − q̄2| + |q3 − q̄3|)|p3 − p̄3|dt

⩽
M2

2

∫ t f

0
((p2 − p̄2)2 + (q2 − q̄2)2 + (q3 − q̄3)2 + 3(p3 − p̄3)2)dt.

Hence,∫ t f

0
(up2 − ūp̄2)(p3 − p̄3)dt ⩽

M2

2

∫ t f

0
((p2 − p̄2)2 + (q2 − q̄2)2 + (q3 − q̄3)2 + 3(p3 − p̄3)2)dt. (4.6)

Similarly, there exists M3 > 0 so that

−

∫ t f

0
(vp3 − v̄ p̄3)(p3 − p̄3)dt ⩽

M3

2

∫ t f

0
((q3 − q̄3)2 + 3(p3 − p̄3)2)dt. (4.7)

Thus, from (4.4) and (4.5)-(4.7), and note (p3(t f ) − p̄3(t f ))2 ⩾ 0, there exists L1,3 > 0 so that

m
∫ t f

0
(p3 − p̄3)2dt ⩽ L1,3(1 + emt f )

∫ t f

0

 3∑
j=1

(( p̄ j − p j)2 + (q̄ j − q j)2)

 dt,

which gives an inequality of form (3.65).
Applying the analogous scheme, we obtain for L2,3 > 0 so that

m
∫ t f

0
(q3 − q̄3)2dt ⩽ L2,3(1 + emt f + e2mt f + e3mt f )

∫ t f

0

 3∑
j=1

(( p̄ j − p j)2 + (q̄ j − q j)2)

 dt,
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which gives an inequality of form (3.66).
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