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Abstract: To improve the path optimization effect and search efficiency of ant colony optimization 

(ACO), an improved ant colony algorithm is proposed. A collar path is generated based on the known 

environmental information to avoid the blindness search at early planning. The effect of the ending 

point and the turning point is introduced to improve the heuristic information for high search efficiency. 

The adaptive adjustment of the pheromone intensity value is introduced to optimize the pheromone 

updating strategy. A variety of control strategies for updating the parameters are given to balance the 

convergence and global search ability. Then, the improved obstacle avoidance strategies are proposed 

for dynamic obstacles of different shapes and motion states, which overcome the shortcomings of 

existing obstacle avoidance strategies. Compared with other improved algorithms in different 

simulation environments, the results show that the algorithm in this paper is more effective and robust 

in complicated and large environments. On the other hand, the comparison with other obstacle 

avoidance strategies in a dynamic environment shows that the strategies designed in this paper have 

higher path quality after local obstacle avoidance, lower requirements for sensor performance, and 

higher safety.  
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1. Introduction  

As the application of mobile robots gradually shifts from industrial environments to medical 

handling, navigation assistance, warehousing and transportation, and catering services, there are higher 

requirements for mobile robot navigation algorithms. At present, the algorithms for path planning are 

divided into two categories: traditional path planning algorithms which mainly include the D* 

algorithm, fuzzy logic, potential field method, the A* algorithm, and intelligent optimization 

algorithms, such as the genetic algorithm [1–5], particle swarm algorithm, ant colony optimization and 

so on [6–9]. Ant colony algorithm has attracted much attention in mobile robot path planning because 

it can optimize many aspects of path quality, is better suited to the needs of practical robot applications, 

and have the advantage of being easily combined with other search methods. 

For the research on path planning of mobile robots in a static environment with known global 

information, Liu et al. [10] combined the ant colony algorithm with geometric optimization to 

eliminate the cross paths generated during the pathfinding process. Viseras et al. [11] added fast search 

random tree method into the ant colony algorithm to accelerate the search speed of the algorithm. Wang 

et al. [12] added initial pheromone to all nodes between the starting point and the ending point, which 

improves the adaptability and convergence speed of the algorithm. However, in complex environments, 

due to the roulette transfer method’s randomness, pre-planning using other algorithms and adding a 

region of the initial pheromone cannot guarantee that ants will always follow this path or region and 

will increase the running time and complexity of the algorithm. The result is not as good as expected. 

Zheng et al. [13] proposed an adaptive update heuristic function to improve the performance. Jiao et 

al. [14] used an adaptive state transition method and the adaptive information updating strategy to 

adjust parameters in real-time, which guarantee the relative importance of pheromone intensity and 

desirability and the ability to jump out of local optimal. Akka et al. [15] designed a piece-wise multi-

heuristic function, rewarding and punishing the optimal and the worst path respectively, which expands 

the search space of the algorithm and reduces the influence of cluttered pheromone. You et al. [16] 

introduced a multiple evolution strategy mechanism into the state transition rules of the ant colony 

algorithm that increase the diversity of search results to improve search quality and convergence speed. 

Wang et al. [17] proposed a method that if the ants are trapped in deadlock, the pheromone of the path 

is not updated to avoid other ants being attracted to the deadlock. Qu et al. [18] adopt the regression 

and penalty strategy, which allows ants to return one step and punish the pheromones on the path that 

ants have traveled. Luo et al. [19] devised a dynamic punishment method to reduce the number of lost 

ants and improve the diversity of the solution. Miao et al. [20] transformed the path planning problem 

into a multi-objective optimization problem by introducing the multi-objective performance indexes 

into the algorithm. However, the existing improved algorithms are still not well adapted to diverse, 

unstructured and complex environments because of the single heuristic information, still exist the 

excessive data fluctuations, the low stability of the algorithms, the long running time and can’t better 

balance the global search ability and convergence speed of the algorithm problems in large-scale 

complex environments. 

For the research on path planning in a dynamic environment, Zhu et al. [21] solved the path 

planning problem of the robot in the working environment that beyond its perception range and 

contains unknown static and dynamic obstacles. Yen et al. [22] avoided dynamic obstacles by finding 

the linear function of moving obstacles. Yin et al. [23] used the obstacle detection algorithm to obtain 

parameters of obstacles, then used the behavioral dynamics method to plan local obstacle avoidance 

path. Xu et al. [24] proposed three obstacle avoidance strategies according to the volume and speed of 

different dynamic obstacles in the environment. However, the above studies did not specify the 
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magnitude of the volume and velocity of dynamic obstacles or only studied the case where dynamic 

obstacles and mobile robots were equally large or they do not consider the situation comprehensively 

enough. In practical applications, the size and speed of dynamic obstacles are critical to obstacle 

avoidance. 

