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Abstract: Spatiotemporal dynamics of an impulsive eco-epidemiological model with Crowley-Martin
type functional responses in a heterogeneous space is studied. The ultimate boundedness of solutions
is obtained. The conditions of persistence and extinction under impulsive controls are derived. Fur-
thermore, the existence and globally asymptotic stability of a unique positive periodic solutions are
proved. Numerical simulations are also shown to illustrate our theoretical results. Our results show
that impulsive harvesting can accelerate the extinction of ecological epidemics.
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1. Introduction

Recently, it has been found that the occurrence of management and optimal control of some life
phenomena is not a continuous process, which can not be described by ordinary differential equation
or difference equation, but by impulsive differential system or the impulsive diffusion systems [1–3].
For example, when populations are locally stimulated with sufficient intensity (e.g., climate, drought,
hunting, harvesting, reproduction, etc.), species numbers can change rapidly in a very short period
of time [4–6]. Since the impulsive diffusion system can fully consider the influence of impulses and
understand the roles of structural or spatial heterogeneity simultaneously, the impulsive diffusion sys-
tem has been widely used in the modeling of population, infectious disease and pharmacokinetics.
In addition, impulse differential equations have also been applied to the development of renewable
resources, pest control, environmental culture and urban management [7–9]. Fazly et al. [10] stud-
ied a high-dimensional impulsive reaction-diffusion equation to describe the population dynamics of
species with distinct reproductive and dispersal stages. Liang et al. [11] extended the classical Fisher
reaction-diffusion equations by involving instant birth and control perturbations to study how multiple
pulse perturbations affect the dynamics of the pest population. Meng et al. [12] considered a diffusive
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logistic population model with impulsive harvesting on a periodically evolving domain to understand
how the combination of the evolution of a domain and impulsive harvesting affects the dynamics of a
population. For other research, please see [13–19] and references cited therein.

Different from other functional responses, Crowley-Martin [20] supposed that predation would
decrease because of high predator density even when prey density was high. Crowley-Martin type
functional responses simultaneously describe the effects of handling time and disturbance between
predators on population and community dynamics [21, 22]. Little is known about how the intensity
of interference between predators is affected. Therefore, the Crowley-Martin type functional response
is used to explain this phenomenon. Crowley-Martin also gives good descriptions of predator feeding
over their prey. The per capita feeding rate in Crowley-Martin type functional response is as follows:

G (U,V) =
iU

1 + aU + bV + abUV
,

where i, a and b are positive constants, which describe the effects of capture rate, processing time and
interference degree among predators respectively. If a = 0, b = 0, Crowley-Martin type functional
response is reduced to Holling I type functional response, and if a > 0, b = 0, it is reduced to Holling
II type functional response. A series of predator-prey models with Crowley-Martin type functional
response have been studied in [23–25].

Many eco-epidemiological models have been studied in recent years since they can reflect both eco-
logical and epidemiological cases simultaneously. Xie and Wang [26] proposed a new SIS (susceptible-
infected-susceptible) eco-epidemiological model on complex networks with an infective medium. Cai
et al. [27] studied positive periodic solutions of an eco-epidemic predator-prey model with Crowley-
Martin type functional response and disease in prey population. Chang et al. [28] investigated spa-
tiotemporal dynamics of an impulse eco-epidemiological systems driven by canine distemper viruses.
Based on the above motivations, in order to understand how the combination of impulse and Crowley-
Martin type functional response affect the dynamics of the population, we consider the following im-
pulsive diffusion eco-epidemiological model with Crowley-Martin type functional response:

∂Q(t, x)
∂t

= dQ∆Q(t, x) + Q(t, x) [a0(t, x) − b0(t, x)Q(t, x)] −
q1(t, x)Q(t, x)R(t, x)

Q(t, x) + c1(t, x)R(t, x)

−
p1(t, x)Q(t, x)X(t, x)

1 + γ1(t, x)Q(t, x) + γ2(t, x)X(t, x) + γ1(t, x)γ2(t, x)Q(t, x)X(t, x)
, (1.1)

∂R(t, x)
∂t

= dR∆R(t, x) + R(t, x) [−a1(t, x)] +
q1(t, x)Q(t, x)R(t, x)

Q(t, x) + c1(t, x)R(t, x)

−
p2(t, x)R(t, x)X(t, x)

1 + γ3(t, x)R(t, x) + γ4(t, x)X(t, x) + γ3(t, x)γ4(t, x)R(t, x)X(t, x)

−
p3(t, x)R(t, x)Y(t, x)

1 + γ3(t, x)R(t, x) + γ5(t, x)Y(t, x) + γ3(t, x)γ5(t, x)R(t, x)Y(t, x)
, (1.2)

∂X(t, x)
∂t

= dX∆X(t, x) + X(t, x) [a2(t, x) − b1(t, x)X(t, x)] −
q2(t, x)X(t, x)Y(t, x)

X(t, x) + c2(t, x)Y(t, x)

+
p4(t, x)Q(t, x)X(t, x)

1 + γ1(t, x)Q(t, x) + γ2(t, x)X(t, x) + γ1(t, x)γ2(t, x)Q(t, x)X(t, x)

+
p5(t, x)R(t, x)X(t, x)

1 + γ3(t, x)R(t, x) + γ4(t, x)X(t, x) + γ3(t, x)γ4(t, x)R(t, x)X(t, x)
, (1.3)
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∂Y(t, x)
∂t

= dY∆Y(t, x) + Y(t, x) [−a3(t, x)] +
q2(t, x)X(t, x)Y(t, x)

X(t, x) + c2(t, x)Y(t, x)

+
p6(t, x)R(t, x)Y(t, x)

1 + γ3(t, x)R(t, x) + γ5(t, x)Y(t, x) + γ3((t, x)γ5(t, x)R(t, x)Y(t, x)
, (1.4)

Q(t+
k , x) = Q(tk, x) fk(x,Q(tk, x),R(tk, x), X(tk, x),Y(tk, x)), (1.5)

R(t+
k , x) = R(tk, x)gk(x,Q(tk, x),R(tk, x), X(tk, x),Y(tk, x)), (1.6)

X(t+
k , x) = X(tk, x)hk(x,Q(tk, x),R(tk, x), X(tk, x),Y(tk, x)), (1.7)

Y(t+
k , x) = Y(tk, x)ωk(x,Q(tk, x),R(tk, x), X(tk, x),Y(tk, x)), (1.8)

∂Q(t, x)
∂n

=
∂R(t, x)
∂n

=
∂X(t, x)
∂n

=
∂Y(t, x)
∂n

= 0, (1.9)

Q(0, x) = Q0(x) ≥ (.)0,R(0, x) = R0(x) ≥ (.)0, (1.10)
X(0, x) = X0(x) ≥ (.)0,Y(0, x) = Y0(x) ≥ (.)0. (1.11)

Here, Q,R, X, and Y are the abbreviations of Q(t, x), R(t, x), X(t, x), and Y(t, x), respectively, rep-
resenting the density of susceptible prey, infected prey, susceptible predator and infected predator at
time t and location x in the bounded and smooth region Ω ∈ Rn; That is, it should indicate that Q,R, X
and Y are abbreviations for Q(t, x), R(t, x), X(t, x) and Y(t, x), respectively. a0(t, x) and a2(t, x) rep-
resent the birth rates of Q and X; a1(t, x) and a3(t, x) represent the mortality of R and Y; b0(t, x) and
b1(t, x) represent the self-limiting coefficient of Q and X, respectively; q1(t, x) represents the effective
contact rate of Q and R; q2(t, x) represents the effective contact rate of X and Y; c1(t, x) and c2(t, x)
indicate psychological inhibition effect; p1(t, x), p2(t, x) and p3(t, x) represent the maximum capture
rates of X to Q, X to R and Y to R. p4(t, x), p5(t, x) and p6(t, x) represent the corresponding conversion
coefficients; Obviously, we can get p1 > p4, p3 > p5 and p4 > p6. dQ, dR, dX and dY represent the
diffusion rate of the susceptible prey Q, infected prey R, susceptible predator X and infected predator
Y; Denote by ∂

∂t the outward derivative; ∆ = ∂2/∂x2
1 + ∂2/∂x2

2 + ... + ∂2/∂x2
n denotes Laplace operator.

Both prey and predator populations obey transient impulse control fk, gk, hk and ωk at a fixed time tk.
Real number sequence {tk} satisfies 0 = t0 < t1 < ... < tk < ... with limk→∞ tk = +∞. Suppose that
the infected predator Y can only prey on R but not on Q. Neumann boundary conditions represent no
boundary flow and describe the characteristics of no migration.

The rest of this paper is organized as follows. Some necessary lemmas for basic premises will
be shown in Section 2. In Section 3, we find a sufficient condition for the ultimate boundedness of
systems (1.1)–(1.11). The persistence of systems (1.1)–(1.11) is presented in Section 4. In Section
5, we mainly consider extinction conditions of epidemic. The existence and uniqueness of periodic
solution are proved in Section 6. In Section 7, some numerical simulations are shown to verify the
theoretical results. In addition, we explain the impact of some key parameters on the epidemic. We
have a brief discussion in Section 8.

