
http://www.aimspress.com/journal/mbe

MBE, 19(x): xxxx–xxxx
DOI: 10.3934/mbe.xxxxxxxx
Received: 6 May 2022
Revised: 8 August 2022
Accepted: 30 August 2022
Published:

Research article

Basic reproduction number of the COVID-19 Delta variant:
Estimation from multiple transmission datasets

Minami Ueda1, Tetsuro Kobayashi1 and Hiroshi Nishiura1,*

1 Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501,
Japan

* Correspondence: Email: nishiura.hiroshi.5r@kyoto-u.ac.jp; Tel: +810757534456;
Fax: +810757534458.

Abstract: The basic reproduction number, R0, plays a central role in measuring the transmissibility
of an infectious disease, and thus acts as the fundamental index for planning control strategies. In
the present study, we apply a branching process model to meticulously observed contact tracing data
from Wakayama prefecture, Japan, obtained in early 2020 and mid-2021. This allows us to efficiently
estimate R0 and the dispersion parameter k of the wild-type COVID-19, as well as the relative trans-
missibility of the Delta variant and relative transmissibility among fully vaccinated individuals, from a
very limited data. R0 for the wild type of COVID-19 is estimated to be 3.78 (95% confidence interval
[CI]: 3.72–3.83), with k = 0.236 (95% CI: 0.233–0.240). For the Delta variant, the relative transmis-
sibility to the wild type is estimated to be 1.42 (95% CI: 0.94–1.90), which gives R0 = 5.37 (95% CI:
3.55–7.21). Vaccine effectiveness, determined by the reduction in the number of secondary transmis-
sions among fully vaccinated individuals, is estimated to be 91% (95% CI: 85%–97%). The present
study highlights that basic reproduction numbers can be accurately estimated from the distribution of
minor outbreak data, and these data can provide further insightful epidemiological estimates including
the dispersion parameter and vaccine effectiveness regarding the prevention of transmission.

Keywords: branching process; dispersion parameter; vaccine effectiveness; final size distribution;
offspring distribution; contact tracing; SARS-CoV-2

1. Introduction

The basic reproduction number, denoted by R0, is an index that represents the expected number of
secondary cases from an infected individual during the entire period of infectiousness in a fully sus-
ceptible population [1]. This number plays a central role in measuring the transmissibility of infectious
diseases and thus acts as the fundamental index for planning control strategies. During the COVID-19
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epidemic, a new variant of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the
so-called Delta variant (B.1.617), was detected in Japan in March 2021. Estimating the relative repro-
duction number of the variant compared with the wild type of the virus then became an urgent task. In
the early phase of the Delta variant epidemic, common methodologies to estimate R0, which includes
models based on exponential growth rate and generation time distribution, were difficult to imple-
ment due to a limited number of observed cases and the progress of variant replacements from Alpha
(B.1.1.7) to Delta. Moreover, the spread of the Delta variant occurred in the middle of the very first
vaccination campaign, from spring to summer of 2021, making it even more challenging to calculate
the variant’s basic reproduction number and relative transmissibility. Common methods for estimating
R0, as forementioned, rely on major outbreak datasets with an assumption that the population is fully
susceptible.

To overcome such problems, the present study focuses on the meticulous observation of secondary
transmissions in Wakayama prefecture of Japan to estimate R0. By applying the branching process
model which has been widely used to model minor outbreaks with non-negligible stochasticity, the
study presents a method to efficiently estimate R0 from very limited data on minor outbreaks. The
branching process is particularly useful in quantifying the probability of extinction, a property that is
supported by quantifying the offspring distribution and final size, i.e., the cumulative incidence of an
outbreak. For a realistic representation of the offspring distribution of directly transmitted infectious
diseases, the distribution is frequently assumed to follow a negative binomial distribution with two
parameters, R0 and the dispersion parameter k [2–6]. The distribution is highly dispersed for k <
1, and a very small value of k implies the presence of a super-spreading event [2]. Geometric and
Poisson distributions are special cases of the negative binomial distribution when k → ∞ and k = 1,
respectively.

