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Abstract: As an advanced technique, compressed sensing has been used for rapid magnetic resonance 
imaging in recent years, Two-step Iterative Shrinkage Thresholding Algorithm (TwIST) is a popular 
algorithm based on Iterative Thresholding Shrinkage Algorithm (ISTA) for fast MR image 
reconstruction. However TwIST algorithms cannot dynamically adjust shrinkage factor according to 
the degree of convergence. So it is difficult to balance speed and efficiency. In this paper, we proposed 
an algorithm which can dynamically adjust the shrinkage factor to rebalance the fidelity item and 
regular item during TwIST iterative process. The shrinkage factor adjusting is judged by the previous 
reconstructed results throughout the iteration cycle. It can greatly accelerate the iterative convergence 
while ensuring convergence accuracy. We used MR images with 2 body parts and different sampling 
rates to simulate, the results proved that the proposed algorithm have a faster convergence rate and 
better reconstruction performance. We also used 60 MR images of different body parts for further 
simulation, and the results proved the universal superiority of the proposed algorithm. 
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1. Introduction  

Nyquist sampling theorem is the criterion that must be followed in traditional image 
acquisition system. The traditional acquisition mode often acquires raw image data at a very high 
sampling frequency, it may take a long time and require high equipment performance. The same, 
traditional magnetic resonance (MR) imaging also takes too long time, which is easy to cause 
motion artifacts, and patient compliance is poor. In addition, for imaging that requires injection of 
contrast agents, prolonged sampling can result in reduced contrast, which can result in poor quality 
or undiagnosable images. 

In order to solve the above problems, Compressed Sensing (CS) theory was proposed [1], based 
on the theory of sparse decomposition and signal approximation. In this theory, the raw data which are 
undersampled can be reconstructed by performing nonlinear optimisation, and without reducing the 
image quality. In 2007, CS was applied to the field of MR imaging and achieved amazing results [2]. 
After that, efficient reconstruction algorithms had always been a research hotspot in undersampling 
MR image reconstruction field. Among them, Iterative shrinkage thresholding algorithm (ISTA) [3], 
Split Bregman Iteration [4] and conjugate gradient (CG) [5] were the mostly used algorithms. 
Compared with Bregman and CG, ISTA had lower algorithm complexity and directly solved the L1 
minimization problem to get faster iterations [3, 6–9]. In addition, with the deepening of deep learning 
in medical image processing research, it also provides new solutions for fast magnetic resonance 
reconstruction [10,11]. 

Therefore, a large number of people have studied the ISTA algorithm to improve the 
reconstruction accuracy and improve the iterative efficiency, and a series of improved ISTA were 
brought up. In 2007, Bioucas-Dias and Figueiredo [12] proposed Two-step Iterative Shrinkage 
Thresholding Algorithm (TwIST), the first two iteration estimates and threshold functions are used to 
estimate the current value at each iteration. In 2009, Beck et al. [13] proposed Iterative shrinkage 
thresholding algorithm (FISTA) based on the results of the first two iteration to improve global rate of 
convergence. In 2015, Zhang et al. [14] proposed an algorithm used exponential wavelet as sparse 
transformation, it can improve MR image reconstruction effect by increasing signal sparsity. In 2015, 
Li et al. [15] proposed Hessian Schatten norm-based regularization instead of the total variation (TV), 
it can keep the favorable properties of TV and reduce the staircase effect appearing in TV-based 
reconstructions. In 2016, Wu et al. [16] used regularization parameter to be taken as a threshold in a 
fixed-point ISTA. In 2019, Shang et al. [17] proposed an easy-to-implement algorithm based on the 
framework of alternative direction method, named iterative p-shrinkage thresholding algorithm 
(PISTA), for solving the low Tucker rank tensor recovery problem. And it has been successfully 
applied in MRI image recovery.  

However, in order to improve the efficiency of the iteration, early in the iterations, the weight of 
the fidelity term should be increased to speed up the convergence. Late in the iterations, the weight of 
the regular term should be increased to improve the convergence accuracy. But in above algorithms, 
the weight of fidelity item and regular item are fixed. In this paper, two-step iterative Thresholding 
Algorithm with dynamic shrinkage factor (DTwIST) was proposed, DTwIST can dynamic adjust 
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shrinkage factor to rebalance the weight of fidelity item and regular item to improve the convergence 
efficiency, and can improve the final convergence accuracy. 