2. Notation and lemmas

In this section, we will present some premises and basic lemmas.
Let N+ and R represent the set of all positive integers and real numbers, respectively, and R+ =

[0,∞). For convenience, we first give the following hypothesis:
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(H1) Functions ai(t, x)(i = 0, 1, 2, 3), bi(t, x)(i = 0, 1), pi(t, x)(i = 1, 2...6), γi(t, x)(i = 0, 1, 2...5), ci(t, x)
(i = 1, 2) and qi(t, x)(i = 1, 2) ∈ C2(R+ ×Ω) are bounded and positive on R ×Ω;

(H2) Functions fk(x,Q,R, X,Y), gk(x,Q,R, X,Y), hk(x,Q,R, X,Y) and ωk(x,Q,R, X,Y), k ∈ N+ are pos-
itive and continuously differentiable for all parameters;

(H3) Functions ai(t, x)(i = 0, 1, 2, 3), bi(t, x)(i = 0, 1), pi(t, x)(i = 1, 2...6), γi(t, x)(i = 0, 1, 2...5), ci(t, x)
(i = 1, 2) and qi(t, x)(i = 1, 2) ∈ C2(R+ ×Ω) are periodic function of period τ > 0;

(H4) There exists a number p ∈ N+ such that tk+p = tk + τ for all k ≥ 1;
(H5) Sequences fk, gk, hk and ωk satisfy the following conditions:

fk+p(x,Q,R, X,Y) = fk(x,Q,R, X,Y); gk+p(x,Q,R, X,Y) = gk(x,Q,R, X,Y);
hk+p(x,Q,R, X,Y) = hk(x,Q,R, X,Y); ωk+p(x,Q,R, X,Y) = ωk(x,Q,R, X,Y)
for all k ≥ 1;

For convenience, we introduce the following notations: G = R+ ×Ω,G = R+ ×Ω,∑
k

= {(t, x) | t ∈ (tk−1, tk), x ∈ Ω} , k ∈ N+,
∑

=
⋃
k∈N+

∑
k

.

∑
k

=
{
(t, x) | t ∈ (tk−1, tk), x ∈ Ω

}
, k ∈ N+,

∑
=

⋃
k∈N+

∑
k
,

and denote:

ψk =


φ : G → R

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(i)φ(t, x) ∈ C1,2
t,x (

∑
k

), φ(t, x) ∈ C1,2
t,x (

∑
k
),

(ii) lim
t→t−k

φ(t, x) = φ(tk, x) exists,

(iii) lim
t→t+k

φ(t, x) = φ(t+
k , x) exists,


,

where C1,2
t,x denotes function φ(t, x) is continuously differentiable with respect to parameter t and is

twice partial exists with respect to x. A vector function {Q(t, x),R(t, x), X(t, x),Y(t, x)} ∈ ψk×ψk×ψk×ψk

is called a solution of systems (1.1)–(1.8) if it satisfies Neumann boundary condition (1.9) and initial
value conditions (1.10)–(1.11).

For continuous functions, we define φL = inf(t,x) φ(t, x), φM = sup(t,x) φ(t, x).

Lemma 2.1. (Lemma 1. [29]) Let T and d be positive constants, the function U(t, x) is continuous in
[0,T ] × Ω which is continuously differentiable on x ∈ Ω , ∆U and ∂U

∂t are continuous on (0,T ] × Ω .
U(t, x) satisfies the following inequality:

∂U
∂t
− d∆U + C(t, x)U ≥ 0, (t, x) ∈ (0,T ] ×Ω,

∂U
∂n
≥ 0, (t, x) ∈ (0,T ] × ∂Ω,

where C(t, x) is bounded on (0,T ]×Ω and n is the unit vector of U(t, x). Then U(t, x) ≥ 0 if U(0, x) ≥ 0
on (0,T ] × ∂Ω . Moreover, U(t, x) is strictly positive if U(t, x) ≥ (.)0 on (0,T ] × ∂Ω .

Lemma 2.2. (Lemma 2.2. [30]) Suppose the vector functions ν(t, x) = (ν1(t, x), ...νm(t, x)), %(t, x) =

(%1(t, x), ...%m(t, x)) , m ≥ 1 , satisfies the following conditions:
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(i) ν(t, x) and %(t, x) are quadratic continuously differentiable with respect to x (x ∈ Ω) and once
continuously differentiable in (t, x) ∈ [ta, tb] ×Ω ;

(ii) νt − µ∆ν − H(t, x, ν) ≤ %t − µ∆% − H(t, x, %); where (t, x) ∈ [ta, tb] ×Ω, µ = (µ1, µ2, ..., µm) > 0, the
vector function H(t, x,U) = (H1(t, x,U)...,Hm(t, x,U)) is continuously differentiable and quasi
monotone increasing of U is equal to U = (U1,U2, ...,Um) :

∂Hi(t, x,U1,U2, ...Um)
∂U j

≥ 0, i, j = 1, 2, ...,m, i , j;

(iii) ∂ν
∂µ

=
∂%

∂µ
= 0, (t, x) ∈ [ta, tb] × ∂Ω ;

Then ν(t, x) ≤ %(t, x) for (t, x) ∈ [ta, tb] × ∂Ω .

We now consider the following differential system with impulses on t = tk, k ∈ N+,
dX
dt

= αX(β − X), t , tk,

X(t+
k ) = X(yk)λk(X(tk)), t ∈ N+,

(2.1)

where X(t) is a positive function, α, β ∈ R+, and the strictly increasing sequence {tk, k ∈ N+} satisfies the
condition (H4). For all X ∈ R+, k ∈ N+, λk is continuous positive functions satisfying λk+p(X) = λk(X)
for all X ∈ R+ .

Lemma 2.3. (Lemma 2.1. [31]) Every solution X(t) = X(t, 0, X0), X0 = X(0) = X(0+) > 0 of system
(2.1) is positive and bounded for all t ∈ [0,+∞).

Next, we prove the compactness of solutions for systems (1.1)–(1.11). Let Cι+α be the space of ι-
times continuous differentiable functions f : Ω→ R with ι-order derivatives which satisfies the Holder
condition with exponent 0 < α < 1, and ϕ = (Q,R, X,Y) ∈ Lm(Ω) × Lm(Ω) × Lm(Ω) × Lm(Ω), where ι
and m are two positive integers and Lm(Ω) is the Banach space in Ω. For sufficiently small ξ > 0, let

ξ =


dQ∆ − δ 0 0 0

0 dR∆ − δ 0 0
0 0 dX∆ − δ 0
0 0 0 dY∆ − δ

 ,

P(t, ϕ) =


Q

[
a0 − b0Q − q1R

Q+c1R −
p1X

1+γ1Q+γ2X+γ1γ2QX + δ
]

R
[
−a1 +

q1Q
Q+c1R −

p2X
1+γ3R+γ4X+γ3γ4RX −

p3Y
1+γ3R+γ5Y+γ3γ5RY + δ

]
X

[
a2 − b1X − q2Y

X+c2Y +
p4Q

1+γ1Q+γ2X+γ1γ2QX +
p5R

1+γ3R+γ4X+γ3γ4RX + δ
]

Y
[
−a3 +

q2X
X+c2Y +

p6R
1+γ3R+γ5Y+γ3γ5RY + δ

]
 ,

F (ϕ(ti)) =


Q(ti, x) fk(x,Q(ti, x),R(ti, x), X(ti, x),Y(ti, x)) − Q(ti, x)
R(ti, x)gk(x,Q(ti, x),R(ti, x), X(ti, x),Y(ti, x)) − R(ti, x)
X(ti, x)hk(x,Q(ti, x),R(ti, x), X(ti, x),Y(ti, x)) − X(ti, x)
Y(ti, x)ωk(x,Q(ti, x),R(ti, x), X(ti, x),Y(ti, x)) − Y(ti, x)

 .
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So systems (1.1)–(1.11) can be rewritten as

dϕT

dt
= ξϕT + P(t, ϕ), t , tk, x ∈ Ω;

ϕ(t+
i ) = ϕ(ti) + F (ϕ(ti)), i ∈ N+;

∂ϕ

∂v
= 0, x ∈ ∂Ω;

ϕ(0, x) = ϕ0(x) ≥ (.)0, x ∈ Ω;

(2.2)

In system (2.2), D(ξ) =
{
ϕ : ϕ ∈ N2,m(Ω), ∂ϕ

∂v |∂Ω= 0
}

is the domain of operator ξ, where ϕ2,m

stands for Sobolev space of functions from Lm(Ω) which have two generalized derivatives. Functions
P(t, ϕ(t)) satisfy supt ‖ P(t, ϕ(t)) ‖< ∞,Fi(ϕ) is periodic in i. Let Σξ be the spectrum of sectorial
operator ξ, therefore, ReΣξ ≤ ς with reference to [32], for any α > 0 is given as the power ξ−α of the
bounded bijective fraction

ξ−α =
1

Γ(α)

∫
e−sξsα−1ds,

where Γ is the gamma function. It is obvious that ξα = (ξ−α)−1 and D(ξα) = R(ξ−α), where R(·)
denotes the range of operator ξ−α, and ξ0 represents the identity operator in Lm × Lm × Lm × Lm which
has a norm ‖ · ‖ . Then a new space Xα = D(ξα) can be defined such that ‖ x ‖α=‖ ξαx ‖α for α ∈ [0, 1].