To overcome the shortcomings of existing algorithms and realize efficient and high-quality path 

planning for mobile robots, an improved ant colony algorithm is proposed in this paper. The algorithm 

sets the initial pheromone of uneven distribution according to the leading route which is created by the 

connection of the feature points, and it reduces the problem of blindness in the initial period. The 

bending suppression operator is introduced to improve heuristic information, which aims to optimize 

the smoothness of the path. The pheromone update rule is improved to increase the difference of 

pheromone concentration on different paths, and enhance the positive feedback effect of the algorithm. 

Three parameter dynamic adaptive control strategies are designed to coordinate the convergence and 

global search capability of the algorithm. The optimal parameters combination of the improved ant 

colony algorithm is determined by experimental and the experiments show that the aggregation 

pheromone structure can achieve a first complete solution and converge later more quickly, and has a 

higher efficiency and better performance.  

Aiming at the problems existing in the path planning of the mobile robot in the dynamic 

environment. Firstly, using the improved algorithm to get the optimal path of the static environment, 

when the robot moves alone the optimal path, it can detect the dynamic obstacles’ states, such as the 

volume and speed, then take corresponding obstacle avoidance strategies in time to avoid it until the 

robot reaches the end. Simulation researches show that, compared with other literatures, the obstacle 

avoidance strategies proposed in this paper is more comprehensive, and the path obtained after obstacle 

avoidance is better.  

2. Description of basic ant colony algorithm 

2.1. Environment model 

Grid maps are commonly used in mobile robot path planning due to the reasons that it is simple 

and can effectively represent the layout characteristics of the environment [25]. The grid map 

discretizes the environment into independent square grids, each grid has 2 states, free and occupied. 

The 0 value is used to represent the free area in the environment map, and the corresponding grid is 

filled with white; while the 1 value is used to represent the obstacle area, and the corresponding grid 

is filled with black. The grid model was placed into a two-dimensional coordinate system. And then 

serial number method is adopted to mark each grid, and the grid is numbered in order from upper to 

bottom, left to right to satisfy the needs of ant colony algorithm storage path, as shown in Figure 1.  

In addition, for the convenience of research, the following assumptions are made about the mobile 

robot and its working environment: 

(1) The location of the starting point, ending point, and static obstacles are known; 

(2) Both the robot and the dynamic obstacle move in a straight line at a constant speed in units of 

grids and can switch between the constant straight-line motion and the stopped state; 

(3) The robot is equipped with sensors can sense the state of dynamic obstacles, including moving 

direction, step length, size, and shape, but the states of different obstacles are randomly generated. 
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2.2. The state transition probability 

In the process of ants searching the optimal path, the probability of the next node is selected by 

the heuristic value and the pheromone value of the path. At time t , the transition probability of ant k
selecting the next node j from node i  is expressed in Eq (1): 

 

Figure 1. Grid environment map of mobile robot. 
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where kallow   is the set of next reachable nodes when ants in the grid i  ,    is the pheromone 

heuristic factor, indicating the degree of importance of pheromone,   is the expected heuristic factor, 

which reflects the importance of the heuristic information on path. ij   is the pheromone 

concentration of path ( , )i j , ij  is the heuristic value, and its expression is given in Eq (2): 
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where ijd  is the Euclidean distance between the current node i  and the candidate node j . 

2.3. The pheromone update rule 

Ants will leave pheromone on the path they pass, and some of these pheromones will volatilize 
as time flows. Eqs (3) and (4) are used to update the pheromone concentration on the path ( , )i j  at 

time 1t + . 
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where   is the global pheromone volatilization coefficient, (0,1) , ( )ij t  is the increment 

of the pheromone on the path ( , )i j  in the current iteration is the concentration of left pheromone by 

ant k  on the path ( , )i j , and ( )k
ij t  is calculated according to Eq (5): 
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Among them, Q  is a constant, kL  represents the total length of the path searched by the thk  ant 

in this iteration. 

3. To improve ant colony algorithm 

3.1. To improve initial pheromones 

In the early stage of path planning, the difference in pheromone concentration in each node is 

small, so the positive feedback effect of the algorithm is not obvious, and the ants have some blindness 

in the path search, which leads to poor convergence and more time-consuming. This paper proposes a 

method to achieve the uneven distribution of initial pheromone by creating a collar route [26] and 

adding pheromone to the nodes that the collar route passes. 

3.1.1. The extraction rules of feature points 

In this paper, several points are used to describe the different shapes of obstacle grids, and these 

points are called the feature points of obstacle grids. The extraction rules of feature points are as follows: 

(1) The feature points of the convex barrier grid are all its vertices, as shown A in Figure 2 

(2) The feature points of the concave barrier grid are only part of its vertices, and the vertices at 

the concave corners are removed, as shown B in Figure 2. 

(3) The U-shaped obstacle grid is shown in Figure 2 as C and D. The characteristic points of this 

type of obstacle grid are all vertices, but the red vertices are removed. 

(4) The obstacles which are at the boundary of the map as shown in (E, F, G), Figure 2, so that 

the vertices at the boundary of the map will be removed. 