2. Materials and methods 

2.1. Magnetic resonance imaging model under compressed sensing 

To apply the theory of compressed sensing to rapid imaging of magnetic resonance, the first is to 
use part of k-space data obtained by undersampling as a known condition, and then use the a priori 
knowledge of the sparseness of the magnetic resonance image in the specific transform domain, and 
then construct the convex optimization problem of L1 norm in combination with the compressed 
sensing theory, at last an optimal solution for the magnetic resonance image can be got. The basic 
mathematical model is shown as follows: 

2
1 2arg min || || . . || ||uu s t F u y                         (1) 

where u  is the magnetic resonance image to be reconstructed,   stands for linear sparse transform, 

it can be total variation (TV), wavelet transform, curvelet transform or other sparse transform, uF  

stands for k-space sampling mode, y  is the k-space data obtained by undersampling measurement,   

represents the noise level of the measured data. Because k-space data is a two-dimensional Fourier 

transform of magnetic resonance images, the measurement matrix in the model is the undersampled 

Fourier transform matrix. Convert Eq (1) into unconstrained optimization problem form by lagrange 

multiplier method: 

1

2
2arg min || || || ||uF u y u  

                        (2) 

The regularization parameter   in Eq (2) is used to balance the proportion of the fidelity term 
2
2|| ||uF u y  with the regular term 1

|| ||u
. The sparse transform domain coefficient of MR image u  

is m , which defines as follows: 

        m u                                  (3) 

  is an orthogonal matrix, and thus its transpose is equal to its inverse, Eq (2) can be rewritten 
as follows: 

1

2
2arg min || || || ||T

uF m y m  
                       (4) 

Reconstructed magnetic resonance images can be obtained by solving Eq (4). 

2.2. Reweighted iterative shrinkage thresholding algorithm 

RISTA mainly uses the first two reconstructed results to adjust the weights   of the fidelity and 
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regular item. The specific process of RISTA for solving Eq (2) is as blow. 

Let 
2
2( ) || ||T

uf m F m y    and 1( ) || ||g m m  

Therefore solving Eq (4) is equivalent to solving the following Eq: 

arg min ( ) ( )f m g m                              (5) 

Suppose ( )f m   satisfies the condition of being Lipschitz continuous. Then, it can be 

approximated as follows near previous iteration 1km  . 

2

21111 2
)(,)()(   kkkk mm

L
mfmmmfmf

              (6) 

where L   is the lower bound of the derivative of ( )f m  , called Lipschitz constant, and k   is the 

current number of iterations. Combining the gradient descent method, a more general quadratic 
approximation model is used to solve the optimization problem of Eq (5). 

2

1 1 1 1 2
arg min ( ) , ( ) ( )

2k k k k k

L
m f m m m f m m m g m   

        
        (7) 

After ignoring the constant term 1km   and )( 1 kmf , the above Eq (7) can be changed into the 

following: 

           

2

1 1
2

1
arg min ( ( )) ( )

2k k k

L
m m m f m g m

L
 

       
                (8) 

Based on separable characteristics of L1 norm and the square of the L2 norm, Eq (8) can be solved 
as following 3: 

1 1( )
k

T T
k k km G m C y C Cm   

                      (9) 

where 
T

uC F  , the function 
( )

k
G x

 is defined as Eq (10): 

( ) sgn( ) max(| | , 0)
k

G x x x                          (10) 

where sgn( )x is a symbolic function,   is a constant and determines the basic shrinkage step size 

for each iteration thresholding.  
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2.3. Two-step iterative thresholding algorithm with dynamic shrinkage factor 

Here we introduced a dynamic shrinkage factor k  in Eq (10) to dynamically adjust  . Then 

Eq (10) can be rewritten as: 

( ) sgn( ) max(| | , 0)
k kG x x x                          (11) 

The update function of the regularization parameter k  is updated as follows: 

 )(
21

221
1









k

kk
kk m

mm

                         (12) 

where 1km    and 2km    are the results of the previous two iterations. As the number of iterations 

increases, 1 2 2|| ||k km m   tends to zero and k  tends to 1. By way of adjusting the regularization 

parameters  , the weight of fidelity items is larger in the early stage of iterations, and it is conducive 
to rapid convergence. But in the late iterations, the weight of regular items is larger, so that it can 
ensure the image reconstruction accuracy. Parameter    is used to adjust the change rate of the 
regularization parameter. 