Lemma 2.4. (Lemma 2.4. [33]) Assume that the function Fi is continuously differentiable, and there
is a positive function η(M), such that

sup
‖ϕ‖α≤M

‖ Fk(ϕ) ‖≤ η(M), k ∈ N+, (2.3)

for some α ∈ ( 1
2 + n

2m , 1). Let ϕ(t, ϕ0), ϕ0 = (ϕ00, ϕ10, ...ϕn0) ∈ Xα, be a bounded solution of (2.2), i.e.:

‖ ϕ(t, ϕ0) ‖c≤ M
′

, t > 0. (2.4)

Then the set {ϕ(t, ϕ0) : t > 0} is relatively compact in C1+v(Ω,Rn+1) for 0 < v < 2α − 1 − n
m .

Similar to [28], using the upper and lower solutions of partial differential equations, there exists a
classical solution for (1.1) under the conditions of systems (1.9) and (1.10). The analysis of R, X and Y
are similar to that of Q. If the twice partial derivatives of Q,R, X and Y with respect to x exist in systems
(1.1)–(1.4), and are continuously differentiable with respect to t, then the systems (1.1)–(1.4) and (1.9)–
(1.11) classical solution are exist. In particular, the solution of systems (1.1)–(1.11) is defined as the
classical solution of systems (1.1)–(1.4) for t ∈ (0, t1]. According to the impulse conditions (1.5)–(1.8),
the function (Q(t+

1 , x),R(t+
1 , x), X(t+

1 , x),Y(t+
1 , x)) is also continuously differentiable in x which satisfies

the boundary condition (1.9). Therefore, we can make (Q(t+
1 , x),R(t+

1 , x), X(t+
1 , x),Y(t+

1 , x)) as a new
initial function to compute for t ∈ (t1, t2]. Finally, using the same construction process, we can obtain
the solution of t ∈ R+.

Since Q(t, x),R(t, x), X(t, x) and Y(t, x) describe the population density at x at time t, the solution of
systems (1.1)–(1.11) should be non-negative. Therefore, we give the following lemma.

Lemma 2.5. Assume that (H1)–(H5) are true, then the non-negative and positive quadrants of R4 are
positive invariant for systems (1.1)–(1.11).

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12180–12211.
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Proof. Let Q̂ and Q be the solutions of the following two equations

∂Q̂
∂t
− dQ∆Q̂ − Q̂

[
aL

0 − bM
0 Q̂ −

qM
1

cL
1

−
pM

1

γL
2

]
= 0, Q̂(0, x) = Q0(X),

and

∂Q
∂t
− dQ∆Q − Q

[
aM

0 − bL
0 Q

]
= 0, Q(0, x) = Q0(X).

Then Q̂ and Q are the upper and lower solutions of system (1.1). Since Q0(x) ≥ 0 and Q0(x) . 0.
By Lemma 2.1, for t ∈ (0, t1], we get Q̂(t, x) > 0 and Q(t, x) > 0. Because Q(t, x) is bounded from
below by positive function Q̂(t, x), we have Q(t, x) > 0 for t ∈ [0, t1]. Considering the function fk is
positive, and we can repeat the same argument to show that it is positive Q(t, x) for t ∈ [t1, t2]. By
induction, we get Q(t, x) > 0 for t ∈ R+.

For R, X and Y , using the same analysis, we finally have R(t, x) > 0, X(t, x) > 0 and Y(t, x) > 0 for
t ∈ R+.

Lemma 2.6. (The Brouwers Fixed Point Theorem [34]) Let S be a bounded, closed and convex subset
of Rn for n ∈ N+. ∂S represents the relative boundary of S. If Υ ∈ C(S,Rn) and satisfies Υ(∂S) ∈ S,
then Υ must have a fixed point on S.

3. Ultimate boundedness

In order to prove the ultimate boundedness of solutions, we first give the definition of ultimate
boundedness.

Definition 1. (Definition 1. [31]) Solutions of systems (1.1)–(1.11) are said to be ultimate boundeness
if there are positive constant M0, M1, M2 and M3 such that for every solution {Q(t, x,Q0,R0, X0,

Y0),R(t, x,Q0,R0, X0,Y0), X(t, x,Q0,R0, X0,Y0),Y(t, x,Q0,R0, X0,Y0)} of systems (1.1)–(1.11), there is
a time at which t∗ = t∗(Q0,R0, X0,Y0) > 0, such that

Q(t, x,Q0,R0, X0,Y0) ≤ M0, R(t, x,Q0,R0, X0,Y0) ≤ M1,

X(t, x,Q0,R0, X0,Y0) ≤ M2, Y(t, x,Q0,R0, X0,Y0) ≤ M3,

for all x ∈ Ω and t ≥ t∗.

Next, we will verify that the ultimate boundedness of solutions for systems (1.1)–(1.11).

Theorem 3.1. If (H1)–(H5) hold, furtheremore,

(i) there is a positive function ξ(M), such that fk(x,Q,R, X,Y) ≤ ξ(M) for k ∈ N+, Q ≤ M,R ≥ 0, X ≥
0 and Y ≥ 0 for x ∈ Ω;

(ii) The inequality
−τaL

1 +
∑

0≤tk<t

ln sup
(x,Q,R,X,Y)

gk(x,Q,R, X,Y) < 0

holds;

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12180–12211.
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(iii) There is a positive function ρ(K), such that hk(x,Q,R, X,Y) ≤ ρ(K) for k ∈ N+, X ≤ K,Q ≥ 0,R ≥
0 and Y ≥ 0 for x ∈ Ω, in addition, the inequality aM

2 −
pM

4
γL

1
−

pM
5
γL

3
> 0 holds;

(iv) The inequality
−τaL

3 +
∑

0≤tk<t

ln sup
(x,Q,R,X,Y)

ωk(x,Q,R, X,Y) < 0

holds.

Then all the solutions of systems (1.1)–(1.11) are ultimately bounded.

Proof. First, let Q = (t, x,Q0) is the solution of the following equation

∂Q
∂t
− dQ∆Q − Q

[
aM

0 − bL
0 Q

]
= 0. (3.1)

According to system (1.1), it is easy to get

0 =
∂Q
∂t
− dQ∆Q − Q [a0 − b0Q] +

q1QR
Q + c1R

+
p1QX

1 + γ1Q + γ2X + γ1γ2QX

≥
∂Q
∂t
− dQ∆Q − Q

[
aM

0 − bL
0 Q

]
,

(3.2)

by Lemma 2.5, we have

0 =
∂Q
∂t
− dQ∆Q − Q

[
aM

0 − bL
0 Q

]
≥
∂Q
∂t
− dQ∆Q − Q

[
aM

0 − bL
0 Q

]
.

Therefore, by Lemma 2.2, Q(t, x,Q0,R0, X0,Y0) ≤ Q(t,MQ), where MQ ≥ maxx∈Ω | Q0(x) |=
‖ Q0(x) ‖C, according to the uniqueness theorem, the solution of (3.2) is independent of x for t > 0,
that is, Q(t,MQ) satisfies

dQ
dt

= Q
[
aM

0 − bL
0 Q

]
, Q(0,MQ) = MQ.

Hence
‖ Q(t+

k , x,Q0,R0, X0,Y0) ‖C
= ‖ Q(tk, x,Q0,R0, X0,Y0) fk(x,Q(tk, x),R(tk, x), X(tk, x),Y(tk, x)) ‖C
≤Q(tk,MQ)ξ(Q(tk,MQ)).

According to Lemma 2.3, the solutions of the following impulsive ordinary differential equations
are ultimately bounded: 

dQ
dt

= Q
[
aM

0 − bL
0 Q

]
,

Q(t+
k ) = Q(tk)ξ(Q(tk,MQ)).

Then Q is uniformly bounded, that is, there is a positive constant M
′

Q such that Q(t, x) ≤ M
′

Q from
t∗1.
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For R, by the equation of (1.2), for t ≥ t∗1, we have

0 =
∂R
∂t
− dR∆R − R [−a1] −

q1QR
Q + c1R

+
p2RX

1 + γ3R + γ4X + γ3γ4RX
+

p3RY
1 + γ3R + γ5Y + γ3γ5RY

≥
∂R
∂t
− dR∆R − R(−aL

1) −
qM

1 M
′

Q

cL
1

.

(3.3)

So, R(t, x,Q0,R0, X0,Y0) ≤ R(t,MR) where R(t,MR) satisfies the following Cauchy problem

dR
dt

= −aL
1R +

qM
1 M

′

Q

cL
1

, R(0,MR) = MR.

Now, we solve the following linear periodic impulsive ODE:
dR
dt

= −aL
1R +

qM
1 M

′

Q

cL
1

,

R(t+
k ) = sup

(x,Q,R,X,Y)
gk(x,Q,R, X,Y)R(tk).

(3.4)

In view of [1], the form of the solution of impulsive equation (3.4) is R(t) = A0(t) + C∗A(t), where
C∗ is a constant and A0(t) is a continuous function with period τ.