The branching process model has already been employed to model COVID-19, especially in the
early stages of the pandemic [6–10]. Published studies clearly indicate the presence of “over-dispersed”
secondary transmission, where k is estimated to range from 0.1–0.3 for the wild type of the virus
[9, 11–13]. Preliminary research on the Delta variant has estimated the dispersion parameter to be
k = 0.23 (95% confidence interval [CI]: 0.18–0.30) [14], which is broadly consistent with that of the
wild type, but published evidence remains scarce.

Wakayama prefecture of Japan is located 50 km south of Osaka, which is the third-largest prefecture
in Japan by population. This prefecture continuously experienced epidemic “waves” of COVID-19,
just as other prefectures in Japan did; a “wave” is conventionally recognized as a period of the epi-
demic with upward and downward trends with substantial and sustaining changes [15,16]. The present
study focuses on the first and fifth waves caused respectively by the wild type and the Delta variant.
Each wave is generally recognized as an epidemic around February to May 2020 [17, 18] and July to
October 2021, respectively. The COVID-19 epidemic was controlled early in Japan, involving 16,741
confirmed cases and 898 deaths until the end of May 2020; the indices are far fewer than in other in-
dustrialized countries that experienced population-level epidemics. Because of the low-impact setting,
a thorough contact tracing practice, including retrospective (backward) tracing of contacts involving
earlier generations, was possible and was continued over time. The practice yielded an empirically
observed offspring distribution and the final size of minor outbreaks.

The objective of the present study is to interpret the empirically collected epidemic data in a low-
impact setting by jointly estimating (i) the relative transmissibility of the Delta variant compared with
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the wild type and (ii) the relative transmissibility among vaccinated individuals compared with unvac-
cinated individuals. Contrary to common methods for estimating R0 that rely on large datasets from
major outbreaks in a fully susceptible population, our study presents a method to efficiently estimate
R0 from very limited data on minor outbreaks. This exercise estimates the basic reproduction number
of the Delta variant.

2. Materials and methods

2.1. Data on the final size distribution and offspring distribution

We used two datasets: (a) the epidemiological tracing results of secondary transmission during the
first wave in 2020, caused by the wild type, and (b) the number of cases that produced at least one
secondary transmission during the fifth wave in 2021, caused by the Delta variant. Other waves (the
second, third, and fourth waves) were excluded from our scope since the focus of the present study was
to estimate the basic reproduction number of the Delta variant, which evidence is yet limited compared
to other variants.

The observations were made in Wakayama prefecture, which has a population of ∼917,000. De-
spite the proximity to the metropolis of Osaka, the first wave within the prefecture was contained at
a relatively low level, i.e., only 64 cumulative cases and 3 cumulative deaths were observed from the
emergence of COVID-19 until June 30, 2020, compared with 1833 cases and 86 deaths in Osaka in
the same period. In Wakayama, reverse transcription-polymerase chain reaction (RT-PCR) testing was
conducted intensively, and cluster interventions were handled through contact tracing (i.e., contain-
ment effort). The vaccination program in Japan started in the early part of 2021, after the end of the
third wave in February 2021. Initially, health care workers were prioritized (starting on February 17),
and then the elderly population (over 65 years old) began to be vaccinated starting from April 12. At
the peak of the fifth wave caused by the Delta variant in Japan (August 26, 2021), 41.63% of the entire
population had received two doses of vaccine [19]. More than 99% of vaccines were mRNA vaccines,
either BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna). Even during the fifth wave, cluster
interventions were continued in parallel to vaccination. All cases were confirmed either via RT-PCR
testing or antigen testing (including both a qualitative test based on immunochromatogaphy and a quan-
titative test based on the chemiluminescence enzyme immunoassay [CLEIA] method), and if positive,
they were consistently notified to the government health authority (Ministry of Health, Labour and
Welfare) in accordance with Infectious Disease Law.

