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Abstract: It is known that differences between potentials of soma, dendrites and different parts of 

neural structures may be the origin of electroencephalogram (EEG) waves. These potentials may be 

produced by some excitatory synapses and currents of charges between neurons and then thereafter 

may themselves cause the emergence of new synapses and electrical currents. These currents within 

and between neurons emit some electromagnetic waves which could be absorbed by electrodes on the 

scalp, and form topographic images. In this research, a model is proposed which formulates EEG 

topographic parameters in terms of the charge and mass of exchanged particles within neurons, those 

which move between neurons, the number of neurons and the length of neurons and synapses. In this 

model, by knowing the densities of the frequencies in different regions of the brain, one can predict 

the type, charge and velocity of particles which are moving along neurons or are exchanged 

between neurons.  
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1. Introduction  

As of now, it is known that neurons build some electronic circuits which emit or absorb waves. 

https://www.google.com/maps/search/Rome,+Italy+Via+Plinio+44,+00193+Rome+,+Italy?entry=gmail&source=g
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These waves could play the main role in imaging [1–3]. To detect and measure these waves, several 

techniques have been proposed. For example, electroencephalography (EEG) is one of the important 

tools for studying the electrical and temporal dynamics of the human brain's large-scale neural circuits 

in some diseases like Alzheimer’s [4,5]. Modern EEG source imaging simultaneously details the 

electrical, temporal and spatial dimensions of brain activity, making it an important and affordable tool 

to consider the properties of cerebral, neural networks in cognitive and clinical neurosciences [6]. In 

fact, EEG microstates could characterize the resting-state activity of the human brain. Also, they 

represent the basic building blocks of the chain of spontaneous conscious mental processes, and their 

occurrence and temporal dynamics determine the quality of mentation [7].  In addition, these EEG 

microstates could be age-dependent, and may predict cognitive capacities in healthy individuals across 

their lifespan [8]. These states could have different applications, e.g., by using EEG microstates and 

considering the evolution of the brain, one can ascertain why some persons remember dreams and 

recall them and others cannot [9]. Also, by using EEG signals, autism spectrum disorder could be 

diagnosed very well [10,11]. In addition, (EEG) signal analysis can be well suited for the automated 

diagnosis of Alzheimer’s disease [12].  

Besides these applications, EEG topography may provide a rich metric by means of which one 

can understand the functioning of the brain [13]. For example, the topography of EEG power and the 

activation of brain structures during slow wave-sleep under normal conditions and after sleep 

deprivation could be considered. A research group indicated that sleep deprivation resulted in an 

increase in wave strength only for mid-delta activity, mainly in parietal and frontal regions [14]. 

Another group found the persistent enhancement in non-rapid eye movement (NREM) delta power 

especially in the frontal the parietal regions, and progressive increases in individual slow wave slope 

and frontal fast oscillation power [15]. Also, in parallel, many other works have been done on EEG 

topography. For example, one work proposed a method that transforms EEG (electroencephalography) 

signals to topographic images that contain the frequency and spatial information and utilizes 

a convolutional neural network (CNN) to classify the emotion, as CNN has improved feature 

extraction capability [16]. Another work has defined a unified time-frequency energy algorithm that 

makes topographical representation (ETR) robust in classifying multiple objects. Compared with 

existing EEG topology generations, the proposed method could be accurate and functional for spatial 

location, temporal onset, and stability simultaneously [17]. Other investigators have considered the 

role of EEG oscillations in predicting the presence or absence of dream recall (DR) by “state-” or 

“trait-like” factors [18].  

All of these considerations have shown very useful applications of EEG waves in imaging. 

However, some questions remain. For example, what is the relation between EEG frequencies and the 

number of cells, molecules and charges? Or what is the relation between waves and thickness of scalp 

in different ages and parts of the brain? Also, how we could ignore or remove the effects of noises?  

In this research, we try to respond to all of these questions. Motivated by these researchers, we propose 

a model to formulate the EEG topographic results. We will consider the physical basis of features and 

neural evolution within the brain. Firstly, we will propose a simple model and then we generalize it to 

include all parameters. 

The outline of paper is as follows: In section II, we consider the origin of brain waves and propose 

a model to formulate them. In section III, we test the model using experimental data. In section IV, we 

generalize the model and consider the effects of noises on the real data. The last section is devoted to 

a conclusion.  

https://www.sciencedirect.com/topics/neuroscience/neural-networks
https://www.sciencedirect.com/topics/neuroscience/neurosciences
https://www.sciencedirect.com/topics/engineering/convolutional-neural-network
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2. Method 

 

In this section, we propose a model which considers the origin of radiated waves of the brain. We 

also calculate the frequencies and related probabilities. 

