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Abstract: Due to the advent of the expressions of data other than tabular formats, the topological
compositions which make samples interrelated came into prominence. Analogically, those networks
can be interpreted as social connections, dataflow maps, citation influence graphs, protein bindings,
etc. However, in the case of social networks, it is highly crucial to evaluate the labels of discrete
communities. The reason for such a study is the importance of analyzing graph networks to partition
the vertices by only using the topological features of network graphs. For each interaction-based en-
tity, a social graph, a mailing dataset, and two citation sets are selected as the testbench repositories.
The research mainly focused on evaluating the significance of three artificial intelligence approaches
on four different datasets consisting of vertices and edges. Overall, one of these methods so-called
“harmonic functions”, resulted in the best form to classify those constituents of graph-shaped datasets.
This research not only accessed the most valuable method but also determined how graph neural net-
works work and the need to improve against non-neural network approaches which are faster and
computationally cost-effective. Also in this paper, we will show that there is a limit to be accessed by
prospective graph neural network variations by using the topological features of trialed networks.

Keywords: graph neural networks; graph attention networks; harmonic functions; node
classification; social network; semi-supervised learning

1. Introduction

In the current era of social networking, knowledge exchange in any form of information exhibits
liaisons between individuals. These social networks may include physical contacts, messages sent,
collaborative studies between peers, sentimentally closeness, etc. While the information flow is con-
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structing a network, the format appears as a knowledge map [1] which implies a graph structure. Hence,
analysis of graph formatted data is essential to obtain more details regarding social networks.

Typically, the data representations tend to be in a tabular or non-Euclidean format to make the data
analyzed in a structured way [2]. Those data which were expressed in terms of samples and attributions
related to every single sample can be imagined as rows and columns intersecting. The former can not
imply any relatedness between samples, since tabular-formatted data structure will not provide such
an ability. However, linkages in the real world are significant enough to be taken into account while
working with samples that have interdependencies in aspects of many topics possibly. Thus, graph
networks are the key players here to make significance by their abilities to show related samples with
links in between. In addition to mentioning graph networks, the mathematical foundations of graph
networks will be explained in the later sections briefly.

As a variant of the neural network family which has the ability to handle non-Euclidian data, a Graph
Neural Network [3], called GNN for the sake of simplicity, is a brand new method in use. Namely said
GNNs can take grid-wise graph inputs which show the intercorrelations between samples and evaluate
many tasks which will be mentioned later. Having said that, GNNs are getting more popular in aspects
of their usage. While its interpretations lead to new approaches, many models are derived depending on
GNNs. Its most common fields of achievement are molecular biology [4–6], network sociology [7–9],
knowledge graphs [10, 11], road traffic [12], natural language processing [13, 14], and even computer
vision [15, 16]. Adding that, recent development in varied versions of GNNs such as GCN [17] which
brought convolutional neural networks to the graph domain, GraphSAGE [18] which utilized aggrega-
tion functions during the message passing, APPNP [19] which derived a method from message passing
to personalized PageRank [20] algorithm by fusing the famous PageRank with GNNs, SGC [21] which
reduced the excess complexity by removing nonlinearities and simplified GCNs, GAT [22] which de-
rives inspiration from attention mechanisms as in deep learning approaches, and DGI [23] which uses
unsupervised methods to learn graph representations led this area of neural networks to grow and
disseminate, chronologically. Two of these, GCN and GAT, need to be paid attention to in terms of
their exemplarity for the other methods since one leads the convolutional approaches whilst the other
leads the attention-based mechanisms. Other than variations of GNNs, there should be mentioned
other learning methods such as random walks [24], spectral graph theory applications [25], the nearest
neighbor approach, and harmonic functions [26].

The problematic features of classifying vertices over a graph by variations of GNNs, whereas non-
neural network models are overlooked, influenced this paper. To solve this, GCN and GAT models have
been benchmarked against a semi-supervised learning method called harmonic functions. Hereby this
article, GCN, GAT, and harmonic functions have been used and the accuracies have been investigated
under the same circumstances for each method. Resultingly, this research contributes to understanding
the limit to improve graph neural networks and the effectiveness of topological structures while the
classification of nodes is aimed.