The first dataset from the first wave covered 25 clusters of COVID-19 infection, and each record
included the total number of cases that stemmed from a single primary case. Since each cluster was
from a minor outbreak contained at a low level, of which most were reported from households, we
could assume that the data was not influenced by public health and social measures (PHSMs) and
psychological factors. Minor and major outbreaks are a type of epidemics in stochastic SIR models
that Whittle characterized in 1955 [20]. Minor outbreaks are generally known to have a shorter duration
and substantially fewer cases than major outbreaks [21], and hence we temporarily define the threshold
of the final size between the minor and major to be 500 cases for convenience of the discussion. We
emphasize that the dataset was from small settings where transmission was contained within each
cluster and did not lead to major outbreaks where transmission is prevalent in wide community settings.
Considering that the overall infection at the population level was also contained at a low level and that
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the vaccination programs did not exist during the first wave, we can interpret our estimates as the
approximation to the basic reproduction number, capturing the intrinsic transmission dynamics in a
completely susceptible population.

The second dataset from the fifth wave contained the respective numbers of cases that did and did
not produce secondary transmission. We assumed that we could ignore the effects of PHSMs since
no such kind of policies were implemented in the region during the period. Furthermore, since the
contact tracing practices were continued in the same manner as in the first wave, our estimates can be
interpreted as the basic reproduction number for the Delta variant, just as for the wild type. The data
were categorized into two groups by vaccination status of the primary case: the “all” group included
all cases, regardless of vaccination (i.e., either 0, 1, or 2 doses), whereas the “2 doses” group included
cases of individuals who had received two vaccine doses. We obtained values for the “0 or 1 dose”
group by subtracting the “2 doses” group from the “all” group. The proportion of those who produced
secondary transmissions for each group is shown in Figure 1.
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Figure 1. Proportion of cases with secondary transmission by vaccine status of primary case,
during the fifth wave in Wakayama. Dataset originally included data for “all” and “2 dose”
groups. Value for “0 or 1” dose group was calculated by subtracting “2 dose” group from
“all” group.
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2.2. Stochastic model

The goal of this study was to estimate R0 and k from limited observations of transmission in the
first and fifth waves, where the wild type and Delta variant were respectively dominant. We estimated
four parameters, i.e., R0 and k for the wild type, the relative transmissibility of the Delta variant to the
wild type (γdelta), and the relative transmissibility among fully vaccinated individuals (post 2 doses of
vaccination) compared with unvaccinated individuals (γvac). We used a negative binomial branching
process model and estimated the parameters using maximum-likelihood estimation (MLE). The 95%
CI for the estimated parameters was obtained from a parametric bootstrapping procedure.

2.2.1. Estimation of R0 and dispersion parameter k for wild type

With the assumption of R0 > 1, because the virus caused a global pandemic, we modelled the
final size distribution Z using the Galton–Watson (GW) process that involves a negative binomially
distributed offspring distribution. Using the probability generating function (p.g. f .) for Z,

GZ(s) = s
(
1 +

R0(1 −GZ(s))
k

)−k

(2.1)

the probability of the final size being z are expressed as:

Pr(Z = z; R0, k) = pz =
1
z!

dz

dsz GZ(s)|s=0 (2.2)

Specifically for z = 1 and z ≥ 2, the probability of the final size being z are as following [5, 22]:


p1 =

1(
1 + R0

k

)k

pz =
Πz−2

j=0( j
k + z)

z!

( k
R0 + k

)kz( R0k
R0 + k

)z−1
(2.3)

Because the dataset consists of a series of minor outbreaks, we conditioned the final size distribution
on extinction. Thus, under the assumption that the offspring distribution follows a negative binomial
distribution with dispersion parameter k, the probability of the final size being z was normalized by the
probability of extinction π [5].