In this model, a brain is built up from many neural circuits. Some synapses or charges induce 

electrical potentials within different parts of the neurons. Consequently, some differences between 

potentials of soma, dendrite and other parts appear. Each neuron has several gates which send or 

receive charges. The motion of charges within the neuronal structures and also between neurons 

produce some electrical currents. These currents emit some electromagnetic waves (see Figure 1). To 

calculate the frequency of these waves, firstly, we should calculate the magnetic fields which are 

produced by the motion of charges near the gate j of neuron i: 

0
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where i is the index (related to position) of the neuron and j is the index (related to position) of the 

related gate (receptor, terminal or transmitter) of neuron i. In fact, each neuron (for example, neuron i) 

has several gates, including receptors, terminals or transmitters which are specified by j.  Also, 
ijB  

is the magnetic field at point ij of the brain which could be divided into two magnetic fields:    

 ' "

ij ij ijB B B= +                   (2) 

where '

ijB   is the magnetic field around a neuronal structure at point ij of the brain, "

ijB   is the 

magnetic field around the synapse, 
ijr  is the distance from the point ij and 

ijI  is the current  which 

could be obtained from the equation below:            

 
ij ij ijI Q V=                     (3)     

where 
ijQ  is the charge of the particles at point ij and 

ijV is the velocity of the charges which are 

obtained from the equation below: 

 
ij

ij

ij

l
V

T
=                    (4) 

Here, ijl  is the length of a neuron + the distance between two neurons at point ij and ijT is the time 

needed so that the charges pass this distance. This magnetic field produces the energy density below 

at point ij: 
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To obtain the total energy at point ij, we should multiply the density above and the volume at this point:  

2

ij ij ij ij ijE U r l =                  (6) 

where 
ij  is a volume dependent parameter. However, each neuron may oscillate and consequently, 

we will have the energy below: 

ij ijr r x→ +  

2( )ij ij ij ij ijE U r x l = +                 (7) 

To obtain the force at point ij of the brain, we should take the derivative with respect to x: 

2 ( ) tan
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ij ij ij ij ij ij

dE
F U r x l k x cons t

dx
 = = + = +          (8) 

This force causes the oscillation of charges and produces the following frequency of the waves: 
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To obtain the mean frequency in one region of the brain, we should sum over all frequencies and divide 

them into the number of frequencies: 

,
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where X is the number of gates and N is the number of neurons. The probability for emission of each 

frequency can be obtained from the equation below: 

,
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Comparing these probabilities and frequencies with real experimental data, one can calculate the 

number of gates and neurons, the charges and masses of the particles and the distances between the 

neurons. 



12940 

Mathematical Biosciences and Engineering  Volume 19, Issue 12, 12936–12949. 

 

Figure 1. Emission of electromagnetic waves from electrical currents within neurons and 

exchanged charges between neurons. 

3.  Results 

 

In this section, we will compare the model with experimental data and obtain some of the main 

parameters like the lengths of the neurons and synapses, and the number of neurons which interact 

with each other. For example, in Figure 2, we present the results of topographic EEG images for 

different brain waves during a dream. Using these results, we provide two tables and Figure 3.  

Table 1 shows that if exchanged particles within neuronal structures or between neurons along the 

synapse length of calcium with charge +2 and mass 40.078 u, the distance between the dendrite and 

axon terminals (synapse lengths + neuron size) could be between 24-40 nanometers. Also, the radius 

of the circle which interactions occur around the axon-dendrites should change from 15.2 to 22.5 

micrometers. For these results, at least 0.033 and at most 0.084 of the total number of neurons should 

enter into the interactions. The time of each interaction may be between 0.03 and 0.5 milliseconds. 

 Table 2 shows that by reducing the charges of the particles within the neuronal structures or 

exchanged particles between neurons to half for potassium channels, the number of interacting neurons, 

lengths of synapses and time of interactions should increase whilst the radii of the circles in which 

interactions occur, should decrease.  

Figure 3 shows that for re-obtaining the same results in figure 2, by increasing the masses of 

particles with respect to a standard mass like the sodium mass, the number of interacting neurons 

should increase. This is because massive charges could not move fast and emit a smaller number of 

waves, and for this reason, to compensate for this reduction, we need more neurons to interact, 

exchange particles and charges and produce waves. 
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Figure 2. Topographic EEG images for different brain waves during a dream [1–18]. 

Table 1. Predicted estimates for charge, mass, length of synapses+ size of neurons, radius 

of interaction, number of neurons and calcium channels obtained from topographic EEG 

images in Figure 1. 

 Q m l r N/Ncri X/Xcri T 

Delta +2 40.078 u 32nano-

meter 

18.4 micro-

meter 

0.065 0.48 0.5 milli-

second 

Theta +2 40.078 u 40nano-

meter 

15.2 micro-

meter 

0.084 0.66 0.12 milli-

second 

Alpha +2 40.078 u 24nano-

meter 

22.5 micro-

meter 

0.033 0.24 0.08 milli-

second 

Beta +2 40.078 u 28nano-

meter 

20.1 micro-

meter 

0.046 0.35 0.03 milli-

second 
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Table 2. Predicted estimates for charge, mass, length of synapses +size of neurons, radius 

of interaction, number of neurons and Potassium channels obtained from topographic EEG 

images in Figure 1. 

 Q m l r N/Ncri X/Xcri T 

Delta +1 39.0983 u 38nano-

meter 

16.2 micro-

meter 

0.072 0.68 0.33 milli-

second 

Theta +1 39.0983 u 44nano-

meter 

13.2 micro-

meter 

0.123 0.83 0.09 milli-

second 

Alpha +1 39.0983 u 27nano-

meter 

20.4 

micro-meter 

0.055 0.36 0.06 milli-

second 

Beta +1 39.0983 u 30nano-

meter 

18.4 

micro-meter 

0.065 0.44 0.02 milli-

second 

 

Figure 3. Increasing needed number of neurons by increasing mass of charges which move 

along neurons or are exchanged between neurons. Here, m is the mass of charges and m0 

is the standard mass. 