A(t) = exp

−aL
1 t +

∑
0≤tk<t

ln sup
(x,Q,R,X,Y)

gk(x,Q,R, X,Y)

.
It is easy to know lim

t→+∞
A(t) = 0 by according to condition (ii). Then all solutions of (3.4) are

ultimately bounded. Thus, we get the ultimate boundedness of R(t, x), that is to say, there exists a
positive constant M

′

R, such that R(t, x) ≤ M
′

R from t∗2.
For X, by the equation of (1.3), let X = (t, x, X0) is the solution of the following equation

∂X
∂t
− dX∆X − X

[
aM

2 − bL
1 X −

pM
4

γL
1

−
pM

5

γL
3

]
= 0. (3.5)

According to system (1.3), it is easy to get

0 =
∂X
∂t
− dX∆X − X [a2 − b1X] +

q2XY
X + c2Y

−
p4QX

1 + γ1Q + γ2X + γ1γ2RX
−

p5RX
1 + γ3R + γ4X + γ3γ4RX

≥
∂X
∂t
− dX∆X − X

[
aM

2 − bL
1 X −

pM
4

γL
1

−
pM

5

γL
3

]
.

(3.6)
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By Lemma 2.5, we have

0 =
∂X
∂t
− dX∆X − X

[
aM

2 − bL
1 X −

pM
4

γL
1

−
pM

5

γL
3

]
≥
∂X
∂t
− dX∆X − X

[
aM

2 − bL
1 X −

pM
4

γL
1

−
pM

5

γL
3

]
.

Therefore, by Lemma 2.2, X(t, x,Q0,R0, X0,Y0) ≤ X(t,MX), where MX ≥ maxx∈Ω | X0(x) |=‖
X0(x) ‖C, according to the uniqueness theorem, the solution X(t,MX) of (3.5) is independent of x for
t > 0, that is, X(t,MX) satisfies

dX
∂t

= X
[
aM

2 − bL
1 X −

pM
4

γL
1

−
pM

5

γL
3

]
.

Hence
‖ X(t+

k , x,Q0,R0, X0,Y0) ‖C
= ‖ X(tk, x,Q0,R0, X0,Y0)hk(x,Q(tk, x),R(tk, x), X(tk, x),Y(tk, x)) ‖C
≤X(tk,MX)ρ(X(tk,MX)).

According to Lemma 2.3, the solutions of the following impulsive ordinary differential equations
are ultimately bounded: 

dX
dt

= X
[
aM

2 − bL
1 X −

pM
4

γL
1

−
pM

5

γL
3

]
,

X(t+
k ) = X(tk)ρ(X(tk,MX)).

Then X is uniformly bounded if aM
2 −

pM
4
γL

1
−

pM
5
γL

3
> 0, that is, there is a positive constant M

′

X such that

X(t, x) ≤ M
′

X from t∗3.
For Y , by the equation of (1.4), for t ≥ t∗3, we have

0 =
∂Y
∂t
− dY∆Y + a3Y −

q2XY
X + c2Y

−
p6RY

1 + γ3R + γ5Y + γ3γ5RY

≥
∂Y
∂t
− dY∆Y + aL

3Y −
qM

2 M
′

X

cL
2

−
pM

6 M
′

R

γL
5

.

Thus, Y(t, x,Q0,R0, X0,Y0) ≤ Y(t,MY) where Y(t,MY) satisfies the following Cauchy problem
dY
∂t

= −aL
3Y +

qM
2 M

′

X

cL
2

+
pM

6 M
′

R

γL
5

,

Y(0,MY) = MY .

According to [1], the solution of the following impulsive ordinary differential equation is: Y(t) =

Y0(t) + C∗Y(t), 
dY
∂t

= −aL
3Y +

qM
2 M

′

X

cL
2

+
pM

6 M
′

R

γL
5

,

Y(t+
k ) = sup

(x,Q,R,X,Y)
ωk(x,Q,R, X,Y)Y(tk),
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where C∗ is a constant and Y0(t) is a continuous function with period τ.

Y(t) = exp

−τaL
3 +

∑
0≤tk<t

ln sup
(x,Q,R,X,Y)

ωk(x,Q,R, X,Y)

.
According to (iv) condition of Theorem 3.1, there exists a normal number M

′

Y such that Y(t, x) ≤ M
′

Y
from t∗4.

The proof is completed.

4. Prevailing of epidemic

In this section, we will derive sufficient conditions for prevailing of epidemic in (1.1)–(1.11). Before
this, a definition is given at first.

Definition 2. (Definition 2. [31]) The epidemic is called prevailing if there exist positive constans m0,
m1,m2,m3,M0, M1,M2, M3 and a moment of time t̃ = t̃(Q0,R0, X0,Y0) such that

m0 ≤ Q(t, x,Q0,R0, X0,Y0) ≤ M0, m1 ≤ R(t, x,Q0,R0, X0,Y0) ≤ M1,

m2 ≤ X(t, x,Q0,R0, X0,Y0) ≤ M2, m3 ≤ Y(t, x,Q0,R0, X0,Y0) ≤ M3,

for all x ∈ Ω and t ≥ t̃.
Then, we will give the conditions for prevailing of epidemic in systems (1.1)–(1.11).

Theorem 4.1. If (H1)–(H5) hold, furthermore,

(i) Systems (1.1)–(1.11) is uniformly bounded, that is, there are positive constants M0,M1,M2, M3

and a time t = t(Q0,R0, X0,Y0) such that Q(t, x,Q0,R0, X0,Y0) ≤ M0, R (t, x,Q0,R0, X0,Y0) ≤ M1,
X(t, x,Q0,R0, X0,Y0) ≤ M2 and Y(t, x,Q0,R0, X0,Y0) ≤ M3 for t > t.

(ii) The inequality

p∑
k=1

ln inf
x∈Ω,(Q,R,X,Y)∈S

fk(x,Q,R, X,Y) + τ(aL
0 −

pM
1

γL
2

−
qM

1

cL
1

) > 0, (4.1)

−

p∑
k=1

ln inf
x∈Ω,(Q,R,X,Y)∈S

gk(x,Q,R, X,Y) + τ(aM
1 +

pM
2

γL
4

+
pM

3

γL
5

) > 0, (4.2)

p∑
k=1

ln inf
x∈Ω,(Q,R,X,Y)∈S

hk(x,Q,R, X,Y) + τ(aL
2 −

qM
2

cL
2

) > 0, (4.3)

and

−

p∑
k=1

ln inf
x∈Ω,(Q,R,X,Y)∈S

ωk(x,Q,R, X,Y) + aM
3 τ > 0 (4.4)

hold, where S = {(Q,R, X,Y) | 0 < Q < M0, 0 < R < M1, 0 < X < M2, 0 < Y < M3}.
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Then, there are positive constants σ∗0, σ
∗
1, σ

∗
2, σ

∗
3 such that any solution of systems (1.1)–(1.11) sat-

isfies

σ∗0 ≤ Q(t, x) ≤ M0, σ∗1 ≤ R(t, x) ≤ M1,

σ∗2 ≤ X(t, x) ≤ M2, σ∗3 ≤ Y(t, x) ≤ M3,

for t > t∗, that is, the epidemic in systems (1.1)–(1.11) is prevailing.

Proof. Lemma 2.1 means that if Q0(x) ≥ 0,R0(x) ≥ 0, X0(x) ≥ 0,Y0(x) ≥ 0, and Q0(x),R0(x),
X0(x),Y0(x) . 0, then

Q(t, x,Q0,R0, X0,Y0) > 0,R(t, x,Q0,R0, X0,Y0) > 0,

and
X (t, x,Q0,R0, X0,Y0) > 0,Y(t, x,Q0,R0, X0,Y0) > 0,

for all x ∈ Ω and t > 0. For a small ε > 0 on interval t ≥ ε, the initial value condi-
tion {Q(ε, x,Q0,R0, X0,Y0), R (ε, x,Q0,R0, X0,Y0) , X (ε, x,Q0,R0, X0,Y0) ,Y(ε, x,Q0,R0, X0,Y0)} , 0.
Without loss of generality, we assume that minx∈Ω Q0(x) = mQ > 0,minx∈Ω R0(x) = mR >

0,minx∈Ω X0(x) = mX > 0,minx∈Ω Y0(x) = mY > 0, by (1.1), we have

0 =
∂Q
∂t
− dQ∆Q − Q [a0 − b0Q] +

q1QR
Q + c1R

+
p1QX

1 + γ1Q + γ2X + γ1γ2QX

≤
∂Q
∂t
− dQ∆Q − Q

[
aL

0 − bM
0 Q −

pM
1

γL
2

−
qM

1

cL
1

]
,

in view of Lemma 2.5, we obtain

0 =
∂Q̂
∂t
− dQ∆Q̂ − Q̂

[
aL

0 − bM
0 Q̂ −

qM
1

cL
1

−
pM

1

γL
2

]
≤
∂Q
∂t
− dQ∆Q − Q

[
aL

0 − bM
0 Q −

pM
1

γL
2

−
qM

1

cL
1

]
.

Now, using Lemma 2.2 for m = 1, Q(t, x,Q0,R0, X0,Y0) ≥ Q̂(t,MQ) for t ∈ [0, t1]. Applying the last
inequality for t = t1, together with (1.1), we obtain that

Q(t+
1 , x,Q0,R0, X0,Y0) ≥ Q̂(t,mQ) inf

x∈Ω,(Q,R,X,Y)∈S
fk(x,Q,R, X,Y).