Pr(Z = z; minor outbreak) = p′z =
1
π

pz (2.4)

π =
1(

1 + R0(1−π)
k

)k (2.5)

The likelihood function for estimating the parameters R0 and k for the wild type, given j complete
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observations each with a final size of zi, is expressed as:

L1(R0, k; zi) =
j∏

i=1

p′z
1

(1 − p′1)

=

j∏
i=1

pzi

π

1

1 −
(

1

π
(

1+ R0
k

)k

)
=

j∏
i=1

pzi

(
1 + R0

k

)k

π
(
1 + R0

k

)k
− 1

(2.6)

We excluded all observations of z = 1, which are sporadic and terminal cases, to adjust for the under-
ascertainment of such cases, i.e., compared with the presence of secondary transmission, sporadic
primary cases may be far harder to ascertain, especially during the first wave [5, 6]. We estimated
k indirectly via its reciprocal α = 1

k , as numerous studies on the estimation of negative binomial
parameters have shown that this is better than using k. The sampling distribution for α tends to be
more symmetric than that for k, which ensures a faster approach to asymptotic normality [2, 3].

Given 14 data points of final size z from the first dataset, of which all observations of z = 1 ex-
cluded, we estimated parameters R0 and k. Using Nelder-Mead method with intial values R0 = 1.5
and k = 0.15, we obtained parameter estimates that maximizes the likelihood function (Eq 2.6). The
optimization was conducted using the R function “optim”.

We conducted parametric bootstrapping to obtain the 95% CI of R0 and k. Firstly, we derived
the covariance matrix from the Hessian matrix that was returned as part of the optimization result
in “optim” function. Using the covariance matrix, we generated 3000 pairs of multivariate normal
distributions for R0 and k and calculated the 95% CI with the bootstrap percentile method.

2.2.2. Estimation of relative transmissibility of Delta and relative transmissibility among vaccinated
population

We let the reproduction numbers of the Delta variant in the “0 or 1 dose” group and the “2 doses”
group to be:  R0delta = γdelta · R0

R0delta vac = γvac · γdelta · R0
(2.7)

Here, γdelta expresses the relative transmissibility of the Delta variant compared with that of the wild
type, and γvac represents the reduced transmissibility among fully vaccinated individuals compared
with unvaccinated individuals. R0 is the basic reproduction number of the wild type. The vaccine
effectiveness (VE), in terms of preventing secondary transmission, can be calculated as 100(1−γvac)%.
We note that γdelta and γvac are coefficients that represent relative changes in the number of secondary
transmissions produced but not the risk of being infected.

Under the assumption that the offspring distribution Y follows a negative binomial distribution, the
p.g. f . for having y offspring is:

GY(s) =
(
1 +

R0i(1 − s)
k

)−k

(2.8)
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Using such p.g. f ., the probability of having no offspring (y = 0) [22] is derived as:

Pr(Y = 0) = py

= GY(0)

=
1(

1 + R0i
k

)k

(2.9)

where R0i represents R0delta or R0delta vac for i = 1 and 2, respectively.
The likelihood function for estimating γdelta and γvac is:

L2(γdelta, γvac; R0, k, ni,mi) =
2∏

i=1

(
ni

mi

)
py

mi
i (1 − pyi)

ni−mi+1

=

2∏
i=1

(
ni

mi

)(
1(

1 + R0i
k

)k

)mi(
1 −

1(
1 + R0i

k

)k

)ni−mi+1 (2.10)

Here, i represents different groups based on vaccine status, where i = 1 represents the group with
0 or 1 vaccine doses and i = 2 represents fully vaccinated individuals. ni refers to the total number of
people in the category, and mi refers to number of those who had no offspring (y = 0). For i = 1 in the
0 or 1 dose vaccination group, n1 and m1 had values of 177 and 138, respectively. For i = 2 in the fully
vaccinated group, n2 and m2 were 726 and 344, respectively.