4.  A generalized version of the model 

 Until now, we have proposed a model which could determine frequencies and some parameters of 

EEG waves. However, we ignored the effects of noises which emerge from radiated electromagnetic 

waves from other neurons. We also should consider the effects of the distance between electrodes and 

neuronal sources, and the excitation of molecules which are located between them.  

Firstly, suppose that a neuronal gate at point i and j of the brain produces an electrical current and 

this current emits a wave with the frequency and energy below: 

𝐸𝑖0𝑗0
= ℎ 𝜈𝑖0𝑗0

                 (12) 
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When this wave propagates on a circle, its energy should be divided on the circle with the center of the 

source and a radius which stretches from the center to each point. In these conditions, we have the 

energy below at each new point: 

𝐸′𝑖1𝑗1
=  

𝐸𝑖0𝑗0

𝜋[𝑟𝑖0𝑗0→𝑖1𝑗1]2 → 𝜈′𝑖1𝑗1
=  

𝜈𝑖0𝑗0

𝜋[𝑟𝑖0𝑗0→𝑖1𝑗1]2         (13) 

This energy could be concentrated in a space with radius (𝑙𝑖1𝑗1
): 

  𝐸′𝑖1𝑗1,𝑃𝑈𝑅𝐸
=  

𝐸𝑖0𝑗0
𝜋[ 𝑙𝑖1𝑗1

]2 

𝜋[𝑟𝑖0𝑗0→𝑖1𝑗1]2 → 𝜈′𝑖1𝑗1,𝑃𝑈𝑅𝐸
=  

𝜈𝑖0𝑗0
𝜋[ 𝑙𝑖1𝑗1

]2 

𝜋[𝑟𝑖0𝑗0→𝑖1𝑗1]2        (14) 

Some part of this energy could be absorbed by cells and molecules at these new points and cause their 

vibrations. We have: 

𝐸"𝑖1𝑗1
= 𝐸′

𝑖1𝑗1
⦻𝜋[ 𝑙𝑖1𝑗1

− 𝐷𝑖1𝑗1
]2 =  

𝐸𝑖0𝑗0
𝜋[ 𝑙𝑖1𝑗1

− 𝐷𝑖1𝑗1
]2

𝜋[𝑟𝑖0𝑗0→𝑖1𝑗1
]2

 

 → 𝜈"𝑖1𝑗1 = 𝜈′𝑖1𝑗1
𝜋[ 𝑙𝑖1𝑗1

− 𝐷𝑖1𝑗1
]2 =  

𝜈𝑖0𝑗0𝜋[ 𝑙𝑖1𝑗1−𝐷𝑖1𝑗1]2

𝜋[𝑟𝑖0𝑗0→𝑖1𝑗1]2        (15) 

 

In the above equation, (𝑙𝑖1𝑗1
) is the length of the effective space and (𝐷𝑖1𝑗1

) is the length of molecules 

at the point (𝑖1𝑗1). Also, 𝐸"𝑖1𝑗1
 is the energy absorbed by molecules at this point. Thus, to obtain the 

non-absorbed energy, we should subtract this energy from the initial one: 

𝐸𝑖1𝑗1,𝑃𝑈𝑅𝐸
= 𝐸′𝑖1𝑗1,𝑃𝑈𝑅𝐸

− 𝐸"𝑖1𝑗1 → 𝜈𝑖1𝑗1,𝑃𝑈𝑅𝐸
= 𝜈′𝑖1𝑗1,𝑃𝑈𝑅𝐸

− 𝜈"𝑖1𝑗1  

 𝜈𝑖1𝑗1,𝑃𝑈𝑅𝐸
=

𝜈𝑖0𝑗0𝜋[ 𝑙𝑖1𝑗1]2 

𝜋[𝑟𝑖0𝑗0→𝑖1𝑗1]2 −
𝜈𝑖0𝑗0𝜋[ 𝑙𝑖1𝑗1−𝐷𝑖1𝑗1]2

𝜋[𝑟𝑖0𝑗0→𝑖1𝑗1]2           (16) 

This frequency corresponds to a source at point (𝑖0𝑗0). However, the collision of these waves with 

charges on cells and molecules at point (𝑖1𝑗1) lead to their vibrations. By the vibrations of these charges, 

some new waves emerge. These waves could be combined by the initial waves and produce new 

frequencies. We have: 

𝜈𝑖1𝑗1,𝑇𝑂𝑇
= 𝜈𝑖1𝑗1,𝑃𝑈𝑅𝐸

+ 𝜈𝑖1𝑗1,𝐸𝑋𝐶𝐼𝑇𝐸𝐷
 =

𝜈𝑖0𝑗0
𝜋[ 𝑙𝑖1𝑗1

]2 

𝜋[𝑟𝑖0𝑗0→𝑖1𝑗1]2 −
𝜈𝑖0𝑗0

𝜋[ 𝑙𝑖1𝑗1
−𝐷𝑖1𝑗1

]2

𝜋[𝑟𝑖0𝑗0→𝑖1𝑗1]2 + 𝜈𝑖1𝑗1,𝐸𝑋𝐶𝐼𝑇𝐸𝐷
  (17) 

This frequency is related to the first collision of the source waves with the molecules and neurons. 