Our contributions are as follows: (i) We show that topological connections are useful even without
node features by using three ML methods for the node classification task while we utilized only topo-
logical structures of graph-represented data. (ii) We propose that there is a certain limit of accuracy
score to be accessed by prospective modulations of GNNs to be accepted as progressive methods. (iii)
We prove the effectiveness of harmonic functions against GCN and GAT when it comes to homoge-
neous graphs without node and edge features.
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2. Materials and methods

2.1. Network datasets and related insights

The selection of adequate sets to be subject to processing by particular algorithms is substant for
evaluating the throughput of the research. Therefore, the first trials for entire algorithms were per-
formed on a dataset called “Zachary’s Karate Club Dataset”, created by Zachary et al. in 1977 [27].
The ground basis for such a selection relies on the simplicity of the dataset mentioned in the previ-
ous line. Zachary’s Karate Club Dataset, which will be abbreviated as “Karate Dataset” in this article
consists of 34 individuals from a local karate club. The dataset shows the members via vertices and
the social interactions between club members using edges, basically. Later in time, the group was split
into two subsections because of an internal argument between officials and the task here is to predict
every student’s final decision on whom to get the course from. As depicted in Figure 1, class tutors are
portrayed by nodes number 0 and 33.

Figure 1. Visualization of Zachary’s karate club dataset.

Another data that was extracted from a large European research institution was adopted to be used
as a testbench dataset by using a network repository SNAP [28]. According to the analysis done by
Bharali et al. [29], the “Email-Eu-Core network” is found to be a Small-World network that exhibits
power law-regime with an assortative mixing pattern on the degree of nodes. In the same research
paper, the network was said to be robust against random failures but vulnerable to targeted attacks.
Besides, the average degree which means the number of edges compared to the number of nodes was
relatively huge considering the same criterion for other datasets introduced hereby in this paper. Thus,
the graph-network abbreviated as ”Email Dataset” which consists of an internal mailing network had
some differences to be under investigation for node classification. The challenging structure of the
dataset led it to be taken as one of these benchmark datasets in this study.
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Lastly in this section, two datasets called “Cora” and “Pubmed” datasets should be mentioned since
these are covered in the introduced research. Both sets are consisting of scientific writings and the
citation linkages of these articles. As might be expected, papers refer to nodes whereas citations are
presented as edges for both citation networks. To fetch these datasets in the form of adjacency matrices,
a particular python library, Spektral library [30], has been used.

Those citation networks which are commonly used in the graph theory area were quite important to
generalize the outputs of classification results discussed in the subsequent “Results” part. Here, there
was a hardship in the case of the Pubmed dataset due to its average clustering coefficient. The average
clustering coefficient (CC) is a phenomenon that refers to the possibility to draw a triangle by a node
and its two distinct neighbors. CC can also be interpreted as the fraction of the number of closed
triplets by the number of all triplets in the network graph.

In an outlined form, one can refer to Table 1 as a summary of the datasets utilized during the
experiments.

Table 1. Summary of the datasets.

Karate Email Cora Pubmed
No. Nodes 34 1005 2708 19,717
No. Edges 78 25,571 5429 44,338
No. Clusters 2 42 7 3
No. Training Nodes 2 804 2166 5000
Average Clustering Coefficient 0.57 0.4 0.24 0.06
Average Degree 4.59 25.44 3.9 4.5

2.2. Preprocessing node and edge embeddings

Most generally, when one’s working on graph data without node and edge attributions, the prepro-
cessing schedule should be short. For instance, in the case of the karate dataset, there was no action
needed to process the inputs since those were already in an abstract form. Similarly, the email dataset
didn’t demand anything besides turning the data list to tuples to be handled.