Given secondary transmission dataset from the fifth wave and 3000 bootstrap pairs of preestimated
R0 and k, we estimated parameters γdelta and γvac that maximizes the likelihood funcion. Using Nelder-
Mead method with intial parameter values γdelta = 3 and γvac = 0.2, we obtained 3000 pairs of param-
eter estimates that maximizes the likelihood function. The optimization was conducted using the R
function “optim”. By repeating parametric bootstrap for each pairs in the same manner as R0 and k, we
obtained 95% CI for γdelta and γvac.

2.3. Sensitivity analysis of Delta parameters for different values of dispersion parameter k

We assumed that the dispersion parameter k is consistent across SARS-CoV-2. Thus, we conducted
a sensitivity analysis of the estimated reproduction number for the Delta variant with different values
of the dispersion parameter k. We repeated the estimation for γdelta and γvac using different values of
k, ranging between 0.05 and 1, that were minimum and maximum values found either as estimates or
the bounds of the CI in prior research [6, 7, 10–12, 23–27]. Although there is not yet much evidence
for the dispersion parameter of the Delta variant, preliminary research estimates k = 0.23 (95% CI:
0.18–0.30) [14], which is within the range of the dispersion parameter for the wild type.

Reproduction number of the Delta variant in populations with different vaccination status were
calculated by substituting estimated γdelta and γvac into Eq (2.7). 95% CI was for reproduction numbers
were also calculated with the bootstrap percentile method.

2.4. Statistical analysis

All of the analysis in the present study was conducted using R version 3.6.3 [28].
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2.5. Ethics

The present study examined publicly available data that do not contain any personally identifiable
information. As such, ethical approval was not required for the present study.

3. Results

3.1. Estimates for the wild type

For the wild type of COVID-19, R0 was estimated to be 3.78 (95% CI: 3.72–3.83). This value is
higher than suggested by previous research, with meta-analysis and a systematic review concluding
that R0 lies in the range from 2–3 [29, 30]. The value of k for the wild type was estimated to be
0.236 (95% CI: 0.233–0.240), which is broadly consistent with prior findings [6,8–10,12,13,26]. The
final size distribution given by the estimated R0 and k is shown in Figure 2, which compares observed
data (line) and the fitted model (bars). While the model captures the overall trend of frequency, the
frequencies for z = 2 and z = 3 are underestimated. The fit may be biased by a cluster observed at
z = 15.

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Final size of transmission

F
re

q
u

e
n

cy
 (

%
)

Figure 2. Final size distribution of wild type. Observed data points are shown as dots on
a line, and the estimates from the model are shown as bars. The value of z = 15 in the
model shows the total sum for z ≥ 15. Due to the computational limitations, the upper limit
contained in the total sum is z = 120. The sample size was 25 reports. Data include reports
before June 4, 2020. Note that the horizontal axis shows the number of secondary (and later)
cases involved; primary cases and sporadic cases without any secondary transmission were
discarded from the analysis.
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3.2. Estimates for Delta variant

Using the estimated parameters of the wild type, we then estimated the relative transmissibility
of the Delta variant and the relative transmissibility among fully vaccinated individuals. The relative
transmissibility of the Delta variant to the wild type, γdelta, was estimated to be 1.42 (95% CI: 0.94–
1.90). The relative effect on transmissibility from two-dose vaccination, γvac, was estimated to be 0.09
(95% CI: 0.03–0.14). This indicates that VE for preventing secondary transmission among a fully
vaccinated population, compared with unvaccinated individuals, was 91% (95% CI: 85%–97%).

By substituting the estimated parameters into Eq (2.7), the basic reproduction number of the Delta
variant, R0delta , was calculated as 5.37 (95% CI: 3.55–7.21). This value is consistent with prior research
findings, which indicate a mean value of 5.08 [31]. The reproduction number of the Delta variant
among fully vaccinated individuals, R0delta vac , was calculated to be 0.44 (95% CI: 0.20–0.69). This
result highlights that the reproduction number in the fully vaccinated population was well below 1.