It then follows that the solution Q(t, x,Q0,R0, X0,Y0) is bounded from below by a solution of the
following equation with impulses:

dQ̂
dt

= Q̂
[
aL

0 − bM
0 Q̂ −

qM
1

cL
1

−
pM

1

γL
2

]
,

Q(t+
k ) = Q̂(tk) inf

x∈Ω,(Q,R,X,Y)∈S
fk(x,Q,R, X,Y).

(4.5)
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According to (4.1) and Theorem 2.1 in [3], (4.5) has a unique piecewise continuous strictly positive
periodic solution Q̂(t)∗ such that for every solutions Q̂(t,Qm) of (4.5) that satisfy Q̂(t,Qm) → Q̂(t)∗ as
t → ∞. Therefore, there is a positive constant σ∗0 such that Q̂(t,Qm) ≥ σ∗0.

Because the solution Q(t, x,Q0,R0, X0,Y0) of Q is defined by the solution Q̂(t,Qm) from below (4.5),
we draw a conclusion from the following: Q(t, x,Q0,R0, X0,Y0) ≥ σ∗0 for t > t̂0.

For R, we have

0 =
∂R
∂t
− dR∆R − R [−a1] −

q1QR
Q + c1R

+
p2RX

1 + γ3R + γ4X + γ3γ4RX
+

p3RY
1 + γ3R + γ5Y + γ3γ5RY

≤
∂R
∂t
− dR∆R − R

[
−aM

1 −
pM

2

γL
4

−
pM

3

γL
5

]
.

In view of Lemma 2.5, we obtain

0 =
∂R̂
∂t
− dR∆R̂ − R̂

[
−aM

1 −
pM

2

γL
4

−
pM

3

γL
5

]
≤
∂R
∂t
− dR∆R − R

[
−aM

1 −
pM

2

γL
4

−
pM

3

γL
5

]
.

Now, using Lemma 2.2 for m = 1, R(t, x,Q0,R0, X0,Y0) ≥ R̂(t,MR) for t ∈ [0, t1]. Applying the last
inequality for t = t1, together with (1.2), we obtain that

R(t+
1 , x,Q0,R0, X0,Y0) ≥ R̂(t,mR) inf

x∈Ω,(Q,R,X,Y)∈S
gk(x,Q,R, X,Y).

It then follows that the solution R(t, x,Q0,R0, X0,Y0) is bounded from below by a solution of the
following equation with impulses:

dR̂
dt

= R̂
[
−aM

1 −
pM

2

γL
4

−
pM

3

γL
5

]
,

R(t+
k ) = R̂(tk) inf

x∈Ω,(Q,R,X,Y)∈S
gk(x,Q,R, X,Y).

(4.6)

Then the solution of (4.6) is

R̂(τ) = R̂(0)
∏

inf
x∈Ω,(Q,R,X,Y)∈S

gk(x,Q,R, X,Y) exp
{

(−aM
1 −

pM
2

γL
4

−
pM

3

γL
5

)τ
}

= R̂(0) exp

(−aM
1 −

pM
2

γL
4

−
pM

3

γL
5

)τ +

p∑
k=1

ln inf
x∈Ω,(Q,R,X,Y)∈S

gk(x,Q,R, X,Y)


= R̂(0)Z(τ).

where Z(τ) = exp
{
(−aM

1 −
pM

2
γL

4
−

pM
3
γL

5
)τ + ln

∑p
k=1 infx∈Ω,(Q,R,X,Y)∈S gk(x,Q,R, X,Y)

}
. Let’s assume that

R∗(t) is an piecewise continuous strictly positive periodic solution of (4.6), and R(t) is any solution of
(4.6). Iet’s prove that lim

t→+∞
| R(t) − R∗(t) |= 0 when (4.2) holds.

lim
t→+∞

| R̂(t) − R̂∗(t) |= lim
t→+∞

| R̂(0)Z(τ) + R̂∗(0)Z(τ) |= lim
t→+∞

| Z(τ)
(
R̂0 − R̂∗0

)
| .
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Since Eq (4.6) is ultimately bounded, R̂0 − R̂∗0 is bounded. When condition (4.2) holds, we have

lim
t→+∞

Z(τ) = lim
t→+∞

exp

(−aM
1 −

pM
2

γL
4

−
pM

3

γL
5

)τ +

p∑
k=1

ln inf
x∈Ω,(Q,R,X,Y)∈S

gk(x,Q,R, X,Y)

 = 0.

Therefore, the positive periodic solution R∗(t) is globally asymptotically stable, i.e., lim
t→+∞

R(t) =

R∗(t). Thus, there is a positive constant σ∗1 such that R̂(t,Rm) ≥ σ∗1.
We can obtain that there is a normal number σ∗1, such that R(t, x,Q0,R0, X0,Y0) ≥ σ∗1 for t > t̂1.
For X, we have

0 =
∂X
∂t
− dX∆X − X [a2 − b1X] +

q2XY
X + c2Y

−
p4QX

1 + γ1Q + γ2X + γ1γ2RX
−

p5RX
1 + γ3R + γ4X + γ3γ4RX

≤
∂X
∂t
− dX∆X − X

[
aL

2 − bM
1 X −

qM
2

cL
2

]
.

According to condition (4.3) the same analysis as population Q, we obtain that there is a normal
number σ∗2, such that X(t, x,Q0,R0, X0,Y0) ≥ σ∗2 for t > t̂2.

For population Y , we have

0 =
∂Y
∂t
− dY∆Y + Ya3 −

q2XY
X + c2Y

−
p6RY

1 + γ3R + γ5Y + γ3γ5RY

≤
∂Y
∂t
− dY∆Y + aM

3 Y.

According to condition (4.4) the same analysis as population R, we obtain that there is a normal
number σ∗3, such that Y(t, x,Q0,R0, X0,Y0) ≥ σ∗3 for t > t̂3.

The proof is completed.

5. The extinction of epidemic

Definition 3. (Definition 3. [28]) It is called epidemics extinction if lim
t→+∞

R (t, x,Q0(x),R0(x), X0(x),
Y0(x)) = 0 and lim

t→+∞
Y(t, x,Q0(x),R0(x), X0(x),Y0(x)) = 0.

Now, we study the extinction of epidemic in (1.1)–(1.11).

Theorem 5.1. If (H1)–(H5) hold, furthermore, inequality

(−aL
1 + qM

1 )τ +

p∑
k=1

ln sup
x∈Ω,(Q,R,X,Y)∈S

gk(x,Q,R, X,Y) < 0, (5.1)

and

(−aL
3 + qM

2 +
pM

6

γL
3

)τ +

p∑
k=1

ln sup
x∈Ω,(Q,R,X,Y)∈S

ωk(x,Q,R, X,Y) < 0, (5.2)

hold.
Then lim

t→+∞
R(t, x) = 0, lim

t→+∞
Y(t, x) = 0.
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Proof. Taking a positive constant MR such that MR ≥ R0(x). Let R(t,MR) be the solution to the
following initial value problem 

dR
dt

= R
(
−aL

1 + qM
1

)
,

R(0,MR) = MR.

From the following inequality,

0 =
∂R
∂t
− dR∆R − R [−a1] −

q1QR
Q + c1R

+
p2RX

1 + γ3R + γ4X + γ3γ4RX
+

p3RY
1 + γ3R + γ5Y + γ3γ5RY

≥
∂R
∂t
− dR∆R − R

[
−aL

1 + qM
1

]
.

Using comparison theory, it is easy to know R(t, x,Q,R, X,Y) ≤ R(t,MR) for t ≤ t1.
By the impulse condition we get

R(t+
1 , x,Q,R, X,Y) ≤ R(t,MR) sup

(x,Q,R,X,Y)
gk(x,Q,R, X,Y).

Continuing in this manner, we conclude that every solution to R with impulse condition R(t+
k , x) =

R(tk, x)gk(x,Q(tk, x),R(tk, x), X(tk, x),Y(tk, x)) is bounded by the corresponding solution to the follow-
ing impulse equation 

dR
dt

= R
(
−aL

1 + qM
1

)
,

R(t+
k ) = R(tk) sup

(x,Q,R,X,Y)
gk(x,Q,R, X,Y).

(5.3)

Then the solution of (5.3) is

R(τ) = R(0)
∏

sup
x∈Ω,(Q,R,X,Y)∈S

gk(x,Q,R, X,Y) exp
{
(−aL

1 + qM
1 )τ

}
= R(0) exp

(−aL
1 + qM

1 )τ +

p∑
k=1

ln sup
x∈Ω,(Q,R,X,Y)∈S

gk(x,Q,R, X,Y)

 .
By (5.1), we can see that all the solutions of the (5.3) tend to 0 as t → ∞.
For infected predator Y ,

0 =
∂Y
∂t
− dY∆Y + Ya3 −

q2XY
X + c2Y

−
p6RY

1 + γ3R + γ5Y + γ3γ5RY

≥
∂Y
∂t
− dY∆Y + Y

(
aL

3 − qM
2 −

pM
6

γL
3

)
.

(5.4)

We can obtain in the same way. Any solution of (5.4) goes to 0 when (5.2) is true.
The proof is completed.
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6. Periodic solution

In this Section, we prove that systems (1.1)–(1.11) has a unique globally asymptotic stable periodic
solution by constructing Lyapunov function.