However, for the Cora dataset, there were some necessary transformations to be considered. The
main reason why it matters to rebuild the Cora dataset is that the harmonic function takes the node
inputs as integers and those integers should be in an adjacent format. Additionally, GAT and GCN take
the label arguments as integers as well. Contrary to the requirements, the Cora dataset accommodates
vertices in a non-consecutive order. Having said that, particular numbers of nodes are not varying in
between the range of numbers of samples which means node numbers should be arranged in order
to have those nodes adjacently increasing from zero to the number of total vertices in the set. As
Vi → V

′

i and V j → V
′

j (where Vi and V j refers to the vertices having an interconnection ) the edge
connection should remain the same as Edge(Vi,V j) → Edge(V

′

i ,V
′

j) while Edge showing the link
between two vertices.

The aforementioned situation of labels of the Cora dataset has been solved by mapping the clique
texts to specific integers. One can refer to Table 2 for the encoding details per each label name.
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Table 2. Original label names and related integers while preprocessing.

Original Label Encoded Target
Rule Learning 0
Neural Networks 1
Theory 2
Case Based 3
Probabilistic Methods 4
Genetic Algorithms 5
Reinforcement Learning 6

2.3. Graph Convolutional Networks and Graph Attention Networks

To fulfill the aim of this study, two networks were applied to the datasets and described in the
following subsections. It should be kept in mind that many other models could be used to achieve
classification tasks. However, in this paper, when comparing harmonic functions with GCN and GAT,
it is aimed to set a higher limit in terms of accuracy than the lower limit that harmonic functions will
define for future neural network models to achieve.

2.3.1. Graph Convolutional Networks

Proposed by Kipf et al., Graph Convolutional Networks [31] can be seen as the enhancements to
neural networks that operate on graphs which had been previously introduced by Gori et al. [32]. For
convenience, it would be nifty to show the mathematical foundations of GCNs so that the surrounding
dialectics can be understood well.

Prescribed as inputs A, the adjacency matrix in the shape of N ×N, and H, the feature matrix in the
shape of N × F, where each vertex has 2-D feature vector in the shape of 1 × F, the basic propogation
rule for a GCN is given by Eq (2.1).

H’ = σ(AHW) (2.1)

Noting that W is a the weight matrix in the shape of F×F’, H’ stands for the newly generated node
features, and σ(·) implements the non-linearity function, the node i was focused to get the following
equation to simply sump up the transformed features of all connecting nodes. Equation (2.2) depicts the
correlation in between a node’s features hi and the features of the connected nodes h j to the particular
node i. Please note that V(i) is the group of node i’s neighboring nodes.

hi = σ

∑
j∈V(i)

WT h j

 (2.2)

Conflicting with the expression made, the previous propagation rule which is depending on the
sum-pool doesn’t perform solid. The reason which leads to such an outcome is how the propagation
rule introduced in Eq (2.2) just sums up feature vectors. This may lead the repeated applications to
increase the scale of the features. To overcome that obstacle, another update rule that can be simulated
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by Eq (2.3) satisfies the normalization of the adjacency matrix by multiplying it by the inverse of the
diagonal degree matrix D. Consequently, a newly updated node feature vector is shown by Eq (2.4).

H’ = σ(D−1AHW) (2.3)

h
′

i = σ

∑
j∈V(i)

1
|V(i)|

WT h j

 (2.4)

The previous propagation rules were presented in order to explain how GCN works. Now, the rule
which is derived from the previous equations, so-called symmetric normalization should be visited as
Eq (2.5) shows, to see how it multiplies the adjacency matrix by the square root of the inverse of the
diagonal degree matrix. Resultingly, the node features are up to be changed according to Eq (2.6)

H’ = σ(D−1/2AD−1/2HW)) (2.5)

h
′

i = σ

∑
j∈V(i)

1
√
|V(i)|

√
|V( j)|

WT h j

 (2.6)

The implementation of GCN in the case of this research has exploited the theoretical foundations
expressed in this section. Even so, this study aimed to work with topological bonds of the graph-
structured data without fetching any information related to nodes. Hence, features for each node were
set to zero initially.

2.3.2. Graph Attention Networks

Graph Attention Networks (GATs) were introduced in Veličković et al. as a novel approach that
benefits the GCN’s background but adds particular “attention” mechanisms. The mathematical pin-
nings of GAT can be viewed on its inventor’s paper [22], though it is still needed to outline the unique
annexes of GAT in the context of this paper.