Then combined with method of iterative reweighted shrinkage [13], we used the first two iteration 
values to adjust the current iteration value: 

2 -1(1 ) ( )  

=
k k k k

k k

n m m m

m n

       

                       (13) 

where 2km  , -1km  and km  are the iterative values of last three times, we use Eq (13) to adjust the 

current iteration value. Where   and   are calculated as follows: 

1 2

2
1 2 1 2

1 / 2 2
= = =

1+ / +1+ 1-

    
   


， ，

                    (14) 

where 1  and 2  are chosen as reference [10], here we set them as 1 2=0.001,  = 1  . 

Next the iterative step size of the algorithm needs to be considered. In paper [18–20], the 
convergence of ISTA algorithm was proved and the initial value   could be chosen as below 21: 

       max( )TC y                               (15) 

The termination condition of the image iteration is given by the following: 
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1 2

2

(1 )k

k

m
abs

m
  

                         (16) 

where   is the maximum allowable error set in advance. 

2.4. Algorithm implementation 

The sparse transform maps the original image into the sparse domain, making the non-zero 
coefficients of the sparse domain more sparse. Generally different sparse transforms are available for 
different types of images. The requirement of the construction of the sparse transform is to make the 
transform coefficients of the image on the set of bases more sparse by finding a set of orthogonal bases. 
In the ISTA series of algorithms, two-dimensional discrete wavelet transform (DWT2) were widely 
used, this sparse transform was also used in this paper. 

In CS-MRI, since the sparse transform is fixed, the incoherent undersampling can only be 
achieved by designing the measurement matrix to ensure that the RIP condition is satisfied [22,23]. In 
two-dimensional magnetic resonance imaging, the measurement matrix is embodied in the acquisition 
mode of the K space. The variable density spiral trajectories 24 was used in this experiment. 

The specific algorithm implementation steps are as follows: 
Algorithm 1. Two-step iterative Thresholding Algorithm with dynamic shrinkage factor 
Inputs: 

y : undersampled observation value in k-space 

 : discrete wavelet transform 

Initialization: 

1,001.0,10,1,9.0,1 21
5

1   k  

max( )TC y   

Repeat 

Update k  by Eq (12) 

Update 
( )

k
G x

 by Eq (11) 

Update km  by Eq (9) 

Update  ，  by Eq (14) 

Renew km  by Eq (13) 

1 kk ; 

Until tol   
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Output: reconstructed MR image = T
k ku m  

3. Simulation setting 

As shown in Figure 1, MR images of the abdomen and lumbar spine were selected as experimental 
images to test the reconstruction performance of CS-MR images. The MRI raw data came from the 
Department of Radiology, Jiangsu Provincial People's Hospital, and they were acquired on a 1.5T 
Philips Achieva scanner with a 8-channel receiver coil.  

The abdomen image matrix size = 448 × 448 and the lumbar spine image matrix size = 528 × 528. 
To control the effect of different matrix sizes, the images are resampled before algorithm processing, 
and the matrix size after the two images are resampled = 512 × 512. 

  

Figure 1. the full sampling images–left: abdomen, right: lumbar spine. 

The sampling pattern of variable density spiral trajectories were set to 20, 30 and 40%, and they 
represented 5×, 3.3× and 2.5× accelerations. Spiral is a circular spiral, radial curve. It starts from the 
center and does not collect corner data. The spatial resolution of the image is isotropic 20% spiral 
sampling trajectory are shown in Figure 2. 

 

Figure 2. 20% spiral sampling trajectory. 

Two general stopping criterias were used: maximum number of iterations (50) and tolerance (10-5), 
and when either criterion is satisfied, the reconstruction stops.  

ISTA, PISTA and TwIST were chosen as comparison algorithms for proposed method. The 
reconstruction effects were compared. 4 evaluation indicators were selected: the Peak Signal-to-Noise 
Ratio (PSNR in dB), Structural Similarity Index (SSIM) 25, Transferred Edge Information (TEI) 26 
and normalized mutual information (NMI). 
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ˆ ˆxx xx
gTEI Q Q                                (17) 

here, 
ˆxx

gQ 

 and 
ˆxxQ


 represent the edge strength and direction preservation values respectively. The 

larger the value of TEI is, the better the edge information of the reconstructed image is kept. 

( ) ( )
( , )

( , )

H A H B
NMI A B

H A B


                           (18) 

where ( )H A  and ( )H B  are the entropies of images A and B, respectively, and ( , )H A B  is the joint 

entropy of images A and B. The larger the NMI value, the higher the similarity between the two images. 

4. Results 

In order to fully evaluate the performance of the proposed algorithm (DTwIST) in this paper, we 
have designed several sets of experiments, and ISTA, PISTA, TwIST were used as comparison 
algorithms.MATLAB (R2016a) is used to implement the algorithm. 