Within the brain, there are many molecules, charges and cells which change the source waves and it is 

required that these calculations continue. For example, at the point (𝑖𝑁𝑗𝑁), we have: 

𝜈𝑖𝑁𝑗𝑁,𝑇𝑂𝑇
=  

𝜈𝑖𝑁−1𝑗𝑁−1
𝜋[ 𝑙𝑖𝑁𝑗𝑁

]2 

𝜋[𝑟𝑖0𝑗0→𝑖𝑁𝑗𝑁
]2

−
𝜈𝑖𝑁−1𝑗𝑁−1

𝜋[ 𝑙𝑖𝑁𝑗𝑁
− 𝐷𝑖𝑁𝑗𝑁

]2

𝜋[𝑟𝑖0𝑗0→𝑖𝑁𝑗𝑁
]2

+ 𝜈𝑖𝑁𝑗𝑁,𝐸𝑋𝐶𝐼𝑇𝐸𝐷
 

 

[
𝜈𝑖𝑁−2𝑗𝑁−2

𝜋[ 𝑙𝑖𝑁−1𝑗𝑁−1
]2 

𝜋[𝑟𝑖0𝑗0→𝑖𝑁−1𝑗𝑁−1
]2 −

𝜈𝑖𝑁−2𝑗𝑁−2
𝜋[ 𝑙𝑖𝑁−1𝑗𝑁−1

− 𝐷𝑖𝑁−1𝑗𝑁−1
]2

𝜋[𝑟𝑖0𝑗0→𝑖𝑁−1𝑗𝑁−1
]2 + 𝜈𝑖𝑁−1𝑗𝑁−1,𝐸𝑋𝐶𝐼𝑇𝐸𝐷

]𝜋[ 𝑙𝑖𝑁𝑗𝑁
]2 

𝜋[𝑟𝑖0𝑗0→𝑖𝑁𝑗𝑁
]2
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−

[
𝜈𝑖𝑁−2𝑗𝑁−2

𝜋[ 𝑙𝑖𝑁−1𝑗𝑁−1
]2 

𝜋[𝑟𝑖0𝑗0→𝑖𝑁−1𝑗𝑁−1
]2 −

𝜈𝑖𝑁−2𝑗𝑁−2
𝜋[ 𝑙𝑖𝑁−1𝑗𝑁−1

− 𝐷𝑖𝑁−1𝑗𝑁−1
]2

𝜋[𝑟𝑖0𝑗0→𝑖𝑁−1𝑗𝑁−1
]2 + 𝜈𝑖𝑁−1𝑗𝑁−1,𝐸𝑋𝐶𝐼𝑇𝐸𝐷

]𝜋[ 𝑙𝑖𝑁𝑗𝑁
− 𝐷𝑖𝑁𝑗𝑁

]2

𝜋[𝑟𝑖0𝑗0→𝑖𝑁𝑗𝑁
]2

+ 𝜈𝑖𝑁𝑗𝑁,𝐸𝑋𝐶𝐼𝑇𝐸𝐷
 

=
𝜈𝑖0𝑗0𝜋[ 𝑙𝑖1𝑗1]2[ 𝑙𝑖2𝑗2]2….[ 𝑙𝑖𝑁−1𝑗𝑁−1

]2[ 𝑙𝑖𝑁𝑗𝑁
]2 [1−∑ [ 𝑙𝑖1𝑗1−𝐷𝑖1𝑗1]2………[ 𝑙𝑖𝑚𝑗𝑚−𝐷𝑖𝑚𝑗𝑚]2𝑁

𝑚=1 ]

𝜋[𝑟𝑖0𝑗0→𝑖1𝑗1]2[𝑟𝑖0𝑗0→𝑖2𝑗2]2……..[𝑟𝑖0𝑗0→𝑖𝑁−1𝑗𝑁−1
]2[𝑟𝑖0𝑗0→𝑖𝑁𝑗𝑁

]2  

−
𝜈𝑖0𝑗0

𝜋[ 𝑙𝑖1𝑗1
− 𝐷𝑖1𝑗1

]2 … … … [ 𝑙𝑖𝑁𝑗𝑁
− 𝐷𝑖𝑁𝑗𝑁

]2[1 + ∑  𝑙𝑖1𝑗1
]2[ 𝑙𝑖2𝑗2

]2 … . [ 𝑙𝑖𝑚−1𝑗𝑚−1
]2[ 𝑙𝑖𝑚𝑗𝑚

]2 𝑁
𝑚=1 ]

𝜋[𝑟𝑖0𝑗0→𝑖1𝑗1
]2[𝑟𝑖0𝑗0→𝑖2𝑗2

]2 … … . . [𝑟𝑖0𝑗0→𝑖𝑁−1𝑗𝑁−1
]2[𝑟𝑖0𝑗0→𝑖𝑁𝑗𝑁

]2
 

+𝜈𝑖1𝑗1,𝐸𝑋𝐶𝐼𝑇𝐸𝐷
+…….+𝜈𝑖𝑁𝑗𝑁,𝐸𝑋𝐶𝐼𝑇𝐸𝐷

+……….            (18) 

The above equation shows that there is a significant difference between the source frequencies and 

observed ones. In fact, source waves could be taken many times by charges on cells and molecules and 

cause their excitations. Then, these excited molecules radiate new waves and this process continues 

between the neurons and electrodes. We can correct Eq (10) as below: 