3.1.2. The creation of the collar line 

At first, using a straight line connecting the starting point to the goal point, as shown in the green 

line in Figure 3(a). If the straight line does not intersect any obstacle, the final path is the collar line.  

Other- wise, the obstacle that intersects the straight line is defined as the Class I obstacle, and extract 

the feature points of the Class I obstacle grid according to the rules. Then, starting from the starting 

point, judge the connection between the feature point and the starting point, among which there may 

be more than one feature point that can be connected to the starting point, and give priority to the 

feature point that is close to the ending point and connect it with the starting point, and then start from 

the selected feature point and repeat until a collar line from the starting point to the ending point is 

generated as shown in the red line in Figure 3(a). 

In some environments there may be cases where the feature point cannot be connected to the start 
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point, the feature point cannot be connected to the feature point, and the feature point cannot be 

connected to the ending point, as shown in Figure 3(b)–(d). For case b and c, it is necessary to connect 

the closest unconnectable feature point to the current start point or feature point as shown in the blue  

  

Figure 2. The feature points of obstacle grids. 

 

Figure 3. Creation of the collar line. 

and d. For case d, it is necessary to connect the current feature point and the ending point, and the 

obstacles which the line passes are defined as class II obstacle and extract its feature points, and then 

continue to create the collar line from the current feature point. 

3.2. To improve heuristic information function 

The heuristic information of the ACO is the reciprocal of the Euclidean distance between the 
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current node and the next optional node, which reduces the search efficiency and the ability to find the 

optimal path of ants. Therefore, this paper adds the guidance information of the target point and the 

bend suppression factor to the heuristic function to reduce the invalid path search and reduce the 

redundant turning point. The improvement heuristic information is 

 ( ) (cos 1)
ig
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d
t

d d
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where ijd  is the distance between the i  grid and the j  grid, jgd is the distance between the grid 

to be selected and the goal grid, igd  is the distance between the i  grid and the goal grid.   is the 

angle between the line segment of node 1i −  to node i and the line segment of node i  to node 1i + . 

The closer the angle is to 180°, the greater the ( )ij t  is, which helps to reduce the turning points of the 

path. 

3.3. To improve pheromone update rule 

After each iteration, the pheromone increment on different path of the ACO is the ratio of the 

pheromone intensity to the path length, this difference can be very small if the path lengths are close 

to each other, making it easy for the ants to fall into a local optimum in a complex environment. 

Therefore, this paper proposes an improved pheromone update rule, according to Eq (7) to distribute 

the pheromone intensity on different paths. After each iteration, only the pheromone of the ant path 

reaching the target point is updated according to Eqs (3),(4) and (8). 
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where ct  is a constant, GLL  denotes the length of the collar line, mL  represents the length of the 

path searched by the ants that reach the end point, turn  is the Total number of turns on the path. 

3.4. Multiple parameter control strategies 

For ACO,   and   are two important parameters that coordinate the algorithm’s global search 

capability and convergence speed. In the early stage of the algorithm, the heuristic function is mainly 

used to guide the ants to search for the path. As the number of iterations increases, the pheromone 

concentration of each node increases. The pheromone should play a leading role in the selection of the 

path. In the later iterations, in order to avoid falling into the local optimization, the guiding effect of 

pheromone and heuristic function should be weakened at the same time to improve the randomness of 
the algorithm, therefore,   should be increased first and then decreased, and   should be gradually 

decreased. Since most parameter control strategies only consider the number of iterations to judge the 

operating conditions of the algorithm and then to adjust the value of the parameters while not consider 

the actual operating conditions of the algorithm, it is likely to cause the adjustment of the parameters 

to lag or lead. Therefore, this paper designs a variety of parameter control strategies to adjust the 
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parameter values based on the length of the leading route, the length of the path found by the ants, and 

the number of iterations. The parameter control strategies proposed in this paper are as follows: 

For  : 
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where initala  and inital  respectively represents the initial value of the parameter   and  ,   is the 

adjustment coefficient, the value is a positive number bigger than 0, N  is the maximum number of 

iterations, cN  is the current number of iterations, GLL  is the length of the collar line, bestLF  is the 

optimal path length found in the previous iterations. It can be seen from Eqs (9) and (10) that the 

parameters are jointly controlled by the number of iterations and path length, and the parameters 

change nonlinearly and dynamically with the number of iterations and path length to coordinate the 

algorithm’s global search capability and convergence speed. 

Meanwhile, in the process of finding the optimal path for the ant colony algorithm, the pheromone 

volatilization factor also affects the performance of the algorithm. This paper uses adaptive dynamic 

adjustment of pheromone volatilization factor is used to adjust the global search ability and 

convergence speed of the algorithm, and shown in Eq (11): 

 GL

best GL

L

L L
 

 
=  

+ 
 (11) 

where   is the adjustment coefficient, the value is a positive number less than 1, with the higher 
quality of the found path, the volatilization factor    gradually increases, which increases the 

pheromone concentration difference on different paths, enhances the guiding role of high-quality ants, 

which can improve the search speed of ant colony and make the algorithm converges rapidly. 