Theorem 6.1. If conditions (H1)–(H5) hold and Lemma 2.4 is true, and epidemic is prevailing, i.e.,
there exist two positive constants σ and N, so that any nonnegative and . 0 solution satisfying the
initial value and impulsive condition of the system satisfies:

{Q(t, x),R(t, x), X(t, x),Y(t, x)} ∈
∏

= {(Q,R, X,Y) | σ ≤ Q(t, x),R(t, x), X(t, x),Y(t, x) ≤ N} ,

from a certain moment. In addition, let

p∑
j=1

ln K j + τλM < 0, (6.1)

where

K j = max
Q,R,X,Y∈Π,x∈Ω

2

 f 2
j +

(
N
∂ f j

∂Q

)2

+

(
N
∂ f j

∂R

)2

+

(
N
∂ f j

∂X

)2

+

(
N
∂ f j

∂Y

)2

+ g2
j +

(
N
∂g j

∂Q

)2

+

(
N
∂g j

∂R

)2

+

(
N
∂g j

∂X

)2

+

(
N
∂g j

∂Y

)2

+ h2
j +

(
N
∂h j

∂Q

)2

+

(
N
∂h j

∂R

)2

+

(
N
∂h j

∂X

)2

+

(
N
∂h j

∂Y

)2

+ ω2
j +

(
N
∂ω j

∂Q

)2

+

(
N
∂ω j

∂R

)2

+

(
N
∂ω j

∂X

)2

+

(
N
∂ω j

∂Y

)2
 ,

and λM is the principal eigenvalue of the following matrix
M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

 ,
where

M11 = 2
[
aM

0 − bL
0σ −

cL
1qL

1

(N/σ + cM
1 )2
−

γL
2 pL

1σ + pL
1

(1 + γM
1 + γM

2 + γM
1 γ

M
2 N)2

]
,

M22 = 2
[
−aL

1 +
qM

1

(1 + cL
1σ/N)2

−
γL

4 pL
2σ + pL

2

(1 + γM
3 + γM

4 + γM
3 γ

M
4 N)2

−
γL

5 pL
3σ + pL

3

(1 + γM
3 + γM

5 + γM
3 γ

M
5 N)2

]
,

M33 = 2
[
aM

2 − bL
1σ −

cL
2qL

2

(N/σ + cM
2 )2

+
γM

1 pM
4 N + pM

4

(1 + γL
1 + γL

2 + γL
1γ

L
2σ)2

+
γM

3 pM
5 N + pM

5

(1 + γL
3 + γL

4 + γL
3γ

L
4σ)2

]
,

M44 = 2
[
−aL

3 +
qM

2

(N/σ + cM
2 )2

+
γM

3 pM
6 N + pM

6

(1 + γL
3 + γL

5 + γL
3γ

L
5σ)2

]
,

M13 = M31 =

[
pM

1

γL
1

+
pM

1

(γL
1 )2σ

+
pM

4

γL
2

+
pM

4

(γL
2 )2σ

]
,
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M23 = M32 =

[
pM

2

γL
3

+
pM

2

(γL
3 )2σ

+
pM

5

γL
4

+
pM

5

(γL
4 )2σ

]
,

M24 = M42 =

[
pM

3

γL
3

+
pM

3

(γL
3 )2σ

+
pM

6

γL
5

+
pM

6

(γL
5 )2σ

]
,

M12 = M21 = qM
1 +

qM
1

cL
1

,

M34 = M43 = qM
2 +

qM
2

cL
2

,

M14 = M41 = 0.

Systems (1.1)–(1.11) have a strictly positive piecewise continuous τ periodic solution, and the pe-
riodic solution is globally asymptotic stable.

Proof. First, we consider the operator Υ : R4 → R4,

Υ(Q(t+
0 ),R(t+

0 ), X(t+
0 ),Y(t+

0 )) = (Q(t+
k ),R(t+

k ), X(t+
k ),Y(t+

k )), k ∈ N+.

The continuous operator Υ maps the closed bounded connected convex set S into itself because the
disease is prevailing, Υ satisfies the conditions of the Lemma 2.6. In this case, S = R4. Therefore,
the operator Υ has at least one fixed point (Q∗,R∗, X∗,Y∗) on R4. Since the parameters are positive and
periodic, we know that this fixed point is the positive periodic solution of system (1.1)-(1.11). This
proves the existence of periodic solutions.

Second, we prove the global asymptotic stability of the periodic solution.
Suppose {Q(t, x),R(t, x), X(t, x),Y(t, x)} and

{
Q(t, x),R(t, x), X(t, x),Y(t, x)

}
are two solutions of sys-

tems (1.1)–(1.11), which satisfy σ ≤ Q(t, x),R(t, x), X(t, x),Y(t, x) ≤ N and σ ≤ Q(t, x),R(t, x),
X(t, x),Y(t, x) ≤ N. Consider the function

J(t) =

∫
Ω

[
(Q(t, x) − Q(t, x))2 + (R(t, x) − R(t, x))2 + (X(t, x) − X(t, x))2 + (Y(t, x) − Y(t, x))2

]
dx.

With derivative

dJ(t)
dt

=2
∫

Ω

(Q − Q)(
∂Q
∂t
−
∂Q
∂t

)dx + 2
∫

Ω

(R − R)(
∂R
∂t
−
∂R
∂t

)dx

+ 2
∫

Ω

(X − X)(
∂X
∂t
−
∂X
∂t

)dx + 2
∫

Ω

(Y − Y)(
∂Y
∂t
−
∂Y
∂t

)dx

=2dQ

∫
Ω

(Q − Q)∆(Q − Q)dx + 2dR

∫
Ω

(R − R)∆(R − R)dx

+ 2dX

∫
Ω

(X − X)∆(X − X)dx + 2dY

∫
Ω

(Y − Y)∆(Y − Y)dx

+ 2
∫

Ω

(Q − Q)
[
Q(a0 − b0Q −

q1R
Q + c1R

−
p1X

1 + γ1Q + γ2X + γ1γ2QX
)

−Q(a0 − b0Q −
q1R

Q + c1R
−

p1X

1 + γ1Q + γ2X + γ1γ2QX
)
 dx
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+ 2
∫

Ω

(R − R)
[
−a1R +

q1QR
Q + c1R

−
p2RX

1 + γ3R + γ4X + γ3γ4RX

−
p3RY

1 + γ3R + γ5Y + γ3γ5RY
+ a1R −

q1QR

Q + c1R
+

p2RX

1 + γ3R + γ4X + γ3γ4RX

+
p3RY

1 + γ3R + γ5Y + γ3γ5RY

 dx + 2
∫

Ω

(X − X)
[
a2X − b1X2 −

q2XY
X + c2Y

+
p4QX

1 + γ1Q + γ2X + γ1γ2QX
+

p5RX
1 + γ3R + γ4X + γ3γ4RX

− a2X + b1X
2

+
q2YX

X + c2Y

−
p4XQ

1 + γ1Q + +γ2X + γ1γ2XQ
−

p5XR

1 + γ3R + γ4X + γ3γ4XR

 dx

+ 2
∫

Ω

(Y − Y)
−a3Y +

q2XY
X + c2Y

+
p6RY

1 + γ3R + γ5Y + γ3γ5RY
+ a3Y −

q2XY

X + c2Y

−
p6YR

1 + γ3R + γ5Y + γ3γ5YR

 dx

≤2
∫

Ω

(Q − Q)2

a0 − b0(Q + Q) −
c1q1RR

(Q + c1R)(Q + c1R)

−
γ2 p1XX + p1X

(1 + γ1Q + γ2X + γ1γ2QX)(1 + γ1Q + γ2X + γ1γ2QX)

 dx.

+ 2
∫

Ω

(R − R)2

−a1 +
q1QQ

(Q + c1R)(Q + c1R)

−
γ4 p2XX + p2X

(1 + γ3R + γ4X + γ3γ4RX)(1 + γ3R + γ4X + γ3γ4RX)

−
γ5 p3YY + p3Y

(1 + γ3R + γ5Y + γ3γ5RY)(1 + γ3R + γ5Y + γ3γ5RY)

 dx

+ 2
∫

Ω

(X − X)2

a2 − b1(X + X) −
c2q2YY

(X + c2Y)(X + c2Y)

+
γ1 p4QQ + p4Q

(1 + γ1Q + γ2X + γ1γ2QX)(1 + γ1Q + γ2X + γ1γ2QX)

+
γ3 p5RR + p5R

(1 + γ3R + γ4X + γ3γ4RX)(1 + γ3R + γ4X + γ3γ4RX)

 dx

+ 2
∫

Ω

(Y − Y)2

−a3 +
q2XX

(X + c2Y)(X + c2Y)