𝜈̅ =

∑ 𝑛𝑖𝑥𝑗

∑ 𝑛𝑖𝑥𝑗

𝑁,𝑋

𝑖,𝑗=1

⦻ 

[
𝜈𝑖0𝑗0

𝜋[ 𝑙𝑖1𝑗1
]

2
[ 𝑙𝑖2𝑗2

]
2

… . [ 𝑙𝑖𝑁−1𝑗𝑁−1
]

2
[ 𝑙𝑖𝑁𝑗𝑁

]
2
 [1 − ∑ [ 𝑙𝑖1𝑗1

− 𝐷𝑖1𝑗1
]

2
… … … [ 𝑙𝑖𝑚𝑗𝑚

− 𝐷𝑖𝑚𝑗𝑚
]

2𝑁
𝑚=1 ]

𝜋[𝑟
𝑖0𝑗0→𝑖1𝑗1

]
2
[𝑟

𝑖0𝑗0→𝑖2𝑗2
]

2
… … . . [𝑟

𝑖0𝑗0→𝑖𝑁−1𝑗𝑁−1
]

2
[𝑟

𝑖0𝑗0→𝑖𝑁𝑗𝑁
]

2
 

−
𝜈𝑖0𝑗0

𝜋[ 𝑙𝑖1𝑗1
− 𝐷𝑖1𝑗1

]2 … … … [ 𝑙𝑖𝑁𝑗𝑁
− 𝐷𝑖𝑁𝑗𝑁

]2[1 + ∑  𝑙𝑖1𝑗1
]2[ 𝑙𝑖2𝑗2

]2 … . [ 𝑙𝑖𝑚−1𝑗𝑚−1
]2[ 𝑙𝑖𝑚𝑗𝑚

]2 𝑁
𝑚=1 ]

𝜋[𝑟𝑖0𝑗0→𝑖1𝑗1
]2[𝑟𝑖0𝑗0→𝑖2𝑗2

]2 … … . . [𝑟𝑖0𝑗0→𝑖𝑁−1𝑗𝑁−1
]2[𝑟𝑖0𝑗0→𝑖𝑁𝑗𝑁

]2
 

+𝜈𝑖1𝑗1,𝐸𝑋𝐶𝐼𝑇𝐸𝐷
+…….+𝜈𝑖𝑁𝑗𝑁,𝐸𝑋𝐶𝐼𝑇𝐸𝐷

+……….]            (19) 

The above equation shows that the frequency received by the scopes is very different from the initial 

frequency, and contains information related to all interactions between neurons and molecules within 

the brain. Using Eq (9), we can obtain the dependency of the frequency on the charges and lengths: 

𝜈̅ =

∑ 𝑛𝑖𝑥𝑗

∑ 𝑛𝑖𝑥𝑗

𝑁,𝑋

𝑖,𝑗=1

[
1

(2𝜋)2 √
𝜆𝑖0𝑗0

𝜇0𝜋𝑙𝑖0𝑗0

𝑚𝑖0𝑗0

𝑄𝑖0𝑗0

𝑟𝑖0𝑗0

𝑙𝑖0𝑗0

𝑇𝑖0𝑗0

]⦻ 

[
𝜋[ 𝑙𝑖1𝑗1

]
2
[ 𝑙𝑖2𝑗2

]
2

… . [ 𝑙𝑖𝑁−1𝑗𝑁−1
]

2
[ 𝑙𝑖𝑁𝑗𝑁

]
2
 [1 − ∑ [ 𝑙𝑖1𝑗1

− 𝐷𝑖1𝑗1
]

2
… … … [ 𝑙𝑖𝑚𝑗𝑚

− 𝐷𝑖𝑚𝑗𝑚
]

2𝑁
𝑚=1 ]

𝜋[𝑟
𝑖0𝑗0→𝑖1𝑗1

]
2
[𝑟

𝑖0𝑗0→𝑖2𝑗2
]

2
… … . . [𝑟

𝑖0𝑗0→𝑖𝑁−1𝑗𝑁−1
]

2
[𝑟

𝑖0𝑗0→𝑖𝑁𝑗𝑁
]

2
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−
𝜋[ 𝑙𝑖1𝑗1

− 𝐷𝑖1𝑗1
]2 … … … [ 𝑙𝑖𝑁𝑗𝑁

− 𝐷𝑖𝑁𝑗𝑁
]2[1 + ∑  𝑙𝑖1𝑗1

]2[ 𝑙𝑖2𝑗2
]2 … . [ 𝑙𝑖𝑚−1𝑗𝑚−1

]2[ 𝑙𝑖𝑚𝑗𝑚
]2 𝑁

𝑚=1 ]