3.5. Application of improved ant colony algorithm in path planning 

Step1: Build the grid map and initialize the number of ants m, the maximum number of iterations 

N , the pheromone heuristic factor  , the expected heuristic factor  , the pheromone volatilization 

factor  , the strength of the pheromone Q  and other parameters. 

Step2: Create the collar line and add the initial pheromone to the grid it passes through, then, 

record the length of the collar line. 

Step3: Place the ant at the starting point, calculate the heuristic information according to Eq (6), 

and calculate the probability function according to Eq (11), finally, using the roulette method to select 

the next feasible grid. Then, turn to Step4. 
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Step4: If the ants reach the target grid, it will turn to Step5, otherwise it will turn to Step3. 

Step5: The number of ants m = m + 1, and if all the ants have completed the path search, turn to 

Step6, otherwise turn to Step3. 

Step6: Record the optimal path of this iteration, and update the path pheromone according to Eqs 

(3), (4) and (8). 

Step7: Adaptively adjust parameters according to the Eqs (9)–(11). 

Step8: Determine whether the end condition is satisfied. If it is satisfied, the optimal path length 

is output; otherwise, output optimal path and iterative curve; otherwise, let 1c cN N= + , go to Step3. 

and continue to circularly execute until the maximum number of iterations is reached. 

4. To improve the local obstacle avoidance strategy 

4.1. Collision types and regular processing method 

In a grid environment, the following collisions may occur between robots and dynamic obstacles. 

(Only obstacles in uniform linear motion are considered in this paper) 

(1) The trajectory of the dynamic obstacle is not in the same line as the trajectory of the robot. 

(2) The trajectory of the dynamic obstacle and the trajectory of the robot is in the same line and 

in the opposite direction. (At this point, the obstacle and the robot will collide face to face) 

(3) The trajectory of the dynamic obstacle and the trajectory of the robot is in the same line and 

in the same direction (The dynamic obstacle is chasing the robot and moves faster than robot). 

(4) The trajectory of the dynamic obstacle and the trajectory of the robot is in the same line and 

in the same direction (The robot is chasing the dynamic obstacle and moves faster than dynamic obstacle). 

Four corresponding dynamic obstacle avoidance strategies are proposed for each of the above 

four scenarios. 

In order to facilitate the design of obstacle avoidance strategies for dynamic obstacles with 

different shapes, first conduct regularization processing to obtain the trajectory of dynamic obstacles. 

As shown in Figure 4, it shows the original shape of the obstacle and the red line represents the moving 

direction of the obstacle, then extract the feature points of the dynamic obstacle based on the 

information detected by the sensor and the method proposed, and then select the two feature points 

that are the furthest vertical distance from the direction of movement on both sides of the dynamic 

obstacle, and according to the selected feature points, the dynamic obstacles are regularized into a part 

of the n n  grid, as shown in Figure 4(b), the blue dotted line represents the trajectory of the dynamic 

obstacle. 

 

Figure 4. Regular processing method. 
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Figure 5. Obstacle avoidance strategy for scenario 1. 

4.2. Obstacle avoidance strategies in different situations  

For scenario1, the wait-and-avoid strategy proposed by [24] can be used, as shown in Figure 5, A 

represents the collision point, and the robot stops at the red grid waits for the obstacle to pass, and then 

continues to move along the original path after ensuring that it will not collide with the obstacles. 
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For scenario 2, for the convenience of research, suppose that the step length of the robot is 1 grid 

and it occupies 1 grid. The ratio of the step length of the dynamic obstacle to the step length of the 

robot is scaleStep  and the speed of the dynamic obstacle is greater than the speed of the robot. After 

the regularization process, the side length of the grid occupied is scaleGrid , and the distance from the 

robot to the dynamic obstacle when the robot finds the dynamic obstacle is ng  grids. At the same 

time, assuming that the grid coordinates where the robot is located is ( )rob robX Y， .The precondition 

for a robot to avoid dynamic obstacles is shown in Eq (12): 

If the side length of the obstacle grid after regularization is an even multiple of the robot, it still 

needs to satisfy that there are non-obstacle grids in the 6 grids in Eq (13) and there is a path to the 

ending point in these grids 
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If the side length of the obstacle grid after regularization is an odd multiple of the robot, it still 

needs to satisfy that there are non-obstacle grids in the 2 grids in Eq (14) and there is a path to the 

ending point in these grids. 
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 rob obsX ng X V V  + +  (15) 

If ng  s atisfies Eq (15), then the obstacle avoidance strategy designed below needs to be 
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implemented at the grid where it is currently located. 

 rob obsX V V ng+ +   (16) 

If ng  satisfies Eq (16), the robot can continue walking along the previously planned path with 

the number of grids D as shown in Eq (17) and then execute the obstacle avoidance strategy designed 

below. 