Unlike GCN, the coefficients in GAT are not constant due to the relaxation of the coefficients being
dependent on the current input. The idea explained is the motivation of attention mechanisms for such
a graph neural network. Having said that we have non-constant coefficients, the attention coefficient
αi j while the j is the sender and i is the receiver nodes were computed as Eq (2.7) shows.

αi j =
exp(LeakyReLU(a[WT hi||WT h j]))∑

k∈V(i) exp(LeakyReLU(a[WT hi||WT hk]))
(2.7)

Theoretically, a one-layered MLP, which is symbolized by a, has been applied on concatenated mes-
sages WT hi and WT hi by the activation function which was propositioned as the LeakyReLU function.
Over and above that, GAT exerts multi-head attention which means each GAT layer has a fixed number
of independent duplicates. Those outputs obtained through each duplicated layer of GAT, then, were
concatenated to produce a finalized feature vector. As Eq (2.8) expresses, the normalized attention
coefficients are used to determine the features corresponding to them, and to assign the final output
features for every node.

h
′

i = σ

∑
j∈V(i)

αi jWT h j

 (2.8)
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2.4. Harmonic functions

As stated by Zhe et al. [33], the semi-supervised learning method using Gaussian fields and har-
monic functions is applicable for networks whose topology is known. With the help of the NetworkX
library’s useful application programming interface [34], the classification method has been applied to
the datasets accordingly. One can refer to the Eq (2.9) which explains what harmonic functions are
where a function h : V → R is called harmonic function so that the graph G = (V, E) is harmonic. For
convenience, di refers to the degree of the vertex. Sufficient information can be revisited from He et
al. [35] to understand the basis of classification by harmonic functions.

h(V i) =
1
di

∑
(V i,V j)∈V

h(V j) (2.9)

3. Proposed method

As its subcomponents are defined in the previous section, basically, the proposed method depends
on accomplishing node classification tasks through both GCN, GAT, and harmonic functions. Since
one of the motivations of this article is to show the impact of topological bindings on classification,
the very first step of our proposed method to conduct this research is to sift network data from node
and edge features to access only topologic attributions. Consequently, there will be a drastic decrease
which may lead to more efficient use of memory in terms of the amount of data.

Figure 2. Workflow of the proposed method.

After the extraction of topologic bindings, the aforementioned classification methods were subject
to be used separately. Predicted node labels were noted for every classification method to evaluate the
importance of the topological structure of graphs for vertex classification and the best model overall
for such an application. Figure 2 outlines the projected research method which leads this study. After
following those steps depicted in Figure 2, the rest is to interpret the results accordingly. To have
a better perception, Algorithm 1 has been extracted to outline the general workflow of the proposed
study.

As it can be deducted from the Algorithm 1, the entire process depends on sifting the node features
out and evaluating the node classification accuracies over three models. That is a naive approach to
perceiving how GCN, GAT, and harmonic functions perform on the node classification task when the
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Algorithm 1 Concise algorithm of the proposed method
Require: G(V, E, F)
Ensure: acc1, acc2, acc3

function preprocess(G(V, E, F)):
i← 0
while Vi ∈ V do

delete Fi

i← i + 1
end while
return G(V, E)

end function
function classify(G(V, E)):

acc1← GCN(G(V, E))
acc2← GAT (G(V, E))
acc3← Harmonic(G(V, E))
return acc1, acc2, acc3

end function
acc1, acc2, acc3← classi f y(preprocess(G(V, E, F)))
best model← max(acc1, acc2, acc3)

graph is fully homogeneous. One can apply our model from scratch by following the footsteps of the
mentioned algorithm.

4. Results

4.1. Environmental Setup

While the learning rate is 0.01, the optimizer is Adam, loss function depends on a negative log-
likelihood approach, out of 10 training sessions with 500 epochs in every case, GCN and GAT meth-
ods were trialed whereas harmonic function was only trained within 100 iterations because, after a
particular number of iterations, the harmonic function doesn’t perform any better or worse compared
to previous iterations. At the end of those 10 experiments for each dataset and method, the standard
deviations were noted since the training data were sampled randomly. For a better generalization, it has
been thought that random sampling would give a better idea. Because serving as a validation dataset
for the algorithms, the only case in which the training data was not set randomly was the karate dataset
case, which took only 2 node assignments as the training data.