+
γ3 p6RR + p6R

(1 + γ3R + γ5Y + γ3γ5RY)(1 + γ3R + γ5Y + γ3γ5RY)

 dx

− 2
∫

Ω

(Q − Q)(R − R)
 q1QQ − c1q1RR

(Q + c1R)(Q + c1R)

 dx
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− 2
∫

Ω

(Q − Q)(X − X)
 γ1 p1QQ + p1Q

(1 + γ1Q + γ2X + γ1γ2QX)(1 + γ1Q + γ2X + γ1γ2QX)

 dx

− 2
∫

Ω

(R − R)(X − X)
 γ3 p2RR + p2R

(1 + γ3R + γ4X + γ3γ4RX)(1 + γ3R + γ4X + γ3γ4RX)

 dx

− 2
∫

Ω

(R − R)(Y − Y)
 γ3 p3RR + p3R

(1 + γ3R + γ5Y + γ3γ5RY)(1 + γ3R + γ5Y + γ3γ5RY)

 dx

− 2
∫

Ω

(X − X)(Q − Q)
 γ2 p4XX + p4X

(1 + γ1Q + γ2X + γ1γ2QX)(1 + γ1Q + γ2X + γ1γ2QX)

 dx

− 2
∫

Ω

(X − X)(R − R)
 γ4 p5XX + p5X

(1 + γ3R + γ4X + γ3γ4RX)(1 + γ3R + γ4X + γ3γ4RX)

 dx

− 2
∫

Ω

(Y − Y)(R − R)
 γ5 p6YY + p6Y

(1 + γ3R + γ5Y + γ3γ5RY)(1 + γ3R + γ5Y + γ3γ5RY)

 dx

− 2
∫

Ω

(X − X)(Y − Y)
 q2XX − c2q2YY

(X + c2Y)(X + c2Y)

 dx

≤2
∫

Ω

(Q − Q)2
[
aM

0 − bL
0σ −

cL
1qL

1

(N/σ + cM
1 )2
−

γL
2 pL

1σ + pL
1

(1 + γM
1 + γM

2 + γM
1 γ

M
2 N)2

]
dx

+ 2
∫

Ω

(R − R)2
[
−aL

1 +
qM

1

(1 + cL
1σ/N)2

−
γL

4 pL
2σ + pL

2

(1 + γM
3 + γM

4 + γM
3 γ

M
4 N)2

−
γL

5 pL
3σ + pL

3

(1 + γM
3 + γM

5 + γM
3 γ

M
5 N)2

]
dx

+ 2
∫

Ω

(X − X)2
[
aM

2 − bL
1σ −

cL
2qL

2

(N/σ + cM
2 )2

+
γM

1 pM
4 N + pM

4

(1 + γL
1 + γL

2 + γL
1γ

L
2σ)2

+
γM

3 pM
5 N + pM

5

(1 + γL
3 + γL

4 + γL
3γ

L
4σ)2

]
dx

+ 2
∫

Ω

(Y − Y)2
[
−aL

3 +
qM

2

(N/σ + cM
2 )2

+
γM

3 pM
6 N + pM

6

(1 + γL
3 + γL

5 + γL
3γ

L
5σ)2

]
dx

+ 2
∫

Ω

| Q − Q || R − R | (qM
1 +

qM
1

cL
1

)dx

+ 2
∫

Ω

| Q − Q || X − X |
(

pM
1

γL
1

+
pM

1

(γL
1 )2σ

+
pM

4

γL
2

+
pM

4

(γL
2 )2σ

)
dx

+ 2
∫

Ω

| R − R || X − X |
(

pM
2

γL
3

+
pM

2

(γL
3 )2σ

+
pM

5

γL
4

+
pM

5

(γL
4 )2σ

)
dx

+ 2
∫

Ω

| R − R || Y − Y |
(

pM
3

γL
3

+
pM

3

(γL
3 )2σ

+
pM

6

γL
5

+
pM

6

(γL
5 )2σ

)
dx

+ 2
∫

Ω

| X − X || Y − Y | (qM
2 +

qM
2

cL
2

)dx
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≤λm

∫
Ω

[
(Q − Q)2 + (R − R)2 + (X − X)2 + (Y − Y)2

]
=λM J(t).

So we obtain J(t j+1) ≤ J(t+
j ) exp

{
λM(t j+1 − t j)

}
, and

J(t+
j+1) =

∫
Ω

[
Q f j+1(Q,R, X,Y) − Q f j+1(Q,R, X,Y)

]2
dx

+

∫
Ω

[
Rg j+1(Q,R, X,Y) − Rg j+1(Q,R, X,Y)

]2
dx

+

∫
Ω

[
Xh j+1(Q,R, X,Y) − Xh j+1(Q,R, X,Y)

]2
dx

+

∫
Ω

[
Yω j+1(Q,R, X,Y) − Yω j+1(Q,R, X,Y)

]2
dx

≤K j+1J(t j+1) ≤ K j+1 exp
{
λM(t j+1 − t j)

}
J(t+

j ).

Therefore, we can easily get the change of the function in this period of time. We have

J(t + τ) ≤ K∗J(t) =

p∏
i=1

Ki exp(λMτ)J(t).

According to condition (6.1), we obtain K∗ < 1. Therefore,

J(mτ + s) ≤ Km
∗ J(s)→ 0,m→ ∞.

That is,

lim
t→+∞

‖ Q(t, x) − Q(t, x) ‖L2= 0,

lim
t→+∞

‖ R(t, x) − R(t, x) ‖L2= 0,

lim
t→+∞

‖ X(t, x) − X(t, x) ‖L2= 0,

and

lim
t→+∞

‖ Y(t, x) − Y(t, x) ‖L2= 0.

Because solutions of systems (1.1)–(1.11) are bounded in the space C1+v by Lemma 2.4.
Therefore,

lim
t→+∞

sup
x∈Ω
| Q(t, x) − Q(t, x) |= 0, (6.2)

lim
t→+∞

sup
x∈Ω
| R(t, x) − R(t, x) |= 0, (6.3)

lim
t→+∞

sup
x∈Ω
| X(t, x) − X(t, x) |= 0, (6.4)
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and

lim
t→+∞

sup
x∈Ω
| Y(t, x) − Y(t, x) |= 0. (6.5)

Therefore, the solution of systems (1.1)–(1.11) is globally stable.
At last, we prove the uniqueness of periodic solutions.
For the sequence {Q(kτ, x,Q0,R0, X0,Y0),R(kτ, x,Q0,R0, X0,Y0), X(kτ, x,Q0,R0, X0,Y0),Y(kτ, x,Y0,

R0, X0,Y0)}= υ(kτ, υ0), k ∈ N+. It is compact in the space C(Ω) × C(Ω) × C(Ω) × C(Ω) from Lemma
2.4. Let υ be the limit point of the sequence, υ = lim

n→+∞
υ(knτ, υ0). Then υ(τ, υ) = υ. Actually, since

υ {τ, υ(knτ, υ0)} = υ {knτ, υ(τ, υ0)} and lim
kn→+∞

[υ(knτ, υ(τ, υ0)) − υ(knτ, υ0)] = 0. We obtain

lim
n→+∞

‖ υ(τ, υ) − υ ‖C≤ lim
n→+∞

‖ υ(τ, υ) − υ(τ, υ(knτ, υ0) ‖C

+ lim
n→+∞

‖ υ(τ, υ(knτ, υ0) − υ(knτ, υ0) ‖C + lim
n→+∞

‖ υ(knτ, υ0) − υ ‖C= 0.

The sequence {υ(kτ, υ0),K ∈ N+} has a unique limit point. If not, assume that the sequence has two
limit points υ = lim

n→+∞
υ(knτ, υ0), and υ̃ = lim

n→+∞
υ(knτ, υ0). Then, taking into account (6.3) to (6.5), we

obtain

lim
n→+∞

‖ υ − υ̃ ‖C≤ lim
n→+∞

‖ υ − υ(knτ, υ0) ‖C + lim
n→+∞

‖ υ(knτ, υ0) − υ̃ ‖C= 0.

Hence υ = υ̃. The periodic solution
{
Q(t, x,Q,R, X,Y),R(t, x,Q,R, X,Y), X(t, x,Q,R, X,Y),Y(t, x,Q,

R, X,Y)
}

of systems (1.1)–(1.11) is unique.

7. Numerical simulations

In this Section, similar to that of [28], we perform some numerical examples to illustrate our main
results in Ω = [−2, 2] [28], the diffusion coefficients dQ, dR, dX, dY are taken as dQ = dR = dX = dY = 0.5
[28]. We will present our theoretical results through the following three examples.

7.1. Example 1

For the sake of convenience, we choose: c1 = c2 = 1.5 [28]; γ1 = γ2 = γ3 = γ4 = γ5 = 6. The
impulsive functions fk = 0.8 [28]; gk = 0.6; hk = 0.7 [28]; ωk = 0.8. For convenience, the initial values
are taken as Q0 = 3; R0 = 9; X0 = 1 and Y0 = 1. Setting other parameters as follows:

Table 1. Parameter description in the model.

Parameters Value Reference Parameters Value Reference
a0(t, x) 1.5 sin t + 1.5 cos x + 15 [28] b0(t, x) 1.5 cos t + 1.3 cos x + 5 [28]
a3(t, x) 0.6 sin t + 0.6 cos x + 4 [28] p5(t, x) 0.5 sin t + 0.5 cos x + 5 [28]
q2(t, x) 0.5 sin t + 0.5 cos x + 3 [28] p3(t, x) sin t + 0.8 cos x + 5 [28]
p2(t, x) 1.5 sin t + cos x + 7 [28] p1(t, x) 1.5 sin t + cos x + 7 [28]
a1(t, x) 0.4 sin t + 0.3 cos x + 0.2 - b1(t, x) 1.5 cos t + 1.5 cos x + 6 -
a2(t, x) 0.4 sin t + 0.3 cos x + 3 - p6(t, x) 0.1 sin t + 0.1 cos x + 0.1 -
p4(t, x) 0.5 sin t + 0.5 cos x + 7 - q1(t, x) 0.7 sin t + 0.7 cos x + 5 -

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12180–12211.