𝜋[𝑟𝑖0𝑗0→𝑖1𝑗1
]2[𝑟𝑖0𝑗0→𝑖2𝑗2

]2 … … . . [𝑟𝑖0𝑗0→𝑖𝑁−1𝑗𝑁−1
]2[𝑟𝑖0𝑗0→𝑖𝑁𝑗𝑁

]2
 

+
1

(2𝜋)2 √
𝜆𝑖1𝑗1

𝜇0𝜋𝑙𝑖1𝑗1

𝑚𝑖1𝑗1

𝑄𝑖1𝑗1

𝑟𝑖1𝑗1

𝑙𝑖1𝑗1

𝑇𝑖1𝑗1

+…….+
1

(2𝜋)2 √
𝜆𝑖𝑁𝑗𝑁

𝜇0𝜋𝑙𝑖𝑁𝑗𝑁

𝑚𝑖𝑁𝑗𝑁

𝑄𝑖𝑁𝑗𝑁

𝑟𝑖𝑁𝑗𝑁

𝑙𝑖𝑁𝑗𝑁

𝑇𝑖𝑁𝑗𝑁

+……….]     (20) 

The above frequency depends on all charges, the distance between the neurons, the length of the 

neurons or synapses, the interactions between the neurons and the excited frequencies. In addition to 

these parameters, we should add some extra parameters related to the interactions between the 

electrodes: 

𝜈̅𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 𝜈̅ + 𝜈̅𝑛𝑜𝑖𝑠𝑒,𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒𝑠 =

∑ 𝑛𝑖𝑥𝑗

∑ 𝑛𝑖𝑥𝑗

𝑁,𝑋

𝑖,𝑗=1

[
1

(2𝜋)2 √
𝜆𝑖0𝑗0

𝜇0𝜋𝑙𝑖0𝑗0

𝑚𝑖0𝑗0

𝑄𝑖0𝑗0

𝑟𝑖0𝑗0

𝑙𝑖0𝑗0

𝑇𝑖0𝑗0

]⦻ 

[
𝜋[ 𝑙𝑖1𝑗1

]
2
[ 𝑙𝑖2𝑗2

]
2

… . [ 𝑙𝑖𝑁−1𝑗𝑁−1
]

2
[ 𝑙𝑖𝑁𝑗𝑁

]
2
 [1 − ∑ [ 𝑙𝑖1𝑗1

− 𝐷𝑖1𝑗1
]

2
… … … [ 𝑙𝑖𝑚𝑗𝑚

− 𝐷𝑖𝑚𝑗𝑚
]

2𝑁
𝑚=1 ]

𝜋[𝑟
𝑖0𝑗0→𝑖1𝑗1

]
2
[𝑟

𝑖0𝑗0→𝑖2𝑗2
]

2
… … . . [𝑟

𝑖0𝑗0→𝑖𝑁−1𝑗𝑁−1
]

2
[𝑟

𝑖0𝑗0→𝑖𝑁𝑗𝑁
]

2
 

−
𝜋[ 𝑙𝑖1𝑗1

− 𝐷𝑖1𝑗1
]2 … … … [ 𝑙𝑖𝑁𝑗𝑁

− 𝐷𝑖𝑁𝑗𝑁
]2[1 + ∑  𝑙𝑖1𝑗1

]2[ 𝑙𝑖2𝑗2
]2 … . [ 𝑙𝑖𝑚−1𝑗𝑚−1

]2[ 𝑙𝑖𝑚𝑗𝑚
]2 𝑁

𝑚=1 ]

𝜋[𝑟𝑖0𝑗0→𝑖1𝑗1
]2[𝑟𝑖0𝑗0→𝑖2𝑗2

]2 … … . . [𝑟𝑖0𝑗0→𝑖𝑁−1𝑗𝑁−1
]2[𝑟𝑖0𝑗0→𝑖𝑁𝑗𝑁

]2
 

+
1

(2𝜋)2 √
𝜆𝑖1𝑗1𝜇0𝜋𝑙𝑖1𝑗1

𝑚𝑖1𝑗1

𝑄𝑖1𝑗1

𝑟𝑖1𝑗1

𝑙𝑖1𝑗1

𝑇𝑖1𝑗1

+…….+
1

(2𝜋)2 √
𝜆𝑖𝑁𝑗𝑁

𝜇0𝜋𝑙𝑖𝑁𝑗𝑁

𝑚𝑖𝑁𝑗𝑁

𝑄𝑖𝑁𝑗𝑁

𝑟𝑖𝑁𝑗𝑁

𝑙𝑖𝑁𝑗𝑁

𝑇𝑖𝑁𝑗𝑁

+……….] + 𝜈̅𝑛𝑜𝑖𝑠𝑒,𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒𝑠 (21) 

Now, the question that arises in the presence of these noises and extra interactions is how could we 

consider the activity of a part of the brain? To answer this question, we should indicate that we need 

to consider changes in the frequencies. This means that before a brain activity, we can measure the 

frequencies and after the brain activity, we can reconsider the frequencies. Then, by comparing them, 

we can obtain the desired results. For example, a minor change in a neuron charge may be multiplied 

by a factor, and produce a large change in the observed frequency. We have: 

𝛿𝑄𝑖0𝑗0
→  𝛿𝜈̅̅ ̅̅

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 =

∑ 𝑛𝑖𝑥𝑗

∑ 𝑛𝑖𝑥𝑗

𝑁,𝑋

𝑖,𝑗=1

[
1

(2𝜋)2 √
𝜆𝑖0𝑗0

𝜇0𝜋𝑙𝑖0𝑗0

𝑚𝑖0𝑗0

𝛿𝑄𝑖0𝑗0

𝑟𝑖0𝑗0

𝑙𝑖0𝑗0

𝑇𝑖0𝑗0

]⦻ 

[
𝜋[ 𝑙𝑖1𝑗1

]
2
[ 𝑙𝑖2𝑗2

]
2

… . [ 𝑙𝑖𝑁−1𝑗𝑁−1
]