In terms of computing architecture, a cloud computing service so-called Google Colab has been
utilized in this research because of its simplicity. Python 3 Google Compute Engine backend (TPU)
served as the processor, while 35 GB of memory has been subject to be used.

4.2. Research results

Ensuring the construction of methods and datasets, the very explainable sequel occurred for the
karate dataset. Hence, the social interaction between the individuals herewith helped the experiment
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to distinguish those two distinct cliques. Figure 3 illustrates the classified labels per node by GCN and
nodes’ corresponding ground-truth assignments.

Figure 3. Classification results of intentionally mistuned GCN for karate dataset.

In the case of the karate dataset, it was observed that the classification accuracy could hit the 100%
quite easily without the need for complex parameter tuning since the dataset is quite small and par-
taking in a particular clique is linearly dependent on the social interactions of the club members.
Therefore, to highlight the difference in terms of accuracy between classified labels and ground-truth
assignments on Figure 3, the GCN was trained during 20 epochs intentionally. In the case of proper
training, full accuracy was observed.

In addition to computing the standard deviation, the mean accuracy levels have been measured by
simply taking the average of the results in 10 experiments. The train-to-test ratio was 0.8 for every case
but Pubmed-GCN and Pubmed-GAT duos. The reason is that the out-of-memory error occurs since
the number of processed nodes is too much in the training for the Pubmed dataset. To avoid such an
error, the Pubmed dataset has been trained with 5000 vertices which means almost 25% of the entire
network.

Interpreting the tables in this section is only possible once one knows the train-test split method that
has been used in the current paper. The foremost fact about measuring the test accuracy here depends
on the training backbones of semi-supervised learning by maximizing the negative log-likelihood of the
known node assignments. Here, the mentioned “known node assignments” can be elucidated as train
data, and resultingly, an analogy between unlabelled data and test data can be constructed. Therefore,
once the model is fed with a certain number of samples whose ground-truth labels are known, the
whole graph is taken as an entire set that includes both test and train data, and the accuracy for the
entire set can be recorded by Table 3 and abbreviated as ACC. Yet, the observed accuracy contains
both train and test accuracy. To evaluate the test accuracy for unlabelled data, a simple fraction of the
train to test is used by assuming the training accuracy 100% as explained in Eq (4.1).

Test Accuracy =
ACC − (Training Samples Ratio%)

1 − (Training Samples Ratio%)
(4.1)
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According to the latter formula, accuracies of prediction for unlabelled nodes have been shown in
Table 3.

Table 3. Comparison of methods used in this research.

Name of the dataset Accuracy for full dataset (ACC)
GCN GAT Harmonic

Karate 100% 100% 100%
Email 94.42 ± 0.52% 93.59 ± 0.47% 94.14 ± 0.68%
Cora 96.29 ± 0.3% 96.61 ± 0.29% 97.27 ± 0.23%
Pubmed 85.29 ± 0.26% 85.55 ± 0.24% 96.47 ± 0.07%

Accuracy for unlabelled data (test accuracy)
GCN GAT Harmonic

Karate 100% 100% 100%
Email 72.1 ± 0.52% 67.95 ± 0.47% 70.7 ± 0.68%
Cora 81.45 ± 0.3% 83.05 ± 0.29% 86.35 ± 0.23%
Pubmed 80.39 ± 0.26% 80.73 ± 0.24% 82.35 ± 0.07%

5. Discussion

As it predominantly appeared, the harmonic function outputs slightly better than the others for node
classification tasks on Cora and Pubmed datasets in terms of mean accuracy levels. Having said that,
the standard deviation occurred smaller than it occurred for the other datasets which means harmonic
functions are more robust against different training samples. When the number of samples is higher,
the standard deviation goes lower as expected theoretically. The same or the opposite can not be said
for the mean accuracy levels since they depend on internal knowledge in each graph. The amount
of samples is only one fact but not the most crucial. When it comes to graph-structured data, the
heterogeneity [36] issue emerges as the key.