The offspring distribution of the Delta variant was calculated using the mean of the estimated repro-
duction number for both the 0 or 1 dose population and the 2 doses population (Figure 3). The disper-
sion parameter k was assumed to be identical to the estimated value for the wild type (k = 0.236). The
left panel shows the result for the population with vaccination status of either 0 or 1 dose, while the
right panel shows the result for 2 doses. The dotted horizontal line identifies the observed frequency
of those who did not cause a secondary infection (y = 0). The estimated frequencies from the model
were consistent with those of the observed data.
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Figure 3. Estimated offspring distribution of the Delta variant according to vaccination sta-
tus. The left panel shows the result for the population with a vaccination status of either 0
or 1 dose, while the right panel shows the result for the 2 doses population. The dispersion
parameter k was assumed to be identical to the estimated value for the wild type (k = 0.236).
The dotted horizontal line identifies the observed frequency of those who did not cause any
secondary transmission (y = 0).
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3.3. Sensitivity analysis

The results of sensitivity analysis with various values of the dispersion parameter k are shown in
Figure 4. Dotted vertical lines indicate the value of the dispersion parameter (k = 0.23) estimated from
the data for the wild type. At k = 0.05, the Delta variant is estimated to have an R0 value of 2878.75
(95% CI 1248.96–4458.64), while at k = 1.0, R0 is 1.11 (95% CI 0.95–1.28) (Panel C). As shown in
Panel B, the relative transmissibility among fully vaccinated individuals is reduced at smaller k values,
meaning that there is a greater reduction in the number of secondary transmissions. The reproduction
number in fully vaccinated individuals was estimated to be less than 1 for all k values greater than 0.15.
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Figure 4. Sensitivity analysis of estimates to variations in dispersion parameter k. Estima-
tions of γdelta and γvac were repeated using different values of k. Panel A shows the relative
transmissibility of Delta, γdelta. Panel B shows the relative transmissibility among vaccinated
population, γvac. Panels C and D show the reproduction number of the Delta variant for
populations with a vaccination status of 0 or 1 doses and 2 doses, respectively. Reproduc-
tion numbers were calculated by substituting estimated γdelta and γvac into Eq (2.7). 95% CI
of each estimates were calculated with bootstrap percentile method. The dotted lines iden-
tify the value of the dispersion parameter (k = 0.23) used in the default setting, which was
retrieved from the estimation of the wild type. Vertical axes of Panels A and C are in loga-
rithmic scale.
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4. Discussion

Using meticulously observed contact tracing data from Wakayama prefecture in early 2020 and
mid-2021, we estimated the basic reproduction number R0 and the dispersion parameter k of the wild-
type COVID-19, as well as the relative transmissibility of the Delta variant and relative transmissibility
among fully vaccinated individuals. For the wild type, R0 was estimated to be 3.78 and k was estimated
to be 0.24. For the Delta variant, we estimated that R0 is 5.37, which is in line with preliminary findings
reporting a mean of 5.08 [31]. Our estimates also indicated that the number of secondary transmissions
was reduced by 91% among fully vaccinated individuals. To the best of our knowledge, no previous
research has quantified the R0 value of the COVID-19 Delta variant from minor outbreak data while
accounting for the relative transmissibility among fully vaccinated individuals.

The present study highlights that the basic reproduction numbers of variants can efficiently be esti-
mated by applying the branching process model on the distribution of minor outbreak data. We empha-
size that our method provides “relative transmissibility” of emerging variants on the basic reproduction
number, not the effective reproduction number. This provides the basic reproduction number of new
variants that work as a fundamental index for controlling pandemics (i.e., in planning strategies of
vaccination programs). Our methods can be applied if epidemiological surveys are being conducted
at a constant level and the relative susceptibility within the population remains at a comparable level.
Moreover, we emphasize that the data from minor outbreaks, which is a type of epidemic that has a
small number of cases, can provide further insightful epidemiological estimates, including the disper-
sion parameter and VE in terms of preventing transmission. While the estimated R0 of the wild type
was higher than the commonly agreed value, it was within the upper range of published CIs [29, 30].
Furthermore, we have proved that VE in terms of preventing secondary transmission can also be es-
timated from limited observed data. Finally, the 95% CI for the estimated R0 of the Delta variant
overlaps with values reported in existing studies [31, 32].