12201

At this time, we can easily get the following inequality:

− aL
1τ +

∑
0≤tk<t

ln sup
(x,Q,R,X,Y)

gk(x,Q,R, X,Y) = −6.207 < 0,

and
−τaL

3 +
∑

0≤tk<t

ln sup
(x,Q,R,X,Y)

ωk(x,Q,R, X,Y) = −18.932 < 0.

In addition

p∑
k=1

ln inf
x∈Ω,(Q,R,X,Y)∈S

fk(x,Q,R, X,Y) + τ(aL
0 −

pM
1

γL
2

−
qM

1

cL
1

) = 37.303 > 0,

−

p∑
k=1

ln inf
x∈Ω,(Q,R,X,Y)∈S

gk(x,Q,R, X,Y) + τ(aM
1 +

pM
2

γL
4

+
pM

3

γL
5

) = 25.684 > 0,

p∑
k=1

ln inf
x∈Ω,(Q,R,X,Y)∈S

hk(x,Q,R, X,Y) + τ(aL
2 −

qM
2

cL
2

) = 4.350 > 0,

and

−

p∑
k=1

ln inf
x∈Ω,(Q,R,X,Y)∈S

ωk(x,Q,R, X,Y) + aM
3 τ = 34.011 > 0.

According to Theorems 3.1 and 4.1, the population is persistent, as shown in Figures 1–3.

Figure 1. Permennence of populations Q(t, x),R(t, x), X(t, x) and Y(t, x).
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Figure 2. The projection of Figure 1 in t − Q(t, x), t − R(t, x), t − X(t, x) and t − Y(t, x).
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Figure 3. The section of Figure 1 with x = 0.
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(a)–(d) in Figure 1 describe the persistence of four populations Q, R, X and Y respectively. Figure
2 is the projection of Figure 1 on the t-Q(R,X,Y) plane, and Figure 3 is the cross section of Figure 1
when x = 0. It is easy to verify that the parameters given satisfy the conditions of Theorems 3.1 and
4.1. As a result, Theorems 3.1 and 4.1 is thus verified.

7.2. Example 2

In this Section, we examine sufficient conditions for an epidemic extinction. Figures 4 and 5 are the
numerical simulation results obtained by taking dY = 0.3, a1(t, x) = 0.4 sin t + 0.3 cos x + 2.8; a3(t, x) =

1.6 cos t + 1.6 cos x + 7; q1(t, x) = 0.3 sin t + 0.3 cos x + 3; and q2(t, x) = 0.2 sin t + 0.2 cos x + 2 on the
basis of Example 1. At this point, these parameters satisfy the following inequality:

(−aL
1 + qM

1 )τ + ln
p∑

k=1

sup
x∈Ω,(Q,R,X,Y)∈S

gk(x,Q,R, X,Y) − 16.260 < 0;

and

(−aL
3 + qM

2 +
pM

6

γL
3

)τ + ln
p∑

k=1

sup
x∈Ω,(Q,R,X,Y)∈S

ωk(x,Q,R, X,Y) = −9.821 < 0;

Figure 4. The persistence of population Q, X and the extinction of population R,Y .
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Figure 5. The projection of Figure 4 in t − Q(t, x), t − R(t, x), t − X(t, x) and t − Y(t, x).

Figures 4 and 5 show the extinction behavior of epidemics under certain conditions. As can be
seen in Figures 4 and 5, epidemics can become extinct when the mortality rate of infected populations
increase and the diffusion rate and effective contact rate decreases. This suggests that the extinction of
epidemics can be accelerated by limiting the flow of population Y, which is consistent with our general
understanding.

7.3. Example 3

In this Section, we are more concerned about how some other conditions affect the dynamic behav-
ior of the population. Thus, this section mainly considers the effects of impulsive harvest, Crowley-
Martin type response function and contact rate on population dynamics. For convenience, we consider
only the dynamic behavior changes of Q and R based on Example 2.

To illustrate the impact of impulse function on epidemic dynamics, the following numerical simu-
lation is performed. Figure 6 simulates the dynamic behavior without impulsive of population Q and
R. Figure 7 is the result of numerical simulation when the impulse function is gk = 1.4. At this time,
these parameters meet the following inequality:

(−aL
1 + qM

1 )τ + ln
p∑

k=1

sup
x∈Ω,(Q,R,X,Y)∈S

gk(x,Q,R, X,Y) = −3.636 < 0;
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Figure 6. Extinction diagram of population Q and R without impulsive.

Figure 7. Extinction diagram of population Q and R with impulsive.
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By comparing Figures 5(b) and 6(d), it can be concluded that the impulse effect can accelerate
the extinction of epidemics. By comparing Figures 5(b), 6(d) and 7(d), it can be easily concluded that
applying impulsive to the population can reduce the extinction of the population when impulse function
gk > 1, and applying an impulse to the population can accelerate the extinction of the population when
the impulse function gk < 1. This corresponds to the impulsive birth and impulsive death of species.

To illustrate the effect of the functional response function on epidemic dynamics, the following
numerical simulation is considered. Figure 8 is the result of γ1 = γ2 = γ3 = γ4 = γ5 = 0 numerical
simulation. At this time, the Crowley-Martin type response function is reflected into Holling I. Figure
9 shows the result of γ1 = γ3 = 6, γ2 = γ4 = γ5 = 0. At this time, the Crowley-Martin type response
function is reflected into Holling II.

Figure 8. Epidemiological extinction diagram with Holling I type.
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Figure 9. Epidemiological extinction diagram with Holling II type.

Figure 10. Effects of exposure rates on populations.
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By comparing Figures 4(a), 8(a) and 5(a) and 8(b), it can be seen that Holling I type functional
response reduced the population size of susceptible prey Q. By comparing Figures 4(b), 8(c) and
5(b) and 8(d), it can be concluded that Holling I type functional response accelerates the extinction of
infected prey R. It can be seen from Figures 8 and 9 that Holling I type functional response reduced
the population size of susceptible prey Q more than Holling II. The extinction rate of infected prey R
accelerated by Holling I type functional response was higher than that of Holling II. This is because the
predator’s ability to hunt is higher than it actually is when processing time and predator interference are
not taken into account. At this time, the number of susceptible prey Q decreased, while the extinction
time of infected prey R was delayed.

To illustrate the effect of effective exposure rates on epidemic dynamics, the following numerical
simulations were performed. Figure 10 shows the result of q1 = 0.1 sin t + 0.1 cos x + 0.5. At this time,
these parameters meet the following inequality:

(−aL
1 + qM

1 )τ + ln
p∑

k=1

sup
x∈Ω,(Q,R,X,Y)∈S

gk(x,Q,R, X,Y) = −11.861 < 0;

As can be seen from Figures 4(b), 10(c) and 5(b), 10(d), the epidemic will fade faster when the ex-
posure rate of the population decreases. This illustrates the importance of isolation during an epidemic.

8. Concluding remarks

In recent years, the idea of epidemic modeling has always existed. When does the disease appear?
When will the disease become extinct? This is an issue that people have always been concerned about.
This paper presents an epidemic model (1.1)–(1.11). We studied the dynamics of prey populations
by subdividing them into susceptible and infected populations. We consider a class of ecological epi-
demic models with impulses, we obtain sufficient conditions for the ultimate boundedness and persis-
tence of the system by constructing upper and lower solutions, and we have proved the system periodic
solutions. In order to prove the existence, uniqueness and global asymptotic stability of positive pe-
riodic solutions, compactness theory and methods based on the construction of appropriate auxiliary
functions are applied. Furthermore, our theoretical results are verified by numerical simulation. The
numerical simulation results also show that: (i) Under appropriate conditions, populations can coexist
(periodic solutions exist). The existence of periodic solutions depends on the persistence of the system;
(ii) Large (> 1) impulses prolong the extinction time of epidemics; Small (< 1) impulses accelerate
the extinction of epidemics; (iii) The number of susceptible prey is highest and the extinction time of
the epidemic is delayed when processing time and predator disturbance are taken into account; (iv)
Reducing population movements and effective contact rates can better control the spread of epidemics.

These results indicated that dispersal rate, mortality rate, effective contact rate, maximum predation
rate, impulse control and functional response function had significant effects on disease prevalence
and population dynamics. Pulsed reaction-diffusion systems can also serve as a useful tool to study
the dynamics of populations. In this paper, we study an ecological epidemic model with Crowley-
Martin type functional response by model construction and analysis. We accounted for processing
time and interference between predators. In other words, it takes some time in order to digest the
prey and when the predator has captured the prey, the predator’s capture behavior is interrupted during
this time. We take them into account when we study the dynamics of the population. And studied the

Mathematical Biosciences and Engineering Volume 19, Issue 12, 12180–12211.



12209

persistence of populations, from an ecological point of view, consistent persistence means that prey and
predators can coexist at any time and in any location in an inhabited area. Thus, we can use some key
arguments to control population persistence and extinction through some hybrid system of reaction-
diffusion pulses, which is expected to be useful in the study of dynamic complexes of ecosystems.
An important question is: what interesting things would happen if population Y could prey on both
population R and population Q? This will be our main consideration in the later stage.
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