  0,1,2,3 ( )rob obs rob obsng X V V D V V− + +  + +    (17) 

The obstacle avoidance strategies designed in this paper will be illustrated in conjunction with 

the examples shown in Figure 6. Since the ratio of the size of the dynamic obstacle to the volume of 

the robot is different, the obstacle avoidance strategy adopted will be different. Therefore, the obstacle 

avoidance strategies are designed in two situations.  

The obstacle avoidance strategies designed in this paper will be illustrated in conjunction with 

the examples shown in Figure 6. Since the ratio of the size of the dynamic obstacle to the volume of 

the robot is different, the obstacle avoidance strategy adopted will be different. Therefore, the obstacle 

avoidance strategy is designed in two situations.  

Assuming that the size of the obstacle is 4 times or even times that of the robot, and the step length 

is 3 times that of the robot, as shown in Figure 6(a). In the Figure 6, the blue square represents the 

dynamic obstacle, the green square represents the robot, the red solid line represents the planned path 

before the robot encounters the obstacle, and the blue dotted line is the movement trajectory of the 

dynamic obstacle. At a certain moment, the position of the obstacle and the robot is shown in Figure 

6(a). At this time, the two objects are 6 grids apart and satisfy the conditions of Eqs (12) and (14), so 

the obstacle avoidance strategy is executed at the current position, the next moment, the position of 

the obstacle and the robot is shown in Figure 6(b), and there will be no collision at this time. At the 

next moment, the robot can move to one of the three positions 3–1, 3–2 and 3–3 in Figure 6c, the 

turning angle is limited to 90  . At this time, the three grids available for selection plus the three grids 

on the upper right A total of 6 grids need to meet the condition of Eq (12), and then replan the path 

with the non-obstacle grid as the starting point, and take the shortest path as the path for the robot to 

move. 

If the size of the obstacle is 9 times or odd times that of the robot, and the step length is 3 times 

that of the robot, as shown in Figure 7, the obstacle avoidance strategy is different. The robot only 

needs to move 2 grids along the 90   direction to avoid dynamic obstacles, and then replan the path 

in the grid at the position in Figure 7(c). ③ 

The difference between the obstacle avoidance strategy adopted when the dynamic obstacle is an 

odd or even multiple of the robot's size is the position the robot is in after it has moved one grid after 

discovering the dynamic obstacle. As shown in Figure 6, for the odd multiple case, the robot is at 

position 2 in the Figure 6(b) after moving one grid, which is inside the trajectory of the dynamic 

obstacle , while for the even multiple case, the robot is at position in Figure 7(b), which is on the 

trajectory of the dynamic obstacle, the next position can be moved towards 3–1, 3–2 and 3–3 in the 

Figure 8(c) to avoid the dynamic obstacle, while the robot in position 2 in Figure 6(b) can only avoid 

the dynamic obstacle by moving towards the position where 3 is located Figure 6(c).  

For the odd multiple case, if adopts the same avoidance strategy as the even multiple case would 

require the robot to find the obstacle further away from it or the robot will hit the dynamic obstacle as 

shown in Figure 8. In Figure 8, from Figure 8(a) to Figure 8(d), it represents the process of avoiding 

obstacles when the robot adopts the even-numbered strategy in odd-numbered situations, and will 
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eventually collide with the obstacle, so the obstacle-avoiding strategy in even-numbered situations 

cannot be adopted, or which would undoubtedly place greater demands on the robot's performance. 

For scenario 3, the same obstacle avoidance strategy is adopted as for case 2, simply by replacing 

Eqs (15)–(17) with Eqs (18)–(20) and then implementing the corresponding designed obstacle 

avoidance strategies. 

 obs robX ng X V V  + −  (18) 

 obs robX V V ng+ −   (19) 

  0,1,2,3 ( )obs rob obs robng X V V D V V− + −  + −    (20) 

For scenario 4, in this situation, the robot only needs to use an obstacle avoidance strategy similar 
to that in case 2 at a distance of rg grids from the obstacle. (rg means that the speed of the robot is rg 
times the speed of the obstacle) 

 

Figure 6. Obstacle avoidance strategy for scenario 2(odd times of the robot). 

 

Figure 7. Obstacle avoidance strategy for scenario 2(even times of the robot). 

 

Figure 8. The situation when an even-time obstacle avoidance strategy is adopted when 

the volume of the obstacle is an odd multiple of the robot. 
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4.3. Path planning method based on improved ant colony and dynamic environment 

Combining the environmental model, the improved ant colony algorithm and the dynamic 

obstacle avoidance strategy, the main steps of the path planning method proposed in this paper are as 

follows. 

Step1: Build the grid map and create the collar route based on known static environmental 

information. 

Step2: The robot uses the improved ant colony algorithm in this paper to plan an optimal path in 

a static environment. 

Step3: The robot obtains the information of the dynamic environment at the current starting point 

through its sensors, and executes the corresponding collision avoidance strategy according to different 

dynamic obstacles based on the dynamic environment obstacle avoidance strategies described in Sect 

4, and reaches a new starting point; otherwise, follow the original path to reach the new starting point. 