2
[ 𝑙𝑖𝑁𝑗𝑁

]
2
 [1 − ∑ [ 𝑙𝑖1𝑗1

− 𝐷𝑖1𝑗1
]

2
… … … [ 𝑙𝑖𝑚𝑗𝑚

− 𝐷𝑖𝑚𝑗𝑚
]

2𝑁
𝑚=1 ]

𝜋[𝑟
𝑖0𝑗0→𝑖1𝑗1

]
2
[𝑟

𝑖0𝑗0→𝑖2𝑗2
]

2
… … . . [𝑟

𝑖0𝑗0→𝑖𝑁−1𝑗𝑁−1
]

2
[𝑟

𝑖0𝑗0→𝑖𝑁𝑗𝑁
]

2
 

−
𝜋[ 𝑙𝑖1𝑗1

− 𝐷𝑖1𝑗1
]2 … … … [ 𝑙𝑖𝑁𝑗𝑁

− 𝐷𝑖𝑁𝑗𝑁
]2[1 + ∑  𝑙𝑖1𝑗1

]2[ 𝑙𝑖2𝑗2
]2 … . [ 𝑙𝑖𝑚−1𝑗𝑚−1

]2[ 𝑙𝑖𝑚𝑗𝑚
]2 𝑁

𝑚=1 ]

𝜋[𝑟𝑖0𝑗0→𝑖1𝑗1
]2[𝑟𝑖0𝑗0→𝑖2𝑗2

]2 … … . . [𝑟𝑖0𝑗0→𝑖𝑁−1𝑗𝑁−1
]2[𝑟𝑖0𝑗0→𝑖𝑁𝑗𝑁

]2
 

+
1

(2𝜋)2 √
𝜆𝑖1𝑗1

𝜇0𝜋𝑙𝑖1𝑗1

𝑚𝑖1𝑗1

𝑄𝑖1𝑗1

𝑟𝑖1𝑗1

𝑙𝑖1𝑗1

𝑇𝑖1𝑗1

+…….+
1

(2𝜋)2 √
𝜆𝑖𝑁𝑗𝑁

𝜇0𝜋𝑙𝑖𝑁𝑗𝑁

𝑚𝑖𝑁𝑗𝑁

𝑄𝑖𝑁𝑗𝑁

𝑟𝑖𝑁𝑗𝑁

𝑙𝑖𝑁𝑗𝑁

𝑇𝑖𝑁𝑗𝑁

+……….] 
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→  𝛿𝜈̅̅ ̅̅
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = 𝛿𝑄𝑖0𝑗0

⦻ H (𝑙𝑖𝑚𝑗𝑚
, 𝐷𝑖𝑚𝑗𝑚

, 𝑟𝑖0𝑗0→𝑖𝑚𝑗𝑚
, … …)         (22) 

where H is a function of all parameters including synaptic lengths, currents, separation distances and 

other neuronal properties. The above equation shows that only a very small change in a charge could 

cause a large change in observed frequencies. Thus, by comparing frequencies before an activity and 

after it, we can obtain the exact results about neurons.  

Another question could be about the relation between the EEG frequencies and scalp thickness. 

Equation (20) shows that EEG frequencies depend on the distance between neuronal sources and 

electrodes, interacting molecules and cells between them, and the sizes of excited molecules. When a 

wave passing the scalp may be absorbed by molecules within it, it excites them and produces new 

waves. Also, some excited waves may join the initial source waves and produce new waves with new 

frequencies. Thus, the thickness of the scalp has a direct effect on EEG waves. we can write: 

𝛿𝑙𝑖𝑁𝑗𝑁
→  𝛿𝜈̅̅ ̅̅

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 =

∑ 𝑛𝑖𝑥𝑗

∑ 𝑛𝑖𝑥𝑗

𝑁,𝑋

𝑖,𝑗=1

[
1

(2𝜋)2 √
𝜆𝑖0𝑗0

𝜇0𝜋𝑙𝑖0𝑗0

𝑚𝑖0𝑗0

𝑄𝑖0𝑗0

𝑟𝑖0𝑗0

𝑙𝑖0𝑗0

𝑇𝑖0𝑗0

]⦻ 

[
𝜋[ 𝑙𝑖1𝑗1

]
2
[ 𝑙𝑖2𝑗2

]
2

… . [ 𝑙𝑖𝑁−1𝑗𝑁−1
]

2
[ 𝛿𝑙𝑖𝑁𝑗𝑁

]
2
 [1 − ∑ [ 𝑙𝑖1𝑗1

− 𝐷𝑖1𝑗1
]

2
… … … [ 𝛿𝑙𝑖𝑚𝑗𝑚

− 𝛿𝐷𝑖𝑚𝑗𝑚
]

2𝑁
𝑚=1 ]

𝜋[𝑟
𝑖0𝑗0→𝑖1𝑗1

]
2
[𝑟

𝑖0𝑗0→𝑖2𝑗2
]

2
… … . . [𝛿𝑟

𝑖0𝑗0→𝑖𝑁−1𝑗𝑁−1
]

2
[𝛿𝑟

𝑖0𝑗0→𝑖𝑁𝑗𝑁
]