Known as message passing algorithms, both GCN and GAT depend on the same theory but differ
on update and aggregation rules. Contingent with these methods, varied versions of usage-specific
graph neural networks have been deployed in recent years as stated in the Introduction section. Hence,
GCN and GAT served as seed points for many others to initiate fresh methods to overcome graph-
related tasks in artificial intelligence. Though graph neural networks show impressive performance
on graph-related tasks in the machine learning field, they still need to exceed certain limits. For sure,
most of the cutting-edge techniques have already gone beyond the limits previously achieved by GCNs
and GATs. However, most of the novel approaches in GNNs still depend on GCN and GAT theory.
Intuitively, there must be a comparison level for these new models to be accepted as an improvement.
In this research, the limit has been proposed as classification by harmonic functions as introduced by
Zhu et al. For the popular datasets, such as Cora and Pubmed datasets, this theory seems to work fine.
Unlike the motivation of this theory, GCN outperformed harmonic functions for the Email dataset,
which showed us this limit may not be applicable for every dataset.

Whereas harmonic functions slightly outperform GCN and GAT, it still lacks the ability to handle
feature vectors related to entries. Thus, classification with harmonic functions is only possible with
topological correlations of nodes in the graph. This disability of not being able to work with feature
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matrix can be offered as a soft spot for harmonic functions which need to be fixed by new modifica-
tions. Recalling the fact that both GCN and GAT can work with feature matrices as introduced by
Eq (2.1), merging the node update rule of harmonic functions and the feature update rule of GCN
or GAT would devise a new and even better method for node classification tasks. Even so, this idea
needs confirmation by further research but is still worth noting here in this section. Moreover, due to
heterogeneity in graphs, generalization of the limit to be accessed by new approaches as the output of
harmonic functions is not possible. However, it can still be set as a limit for particular datasets as has
been shown in this paper. Having said that, one should note that only the topological attributes have
been used which makes the case out of heterogeneous graphs. For further studies, node features will be
included for a larger set of test cases. Moreover, edges with attributes may also be included to enhance
the topological information yielded by a graph structure.

6. Conclusions

Hereby this paper, while using three methods on four sample spaces, the topological bindings of
individuals in each sample space have been processed to classify nodes into related communities/labels.
The contributions, as stated in the introduction section, were achieved to some extent. The main goal
was to reach a certain limit of accuracy scores in order to be accessed by prospective modulations of
GNNs. Moreover, after sifting the data to obtain its topological structure, we were able to show that
featureless graph data was still useful on its own for graph neural networks and harmonic functions.
Lastly, as our main goal depicts, harmonic functions appeared more effective against GCN and GAT
while working with graphs without node and edge attributions. The novelty of this article is twofold.
First, classification by harmonic functions was compared against state-of-the-art models and achieved
significant success. To the best of our knowledge, it was not the focus of previous research in this
area. Second, we have shown that the graph data is still useful without node features. That also brings
an efficient use of memory since features may or may not be important depending on the case. Our
paper shows using the graph data without utilizing features must be considered even if this is contrary
to intuition. Upon exploring the situation from multiple perspectives, this research may serve as an
artificial intelligence backbone for social network-based studies. In particular, Yao et al. [37,38] depict
the semantic analysis based on traditional network analysis techniques to understand user behavior in
certain clusters. We believe such applications could be revamped by innovations in the graph machine
learning field.

7. Future work

The process of preparing the current research article led to many ideas regarding Graph Neural
Networks. As it was divided into details, GNNs’ handiness to obtain node embeddings like a feature
extractor or as an encoder influenced us to investigate if GNN models could be merged with other ML
techniques for industrial applications. Especially, the banking transaction datasets that consist of licit
and illicit transactions attracted our attention, since these sorts of data refer to time-series data and such
applications can be surveyed in the security area. We will look for potential advancements in GNNs
by fusing GNNs with other ML or graph theory techniques to solve industry-related issues.
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