Step4: If the robot reaches the ending point, the path planning ends; otherwise, return to Step3. 

5. Simulation experiments and analysis 

The simulation environment is as follows: Windows10 64 bit; processor AMD Ryzen 7 5800H; 

main frequency 3.2 GHz; memory 8 GB; simulation software: Matlab R2018b.  

5.1. Main parameter selection 

Since there are no precise mathematical analysis methods of the ACO model has so far been 

developed to generate optimal parameter settings in different situation, the parameters are generally 

chosen empirically. Nowadays, the commonly used methods are mainly based on experience and 

repeated trial through many experiments.  

This paper mainly selects several important parameters that play a role in determining the 

performance of the algorithm: pheromone heuristic factor, expected heuristic factor, adaptive 

pheromone volatility，adaptive pheromone intensity. 

Firstly, set the value range of each parameter:  0,0.5,1,2,4    0,2,5,7,9    

 1,1.5,2,3,5ct    0.1,0.3,0.5,0.7,0.9  . The default value of a group of parameters is set to 1 =   

5 =   2ct =   0.5 =  . Only one parameter is changed for each experiment. E.g. when calculating 

simulation results for 0 = , all other parameters are taken as default values. Each parameter setting is 

simulated 10 times to avoid chance, and compares and analyzes the mean values of the simulation 

results of the algorithm. The corresponding experimental results for each group are shown in Table 1. 

From the experimental results in Table 1, it can be seen that the optimal value of   is around 1, 

the optimal value of   is around 7, the optimal value of ct  is around 1.5, the optimal value of   is 

around 0.7. 

5.2. Algorithm comparison and analysis in a static environment 

The experiment was divided into four parts according to four types of maps and three algorithms 

[19], the algorithm in [24] and the improved ant colony algorithm proposed in this paper are simulated 

on each map in turn. Each algorithm was executed 50 times to obtain the algorithm performance 

comparison table. The values of the experimental parameters are shown in Table 2. 
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Table 1. Main parameter optimization experiment results. 

  0 0.5 1 2 4 

Mean value of path length 58.254 51.298 48.531 49.378 53.854 

  0 2 5 7 9 

Mean value of path length 65.624 53.274 49.591 50.325 52.951 

ct  1 1.5 2 3 5 

Mean value of path length 57.936 49.292 50.836 51.951 53.469 

  0.1 0.3 0.5 0.7 0.9 

Mean value of path length 52.861 50.197 49.178 48.568 49.625 

Table 2. Main parameters of simulation experiment. 

Parameter       ct      

Value 1 5 0.3 100 50 100 1.5 2 0.7 

Figure 9 is a path map generated by three algorithms in a simple environment. As shown in Figure 

9 and Table 3, all three algorithms find the shortest path with a length of 28.6274 m, however, there 

are only 6 turning points in the algorithm of this paper, 7 in [19] and 7 in [24]. The algorithm in this 

paper has certain advantages in convergence speed and path smoothness. 

Figure 10 is a path map generated by three algorithms in a complex environment. As shown in 

Figure 10 and Table 3, the optimize length of the improved ant colony algorithm is 73.9828, and the 

number of bending times is 12. In the shortest path length, the improved ant colony algorithm is 

basically as the same as the algorithm in [19], but the algorithm in [24] can’t find the global optimal 

path. In the number of bending times, it is 14% decrease than the algorithm in [19], and as shown in 

Table 3, the algorithm in this paper has obvious advantages in convergence speed. 

Figure 11 is a path map generated by three algorithms in the baffle environment. The baffle 

environment is prone to occur deadlock problem due to the small space. As shown in Figure 11 and 

Table 3, the algorithm in this paper still plans the shortest path without redundant turning points, which 

length is 115.87m. Both the algorithm in literature [19] and [24] can’t search the global optimized path, 

the algorithm in paper has faster convergence speed and less running time than the algorithm of this 

paper. 

Figure 12 is a path map generated by three algorithms in the trough environment. As shown in 

Figure 12 and Table 3, compared with the algorithm in [19], the path length is reduced by 1.415, 

compared with the algorithm in [24], the turning point of this algorithm is reduced by 12 and the path 

length is reduced by 6.928. The optimal path length of the algorithm in this paper converges to 62.527, 

while the average path length of the algorithm in [19] is 70.847, which further illustrates that the 

algorithm of this paper is more stable. 

Figure 13 is a path map generated by three algorithms in the complex environment. As shown in 

Figure 13 and Table 3, the algorithm in this paper can still quickly search for the optimal path. The 

optimal path length of the algorithm in [19] is 84.0833, while the optimal path length is 78.8112 in this 

paper. The path length is shortened 5.2721; the average iteration in [19] is 75times, and the average 

iteration of this algorithm is 30 times. And the convergence speed is increased nearly double times. 

The number of bending times is shortened 14.   