    

PSNR: 40.64         PSNR: 40.94         PSNR: 40.78       PSNR: 41.15 

    

PSNR: 38.64          PSNR: 38.87       PSNR: 38.78       PSNR: 39.03 

(a) ISTA          (b) PISTA          (c) TwIST           (d) DTwIST 

Figure 3. The reconstructed images and detailed images for abdomen and lumbar spine 
at 20% sampling rate after 50 iterations. 
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First, we compare the reconstruction performances of different images at the same sampling 
rate (20%) by 4 algorithms. Figure 3 shows the images were reconstructed by 4 different algorithms 
at 20% sampling rate after 50 iterations. 4 columns of images represent ISTA, PISTA, TwIST and 
DTwIST. The results show that the reconstructed images with DTwIST can get sharper edges and 
better local detail than other 3 at 20% sampling rate. 

Figures 4 and 5 show the convergence curves of the reconstruction performance. PSNR, SSIM, 
TEI and NMI were used to quantitatively evaluate the performance of the 4 algorithms. The abscissa 
is the number of iteration. The results show that the image reconstructed based on DTwIST have a 
faster convergence rate and better reconstruction performance than the other three algorithms during 
the iterative process. 

 

Figure 4. Performance comparisons by different evaluation indicators of abdomen MR 
images at 20% sampling rate. 

 

Figure 5. Performance comparisons by different evaluation indicators of lumbar spine MR 
images at 20% sampling rate. 

Table 1 shows the numerical comparison of evaluation parameters- iterations, PSNR, SSIM, 
TEI and NMI reconstructed by the ISTA, PISTA, TwIST and DTwIST algorithms when the 
convergence iteration is stopped. The results show the superiority of DTwIST, especially excellent 
convergence speed. 

In order to verify the applicability of the algorithm at other sampling rates. We also did 
experiments at 30 and 40% sampling rate.  

Figures 6 and 7 show the reconstruction performance at different sampling rates after 50 iterations. 
PSNR, SSIM, TEI and NMI were used to quantitatively evaluate the performance of the 4 algorithms. 
The abscissa represents the sampling rate. The results show that the proposed algorithm has similar 
performance at different sampling rates. 
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Table 1. Performance comparison of ISTA, PISTA, TwIST and DTwIST algorithms at 20% 
sampling rate when the convergence iteration is stopped. 

Image Algorithms Iterations PSNR SSIM TEI NMI 

Abdomen 

ISTA 36 40.64 0.9999567 0.6664 1.2876 

PISTA 38 40.94 0.9999577 0.6767 1.2922 

TwIST 25 40.78 0.9999571 0.6718 1.2897 

DTwIST 14 41.14 0.9999594 0.6820 1.2950 

Lumbar spine 

ISTA 37 38.65 0.9999357 0.5693 1.2140 

PISTA 38 38.87 0.9999353 0.5779 1.2170 

TwIST 26 38.79 0.9999352 0.5747 1.2159 

DTwIST 15 39.03 0.9999339 0.5840 1.2193 

 

Figure 6. Performance comparison of the different algorithms for abdomen MR images 
under different sampling rates. 

 

Figure 7. Performance comparison of the different algorithms for lumbar spine MR 
images under different sampling rates. 

In order to further verify the performance of the proposed algorithm, we selected a total of 60 MR 
images from different slices of the brain, ankle and knee joints for further experiments.  

 

Figure 8. Performance comparison of the different algorithms for 60 MR images at 20% sampling rate. 
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Figures 8–10 show the box plots of the reconstruction performance of 60 MR images. The 
sampling rate is 20, 30, 40% respectively. The results show that the proposed algorithm has better 
reconstruction performance for MR images of other body parts. 

 

Figure 9. Performance comparison of the different algorithms for 60 MR images at 30% 
sampling rate. 

 

Figure 10. Performance comparison of the different algorithms for 60 MR images at 
40% sampling rate. 

5. Discussion and conclusions 

The proposed algorithm (DTwIST) overcomes the disadvantage that the TwIST algorithm is 
difficult to balance speed and efficiency. By dynamically adjusting the shrinkage factor, it can greatly 
accelerate the iterative convergence while ensuring the convergence accuracy. 

By compared with ISTA, PISTA, and TwIST in terms of PSNR, SSIM, TEI, NMI and number of 
iterations, a conclusion can be drawn than the proposed methods can retain more global information 
and local information of reconstructed images, especially with excellent convergence speed. At the 
same time, it provides a reference for the improvement of similar algorithms. 
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