2
 

−
𝜋[ 𝑙𝑖1𝑗1

− 𝐷𝑖1𝑗1
]2 … … … [ 𝛿𝑙𝑖𝑁𝑗𝑁

− 𝐷𝑖𝑁𝑗𝑁
]2[1 + ∑  𝑙𝑖1𝑗1

]2[ 𝑙𝑖2𝑗2
]2 … . [ 𝛿𝑙𝑖𝑚−1𝑗𝑚−1

]2[𝛿 𝑙𝑖𝑚𝑗𝑚
]2 𝑁

𝑚=1 ]

𝜋[𝑟𝑖0𝑗0→𝑖1𝑗1
]2[𝑟𝑖0𝑗0→𝑖2𝑗2

]2 … … . . [𝛿𝑟𝑖0𝑗0→𝑖𝑁−1𝑗𝑁−1
]2[𝛿𝑟𝑖0𝑗0→𝑖𝑁𝑗𝑁

]2
 

+
1

(2𝜋)2 √
𝜆𝑖1𝑗1𝜇0𝜋𝑙𝑖1𝑗1

𝑚𝑖1𝑗1

𝑄𝑖1𝑗1

𝛿𝑟𝑖1𝑗1

𝛿𝑙𝑖1𝑗1

𝑇𝑖1𝑗1

+…….+
1

(2𝜋)2 √
𝜆𝑖𝑁𝑗𝑁

𝜇0𝜋𝛿𝑙𝑖𝑁𝑗𝑁

𝑚𝑖𝑁𝑗𝑁

𝑄𝑖𝑁𝑗𝑁

𝛿𝑟𝑖𝑁𝑗𝑁

𝛿𝑙𝑖𝑁𝑗𝑁

𝑇𝑖𝑁𝑗𝑁

+……….] 

→  𝛿𝜈̅̅ ̅̅
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 = ∏[𝛿 𝑙𝑖𝑛𝑗𝑛

]
2

∏[𝛿𝑟
𝑖0𝑗0→𝑖𝑛−1𝑗𝑛−1

]
−2

⦻ Y (𝑙𝑖𝑚𝑗𝑚
, 𝐷𝑖𝑚𝑗𝑚

, 𝑟𝑖0𝑗0→𝑖𝑚𝑗𝑚
, … …)    (23) 

where Y is a function of brain parameters. The above equation shows that any change in the thickness 

of the scalp may cause a large change in EEG frequencies. Thus, observed frequencies for different 

ages are different.  

To test this generalized version, we can reconsider the results of [14]. In this research, based on 

the response to sleep deprivation, low-delta (0.5–1 Hz) and mid-delta activity (1.25–2 Hz) were 

discussed. It was shown that sleep deprivation resulted in an increase in source strength only for mid-

delta activity, mainly in the parietal and frontal regions. Low-delta activity dominated in occipital and 

temporal regions, and mid-delta activity in limbic and frontal regions independent of the level of sleep 

pressure. These results are consistent with our model. Because the sizes of parietal and frontal regions 

are different from the sizes of the occipital and temporal regions, their emitted frequencies are different. 

Also, the number of neuronal cells, charges and molecules within the parietal and frontal regions are 

different from the number of neuronal cells, charges and molecules of the occipital and temporal 

regions. For example, the volume of the frontal lobe is approximately more than temporal lobe and 

consequently, more waves could be emitted by its neurons (See table 1). Although, in addition to the 

size and volume, other parameters like the number of cells, molecules and charges are also important. 

For example, maybe one region has lower volume but it may radiate higher frequencies of waves. As 
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a result, it is natural that these regions emit different ranges of frequencies. 

Table 2. Dependency of frequencies on the volume of the brain sections. 

Total Frontal Lobe Total Temporal Lobe 

260503 mm3 251609 mm3 

mid-delta (1.25–2 Hz) low-delta (0.5–1 Hz) 

5.  Conclusion 

In this paper, we have proposed a model which relates the EEG topographic parameters to the 

number of interacting neurons, lengths of synapses+sizes of neurons, charges and masses of ions and 

particles, and radii of circles in which interactions occur. In this model, charges move along neurons 

or between axons and dendrites, and emit some waves. These waves are absorbed by electrodes and 

produce topographic images. By analyzing the densities of the waves on these pictures, we can estimate 

the charge, mass and type of exchanged particles and number of interacting neurons. We have tested 

the model against data.  

In addition, we have generalized the model to consider the effects of other neurons, molecules and 

charges. We have shown that the energy of any propagated wave is divided on a circle and some part 

of it is absorbed by neurons and molecules. These molecules and cells may be excited and emit new 

waves with new frequencies. These new frequencies may add to the initial frequencies and produce 

new waves. These waves also propagate and their energies are divided on new bigger circles. Again, 

some cells absorb these waves, are excited and emit new waves. This process continues from the source 

point to the electrodes. Thus, the observed frequency may be different from the initial frequency. 

However, any change in one parameter within the brain could cause a large change in observed 

frequency. Thus, by considering the frequencies before and after a brain activity, we can analyze the 

evolution of the neurons. We also showed that the thickness of the scalp in different ages and different 

parts of the brain has a direct effect on EEG frequencies. 

Data availability 

Not applicable. This is a theoretical model which has been tested by the data of previous 

experiments in the cited references. 
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