Figure 14 is a path map generated by three algorithms in the environment which combine the 

maps above. As shown in Figure 14 and Table 3, compared with the algorithm in [19], the path length 
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is reduced by 12.4437, the average iteration in [19] is 80 times, and the average iteration of this 

algorithm is 35 times. And the time consuming also decreased a lot compared with the algorithm in 

[19] and in this paper.  

 

 

Figure 9. Comparison of path planning results on map 1. 

 

Figure 10. Comparison of path planning results on map 2. 

 

Figure 11. Comparison of path planning results on map 3. 
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Figure 12. Comparison of path planning results on map 4. 

 

Figure 13. Comparison of path planning results on map5. 

 

Figure 14. Comparison of path planning results on map 6. 

The results of the three algorithms that run 50 times in the same map environments are shown in 

Table 3. The algorithm in [19] and [24] have large fluctuations in the path length and the number of 

inflection points during the operation of the algorithm. The algorithm in this paper can find the global 

optimal path more stably, with fewer inflection points, higher quality, and faster convergence, which 

significantly reduces the optimization time and the improvement of the algorithm is more obvious on 
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large-scale complex maps. 

Table 3. Comparison of different algorithm performance on different map. 

Map Algorithm Optimal 

path 

length 

Average of 

path length 

Standard 

deviation 

Average 

number of 

iterations 

Average time-

consuming(sec) 

Number 

of bends 

1 ① 28.6274 28.6274 0 14 1.35 6 

② 28.6274 28.6557 0.0283 20 1.48 8 

③ 28.6274 29.0127 0.3853 32 3.37  11 

2 ① 73.9828 74.2296 0.2468 13 4.04 12 

② 73.9828 77.0538 3.071 35 7.91 18 

③ 77.6694 90.5694 12.9 - 18.23 33 

3 ① 115.87 119.35 3.48 27 4.68 32 

② 118.799 132.26 13.461 45 11.01 35 

③ 122.213 148.84 26.627 83 23.6 41 

4 ① 58.183 62.527 4.344 38 12.32 18 

② 59.598 70.847 11.249 59 19.56 23 

③ 65.111 85.247 20.136 81 44.83 40 

5 ① 78.8112 87.5614 8.7502 30 20.45 21 

② 84.0833 103.1546 19.0713 75 33.54 35 

③ 90.1838 126.154 35.9702 85 50.57 34 

6 ① 364.7523 395.146 30.3937 35 40.56 59 

② 377.196 426.545 49.349 80 70.48 55 

③ 389.8712 460.254 70.3828 97 110.32 71 

Note: ①: Algorithm in this paper.②: Algorithm in paper [24]. ③: Algorithm in paper [19] 

Table 4. Results of Wilcoxon signed rank tes. 

Map Algorithm in paper [24] Algorithm in paper [19] 

Z P Z P 

1 –4.298 1.700E–05 –4.623 4.000E–06 

2 –4.141 3.500E–05 –4.782 2.000E–06 

3 –4.247 2.200E–05 –4.782 2.000E–06 

4 –3.795 1.480E–04 –4.556 5.000E–06 

5 –4.433 9.000E–06 –4.762 2.000E–06 

6 –3.034 2.000E–03 –4.330 1.500E–05 

5.3. Wilcoxon rank sum test 

Only using the above test method to test the algorithm in this paper cannot fully prove its 

significant optimization performance. Thus, statistical test is used to judge about the significance of 

results here, and 50 times results of three algorithms on the metric of path length are tested by Wilcoxon 
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rank sum test to obtain p value. That is, whether the algorithm in this paper is significantly different 

from other algorithms under the standard of p = 0.05, the original hypothesis H0 is that there is no 

significant difference between the two algorithms. When p < 0.05, the assumption of H0 is rejected,  

indicating that there is a significant difference between the two algorithms; when p > 0.05, H0 is 

accepted, indicating that the difference between the two algorithms is not significant, and the 

algorithms have the same optimization ability. The specific test results are shown in Table 4. 

According to Table 4, the p-values are all less than 0.05, indicating that there is a significant 

difference between the algorithm in this paper and the other algorithms. 

5.4. Comparison of obstacle avoidance strategies in a dynamic environment 

This paper will verify the feasibility of the proposed dynamic environment obstacle avoidance 

strategy through the following simulation examples. In this simulation experiment, the red grid 

represents the robot, and other color grids represent dynamic obstacles in different states. The starting 

and ending points have been marked, as shown in Figure 15. 

 

Figure 15. The optimal path in a static environment. 

Firstly, the robot uses the improved ant colony algorithm to plan a global optimal path from the 

starting point to the ending point in the static environment, as shown by the red line in Figure 15. Then 

the robot moves along the planned path, and detects environmental information every time it moves a 

grid, then executes the corresponding obstacle avoidance strategy according to the information of the 

detected dynamic obstacles (The obstacle avoidance strategies in case 1 and case 4 are relatively simple, 

so no corresponding simulation experiments have been done). 