The strength of the present study lies in the successful estimation of the basic reproduction number
R0 of the Delta variant from minimal observed data of minor outbreaks. Understanding R0 is essential
in planning effective strategies to contain the spread of the virus, particularly when it is known to be
growing with the emergence of new variants. Furthermore, estimations regarding the Delta variant
were made possible by assuming that the dispersion parameter is equivalent to that of the wild type,
which we estimated from another dataset collected in the same geographic region. We could have
separately estimated the dispersion parameter if either the final size or offspring distribution had also
been observed for the Delta variant.

Our results imply that contact tracing is a critical factor that can enhance future data collection
during the pandemic. Our findings prove that contact tracing data contribute to estimations of trans-
missibility and VE. To further understand the nature of the virus and its mechanisms of transmission,
surveillance should be customized to include information as follows: vaccination status; number of
secondary transmissions (not only whether they did or did not cause secondary transmission); detailed
demographic and epidemiological attributes (i.e., sex and age group for each reported case). This infor-
mation allows a more explicit and detailed analysis of the transmission dynamics specific to particular
population groups and settings.

We must address some limitations of our study. First, the data on secondary transmission were iden-
tified through epidemiological investigation, which relied on the local capacity of contact tracing and
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patient cooperation in the tracing practice. The tracing method means that there is always the possibil-
ity of recall bias, which may lead to the presence of unascertained cases. However, because backward
tracing was combined with forward tracing in Japan, it is likely that most secondary transmission, in-
cluding asymptomatic cases, was captured. More active testing strategies, including daily PCR testing,
may capture more comprehensive transmission dynamics. Second, the sample size of the final size dis-
tribution was limited to only 25 clusters. While it is still very rare for data to be observed, the estimates
for R0 and k could have been more consistent with existing research if more reports were available. A
serological survey could have been conducted so that the actual final size could be determined without
the possibility of any biases. Third, the fifth wave dataset lacked a detailed offspring distribution, but
instead included the respective frequencies of those who did or did not cause secondary transmissions.
If the full distribution of secondary transmission per person was observed (e.g., y = 1, 2, 3, . . . ), R0 and
k for the Delta variant could have been separately estimated with greater precision. While modeling
from a limited dataset is still possible under certain assumptions, a detailed offspring distribution is
essential in understanding the full nature of the transmission dynamics of infectious diseases. Finally,
the waning of vaccine-induced immunity was ignored. Because the fifth wave occurred amid the vac-
cination program, we believe it was not essential to meticulously measure the time since vaccination
at an individual level.

5. Conclusions

In conclusion, the present study has demonstrated a method to estimate the basic reproduction
number of a new variant, denoted by the relative transmissibility from an existing type of virus, through
the application of branching process models on very limited data. We emphasize that our method
does not rely on exponential growth rate and generation time distribution models that require major
outbreak datasets from fully susceptible populations. Using the final size and offspring distribution
of minor outbreaks aggregated based on intensive contact tracing, we have estimated that the Delta
variant is 1.42 times transmissive than the wild type of COVID-19, which results in R0 of 5.37. The
VE in the reduction in the number of secondary transmissions was estimated to be 91% among fully
vaccinated individuals compared with unvaccinated individuals.

The study has also presented the importance of collecting pieces of information on minor outbreaks,
where transmissions are contained in small settings without spreading to wide range of communities
in the population. We emphasize that offspring and final size distributions accumulated based on
intensive contact tracing practices or serological surveys can significantly contribute to determining
the fundamental indices for understanding and controlling outbreaks.
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