At time 1t , the robot moves to the position shown in A in Figure 16(a) and the sensors detect a 

dynamic obstacle Obs1 (occupying 9 green grids) moving towards the robot at a rate of 3 grids per 

step, its initial and end positions are marked in the Figure 16a and the green dashed line indicates its 

trajectory. At this point, the robot is 5 grids away from the obstacle and chooses to execute the obstacle 

avoidance strategy for the odd number of grids in case 2, and the re-planned path is shown by the blue 

dotted line in the Figure 16(a). If the positive obstacle avoidance strategy proposed in [24] is used, the robot 

will not be able to avoid the obstacle regardless of when its sensors detect the state of the dynamic obstacle. 
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Figure 16. Comparison of obstacle avoidance strategies in a dynamic. 

 

Figure 17. Path comparison after obstacle avoidance. 

At time 2t , the robot moves to the position shown in C in Figure 16(b), and the sensors detect a 

dynamic obstacle Obs2 (occupying 4 yellow grids) moving towards the robot at a rate of 2 grids per 

step, its initial and end positions are marked in the Figure 16(b) and the yellow dashed line indicates 

its trajectory. At this point, the robot is 3 grids away from the obstacle and chooses to execute the 

obstacle avoidance strategy for the even number of grids in case 2, and the re-planned path is shown 

by the green dotted line in the Figure 16(b). If the collision avoidance strategy proposed in [24] is 

adopted, the robot's sensor needs to detect the state of the dynamic obstacle at position B in the Figure 

16(b), and start to replan the path to avoid the obstacle at this position. The path is shown by the red 
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dotted line in the Figure 16(b). It can be seen from the Figure 16(b) that, compared with the obstacle 

avoidance strategy in [24], the path length re-planned after obstacle avoidance in this paper is shorter, 

and the number of inflection points is also less. 

At time 3t , the robot moves to the position shown in D in Figure 16(c), and the sensors detect a 

dynamic obstacle Obs3 (occupying 4 purple grids) moving towards the robot from behind at a rate of 

3 grids per step, its initial and end positions are marked in the Figure 16c and the purple dashed line 

indicates its trajectory. At this point, the robot is 5 grids away from the obstacle and chooses to execute 

the obstacle avoidance strategy for the even number of grids in case 3, and the re-planned path is shown 

by the black line in the Figure 16(c). If the positive obstacle avoidance strategy proposed in [24] is 

used, the robot’s sensor needs to detect the state of the dynamic obstacle at position F in the Figure 16c 

and start to replan the path to avoid the obstacle at this position. The path is shown by the yellow dotted 

line in the Figure 16(c). 

Figure 17 shows a comparison of the global optimal paths for the obstacle avoidance strategies 

designed in this paper and in [24]. The red solid line in the Figure 17 is the path planned after the 

obstacle avoidance strategy of this paper, and the blue solid line is the path after obstacle avoidance of 

the obstacle avoidance strategy in [24] (if the obstacle cannot be avoided, the strategy of this article 

will be used instead). Compared with the obstacle avoidance strategy in [24], this paper proposes a 

method of regular processing for different shapes of obstacles, and fully considers the position of static 

obstacles in the environment and the state of dynamic obstacles to design different obstacle avoidance 

strategies, the robot is able to avoid obstacles even when it is close to dynamic obstacles, so the 

requirements for sensors are lower, the safety is higher, the path distance after obstacle avoidance is 

also shorter, and the number of inflection points is also fewer. 

6. Conclusions 

This paper proposes an improved ant colony algorithm for robot path planning in a static 

environment. Firstly, the feature points of different types of obstacle grids are extracted according to 

the known environmental information, and then a leading route from the starting point to the ending 

point is planned to solve the problem that the blindly searches in the initial stage to improve the 

convergence speed. A heuristic function that considers the starting point, ending point and turning point 

at the same time is designed to improve search efficiency and smoothness of path. Three different 

parameter control strategies are designed to coordinate the convergence and global search ability of 

the algorithm. Different obstacle avoidance strategies are then proposed for dynamic obstacles of 

different shapes and states in the dynamic environment to plan a collision-free optimal path for the 

robot from the start to the end. 

Simulation experiments under different scales and complexity environments show that, compared 

with the algorithm in [19] and the algorithm in [24], the algorithm in this paper has effectively 

improvement in reducing the path length and the number of redundant corners, accelerating the 

iterative convergence speed and operation efficiency. The grid model based on feature point extraction 

eliminates some poor solutions in the original grid model, so that the ant colony algorithm does not 

need to consider these poor solutions in path planning, and the path selection is more purposeful and 

can obtain better quality of the initial solution and greatly reduces the computational time of the 

algorithm. 

Simulation and comparison with other dynamic obstacle avoidance strategies in the dynamic 

environment show that the proposed strategy can fully consider the location of static obstacles and the 

shape of dynamic obstacles in the environment, and the paths planned after obstacle avoidance are 
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shorter in length, have fewer turning points and can avoid obstacles even when they are close to the 

dynamic obstacles, which indicates that the strategy in this paper has lower requirements for sensor 

performance and higher security . 
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